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The dynamics of breaking internal solitary waves
on slopes
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Using direct numerical simulations (DNS), we investigate the structure and energetics
of breaking internal waves on slopes. We employ a Navier–Stokes code in an
idealized three-dimensional domain where an internal solitary wave of depression
impinges upon a sloping bottom. Seven cases with varying initial wave amplitude
and bathymetric slope, but constant wave Reynolds number Rew are considered.
Volume-integrated values of dissipation and irreversible mixing are related to the
density and velocity structure of the wave throughout the breaking process. The
majority of dissipation (63 %) occurs along the no-slip bottom boundary. Most
of the remaining dissipation (35 %) and nearly all irreversible mixing occurs in
the interior after breaking, when density overturns are present at the interface.
Breaking introduces three-dimensionality to the flow field that is driven by the
lateral breakdown of density overturns and the lobe–cleft instability typical of gravity
currents. The resulting longitudinal rolls (streamwise vorticity) increase dissipation by
roughly 8 % and decrease irreversible mixing by roughly 20 % when compared with a
similar two-dimensional simulation. The bulk mixing efficiency is shown to increase
for larger and smaller values of the internal Iribarren number ξ , with a minimum
for intermediate values of ξ and a peak near ξ = 0.8 for plunging breakers. This
trend is explained by the degree of two-dimensionality in the flow, and agrees with
previous results in the literature after accounting for Reynolds number effects. Local
turbulence quantities are also calculated at ‘virtual moorings’, and a location upslope
of the breakpoint but downslope of the intersection of the pycnocline and the bottom
is shown to provide a signal that is most representative of the volume-integrated
dissipation and mixing results.

Key words: internal waves, stratified flows, turbulent mixing

1. Introduction
Internal tides are formed in the ocean by the interaction of the barotropic tide with

topographic features. As internal tides propagate, they steepen due to nonlinearity and
disperse into trains of internal solitary waves. Ultimately, these waves interact with the
continental or nearshore slope, where they steepen further and eventually break. Prior
to breaking, the dynamics of shoaling internal solitary waves are described well by
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the weakly nonlinear, weakly dispersive Korteweg–deVries (KdV) equation (Helfrich
& Melville 2006). In shallow water and during and after breaking, however, KdV
theory breaks down and non-analytical methods must be used to describe internal
wave dynamics.

Although field observations of shoaling and breaking internal waves have been
made in the past (Klymak & Moum 2003; Scotti & Pineda 2004; Shroyer, Moum
& Nash 2009; Davis & Monismith 2011; Nam & Send 2011; Walter et al. 2012,
2014), these results are limited by the spatial and temporal resolution of field data.
For this reason, a wide range of numerical and laboratory studies have explored
the breaking process of internal solitary waves on slopes in more idealized domains.
These studies have examined shoaling and breaking mechanisms, as well as the
formation of upslope surges of dense water that are referred to as bores or boluses
(Wallace & Wilkinson 1988; Helfrich 1992; Lamb 2002; Vlasenko & Hutter 2002;
Venayagamoorthy & Fringer 2007). Of particular interest has been a classification of
breaking mechanisms across the full parameter space of incoming wave and slope
conditions. Boegman, Ivey & Imberger (2005) created one such classification using
the internal Iribarren number

ξ = s√
a/Lw

, (1.1)

where s is the bathymetric slope, a is the wave amplitude and Lw is the solitary
wavelength. Aghsaee, Boegman & Lamb (2010) expanded this classification, defining
surging, collapsing, plunging and fission breaker types based on several time scales
associated with breaking. Including smaller, more realistic slopes s=O(0.01) allowed
Aghsaee et al. (2010) to capture fission breakers, which were not included in
Boegman et al.’s (2005) classification. During fission, the rear face of the initial
wave separates into a train of solitary waves of elevation that propagate up the slope
as boluses. Fission has been observed in the field (Shroyer et al. 2009) and with a
two-dimensional field-scale numerical model (Bourgault et al. 2007a).

Much of the interest in internal wave interaction with bottom topography stems from
Munk & Wunsch’s (1998) claim that turbulence due to breaking internal waves at
boundaries accounts for a significant sink of energy in the ocean. In addition, turbulent
mixing caused by breaking internal waves has implications for nearshore distributions
of temperature, nutrients, and larvae (Pineda 1994; Leichter et al. 1996; Omand et al.
2011), as well as sediment transport (Bourgault et al. 2014) and dissolved oxygen
variability (Walter et al. 2014). For these reasons, the mixing associated with breaking
internal waves on slopes has also been an active area of research. Several studies
have quantified the ‘mixing efficiency’, or the proportion of initial wave energy that
contributes to irreversible mixing of the density field. Michallet & Ivey (1999) used
laboratory experiments to calculate the mixing efficiency as a function of the ratio
between the length scale of the wave and the length scale of the slope. They found
that for small values of this ratio (small slopes), breaking is not vigorous and the
mixing efficiency is low. For large vales of this ratio (large slopes), the mixing
efficiency is again low because most of the incoming energy is reflected off of the
slope. The mixing efficiency peaks around 25 % for intermediate values of the ratio,
when the most vigorous breaking occurs. Boegman et al. (2005) also recast Michallet
& Ivey’s (1999) results in terms of the internal Iribarren number, and found that
the peak mixing efficiency occurs when ξ ≈ 0.8, corresponding to plunging breakers.
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However, Bourgault & Kelley (2007b) found that the results of Michallet & Ivey
(1999) were likely affected by dissipation due to sidewall friction.

Estimates of the mixing efficiency have also been made for other internal
wave-breaking mechanisms. Hult, Troy & Koseff (2011) used novel laboratory
techniques to measure the mixing efficiency of internal waves interacting with a
bathymetric ridge. Specifically, they separated the mixing efficiency into different
regions of the flow, including the interface, where breaking occurs, and the lower
layer, where flow interacts with the bottom boundary. They found a local mixing
efficiency of 10–17 % at the interface, where wave breaking contributes to turbulent
mixing, and no mixing in the lower layer, where boundary-induced turbulence exists
but has no density gradients to mix. This resulted in an overall mixing efficiency of
4–7 % for the entire domain. Fringer & Street (2003) used a high-resolution numerical
model to calculate the mixing efficiency of breaking internal waves in deep water.
Using the formulation of Winters et al. (1995), they found a maximum instantaneous
mixing efficiency of 0.36± 0.02. Using the formulation of Michallet & Ivey (1999),
they found a ‘bulk’ mixing efficiency of 0.42 ± 0.07. Fringer & Street (2003) also
provide a summary of mixing efficiency values from previous studies in their table 1.
In addition, Fringer & Street (2003) examined the dynamics of the breaking process,
and found that progressive internal waves break due to an initial two-dimensional
instability (either Kelvin–Helmholtz billows or Rayleigh–Taylor instability) that is
uniform in the lateral (cross-stream) direction. These initial instabilities create unstable
stratification that leads to a secondary convective instability in the lateral direction.
This secondary instability manifests itself in the form of streamwise vorticity, or
‘longitudinal rolls’ that significantly affect dissipation and mixing in the domain.

Numerical modelling has been used extensively to study shoaling and breaking
internal waves on slopes both at the field (Lamb 2002; Bourgault et al. 2007a;
Vlasenko & Stashchuk 2007; Walter et al. 2012) and laboratory (Vlasenko &
Hutter 2002; Venayagamoorthy & Fringer 2007; Aghsaee et al. 2010) scales. While
field-scale models are able of capturing realistic wave and slope conditions, they
fail to resolve the small-scale processes associated with breaking. Conversely,
laboratory-scale models begin to resolve breaking processes but fail to capture realistic
wave and slope conditions. Several high-resolution three-dimensional modelling studies
have examined turbulence and mixing during internal wave generation and breaking
on critical slopes. These include the direct numerical simulations (DNS) of Gayen
& Sarkar (2010) and the large-eddy simulations (LES) of Gayen & Sarkar (2011).
However, most previous modelling studies of breaking internal waves on slopes have
used two-dimensional domains that suppress the three-dimensional variability of the
breaking process seen in these studies and in Fringer & Street (2003), thus preventing
the accurate calculation of breaking energetics.

The present study uses DNS to examine the dynamics of breaking internal
solitary waves on slopes. We capture the three-dimensional structure of wave–slope
interaction and breaking, and examine the effects of this structure on dissipation
and mixing. Section 2 introduces the governing equations and computational setup,
while § 3 describes the general structure and energetics of breaking. We examine
the three-dimensional flow features induced by breaking and their effects on wave
structure and energetics in § 4. The effects of initial wave amplitude and bathymetric
slope are discussed in § 5. Finally, we discuss the geophysical application of our
results in § 6.
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FIGURE 1. The domain used to study breaking internal waves on slopes. (a) The initial
stratification, where ρ1 = 985 kg m−3, ρ2 = 1015 kg m−3 and δ = 2 cm. The parameters
a0, Lw, h1, and h2 are shown in table 1. (b) The physical dimensions of the domain and
a coarse example of the orthogonal curvilinear grid (without vertical stretching). Here,
Ls = 1.675 m and the lateral (x2, into the page) width of the domain is W = 0.1 m. The
parameters L, H, and s are shown in table 1. The radius of curvature of the rounded
bottom at the beginning of the slope is 3 m.

2. Governing equations and computational set-up

We solve the Navier–Stokes equations with the Boussinesq approximation given by

∂ui

∂t
+ uj

∂ui

∂xj
=− 1

ρ0

∂p
∂xj
+ ν ∂

2ui

∂xj∂xj
− g
ρ0
ρδi3, (2.1)

∂ρ

∂t
+ uj

∂ρ

∂xj
= κ ∂2ρ

∂xj∂xj
, (2.2)

∂ui

∂xi
= 0, (2.3)

where ν is the kinematic viscosity and κ is the scalar diffusivity. Here, we use the
Einstein summation convention with i, j, k= 1, 2, 3 and x3 as the vertical coordinate.
Equations (2.1)–(2.3) are solved using the code Cui (1999) in the three-dimensional
domain shown in figure 1. This code is parallelized with MPI and employs the
fractional-step method of Zang, Street & Koseff (1994) to solve the momentum and
scalar transport equations. The method of Zang et al. (1994) has been used extensively
in the past to study geophysical flows at the laboratory scale (for a complete list,
see Venayagamoorthy & Fringer 2007; Chou & Fringer 2010). Although the code
includes the dynamic-mixed model of Zang, Street & Koseff (1993), in the present
study we do not use this model, but instead perform DNS.

For all simulations, the initial stratification is given by

ρ

ρ0
(x1, x3, t= 0)= 1− 1ρ

2ρ0
tanh

[
2(x3 + h1 + ζ (x1))

δ
tanh−1(α)

]
(2.4)

where the reference density ρ0= 1000 kg m−3, the density difference between the top
and bottom layer 1ρ = ρ2 − ρ1 = 30 kg m−3, the upper layer depth h1 = 0.3 m, the
interface thickness δ = 2 cm and α = 0.99. A solitary wave of depression is created
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Case L H h1, h2 a0, L0 s ν δS ξ Type
(m) (cm) (cm) (cm) (m2 s−1) (mm)

1 4 56 30, 26 5, 70 0.218 2.50× 10−7 2.4 1.51 S
2 3.5 56 30, 26 10, 70 0.3 1.00× 10−6 4.9 1.47 C
3 4 56 30, 26 10, 70 0.218 1.00× 10−6 4.9 1.07 C
4 4 56 30, 26 15, 70 0.218 2.25× 10−6 7.3 0.87 P
5 4 56 30, 26 20, 70 0.218 4.00× 10−6 9.8 0.76 P
6 5 56 30, 26 10, 70 0.15 1.00× 10−6 4.9 0.73 C
7 11 56 30, 26 10, 70 0.05 1.00× 10−6 4.9 0.24 F

TABLE 1. The solitary wave cases considered in this study in terms of the domain length
L, the domain height H, the upper-layer depth h1, the lower-layer depth h2, the amplitude
of the initial half-Gaussian a0, the length scale of the initial half-Gaussian L0, the bottom
slope s, the kinematic viscosity ν, the Stokes’ boundary-layer thickness δS, the internal
Iribarren number ξ and the breaker type (S = surging, C = collapsing, P = plunging,
F = fission).

in the domain by initializing the interface with a half-Gaussian at the left boundary
(e.g. Fringer 2003; Bourgault et al. 2007a). This interface ζ is given by

ζ (x1)= a0 exp
[
−
(

x1

L0

)2]
+ ζ ′R, (2.5)

where a0 and L0 are the initial amplitude and length scale of the half-Gaussian,
respectively. An initial perturbation ζ ′R, where ζ ′ = 1 mm and R ∈ {−1, 1} is a
uniformly distributed random number, is also added to the interface to trigger lateral
instabilities during breaking.

Seven wave cases are considered here, and summarized in table 1. Following Troy
& Koseff (2005), we classify each case in terms of the wave Reynolds number Rew=
a2ω0/ν, where a is the amplitude of the initial solitary wave after it has formed, and
was found to be approximately a0/2. The wave frequency ω0 is estimated as c0/λ,
where c0 = √g′h1h2/H is the linear phase speed of an internal wave in a two-layer
fluid (g′= g1ρ/ρ0 is the reduced gravity) and λ≈ 2Lw is the wavelength. The solitary
wavelength Lw is calculated as (Michallet & Ivey 1999)

Lw = 1
a

∫ Ls

0
η(x1)dx1, (2.6)

where η is the displacement of the ρ = ρ0 isopycnal from h1. Here, Lw was found
to be approximately 1.2 m for all cases. Case 3 is considered the base case with
ν = 10−6 m2 s−1 and Rew = 208. To facilitate direct comparison of dissipation and
mixing between cases, ν is changed relative to the base case in order to maintain
a constant Rew. The wave Reynolds number is proportional to (a/δS)

2, where δS =√
2ν/ω0 is the Stokes’ boundary-layer thickness. Thus, we maintain a constant initial

wave amplitude to Stokes’ boundary-layer thickness ratio for each case. For all cases,
the Prandtl number Pr= 1 such that κ = ν. Following Aghsaee et al. (2010), we also
calculate the internal Iribarren number ξ for each case and classify the breaker type,
as shown in table 1.

The boundary conditions for all velocity components are no-slip on the bottom wall
and free-slip on the top, left and right walls. The density field has a gradient-free
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boundary condition on the top, bottom, left and right walls. All variables are
periodic in the lateral (x2) direction. Each simulation was run on an orthogonal
curvilinear grid generated using the open-source software gridgen (available online at
https://code.google.com/p/gridgen-c/). Cases 1, 3, 4 and 5 were computed on a grid
of size N1 × N2 × N3 = 1152 × 96 × 128 ≈ 14 × 106 points. To account for different
length domains, N1 = 1024 for case 2 (≈13 × 106 points), N1 = 1408 for case 6
(≈17× 106 points) and N1 = 2048 for case 7 (≈25× 106 points). Grid stretching of
the form 1xk

i = r1xk+1
i , where r is the stretching factor and k is the index of the

grid point, is employed in the horizontal (x1) and vertical (x3) directions to increase
resolution in the breaking region. Grid spacing in the lateral (x2) direction is constant.
In the horizontal direction, stretching is applied from x1 = 0 to Ls with r = 1.01,
concentrating N1− 128 points (approximately 90 %) into the sloping region. The grid
is also stretched slightly in x1 in the sloping region to maintain orthogonality. In the
vertical direction, stretching is performed twice. First, grid points are concentrated
toward the bottom with r = 1.02 in order to resolve the flow near the wall. Second,
100 of 128 points (78 %) are concentrated in the bottom 35 % of the domain with
r = 1.07 in order to resolve the interface and lower layer during breaking. The
resulting grid resolution at the interface in the breaking region is approximately
1x1 × 1x2 × 1x3 = 4 mm × 1 mm × 2 mm. Near the bottom wall, the vertical
coordinate is measured in wall units x+3 = x3/δS. The vertical resolution near the wall
is therefore 1x+3 =1x3/δS< 1. In the worst-case scenario, the grid spacing is found to
be within approximately one order of magnitude (a factor of 13) of the Kolmogorov
length scale ηk (defined in § 4.2). For further discussion of grid resolution, see § 4.2.

A time step of 1t = 0.003 s was used for all simulations. The number of time
steps varied by case, and was 20 000 for cases 1–5, 30 000 for case 6 and 37 000 for
case 7. Simulations were run on the US Army Research Lab DoD Supercomputing
Research Center (ARL DSRC) supercomputer Harold using 432 processors (cases 1,
3, 4 and 5), 384 processors (case 2), 528 processors (case 6), and 768 processors
(case 7). With a computation time of approximately 10 s per time step, this resulted
in wall-clock simulation times of 56 h (24 000 CPU hours; cases 1, 3, 4 and 5),
56 h (21 000 CPU hours; case 2), 83 h (44 000 CPU hours; case 6) and 103 h
(79 000 CPU hours; case 7).

3. Physical description of breaking
3.1. Energy definitions

We define the volume-integrated kinetic and potential energy in the domain as

Ek = 1
2

∫
V

uiuidV, (3.1)

Ep = g
ρ0

∫
V
ρx3dV, (3.2)

where V is the volume of integration, discussed below. Following Winters et al.
(1995), we split the potential energy into its available (Ea) and background (Eb)
components such that

Ep = Ea + Eb, (3.3)

Eb = g
ρ0

∫
V
ρ(x∗3)x

∗
3dV. (3.4)
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The background potential energy Eb represents the lowest possible potential energy
state of the system, if it were to return to rest adiabatically. Its calculation requires
ρ(x∗3), the background density field, which can be found numerically through a sort
of the density field ρ(x3). Here, we employ the parallel Quicksort algorithm of Li
et al. (1993). Details of the background potential energy calculation in the code can
be found in Koltakov & Fringer (2012).

In the absence of boundary fluxes, the background potential energy evolves
according to

dEb

dt
= φd = κg

ρ0

∫
V

x∗3
∂2

∂xj∂xj
ρ(x∗3)dV, (3.5)

where φd is the rate of change of the background potential energy due to irreversible
density changes within the domain. The total potential energy evolves according to

dEp

dt
= φz + φi, (3.6)

where φz = g
∫

Vρu3dV is the reversible buoyancy flux and φi = (κg/ρ0)
∫

A(ρtop −
ρbottom)dA is the irreversible change from internal to potential energy. In the definition
of φi, ρtop and ρbottom are the densities on the top and bottom boundaries of the
domain, respectively, and A is the corresponding surface area of the boundary. It
follows that

dEa

dt
= φz − (φd − φi). (3.7)

From (3.5), it becomes clear that the background potential energy changes only due
to molecular diffusion of the density field, or irreversible diapycnal mixing. Reversible
changes in the density field are due to ‘stirring’ processes. These changes are available
for exchange with the kinetic energy field and are contained in φz. This exchange can
be seen in the evolution equation for the kinetic energy,

dEk

dt
=−φz − ε, (3.8)

where the volume-integrated dissipation is defined as

ε = ν
∫

V

∂ui

∂xj

∂ui

∂xj
dV. (3.9)

Finally, the total energy in the domain ET evolves according to

dET

dt
= dEp

dt
+ dEk

dt
=−ε + φi. (3.10)

For energy quantities E and their rates of change dE/dt (specifically, those shown
in figure 3a,b respectively), the volume of integration V is chosen as the entire
computational domain in order to capture the evolution of the solitary wave over
the full simulation. However, for irreversible energy quantities ε, φd and φi, V is
restricted to the sloping region of the domain (x1 > Ls; see figure 4) to eliminate
effects that occur prior to shoaling and breaking. We note that in the calculation of φd,
the background density field ρ(x∗3) is still calculated for the entire domain, but only
integrated over the sloping region. Thus, φd may be thought of as the contribution of
the sloping region to the total irreversible mixing in the domain.
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FIGURE 2. Snapshots in time of density structure (left column) and velocity structure
(right column) for breaking wave case 3. Results are averaged in the lateral (x2) direction.
In the left column, black corresponds to ρ = ρ0 + 1ρ/2 and white corresponds to ρ =
ρ0 − 1ρ/2. The lower layer (ρ > ρ0) is shown in grey the right column as well. Dots
labelled a–i in figures 3, 5, 14, 15 and 23–25 correspond to the labels shown here.

In what follows, we present normalized values of the above energetics quantities.
Specifically, energy quantities E have the initial value E0 removed and are then
normalized by the absolute value of the minimum available potential energy |Ea,min|.
Rates of energy change dE/dt are normalized by the absolute value of the minimum
rate of change of available potential energy |(dEa/dt)min|. The minimum absolute
value is used in both cases because Ea,min < 0 and (dEa/dt)min < 0. All other energy
flux quantities are normalized by the maximum dissipation εmax for the given case.
Time is normalized in all figures by the wave period T = 2π/ω0 ≈ 76 s.

3.2. General structure and energetics
We begin with a physical description of the wave-breaking process in terms of density
and velocity structure (figure 2) and energetics (figure 3). This description is based
on the results of case 3, but is representative of the results for all cases. Initially, a
solitary wave of depression forms and propagates toward the slope. As the leading
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FIGURE 3. Volume-integrated energy results for breaking wave case 3. (a) Energy
quantities Ek, Ep, Eb, Ea and Et, all normalized by |Ea,min|. (b) Reversible energy evolution
quantities dEk/dt and dEa/dt, both normalized by |(dEa/dt)min|. (c) Irreversible energy
evolution quantities ε, φd, and φi normalized by εmax. Dots labelled a–i correspond to time
snapshots from figure 2.

face of the wave moves over the slope, downslope velocities in the lower layer
are concentrated in the thin region between the bottom and the interface (figure 2a).
Simultaneously, the rear face of the wave steepens because the upslope velocity under
the rear shoulder of the wave is proportional to the local height of the lower layer
(figure 2b). Ultimately, the downslope velocity under the trough and the upslope
velocity under the rear face interact, causing the shear that leads to the breaking
event (figure 2c). After breaking, dense water surges up the slope in the form of a
bore or bolus (figure 2d–h). Once this surge reaches its maximum upslope location,
it then recedes back down the slope (figure 2i).

The energetics of the wave are closely related to its structure. This can be seen
in figure 3, where the labelled dots correspond to the snapshots shown in figure 2.
Initially, the wave gains kinetic energy at the expense of available potential energy
as it forms and propagates toward the slope (figure 3a, point a). Available potential
(kinetic) energy then increases (decreases) as the wave steepens and reaches a
maximum (minimum) at the breakpoint (figure 3a, point b). During the breaking
event, kinetic energy again rises at the expense of available potential energy until the
upslope surge begins (figure 3a, points b–d). The upslope surge leads to an increase
in available potential energy at the expense of kinetic energy until the dense water
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I

III

II

IV

Non-sloping region

FIGURE 4. Regions used for dissipation calculations. Region I is the upper layer, where
ρ < ρ0 − 0.991ρ/2. Region II is the interior, where ρ0 − 0.991ρ/2 6 ρ 6 ρ0 + 0.991ρ/2
(the dashed line shows the location of the initial density interface). Region III is the lower
layer, where ρ > ρ0 + 0.991ρ/2. Region IV is the BBL, where x3 < −d + δS in the
breaking region and d is the local depth of the bottom boundary. The non-sloping region
is not included in dissipation calculations. Note that regions are not shown to scale and
that the boundaries of regions I, II and III move with the flow while region IV is fixed
in time.

reaches its maximum upslope location (figure 3a, points d–h). Then, the dense water
recedes back downslope, gaining kinetic energy at the expense of available potential
energy (figure 3a, points h–i). Throughout the wave propagation and breaking event,
dEk/dt and dEa/dt nearly mirror each other (figure 3b), owing to the exchange of
energy through the reversible buoyancy flux φz.

Dissipation and irreversible mixing, shown in figure 3(c), result in an imperfect
exchange between kinetic and available potential energy. Dissipation ε begins as the
wave interacts with the slope and is sustained throughout the breaking event, with
several peaks. The first peak occurs during the strong downslope flow prior to the
breakpoint (figure 3c, point b). The second peak occurs after breaking as the surge of
dense water forms and propagates upslope (figure 3c, point f). The third peak occurs
as dense water from the upslope surge recedes back downslope (figure 3c, point h).
Irreversible mixing occurs throughout the simulation, but is only elevated above the
background value after breaking occurs. We therefore define an effective mixing rate

φe = φd − φi, (3.11)

as the rate of mixing above the background value.
The effects of dissipation and irreversible mixing are apparent in the background

potential energy and total energy profiles (figure 3a). The background potential energy
increases monotonically throughout the simulation, but increases at a faster rate after
breaking (after approximately t/T = 0.25) due to elevated mixing. This increase
in background potential energy accounts for the separation between the available
potential energy and potential energy curves. The total energy in the system initially
increases due to background mixing. However, it ultimately decreases as the effect of
mixing is overwhelmed by that of dissipation.

3.3. Interior and bottom boundary energetics
In order to understand the sources of dissipation in the domain, we separate the total
dissipation ε into four regions, as shown in figure 4. Therefore,

ε = εI + εII + εIII + εIV, (3.12)

where εI is the dissipation in the upper layer, εII is the dissipation in the interior,
εIII is the dissipation in the lower layer and εIV is the dissipation in the bottom
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FIGURE 5. Dissipation breakdown by region and mixing efficiency for breaking wave
case 3. (a) Total dissipation ε, bottom-boundary dissipation εIV , interior dissipation εII ,
and effective irreversible mixing φe as a function of time, all normalized by εmax. (b) The
cumulative dissipation in the bottom boundary region εcum,IV and in the interior region
εcum,II . The total cumulative dissipation εcum is shown as well. Values are normalized by εtot.
(c) The instantaneous mixing efficiency η and bulk mixing efficiency ηB. Dots labelled a–i
correspond to time snapshots from figure 2.

boundary layer (BBL). The upper layer (region I) is defined as the region above
the density interface where ρ < ρ0 − 0.991ρ/2, and the lower layer (region III)
is defined as the region below the density interface where ρ > ρ0 + 0.991ρ/2.
The interior (region II) is defined as the region around the density interface where
ρ0 − 0.991ρ/2 6 ρ 6 ρ0 + 0.991ρ/2. The bottom boundary region (region IV)
is defined as a fixed number of grid cells above the bottom wall. This number
was chosen such that x3 < −d + δS in the breaking region, where d is the local
depth of the bottom boundary. Figure 5 shows the dissipation in these regions, both
instantaneously (figure 5a) and cumulatively (figure 5b). The cumulative dissipation,
or the total energy lost to dissipation up to time t, is defined as

εcum,R =
∫ t

0
εRdt, (3.13)

where R is the region. The total energy lost to dissipation over the course of the
simulation is therefore

εtot =
∫ tmax

0
εdt. (3.14)
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The dissipation in the upper and lower layer regions are not shown in figure 5 because
they contribute negligibly to the total dissipation.

The first and third peaks in the total dissipation in figure 5(a) correspond to
peaks in the bottom-boundary dissipation. As discussed in § 3.2, these peaks are
associated with the strong downslope flow of dense water in a thin region between
the interface and the bottom (figure 5a, points b and h, respectively). The second
peak in the total dissipation corresponds to the peak in interior dissipation as well as
the peak in irreversible mixing. These peaks occur after breaking when dense water
surges upslope, suggesting that they are due to the billows that form at the interface
during this time (figure 5a, points d–g). The third peak in total dissipation also
corresponds with a smaller peak in interior dissipation and slightly elevated mixing
(figure 5a, points h,i). This is associated with the interaction of the downslope flow
of dense water from the initial surge interacting with upslope flow under the next
wave crest (figure 2h,i). Cumulatively, dissipation at the bottom boundary accounts
for roughly 67 % of the total dissipation in the domain, while dissipation in the
interior accounts for roughly 33 % for case 3. Furthermore, the relative contribution
of interior dissipation to total dissipation increases after the breakpoint (figure 5b,
point b).

We do not separate irreversible mixing into the regions shown in figure 4 because
φd is defined as a volume-integrated quantity. Although ∂2ρ(x∗3)/∂xj∂xj in (3.5) can be
positive or negative, φd is guaranteed to be positive (Winters et al. 1995). Breaking up
the vertical portion ∂2ρ(x∗3)/∂x2

3 of ∂2ρ(x∗3)/∂xj∂xj, however, allows φd to be negative
because density gradients may be arbitrarily cut off by region boundaries. Horizontal
separation of the domain into the sloping region (where energetics are calculated)
and non-sloping region is allowable in this case because horizontal gradients are
negligibly affected by this cutoff. In fact, the value of φd calculated when integrating
over both the sloping and non-sloping regions (not shown) is essentially the same
as φd calculated over the sloping region alone. Separating irreversible mixing into
the regions in figure 4 using the current method would require sorting the density
field separately in each region. Alternatively, Scotti & White (2014) provide a local
measure of mixing, based on a local definition of the available potential energy, that
would allow for isolated calculations of mixing in arbitrary regions. A full analysis
using this method is a topic of future work.

3.4. Mixing efficiency
There are two major energy pathways for a breaking internal wave, both of which
result in irreversible energy loss. The initial energy of the wave is either (i) exchanged
between kinetic energy and available potential energy and ultimately lost to dissipation,
or (ii) converted to background potential energy through diffusion of the density field.
Dissipation and irreversible mixing, therefore, act as the only possible sinks of initial
wave energy. The mixing efficiency measures their relative magnitudes. Winters et al.
(1995) define the instantaneous mixing efficiency as the instantaneous fraction of
irreversible energy exchange that goes into mixing of the density field. Here, we
calculate this quantity as

η= φe

φe + ε . (3.15)

Similarly to Michallet & Ivey (1999) and Fringer & Street (2003), we also
account for the cumulative effects of dissipation and mixing by calculating the bulk
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mixing efficiency

ηB =

∫ tmax

0
φedt∫ tmax

0
(φe + ε)dt

= φe,tot

φe,tot + εtot
, (3.16)

where φe,tot is defined in the same way as εtot in (3.14).
The mixing efficiency results for case 3 are shown in figure 5(c). The instantaneous

mixing efficiency decreases prior to breaking (figure 5c, point a) and reaches a
minimum at the breakpoint (figure 5c, point b). This decrease corresponds to the first
peak in dissipation that is caused by strong downslope flow under the leading edge of
the wave. The instantaneous mixing efficiency then begins to increase after breaking,
and reaches its peak of 0.31 during the upslope surge of dense water (figure 5c,
points c–g). This corresponds to the increase and peak in irreversible mixing. As the
dense water reaches its maximum upslope location and begins to recede (figure 5c,
points h–i), the instantaneous mixing efficiency decreases again and levels out around
the bulk value of 0.14. This decrease corresponds to the third peak in dissipation
that is caused by downslope flow of dense water near the bottom. Note that we
are not concerned with the instantaneous mixing efficiency near the beginning of
the simulation, when a lack of dissipation causes its value to approach unity. This
phenomenon was also observed by Smyth & Winters (2003) during the preturbulent
phase of breaking Holmboe waves and Kelvin–Helmholtz instabilities.

We acknowledge that the domain-integrated definitions of the mixing efficiency used
here combine a variety of dissipation and mixing mechanisms, such as boundary-layer
and free shear flow, into one value. In addition, our definitions fail to separate
the mean and turbulent components of dissipation and mixing, which undoubtedly
contribute to the bulk mixing efficiency in differing amounts. A local definition of
mixing efficiency, such as that provided by Scotti & White (2014), would allow for
this separation. However, we choose to use the domain-integrated definition here in
order to facilitate comparison with previous work, such as that of Fringer & Street
(2003), and particularly Michallet & Ivey (1999) and Boegman et al. (2005) (see
§ 5.2).

4. Three-dimensional dynamics
4.1. Lateral variability

Internal wave breaking introduces three-dimensionality to the flow field. This
three-dimensionality manifests itself in the form of lateral (cross-stream) variability,
and is an important component of the structure and energetics discussed above
(Fringer & Street 2003). Figure 6 depicts the three-dimensional evolution of the flow
over the course of a breaking event, displaying isosurfaces of density (ρ = ρ0) and
longitudinal vorticity ω1. The density structure is initially two-dimensional (figure 6a),
and remains two-dimensional until after breaking has occurred (figure 6b,c). Lateral
variability is then evident at two distinct locations within the domain: (i) in the
interior within a density overturn and (ii) near the bottom at the ‘nose’ of the
upslope surge (figure 6d,e). Although they appear in different locations, both of these
instabilities occur in regions of unstable stratification. A more detailed view of this
lateral variability is shown in figure 7.

In the interior, strong shear at the interface leads to billows that are initially
two-dimensional. However, since the billows create unstable stratification, they are
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(a)

(b)

(c)

(d)

(e)

(g)

(h)

(i)

( f )

FIGURE 6. Snapshots in time of the three-dimensional structure of breaking wave case 3.
Isosurfaces of ρ = ρ0 (red), ω1/ω0= 27 (blue), and ω1/ω0=−27 (green) are shown. Blue
and green isosurfaces of streamwise vorticity ω1/ω0 represent longitudinal rolls. Labels
(a–i) correspond to the same times as in figure 2.
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FIGURE 7. A zoomed-in view of figure 6(e) showing the development of lateral variability
during breaking.

FIGURE 8. A zoomed-in view of figure 6(g) showing vortex interaction during the
upslope surge.

susceptible to cross-stream convective instability. Specifically, dense fluid sinks and
less-dense fluid rises, creating cross-stream plumes within the billow. These plumes
generate streamwise vorticity ω1, as illustrated in figure 9(a), which shows an x2–x3
slice through the billow in figures 6(e) and 7 (see figure 13e for the location of
the slice). This mechanism of streamwise vorticity generation is the same as that
discussed by Fringer & Street (2003) for breaking internal waves in deep water
and Winters & D’Asaro (1994) and Dörnbrack (1998) for critical layers. Unstable
stratification is also created at the bottom boundary by the no-slip condition; the dense
nose of the upslope surge is raised above the bottom, allowing less dense water to
flow underneath. Again, cross-stream plumes develop as dense fluid sinks and less
dense fluid rises, generating streamwise vorticity ω1. Figure 9(b) depicts these plumes
in an x2–x3 slice through the nose of the upslope surge in figures 6(e) and 7 (see
figure 13e for the location of the slice). The plumes are visible in three dimensions
as ‘lobes and clefts’, an instability that is typical of gravity currents and was first
studied by Simpson (1972). More recently, Härtel, Carlsson & Thunblom (2000) used
a linear-stability analysis to examine the lobe and cleft instability mechanism and
predict the wavelength of the most unstable mode. Following Fringer & Street (2003),
we will refer to the streamwise vortex tubes created by cross-stream instabilities as
longitudinal rolls.

Ultimately, the longitudinal rolls from both sources interact. As the upslope surge
continues, more longitudinal rolls develop within billows at the interface, and are
stretched and tilted by the mean (laterally-averaged) flow. The rolls under the nose
experience similar stretching and tilting until vortices from the two sources interact
(figure 6f,g). This interaction, of which a more detailed view is shown in figure 8, is
indicative of turbulence and corresponds to elevated interior dissipation and mixing in
the domain (figure 5, points f–g). As the upslope surge continues, the longitudinal
rolls are dissipated (figure 6h,i). The growth and decay of turbulence is shown in
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FIGURE 9. An x2–x3 slice through the billow (a) and nose of the upslope surge (b)
in figure 6(e). Slice locations are shown in figure 13(e) by sections E1–E′1 and E2–E′2,
respectively. Shading represents the density field using the same color scale as figure 2.
Arrows represent velocity vectors (u2, u3). Bold contour lines represent ρ/ρ0 = 1.005 in
(a) and ρ/ρ0 = 1.011 in (b) and depict cross-stream plumes developing due to unstable
stratification. Streamwise vorticity is shown by blue (ω1/ω0=18) and green (ω1/ω0=−18)
contour lines, similar to figure 6. Here d is the local depth at the slice.

figure 10, which depicts the x2–x3 slice shown in figure 9(b) over time. The strongest
turbulence is seen in figure 10(g), after which the turbulence decays (figure 10i,j).
Note that more lateral variability is generated as the downslope flow of dense water
from the initial surge interacts with upslope flow under the next wave crest (figure 6h).
This corresponds to the second, smaller peak in interior dissipation and mixing in
figure 5(a), but is not seen in the slice shown in figure 10.

4.2. Resolution requirements
In order to resolve the turbulence that develops during wave breaking, certain
grid-resolution requirements are placed on our simulations. First, we must resolve
the large-scale sources of turbulence, including the shear stress created by the no-slip
bottom boundary condition and regions of unstable stratification. Figure 11 shows
vertical profiles of laterally averaged horizontal velocity u1 and density ρ/ρ0, where
the vertical coordinate is shown in wall units x+3 = x3/δS to emphasize the near-wall
flow. Profiles are shown within the thin region of downslope flow between the
interface and the bottom as the wave approaches the slope (figure 11a) and under
the nose of the upslope surge (figure 11b). These examples were chosen to represent
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FIGURE 10. An x2–x3 slice through section E2–E′2 in figure 13(e) at different time
snapshots. Shading represents the density field using the same color scale as figure 2.
Streamwise vorticity is shown by blue (ω1/ω0 = 18) and green (ω1/ω0 = −18) contour
lines, as in figure 9. Here d is the local depth at the slice. Labels (f –i) correspond to
the time snapshots from figures 2 and 6. Time point j is not shown in other figures, and
corresponds to t/T = 0.63.
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FIGURE 11. Vertical (x3) profiles of laterally-averaged horizontal velocity u1 (u) and
density ρ/ρ0 (E). (a) A vertical profile corresponding to section A–A′ in figure 13(a).
(b) A vertical profile corresponding to section E2–E′2 (through the nose of the upslope
surge) in figure 13(e). In both plots, u1 is normalized by the maximum value over the
full profile, and the vertical coordinate is shown in wall units x+3 = x3/δS measured upward
from the bottom. Note the difference in the range of the vertical axes.

extreme near-bottom gradients experienced during the simulations. It is clear in both
cases that the flow near the bottom is well-resolved. By visual inspection, we also
conclude that the initially two-dimensional (x1–x3) sources of unstable stratification
are well-resolved in our domain.

In addition to resolving the large scales of the flow during wave breaking, resolving
the turbulence cascade to smaller scales places an even stricter resolution requirement
on our simulations. In order to demonstrate adequate resolution of the turbulence
cascade, we define turbulence quantities as a departure from the lateral average.
Specifically, ui = ui + u′i where ui is the full velocity, ui is the laterally averaged
velocity, and u′i is the fluctuation about the lateral average. The density is decomposed
in the same way, ρ = ρ + ρ ′. Figure 12 shows lateral spectra of the vertical velocity
anomaly E33(k2), where k2 is the lateral wavenumber, for case 3 at four successive
times after wave breaking has occurred. These spectra are averaged over the breaking
region (0.68 6 x/L 6 0.85) in both the BBL (the bottom 10 vertical grid cells) and
the interior (40 6 N3 6 75, which corresponds to −0.93 6 x3/d 6−0.81 in figure 10).
Results for the lateral spectra of the density anomaly ρ ′ in the same region are similar
and are therefore not presented. Shortly after breaking, a spectral peak emerges in
both the BBL and the interior at the observed wavenumber of the initial instability
(see figure 9). This peak is clearly well resolved, with a normalized wavenumber of
approximately 0.04. Over time, more broadband spectra are observed, with a cascade
to smaller scales from the initial peak at the ‘injection’ scale. These results are
comparable with those presented by Caulfield & Peltier (2000) (their figure 16) for
DNS of stratified shear flow. While the development of turbulence in the BBL and the
interior is similar, figure 12 shows that turbulence grows faster in the BBL, resulting
in a fully turbulent spectrum at an earlier time. However, the overall magnitude of the
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FIGURE 12. Lateral spectra of the vertical velocity anomaly E33(k2) (in m3 s−2) in both
the BBL (a) and the interior (b). Spectra are shown at four successive times corresponding
to snapshots (d–g) in figures 2 and 6. The observed wavenumber of the initial instability
(· · ·) is shown as well. The lateral wavenumber k2 is normalized by the lateral grid
spacing 1x2.

turbulence is larger in the interior than in the BBL. Note that the magnitudes of the
spectral peaks change with time due to the passing of the breaking wave through the
averaging area and the resulting change in total turbulent kinetic energy. Ultimately,
we must compare the grid resolution in our simulations to the Kolmogorov length
scale, which we calculate here as ηk = (ν3/ε ′)1/4. The local turbulent dissipation is
defined as

ε ′ = 2νs′ijs′ij, (4.1)

where s′ij= ((∂u′i/∂xj)+ (∂u′j/∂xi))/2. We find that in the worst case scenario, the grid
spacing is roughly one order of magnitude (a factor of 13) larger than ηk.

4.3. Three-dimensionality
As discussed in the previous section, our desire to accurately capture three-
dimensional effects places a strict resolution requirement on the simulations. By
comparing the three-dimensional results with those of a similar two-dimensional
simulation, we can determine the relative importance of capturing these effects. Here,
we present results from a two-dimensional version of breaking wave case 3 that differs
from the three-dimensional version only in the number of lateral grid points, which
is reduced from 96 to 1, suppressing lateral variability in the simulation. Figure 13
shows the density structure of the two-dimensional simulation (left column) and an
x1–x3 slice through the centre of the three-dimensional simulation (right column) for
comparison. The structure of the waves is essentially the same prior to breaking
(figure 13a,b), and even during the breaking event and beginning of the upslope
surge (figure 13c,d), before lateral variability develops in the three-dimensional
simulation. However, as the billows at the interface evolve, the two-dimensional
and three-dimensional results differ (figure 13e–i). Rather than breaking down due
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FIGURE 13. Snapshots in time of the density structure for two-dimensional (left column)
and three-dimensional (right column) versions of breaking wave case 3 using the same
colour scale as figure 2. The three-dimensional result is depicted by an x1–x3 slice through
x2/W=0.5, the lateral centreline of the domain. Labels (a–i) correspond to the same times
as in figures 2 and 6. The lines in panels (a) and (e), right column, are the locations of the
x2–x3 slices shown in figures 9 and 10 and of the vertical (x3) profiles shown in figure 11.

to lateral instability as they do in the three-dimensional simulation, the billows
continue to grow and interact with one another, giving rise to the ‘inverse energy
cascade’ of two-dimensional turbulence that is not realistic for a breaking internal
wave. Similar differences were found by Aghsaee et al. (2012) when comparing
their high-resolution two-dimensional numerical model results with the inherently
three-dimensional laboratory experiments of Boegman et al. (2005).

Following Fringer & Street (2003), we can quantify the three-dimensionality
introduced to the flow after the breaking event by partitioning the total kinetic energy
Ek into its component parts

Ei = 1
2

∫
V

u2
i dV, (4.2)
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FIGURE 14. Normalized kinetic energy components quantifying the departure from two-
dimensionality in breaking wave case 3. Shown are 1E1,1E2,1E3 and 1Ek. Dots labelled
a–i correspond to time snapshots from figures 2 and 6.

such that Ek=E1+E2+E3. Here, V is the volume of the entire computational domain.
The normalized departure from two-dimensionality is then given by

1E1 = E1,3 − E1,2

Ek,3
, (4.3)

1E2 = E2,3

Ek,3
, (4.4)

1E3 = E3,3 − E3,2

Ek,3
, (4.5)

1Ek = Ek,3 − Ek,2

Ek,3
, (4.6)

where Em,n is the mth component of the kinetic energy from the n-dimensional
computation and Ek,n is the total kinetic energy of the n-dimensional computation. The
results are presented in figure 14. During the time of elevated mixing (figure 14, points
d–i), kinetic energy is transferred into the lateral (x2) direction by the longitudinal
rolls. Although only a small percentage of the total kinetic energy (a peak of
approximately 1 % at t/T = 0.47) is contained in E2,3, the total kinetic energy of the
three-dimensional flow is 10 % less than that of the two-dimensional flow at this time.
This value drops to nearly 20 % at t/T = 0.66 once the breaking event has completed.

The discrepancy between the kinetic energy in the two- and three-dimensional
simulations can be attributed to the longitudinal rolls that are present and contribute
to dissipation in the three-dimensional simulation, but are suppressed in the
two-dimensional simulation. This is shown in figure 15, which presents the dissipation
and mixing results for both simulations. Dissipation in the three-dimensional
simulation ε3D departs from the two-dimensional result ε2D when the longitudinal
rolls form (figure 15a, point d). Dissipation is then larger in the three-dimensional
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FIGURE 15. Dissipation and irreversible mixing for two- and three-dimensional versions
of breaking wave case 3. (a) Dissipation for the two-dimensional case ε2D and
three-dimensional case ε3D, as well as effective irreversible mixing for the two-dimensional
case φe,2D and three-dimensional case φe,3D. (b) The dissipation breakdown by region
as defined in § 3.3, including dissipation in the bottom boundary region for the
two-dimensional case ε2D,IV and three-dimensional case ε3D,IV , as well as dissipation in
the interior region for the two-dimensional case ε2D,II and three-dimensional case ε3D,II .
Both plots are normalized by the maximum dissipation in the three-dimensional simulation
ε3D,max. Dots labelled a–i correspond to time snapshots from figures 2 and 6.

simulation throughout the breaking process, with a peak difference of roughly 30 %
at t/T = 0.36 and a slightly smaller difference of roughly 25 % at t/T = 0.51.
Figure 15(b) shows the dissipation breakdown between the interior and bottom
boundary regions (as defined in § 3.3 and shown in figure 4) for both simulations
as well. The peak difference in dissipation between the two- and three-dimensional
results at t/T = 0.36 occurs predominantly in the interior region where ε3D,II is
nearly 50 % larger than ε2D,II . At t/T = 0.51, more comparable differences are seen
in both the interior and bottom boundary regions; ε3D,II is roughly 30 % larger than
ε2D,II , while ε3D,IV is roughly 20 % larger than ε2D,IV . Figure 15(a) also shows the
effective irreversible mixing rate for the two-dimensional simulation φe,2D and the
three-dimensional simulation φe,3D. The peak mixing is higher in the two-dimensional
simulation, and is larger throughout most of the breaking event, with a peak difference
of roughly 30 % at t/T=0.42. As discussed by Fringer & Street (2003), this increased
mixing is attributed to the inverse energy cascade of two-dimensional turbulence.
Because density overturns are not broken down by longitudinal rolls, they are able to
grow and interact, creating sharper density gradients and increased surface area for
interfacial diffusion. Overall, the three-dimensional simulation has roughly 8 % more
dissipation and 20 % less mixing than the two-dimensional simulation, resulting in a
20 % smaller bulk mixing efficiency.

Owing to the effect of three-dimensional flow features (i.e. longitudinal rolls) on
dissipation and mixing, a grid-resolution study was performed to ensure that our
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FIGURE 16. Maximum instantaneous mixing efficiency ηmax (E) and bulk mixing
efficiency ηB (u) as a function of the number of lateral grid points N2 for breaking wave
case 3. The x1–x3 grid and the domain width W are held constant.

energetics results are grid independent. Keeping the x1–x3 grid and domain width W
constant, we varied the number of lateral grid points N2 in order to better resolve
the lateral variability discussed in § 4.1. Figure 16 shows the maximum instantaneous
and bulk mixing efficiencies for case 3 as a function of N2. As expected, both
quantities are overestimated by the two-dimensional simulation (N2 = 1). However,
once lateral variability is resolved using a three-dimensional simulation, interior
dissipation increases due to the presence of longitudinal rolls, and irreversible mixing
decreases due to the lack of two-dimensional turbulence, leading to a decrease in
mixing efficiency. The maximum instantaneous and bulk mixing efficiencies are
relatively unaffected by increased lateral resolution for the three-dimensional grids
tested. Both values have converged to the reported values of η= 0.31 and ηB = 0.14
for N2 = 96, confirming that our results are grid independent.

5. Effects of wave amplitude and bathymetric slope
5.1. General structure and energetics

While the discussion of breaking wave case 3 in §§ 3 and 4 is generally applicable to
all of the cases in table 1, several conditions may change the structure and energetics
of the breaking process. Here, we consider the effects of initial wave amplitude a and
bathymetric slope s on breaking dynamics. As shown in table 1, cases 1, 3, 4 and 5
have a constant bathymetric slope s, and thus vary only in the initial amplitude of
the wave a. This results in different wave breaker types that are classified by Aghsaee
et al. (2010). Figure 17 shows the density structure of breaking wave cases 1 (surging
breaker) and 4 (plunging breaker) for comparison with case 3 (collapsing breaker). For
smaller incoming waves, the rear face of the wave does not have enough momentum
to overcome the downslope flow under the leading face, resulting in a relatively weak
surging breaker (figure 17a). For larger waves, the rear face has enough momentum to
plunge over the downslope flow under the leading face, resulting in a more vigorous
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FIGURE 17. Snapshots in time of density structure for breaking wave cases 1, 3 and
4 just after the break point (left column), and during the upslope surge (right column).
(a) Depicts case 1, a surging breaker, (b) depicts case 3, a collapsing breaker and (c)
depicts case 4, a plunging breaker. Results are averaged in the lateral (x2) direction.

plunging breaker (figure 17c). Case 3 represents a collapsing breaker (figure 17b), for
which the rear face of the wave steepens, but is swept backward before it is able to
plunge.

For a given bathymetric slope, the incoming wave amplitude has a clear effect
on the energetics of the breaking process. While the shape of the energy profiles is
similar for each case, the magnitudes are increased with increasing a. Furthermore,
the dissipation breakdowns are similar in shape to that shown for case 3 in figure 5.
That is, the dissipation is dominated by three peaks. The first and third peaks
correspond to strong downslope flow in the bottom boundary region, first under the
leading edge of the wave and then as dense water from the upslope surge recedes
back downslope. The second peak in dissipation corresponds to the peaks in interior
dissipation and irreversible mixing that are caused by density overturns and the
formation of longitudinal rolls during breaking and the upslope surge.

Cases 2, 3, 6 and 7 have a constant amplitude a and are used to study the effect of
varying bathymetric slope. The results for cases 2 (s= 0.3) and 6 (s= 0.15) are not
shown due to their similarity with those of case 3 (s= 0.218) in figure 2. However,
the structure and energetics of case 7 (s= 0.05) are significantly different than those
of cases 1–6 because its low slope results in a fission breaker. Figure 18 shows
snapshots in time of the density structure for case 7. Here, rather than breaking in
the sense of a surging, collapsing, or plunging breaker, the initial solitary wave of
depression disperses into a train of rank-ordered solitary waves of elevation (boluses)
that propagate up the slope (figure 18a,b). The ‘fission’ occurs in figure 18(c), when
a patch of dense fluid is pinched off of the leading wave of elevation, leading to
density overturns at the interface. These density overturns interact with the trailing
solitary waves as they propagate up the slope and eventually dissipate (figure 18d–h).
This structure is strikingly similar to that shown in figure 3 of Helfrich (1992), which
depicts experimental results with the same wave amplitude and bathymetric slope as
case 7.

The dissipation breakdown for case 7 is shown in figure 19. Here, we see an almost
entirely different energy profile than in cases 1, 3 and 6. Initially, dissipation rises due
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FIGURE 18. Snapshots in time of density structure for breaking wave case 7 using the
same colour scale as figure 2. Results are averaged in the lateral (x2) direction. Dots
labelled (a–h) in figure 19 correspond to the labels shown here.

to downslope flow in the bottom-boundary region under the leading edge of the initial
wave of depression (figure 19a, points a–c). The only major peak in dissipation and
mixing occurs after the density overturns created by the fission event have had time to
grow and spread along the interface (figure 19a, points c–d). After this peak, a lower
level of dissipation and mixing is sustained as the train of solitary waves moves up the
slope (figure 19a, points e–h), creating smaller density overturns along the interface.
This corresponds to a sustained period of elevated instantaneous mixing efficiency.
Helfrich (1992) also observed ‘enhanced’ mixing due to the runup of boluses after
breaking. Although breaking occurs over a relatively longer period of time in case
7 than in cases 3 and 6, the cumulative percentages of bottom-boundary dissipation
(60 %) and interior dissipation (36 %) are similar (figure 19b). We note that some
dissipation (4 %) also occurs in the lower layer, which was not true for other cases
(see figure 5), and accounts for the small gap between εcum and εcum,II + εcum,IV in
figure 19.

5.2. Dissipation, mixing and mixing efficiency
The combined effect of wave amplitude and bathymetric slope is described by the
internal Iribarren number ξ , as defined in § 1. This parameter has been used in the
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FIGURE 19. Dissipation breakdown by region and mixing efficiency for breaking wave
case 7. (a) Total dissipation ε, bottom-boundary dissipation εIV , interior dissipation εII ,
and effective irreversible mixing φe as a function of time, all normalized by εmax. (b) The
cumulative dissipation in the bottom boundary region εcum,IV and in the interior region
εcum,II . The total cumulative dissipation εcum is shown as well. Values are normalized by εtot.
(c) The instantaneous mixing efficiency η and bulk mixing efficiency ηB. Dots labelled a–h
correspond to time snapshots from figure 18.

past to classify internal wave breaker types (Boegman et al. 2005; Aghsaee et al.
2010) and mixing efficiency (Boegman et al. 2005). Here, we consider the variation
of dissipation, irreversible mixing and mixing efficiency with ξ , noting that Rew
is held constant in our simulations. Figure 20(a,b) shows peak and total values of
dissipation and mixing as a function of the internal Iribarren number for all cases.
We see a general decrease in dissipation and mixing with increasing ξ . However,
a distinction exists between constant slope (varying amplitude) cases and constant
amplitude (varying slope) cases. Both peak and total values of dissipation and mixing
increase more rapidly with decreasing ξ for constant slope cases than for constant
amplitude cases because larger amplitude waves have more initial energy to expend.

The mixing efficiency is a measure of the relative magnitudes of dissipation and
mixing, and is plotted as a function of the internal Iribarren number in figure 20(c).
Despite the decrease in both peak and total dissipation and mixing with increasing ξ ,
the bulk mixing efficiency does not follow this trend. Rather, ηB is found to increase
for larger and smaller values of ξ , with a minimum for intermediate values of ξ and
a spike around ξ = 0.8. We note that the peak instantaneous mixing efficiency (not
shown) varies similarly between ηmax = 0.1–0.4 with a spike of ηmax = 0.3 around
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FIGURE 20. Dissipation, mixing and mixing efficiency results. (a) Peak and (b) total
dissipation (E) and mixing (u) as functions of the internal Iribarren number ξ . (c) Bulk
mixing efficiency (u) as a function of the internal Iribarren number ξ . The mixing
efficiency results of Boegman et al. (2005) using the data of Michallet & Ivey (1999) are
shown in grey for comparison. (d) The fraction f2D of total dissipation (E) and mixing
(u) accounted for by the laterally averaged flow as a function of the internal Iribarren
number ξ . (e) Bulk mixing efficiency ηB versus wave Reynolds number Rew for the data of
Michallet & Ivey (1999). ( f ) Bulk mixing efficiency ηB as a function of internal Iribarren
number ξ for our simulations (black) and interpolated from the data of Michallet & Ivey
(1999) for Rew = 208 (grey). In (a)–(d), constant slope (varying amplitude) cases 1, 3, 4
and 5 are connected with a solid line, while constant amplitude (varying slope) cases 2,
3, 6 and 7 are connected with a dashed line.
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ξ = 0.8. Previous work by Boegman et al. (2005), using the data of Michallet & Ivey
(1999), has shown that the bulk mixing efficiency ηB peaks around 0.25 for ξ ≈ 0.8,
and decreases for both larger and smaller ξ values. Their data is plotted in figure 20(c)
for comparison. Although our values are similar, there is a discrepancy in the shape
of the ηB versus ξ curve. Specifically, we see a minimum mixing efficiency, rather
than a maximum, for intermediate Iribarren numbers, and we appear to overestimate
mixing efficiency for both the largest and smallest Iribarren number case.

The discrepancy between our results and those of Michallet & Ivey (1999) and
Boegman et al. (2005) can be explained by a Reynolds number (Rew) effect. While
we maintain a constant Rew = 208 in our simulations and vary ξ , Michallet & Ivey
(1999) varied Rew and ξ simultaneously. Figure 20(e) shows Michallet & Ivey’s (1999)
mixing efficiency data as a function of Rew, revealing that their mixing efficiency
values generally increase with wave Reynolds number. In order to see how mixing
efficiency varies strictly as a function of ξ , the effect of Rew must be removed.
Assuming ηB = f (Rew, ξ), we remove the Rew effect from their data by creating an
interpolant for ηB in Rew–ξ space, and calculating ηB for a single value of Rew. The
result is shown in figure 20( f ) for Rew= 208 and compared with the seven values of
ξ studied here. Accounting for Reynolds number effects in the laboratory data leads
to a better agreement in the shape of the ηB versus ξ relationship with our results.
Specifically, the bulk mixing efficiency from the experiments also peaks near ξ = 0.8
and increases for larger Iribarren numbers.

Although our results qualitatively agree with those of Michallet & Ivey (1999)
when accounting for Reynolds number effects, a difference still exists for the lowest
Iribarren number case, which has a larger mixing efficiency than the laboratory
data. This is likely an effect of dissipation due to sidewall friction on the results
of Michallet & Ivey (1999). Because Michallet & Ivey (1999) did not account for
sidewall friction in their calculations, they overestimated the incident wave energy
and underestimated the reflected wave energy off the slope (Bourgault & Kelley
2007b). This led to an overestimation of the total energy lost during breaking, and
therefore an underestimation of mixing efficiency (see equation (12), Bourgault &
Kelley 2007b). This effect was likely largest for the case with the lowest slope and
therefore the longest distance over which sidewall dissipation could act. Because our
computational domain does not have sidewalls (we use periodic boundary conditions
in the lateral direction), sidewall dissipation does not affect our results, leading to
a larger mixing efficiency for the lowest Iribarren number (lowest slope) case. The
general difference in magnitude between our mixing efficiency results and those in
the laboratory could occur for a number of reasons. In particular, we are unable to
run our simulations until the waves come to rest as in the laboratory experiments
because this would require a much larger domain and simulation time that would
lead to computational requirements beyond our capabilities. Furthermore, unlike the
laboratory experiments in which the mixing efficiency is computed with bulk energy
changes, we calculate ηB using direct calculations of ε and φd. Finally, it is difficult
to exactly match the initial stratification in the laboratory experiments.

For the low value of Rew considered here, we find that the mixing efficiency is
controlled by the two-dimensionality of the flow. This follows from the discussion in
§ 4.3, where we found a higher mixing efficiency for a two-dimensional simulation
when compared with a similar three-dimensional simulation due to the suppression
of longitudinal rolls. Along these lines, we would expect the mixing efficiency to
depend on the degree of two-dimensionality in a given wave-breaking case. We
quantify the two-dimensionality of the flow as the fraction f2D of total dissipation or
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mixing that is due to the laterally averaged flow. Thus, f2D = ε tot/εtot for dissipation
and f2D= φe,tot/φe,tot for mixing, where ε is defined as in (3.9) but using the laterally
averaged velocity ui and φe is defined with φd as in (3.5) but using the laterally
averaged density ρ. These quantities are displayed in figure 20(d), and show a
similar dependence on ξ as ηB. It is clear that f2D increases for larger and smaller
values of ξ , with a minimum for intermediate values of ξ and a peak around ξ = 0.8.
As in Boegman et al. (2005), the peak near ξ = 0.8 is due to the occurrence of
plunging breakers, which introduce more available potential energy to the flow than
collapsing breakers with similar internal Iribarren numbers. This also increases the
two-dimensionality of the flow because the initial plunging motion does not vary in
the lateral direction. Ultimately, a physical explanation of the dependence of mixing
efficiency on two-dimensionality depends on the mechanisms of lateral instability
during breaking, which are functions of Rew, ξ and the non-dimensional interface
thickness δ/λ.

6. Geophysical application
6.1. Reynolds number effects

The small spatial scale of the simulations presented here must be considered when
assessing the geophysical relevance of the results. The present simulations can be
related to geophysical flows using the turbulence activity number (or buoyancy
Reynolds number) Reb = ε ′/νN2. This quantity can also be written as a ratio of
the Ozmidov length scale Lo = (ε ′/N3)1/2 to the Kolmogorov length scale ηk as
Lo/ηk = Re3/4

b . Here, N is calculated conservatively using the initial stratification. A
maximum Reb of approximately two is reached for the current simulations, indicating
a relatively small separation between the largest and smallest scales of turbulence.
Based on the work of Shih et al. (2005), such a flow is classified in the ‘diffusive’
regime of stratified turbulence. Geophysical flows, on the other hand, usually have
Reb values that are one to many orders of magnitude higher, indicating a larger
separation of scales. Such flows are classified in the ‘intermediate’ or ‘energetic’
regimes of stratified turbulence by Shih et al. (2005). Examples of Reb calculations
in the field include Davis & Monismith (2011), Walter et al. (2012) and Walter
(2014) for nonlinear internal waves in the coastal environment, as well as (Bouffard
& Boegman 2013, see figure 7) for the stratified region of Lake Erie.

The low Reynolds number of our simulations has several consequences for the
interpretation of the results. In particular, dissipation in the boundary layer is much
greater than that in the interior over the course of the wave-breaking event. For
a higher-Reynolds-number flow, we would expect more energetic turbulence in the
interior and therefore a larger relative contribution of the interior dissipation to the
total dissipation. For example, in field observations of breaking internal waves in
Monterey Bay, California, Walter et al. (2012) found dissipation values on the same
order of magnitude in the interior as in the boundary layer. More energetic turbulence
in the interior would also increase the turbulent contribution to the irreversible mixing
φe, which in our simulations is roughly the same magnitude as the background mixing
term φi. In addition, the boundary-layer dissipation in our simulations is largely due
to the two-dimensional flow (figure 15b) because boundary-layer turbulence does not
develop until after breaking and is confined to a small region. For a higher Reynolds
number flow, we would expect more energetic turbulence to develop sooner in the
boundary layer, that is, during the initial downslope flow under the leading edge of
the wave in figure 2(a,b).
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Aghsaee et al. (2010) considered the effect of Reynolds number on the internal
wave-breaking mechanism, focusing on the scale of the boundary-layer instability
that triggers breaking relative to the wave scale. They found that increasing the
Reynolds number reduced both the relative size and growth rate of vortices shed
from the boundary layer, thus reducing the effect of boundary-layer separation on
wave breaking. This allowed the breaker type to change from collapsing to plunging
(for the same internal Iribarren number) because the steepening rear face was no
longer swept backwards by the separated downslope flow and was able to plunge
forward. It is therefore likely that increasing the Reynolds number would also modify
how the mixing efficiency of breaking internal waves varies with the internal Iribarren
number, although the specific effect is unknown.

6.2. Preturbulent mixing
In addition to the effects described above, the Reynolds number also sets the relative
contribution of preturbulent mixing to total mixing during the wave-breaking event.
It is expected that as the Reynolds number increases, preturbulent mixing will
contribute less to the total mixing because turbulent mixing will play a larger
role. We demonstrate this by rerunning case 3 and increasing ν by factors of 2, 4
and 6 with κ = ν (thus reducing the Reynolds number by factors of 2, 4 and 6).
Figure 21(a) shows total and laterally averaged irreversible mixing values for case
3 with the original viscosity and diffusivity ν0 = κ0 = 1 × 10−6 m2 s−1, and with ν
and κ increased by a factor of 4. Figure 21(b) shows the fraction of total mixing
that occurs in the preturbulent stage as a function of κ , where the turbulent transition
is defined as the point in time when φe departs from φe. Reducing the Reynolds
number delays the onset of lateral variability during breaking. Thus, higher fractions
of the peak and total mixing values are due to mixing in the preturbulent stage. We
expect that increasing the Reynolds number of our simulations further would allow
the turbulent transition to occur earlier in the shoaling and breaking event. This
would likely reduce the large values of the mixing efficiency seen in figure 5 prior to
breaking because the mixing efficiency would be less affected by preturbulent mixing.
Extending our results to higher Reynolds numbers is the subject of future work.

6.3. Local versus global energetics
Despite the Reynolds number differences between geophysical flows and the flow
simulated here, qualitative comparisons can still be made. To better relate the global
(volume-integrated) energy quantities discussed thus far to what might be observed by
a moored instrument during a breaking internal wave event in the field, we calculate
local turbulence dissipation and buoyancy flux values at specific locations within
the domain. Local turbulence quantities are defined as a departure from the lateral
average as in § 4.2, and local turbulent dissipation ε ′ is defined as in (4.1). The local
turbulent buoyancy flux is defined similarly as

b= g
ρ0
ρ ′w′. (6.1)

Figure 22 shows the maximum local turbulent dissipation over the wave-breaking
event for case 3. Turbulent dissipation is maximized after the breakpoint in the
region of the upslope surge due to the presence of longitudinal rolls. Some turbulent
dissipation is also evident offshore of the breakpoint due to the downslope return
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FIGURE 21. Irreversible mixing results for case 3 with increased viscosity ν and
diffusivity κ = ν (lower Reynolds number). (a) Total and laterally averaged irreversible
mixing values (φe and φe, respectively) for case 3 with the original viscosity and
diffusivity ν0 = κ0 = 1× 10−6 m2 s−1, and with ν and κ increased by a factor of 4. Dots
labelled c–i correspond to time snapshots from figures 2 and 6. (b) The fraction of total
mixing that occurs in the preturbulent stage φe,PT/φe,tot as a function of κ , where the
turbulent transition is defined as the point in time when φe departs from φe.

flow after the upslope surge. Figures 23–25 show the density and velocity structure
as well as turbulence quantities over time at the three cross-shore ‘virtual mooring’
locations in figure 22 for case 3, as would be measured at fixed moorings in the
field. The density structure is depicted with a profile over time, while turbulence
quantities are shown for two locations, one in the BBL (defined as the second grid
cell from the bottom) and one in the interior (defined as the stratified region of
the flow). These local results are presented in comparison with the global results
for case 3, including ε, φe and

∫
V ε
′dV , the volume-integrated turbulent dissipation.

Global quantities are divided by the volume of the sloping region of the domain
to facilitate direct dimensional comparison with local quantities. The along-slope
velocity at the boundary-layer measurement location us,BL is also shown to relate
energetics quantities to the phase of the flow. We do not distinguish between positive
and negative values of b, only whether its absolute value is elevated above zero,
indicating turbulent vertical transport of density. Furthermore, we do not calculate the
local mixing efficiency because the flow is not in local equilibrium. This implies that
some of the turbulent buoyancy flux is reversible and is therefore not a true measure
of mixing.

Figures 23–25 show distinctly different signals depending on the cross-shore
(x1) location of the virtual mooring relative to the breakpoint of the wave and
the vertical (x3) location of the turbulence measurement. Furthermore, these local
signals correspond to different parts of the global dissipation and mixing signal. The
magnitudes of the strongest local turbulence signals are generally larger than the
global signal. Specifically, the turbulent dissipation and buoyancy flux signals at M2
and M3 are between one and two orders of magnitude greater than the corresponding
global signals. We are therefore concerned only with the shape of the turbulence
signals, and do not attempt to relate them quantitatively to the global result. The
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FIGURE 22. The locations of virtual moorings M1, M2 and M3 in figures 23–25,
respectively. Included is the maximum (over the entire wave-breaking event) local turbulent
dissipation ε ′max(x1, x3) (in m2 s−3) for breaking wave case 3 shown on a log10 scale, as
well as the initial pycnocline (– –), the cross-shore location of the breakpoint (C) and the
cross-shore location of the formation of the upslope surge (♦).

magnitudes of the strongest local dissipation signals do, however, compare well with
those observed in the laboratory by Hult et al. (2011) for breaking internal waves
over a ridge, which are on the order of 10−4 or 10−5 m2 s−3. Owing to the difficulty
of measuring local turbulent buoyancy flux in the laboratory, such values are not
available for comparison (Hult et al. 2011).

Figure 23 shows the results from M1, which is located just downslope of the
breakpoint. The density record shows the passage of a nonlinear wave prior to
breaking. However, a relatively weak turbulence signal is seen here because most
turbulence activity occurs upslope after breaking. A small spike in dissipation is seen
in the boundary layer as the wave moves up the slope, and elevated dissipation and
buoyancy flux are seen at the end of the event in the interior as dense water from
the upslope surge flows back down the slope and interacts with the next wave crest.
Figure 24 shows the results from M2, which is located upslope of the breakpoint
and near the beginning of the upslope surge. Here, relatively strong signals are
seen in both the BBL and the interior. Near the boundary, a peak in dissipation
associated with the lobe–cleft instability at the front of the upslope surge is seen
first. Then, a second peak is seen as dense water from the upslope surge flows
back down the slope. In the interior, an extended period of elevated dissipation and
buoyancy flux is seen after the upslope surge passes the mooring. This period is
associated with the breakdown of billows at the interface due to lateral instability.
These billows are evident in the density record in figure 24(a). A similar density
structure was observed in the field by Walter et al. (2012, figure 4a) during the
passage of an upslope propagating internal bore. The ‘bores’ in their study are the
result of breaking internal waves on the nearshore slope in southern Monterey Bay,
California. Figure 25 shows the results from M3, which is further up the slope. Here,
we again see a relatively strong signal, but one that is different in shape than at M2.
The density record shows the passage of the upslope surge; this is associated with
peaks in dissipation both in the BBL and the interior, as well as elevated buoyancy
flux in the interior.

The along-slope velocity at the boundary-layer measurement location was shown in
figures 23(b), 24(b) and 25(b) in order to relate turbulent dissipation and buoyancy
flux to the phase of the flow. At each virtual mooring, dissipation and buoyancy flux
are enhanced at times of flow reversal from downslope (or zero flow) to upslope,
specifically during the initial upslope surge of the breaking wave, and when the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

64
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.641


392 R. S. Arthur and O. B. Fringer

−1.0

−0.5(a)

−0.02

0.02

0.06
(b)

0

1

2

BBL

(c)

−5

0

5

In
te

ri
or

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.70

5

(× 10−6)

(× 10−6)

(× 10−8)

a
b c d e

f
g

h

i

G
lo

ba
l

(e)

b

b

FIGURE 23. A comparison of local energetics to volume-integrated (global) energetics at
x/L = 0.67 (M1 in figure 22) for case 3. (a) Density as a function of depth and time
using the same colour scale as figure 2. (b) The along-slope velocity at the boundary-layer
measurement location us,BL (in m s−1) as a function of time. (c) and (d) Local turbulent
dissipation ε ′ and buoyancy flux b, both in m2 s−3, in the BBL region (c) and the interior
region (d). The vertical location of the interior measurement is shown by a dotted line
in (a). (e) Volume-integrated (global) dissipation ε, effective mixing rate φe, and turbulent
dissipation

∫
V ε
′dV , all divided by the volume of the sloping region of the domain to give

units of m2 s−3. Dots labelled a–i correspond to time snapshots from figures 2 and 6.

downslope flow from the upslope surge interacts with the next wave crest. Enhanced
dissipation is also seen at mooring M2 during the downslope flow from the upslope
surge. Similar trends were observed in the LES of Gayen & Sarkar (2011) and in
the field observations of Aucan et al. (2006) at Kaena Ridge, Hawaii, both of which
examined the phasing of near-bottom turbulence generated by internal tidal flow over
a slope.

We acknowledge that the first peak in global dissipation in our simulations is
attributed to laminar dissipation at the bottom boundary because turbulence has not
yet developed. Therefore, this peak is not captured by the turbulence signal at any
of the virtual moorings. This is evident in figures 23(e), 24(e) and 25(e), which
show a time series of the global (volume-integrated) turbulent dissipation

∫
V ε
′dV .

Turbulent dissipation does not develop anywhere in the domain until breaking occurs.
It can also be noted that turbulent dissipation is absent near the bottom boundary
offshore of the wave-breaking location in figure 22, which shows the maximum
turbulent dissipation ε ′max over the course of breaking wave case 3 as a function of x1
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FIGURE 24. A comparison of local energetics to volume-integrated (global) energetics at
x/L = 0.76 (M2 in figure 22) for case 3. (a) Density as a function of depth and time
using the same colour scale as figure 2. (b) The along-slope velocity at the boundary-layer
measurement location us,BL (in m s−1) as a function of time. (c) and (c) Local turbulent
dissipation ε ′ and buoyancy flux b, both in m2 s−3, in the BBL region (c) and the interior
region (d). The vertical location of the interior measurement is shown by a dotted line
in (a). (e) Volume-integrated (global) dissipation ε, effective mixing rate φe, and turbulent
dissipation

∫
V ε
′dV , all divided by the volume of the sloping region of the domain to give

units of m2 s−3. Dots labelled a–i correspond to time snapshots from figures 2 and 6.

and x3. In a higher-Reynolds-number flow, we would expect the first peak in global
dissipation to also appear in the turbulent dissipation signal corresponding to the
initial downslope flow under the leading edge of the wave. The turbulence signals
seen at M1 and M2 would likely be modified to include this peak, while the signal
at M3 would likely not change because of its position upslope of the initial density
interface.

Comparison of local and global energetics allows us to determine which mooring
location provides a signal that is most representative of the internal wave-breaking
event as a whole. Through inspection of figures 23–25, we find that this is mooring
M2, which is located offshore of the intersection of the initial pycnocline with
the slope, and onshore of the breakpoint and formation of the upslope surge (see
figure 22). Mooring M2 captures both peaks in dissipation after breaking; the first
peak is due to the passing of the upslope surge, while the second peak is due to its
return flow downslope. Furthermore, M2 captures elevated dissipation and buoyancy
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FIGURE 25. A comparison of local energetics to volume-integrated (global) energetics at
x/L=0.83 (M3 in figure 22) for case 3. (a) Shows density as a function of depth and time
using the same color scale as figure 2. (b) Shows the along-slope velocity at the boundary
layer measurement location us,BL (in m s−1) as a function of time. (c,d) Local turbulent
dissipation ε ′ and buoyancy flux b, both in m2 s−3, in the BBL region (c) and the interior
region (d). The vertical location of the interior measurement is shown by a dotted line
in (a). (e) Volume-integrated (global) dissipation ε, effective mixing rate φe, and turbulent
dissipation

∫
V ε
′dV , all divided by the volume of the sloping region of the domain to give

units of m2 s−3. Dots labelled a–i correspond to time snapshots from figures 2 and 6.

flux in the interior associated with the breakdown of billows at the interface. In a
more turbulent flow, M2 would likely also capture turbulent dissipation in the bottom
boundary under the leading edge of the wave. From this single mooring location, one
could potentially characterize dissipation and mixing for the entire breaking event.
The same is not true for moorings M1 and M3. In the current simulations, mooring
M1 is too far downslope to capture any relevant signal, although it would likely
capture the initial peak in bottom-boundary dissipation in a more turbulent flow.
Mooring M3 captures the upslope surge in both the bottom boundary and interior
regions, but it is not representative of the event as a whole. These results imply that
the cross-shore placement of field moorings relative to the breaking location and the
vertical placement of instruments are critical to the interpretation of breaking internal
wave observations.
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7. Conclusion

Using DNS, we have simulated the three-dimensional structure of breaking internal
solitary waves on slopes. Our study includes seven cases with varying initial wave
amplitude, bathymetric slope, and internal Iribarren number, but constant wave
Reynolds number. For each case, the structure and energetics of wave breaking were
analysed, and wave energetics were separated into different regions of the flow. On
average, bottom-boundary dissipation accounted for roughly 63 % of total dissipation
in the domain, while the interior dissipation accounted for roughly 35 %. Peaks
in dissipation were caused by strong shear due to downslope flow over the no-slip
bottom boundary, as well as strong shear and density overturns at the interface during
breaking and the upslope surge. Peaks in interior dissipation and irreversible mixing
were found to correspond with three-dimensionality in the flow field associated
with wave breaking. This three-dimensionality manifested itself in the form of a
lateral (cross-stream) instability in two specific locations: the interface and the
bottom. At the interface, unstable stratification was created by density overturns
during breaking and the upslope surge, driving a cross-stream convective instability.
At the bottom, unstable stratification was created under the nose of the upslope
surge, which was raised above the no-slip bottom wall, leading to the lobe and
cleft instability typical of gravity currents. Longitudinal rolls (streamwise vorticity)
developed and grew from both of these sources, ultimately interacting to enhance
interior dissipation and irreversible mixing. By comparing our results with those of
a similar two-dimensional simulation, we quantified the effect of lateral variability
on wave breaking. The two-dimensional simulation underestimated dissipation by as
much as 30 % while overestimating irreversible mixing by as much as 30 %. Overall,
the three-dimensional simulation had roughly 8 % more dissipation and 20 % less
mixing than the two-dimensional simulation. These differences were attributed to the
suppression of longitudinal rolls in the two-dimensional simulation and the inverse
cascade of two-dimensional turbulence, respectively, and highlight the importance of
capturing three-dimensional effects when considering the structure and energetics of
breaking internal waves on slopes.

An additional goal of this study was to examine the variation in the structure and
energetics of breaking internal waves with the initial amplitude of the wave and the
bathymetric slope. The combined effect of these two parameters was considered in
terms of the internal Iribarren number ξ . We found that both peak and total values
of dissipation and irreversible mixing decrease with increasing ξ . However, the bulk
mixing efficiency increases for larger and smaller values of ξ , with a minimum
for intermediate values of ξ and a peak near ξ = 0.8 for plunging breakers. This
trend was explained by the degree of two-dimensionality in the flow. Bulk mixing
efficiency results were found to agree with those of Boegman et al. (2005) when
the effect of Rew was removed and the effect of sidewall friction was considered.
Our results indicate that the mixing efficiency might be more appropriately classified
as a function of both the wave slope and the bathymetric slope, as in Aghsaee
et al.’s (2010) figure 6 for internal wave breaker types. It must be noted, however,
that performing such a study using high-resolution, three-dimensional numerical
simulations would require a great deal of computational effort.

Our average bulk mixing efficiency value of 0.16 and average peak instantaneous
mixing efficiency value of 0.29 were found to be lower than Fringer & Street’s (2003)
averages of 0.42 and 0.36, respectively, likely due to the presence of the bottom
boundary. However, our bulk mixing efficiency values were found to be slightly
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higher than Hult et al.’s (2011) values of 0.04–0.07 because some boundary-driven
turbulence contributed to the mixing in our domain, while boundary-driven turbulence
was confined to the well-mixed bottom layer in their experiments.

Finally, we examined the geophysical application of our results and considered the
effects of Reynolds number on dissipation and mixing. Specifically, we found that
increasing the Reynolds number led to a decrease in preturbulent mixing. In order
to better relate our volume-integrated results to what might be observed during a
breaking internal wave event in the field, we also calculated local turbulent dissipation
and buoyancy flux values for different ‘virtual moorings’. We found distinctly different
turbulence signals at each mooring, and showed that a mooring placed upslope of
the breakpoint but downslope of the intersection of the pycnocline and the bottom
provided results that were the most representative of dissipation and mixing over the
event as a whole. This could assist in the interpretation of existing field measurements
of breaking internal waves on slopes.
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