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Abstract

Leishmania spp. are parasitic protozoa that cause leishmaniasis, a disease endemic in 98
countries. Leishmania promastigotes are transmitted by the vector and differentiate into
amastigotes within phagocytic cells of the vertebrate host. To survive in multiple and hostile
environments, the parasite has several virulence factors. Oligopeptidase B (OPB) is a serine
peptidase present in prokaryotes, some eukaryotes and some higher plants. It has been con-
sidered a virulence factor in trypanosomatids, but only a few studies, performed with Old
World species, analysed its role in Leishmania virulence or infectivity.

L. (L.) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. The L. (L.)
amazonensis OPB encoding gene has been sequenced and analysed in silico but has never been
expressed. In this work, we produced recombinant L. (L.) amazonensis OPB and showed that its
pH preferences, Km and inhibition patterns are similar to those reported for L. (L.) major and L.
(L.) donovani OPBs. Since Leishmania is known to secrete OPB, we performed in vitro infection
assays using the recombinant enzyme. Our results showed that active OPB increased in vitro
infection by L. (L.) amazonensis when present before and throughout infection. Our findings
suggest that OPB is relevant to L. (L.) amazonensis infection, and that potential drugs acting
through OPB will probably be effective for Old and New World Leishmania species. OPB inhi-
bitors may eventually be explored for leishmaniasis chemotherapy.

Introduction

Leishmaniasis is an anthropozoonosis considered a public health problem, with a broad clinical
spectrum and epidemiological variety. It is caused by parasites of the genus Leishmania, trans-
mitted to mammals during the blood meal of female sand flies of the genus Phlebotomus or
Lutzomyia (Kevric et al., 2015). More than 50 species of Leishmania have been described, 20
of which cause human disease, most of them grouped into Leishmania (L.) and Viania (V.) sub-
genera (Cupolillo et al., 2000; Akhoundi et al., 2016). The 2 main clinical forms in humans are
the cutaneous (CL) and visceral (VL) leishmaniasis. The clinical manifestations and disease
severity are mainly determined by the host immune response and by the Leishmania species
and strains (Podinovskaia and Descoteaux, 2015; Velasquez et al., 2016; de Rezende et al.,
2017). According to the World Health Organization (WHO), in 2018, 92 and 83 countries
were considered endemic for CL and VL, respectively, and approximately 30 000 new cases of
VL and 1 million new cases of CL occurred annually (WHO, 2018). In Brazil, Leishmania
(L.) amazonensis is one of the species frequently associated with CL (Silveira et al., 2009).

Leishmania promastigotes develop in the vector and are transmitted to mammals. In the
vertebrate host they are phagocytosed by phagocytes, mainly macrophages, and convert into
amastigotes (Dostalova and Volf, 2012; Podinovskaia and Descoteaux, 2015). Adaptation to
the hostile environment of macrophages relies on parasite virulence factors (Podinovskaia
and Descoteaux, 2015). Lipophosphoglycan (LPG) and glycoprotein 63 (GP63) are well-
known virulence factors in Leishmania, which contribute to the survival of the parasite in
the vertebrate host by affecting several processes (Brittingham et al., 1995; Sacks et al.,
2000; Chang et al., 2003; Spath et al., 2003; Yao et al., 2003; Svarovska et al., 2010). Many pro-
teases have also been described as virulence factors, degrading proteins and peptides that par-
ticipate in a range of biological processes involved in the infection (Silva-Almeida et al., 2012).
A well-studied example is cysteine protease B (CPB), which induces a Th2 response in mice
infected by L. (L.) mexicana, increasing parasite survival (Weinheber et al., 1998; Bennett
et al., 2001; Buxbaum et al., 2003; Pollock et al., 2003; Cameron et al., 2004; Mottram
et al., 2004; Saravia et al., 2006; Abu-Dayyeh et al., 2008). Oligopeptidase B (OPB) is another
protease that may be considered a virulence factor in Leishmania.

OPB (MEROPS code S09.010) was first described in Escherichia coli as a protease II and
was later characterized in Trypanosoma cruzi and T. brucei as an alkaline protease (Pacaud
and Richaud, 1975; Ashall, 1990; Kornblatt et al., 1992). It is classified as a serine peptidase
from the prolyl oligopeptidase family (POP) (SC clan, family S9, subfamily A) (Rawlings
et al., 2010; Munday et al., 2011), present in prokaryotes, in unicellular eukaryotes such as
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trypanosomatids, in plants and fungi. OPB has never been
described in any mammalian genome (Motta et al., 2019). It is
considered an important virulence factor in T. cruzi. Indeed, it
is believed that an unknown OPB product secreted by the parasite
binds to host cell receptors, triggering the release of Ca2+. The
mobilization of Ca2+ induces lysosomal exocytosis and disruption
of actin filaments that facilitate cell invasion by the parasite
(Burleigh and Andrews, 1995; Rodriguez et al., 1995; Burleigh
et al., 1997; Caler et al., 1998; Motta et al., 2019).

OPB was annotated in the first Leishmania genome reported
(Ivens et al., 2005), but was only studied in the genus in 2007
(de Matos Guedes et al., 2007). This study showed that L. (L.)
amazonensis OPB was a single copy gene with 2.196 base pairs
(bp), encoding a 731 amino acid protein with predicted mass
and isoelectric point of 83.52 kDa and 5.61, respectively. The pro-
tein lacks a signal peptide at the N-terminal extension, indicating
that it is probably synthesized as an active protease (de Matos
Guedes et al., 2007). The structure of L. (L.) amazonensis enzyme
is composed of 2 distinct domains, an α/β hydrolase fold and 7
blades with β helix domains. OPB amino acid sequences of L.
(L.) amazonensis, L. (L.) major, L. (L.) chagasi and L. (V.) brazi-
liensis are conserved, mainly in the catalytic region (de Matos
Guedes et al., 2007). Another gene from the OPB group, later
named OPB-2, was annotated in the L. (L.) major genome
(Ivens et al., 2005) and sequenced in L. (L.) amazonensis (de
Matos Guedes et al., 2008). OPB-2 amino acid sequences are con-
served among Leishmania but display several insertions and dele-
tions and a C-terminal extension domain when compared to
OPBs (de Matos Guedes et al., 2008). No enzymatic or functional
studies for OBP-2 were reported to date, but comparative model-
ling indicates that L. (L.) amazonensis OPB and OPB2 have many
similarities and may be sensitive to dual inhibitors (Sodero et al.,
2017). OPB is secreted by Leishmania, as it was found in exo-
somes shed by L. (L.) donovani and L. (L.) major promastigotes
(Silverman et al., 2008, 2010). The protein is present in the soluble
fraction of L. (L.) major procyclics, metacyclics and amastigotes
(Munday et al., 2011), and higher activity was observed in L.
(L.) donovani and L. (L.) mexicana axenic amastigotes compared
to promastigotes (Swenerton et al., 2011).

OPB hydrolyses peptide bonds preferentially after a pair of
dibasic residues, preferentially with an arginine at the P1 position
(Kanatani et al., 1991; Polgar, 2002; Motta et al., 2019). Enzymatic
profiles of Leishmania OPBs were analysed using recombinant
proteins. L. (L.) donovani and L. (L.) major OPBs were produced
in Pichia pastoris and Escherichia coli, respectively. The 2 enzymes
showed preference to an Arg at position P1 and similar inhibition
profiles employing commercial inhibitors (McLuskey et al., 2010;
Swenerton et al., 2011).

Only 2 functional studies on Leishmania OPBs have been pub-
lished, and they are restricted to 2 parasite species. L. (L.) major
parasites deficient in OPB showed impaired differentiation into
metacyclic promastigotes, decreased infectivity in macrophages
in vitro (Munday et al., 2011) and generated smaller footpad
lesions in mice compared to wild-type (wt) parasites (Munday
et al., 2011; Swenerton et al., 2011). L. (L.) donovani promasti-
gotes knockout (ko) for OPB expressed more enolase isoforms
and higher abundance of the enzyme on the parasite surface
(Swenerton et al., 2011). Since enolase activity was similar
between ko and wt parasites, the authors suggested an accumula-
tion of inactive enolase on the surface of ko parasites. They also
hypothesized that during differentiation into amastigotes OPB is
responsible for removing enolase and plasminogen from the para-
site surface (Swenerton et al., 2011).

A study carried out by our group compared the proteome of L.
(L.) amazonensis amastigotes derived from BALB/c and BALB/c
nude mice lesions and showed that 4 OPB isoforms were more

abundant in parasites from BALB/c nude mice (Teixeira et al.,
2015). This suggests that T cells or their mediators may be
responsible for controlling OPB post-translational modifications
(Teixeira et al., 2015).

No study has analysed the profile and the role of OPB from
Leishmania species from the New World. In the present study,
we produced L. (L.) amazonensis recombinant OPB and charac-
terized its enzymatic profile. Both pH preference, Vmax, Km and
inhibition pattern were characterized. Since OPB was shown to
be secreted by Leishmania promastigotes, we analysed the effect
of the recombinant protein in macrophage infection by this para-
site stage. Our data indicate that active soluble OPB plays a role in
in vitro infection by L. (L.) amazonensis, suggesting that OPB is
relevant to L. (L.) amazonensis infection.

Materials and methods

L. (L.) amazonensis promastigotes and axenic amastigotes

Cultures of promastigotes were periodically obtained from BALB/c
mice infected with 2 × 106 L. (L.) amazonensis strain LV79
(MPRO/BR/72/M1841) stationary phase promastigotes in the plantar
pad of the left hind paw. Promastigotes were maintained in complete
medium 199 (see below) at 24°C. Cultures were subcultured weekly to
an initial density of 2 × 106 parasitesmL−1 until the 8th passage.

Axenic amastigotes were obtained as previously described
(Miguel et al., 2013). Briefly, 5-day promastigote cultures
(2–3 × 106 mL−1) were mixed with the same volume of M199
medium supplemented with 0.25% glucose, 0.5% trypticase and
40 mM Na succinate, adjusted to pH 5.5. Cultures were main-
tained at 24°C for 16 h and at 34°C for 3 days, diluted at a
1:5 ratio and maintained for up to 5 days at 32°C.

Production of recombinant OPB

The OPB gene was amplified from L. (L.) amazonensis genomic
DNA using Platinum™ Superfi™ DNA polymerase
(Invitrogen) and primers derived from the 5′ and 3′ ends of the
L. (L.) amazonensis ORF deposited in TriTryp
(LAMA_000147800) (forward: 5′- ATA GAA TTC ATG TCG
TCG GGC AAC – 3′ and reverse: 5′- AAT CTC GAG TTA
CCT GCG AAC CAG – 3′). The resultant 2.196 kb PCR product
was cloned into pJET 1.2/blunt (Life Technologies) and then into
the pET28a expression vector. Competent Escherichia coli BL21
pGro7 was transformed with pET-28aOPB and 2 clones were con-
firmed by sequencing. One of them was grown and expression of
OPB was induced with 0.1 mM IPTG at 37°C for 4 h.

The culture was centrifuged and the pellet was resuspended in
binding buffer (20 mM NaH2PO4, 0.5M NaCl, 5 mM imidazol)
plus 0.4mgmL−1 lysozyme and 1mM PMSF and kept at −20°C
for 16 h. Bacteria were disrupted by sonication at 25% amplitude,
centrifuged and the soluble fraction was loaded on a 1mL
Histrap™ HP (GE HealthCare) nickel column previously washed
with 10 volumes of H2O and equilibrated with 50 volumes of bind-
ing buffer. Protein was eluted with 20mM NaH2PO4, 0.5M NaCl
containing imidazole from 25 to 500mM. Imidazole was removed
using the Amicon® Ultra 4–30 K filter (Millipore), the protein
was reconstituted with 1mL of phosphate-buffered saline (PBS)
+ 15% glycerol and quantified by Bradford assay. The purified pro-
tein showed undetectable amounts of LPS according to the
Pierce™ Chromogenic Endotoxin Quant Kit (Thermo Scientific).

Recombinant OPB activity assays at different pHs

Enzyme assays to determine the pH preference were adapted from
Swenerton et al. (2011). Assays were performed at 25°C in a
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Corning Costar 3603 plate (Corning®) with 0.5 ng (1 μL) of OPB,
5 μM (1 μL) of Z-Arg-Arg-AMC substrate (Sigma-Aldrich) and a
gradient of buffers (98 μL) from pH of 3–10 with 0.5 intervals.
The buffers used were 0.2 M citrate phosphate (pH 3–7) and
50 mM Tris-HCl (pH 7–10). The fluorescence readings, which
result from the product AMC released, were taken every minute
for 45 min in POLARstar Omega reader (BMG Labtech) with
390 nm excitation and 480 nm emission. The slope of fluores-
cence vs time lines corresponds to the enzyme activity. The
mean activity at each pH was calculated based on 3 linear plots
and expressed as relative activity taking the highest mean activity
as reference. This triplicate assay was repeated 3 times. Control
tests without OPB were carried out to check the substrate spon-
taneous hydrolysis in different pHs.

Recombinant OPB inhibition assay with commercial inhibitors

The choice of inhibitors was based on the work of Swenerton et al.
(2011). Recombinant OPB inhibition assays were performed at
25°C in a Corning Costar 3603 plate (Corning®) with 0.5 ng
(1 μL) of OPB enzyme, and 5 μM (1 μL) of Z-Arg-Arg-AMC
substrate in 50 mM Tris-buffer HCl, pH 8.0 with the following
commercial inhibitors: 100 μM Antipain, 100 μM leupeptin, 5 mM

EDTA, 1 μM pepstatin A, 10 mM Ca2+ and 10 mM Mg2+. The
enzyme was pre-incubated with each inhibitor for 10 min in the
absence of substrate. After addition of the substrate, fluorescence
readings were taken every minute for 45 min in POLARstar
Omega reader (BMG Labtech) with 390 nm for excitation and
480 nm for emission. The slope of fluorescence vs time lines cor-
responds to the enzyme activity. The mean activity in the presence
of the putative inhibitors was calculated based on 3 linear plots.
Then it was expressed as a relative activity taking the activity in
the absence of any inhibitor as a reference. This triplicate assay
was repeated 2 times.

Calculation of Km and Vmax

Enzyme assays were performed with substrate concentrations ran-
ging from 0.8 to 8 μM (in triplicates). Reactions were performed at
25°C in a Corning Costar 3603 plate (Corning®) with OPB
enzyme and Z-Arg-Arg-AMC substrate in 50 mM Tris-buffer
HCl, pH 8.0. Fluorescence readings were taken every minute
for 45 min in POLARstar Omega reader (BMG Labtech) with
390 nm for excitation and 480 nm for emission. The slope of the
fluorescence vs time lines corresponds to the reaction initial rate
(afu min−1; afu, arbitrary fluorescence units). The Michaelis–
Menten equation was fitted to [S] x rate data resulting in the
Km and Vmax. Such fitting process was done using the Origin
2019 software.

Anti-OPB serum and Western blot

To obtain anti-OPB serum, BALB/c mice were immunized by the
intraperitoneal route with 15 μg of recombinant OPB in 100 μL,
emulsified 1:1 with incomplete Freund’s adjuvant. A control
mouse was inoculated with PBS emulsified with incomplete
Freund. Immunization was carried out in 2 steps with an interval
of 30 days and serum collection was carried out 60 days after the
first immunization. The reactivity of anti-OPB serum was con-
firmed by enzyme-linked immunosorbent assay (ELISA).

Parasites were lysed by 8 cycles of freeze–thaw at the density of
2 × 109 promastigotes mL−1 in PBS with protease inhibitors (800
nM aprotinin, 50 nM bestatin, 1 mM AEBSF-HCl, 15 nM E64, 2 nM
leupeptin and 1 nM pepstatin A; Fermentas). Proteins were sepa-
rated by sodium dodecyl-polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred onto nitrocellulose membrane

(GE Healthcare) in 25mM Tris buffer, 192mM glycine, 20% metha-
nol, 0.1% SDS, pH 8.2, for 1 h at 5 V using the TE77 equipment
(GE Healthcare). The membrane was blocked in PBS 5% skim
milk and 0.1% Tween 20 for 1 h and incubated with anti-OPB
serum diluted 1:500 in PBS 2.5% skim milk 0.1% Tween 20 for
16 h at 4°C. Then, the membrane was washed 3 times for 10min
with PBS 0.05% Tween 20 and incubated for 1 h with secondary
antibodies anti-mouse HRP (from KPL) diluted 1:5000 in PBS
2.5% skim milk and 0.05% Tween 20. Three washes were performed
as described and the membrane was incubated with ECL substrate
(Amersham™ ECL™ detection systems, GE Healthcare) for
5min and developed in a ChemiDoc™ XRS (Bio-Rad).

Infection assay

Resident macrophages of the peritoneal cavity were obtained from
BALB/c mice. The animals were euthanized and washed with 70%
ethanol. The peritoneal cavity was exposed and 5 mL of sterile
PBS at 4°C was injected into the cavity, which was massaged
for 30 s before recovering the aspirate with a syringe and 21 G
needle. The aspirate was centrifuged at 3000 g for 10 min at
4°C, the supernatant was discarded, and cells resuspended in
RPMI. Cells were counted in a Neubauer® chamber and trans-
ferred to 48-well plates containing circular glass coverslips.
After 2 h at 37°C 5% CO2, the medium was changed to RPMI
supplemented with 10% fetal bovine serum (FBS), 20 μg mL−1

gentamicin (from now on called supplemented RPMI) and
OPB in different conditions. Plates were incubated overnight at
37°C and 5% CO2. Alternatively, medullary macrophages were
obtained as previously described (Galuppo et al., 2018) and
employed in infection assays using the same conditions.

To assess the importance of peptidase activity on infection, we
inhibited OPB with 4 mM Pefabloc® (Sigma) for 2 h at 37°C and
then used the Amicon® Ultra 4–30 K filter (Millipore) to remove
the free inhibitor. To assess the importance of OPB structure
and of eventual LPS, aliquots of OPB were incubated at 95°C
for 5 min. Recombinant OPB and these 2 controls were incubated
at the time of macrophage plating and maintained until the end of
the experiment.

Infection was performed with promastigotes at day 4 of culture
at a multiplicity of infection (MOI) of 10:1, in supplemented
RPMI at 34°C, 5% CO2 with OPB and controls described above.
After 4 h, the medium was changed and the plates incubated for
another 20 h at 34°C and 5% CO2. Cells were fixed with methanol
and stained with the Instant Prov Kit dye set (Newprov). Assays
were performed in technical triplicates and 100 cells were counted
from each cover slip. The percentage of infected macrophages and
the number of amastigotes per macrophage were calculated.

Statistical analysis

Statistical analyses were performed by ANOVA test followed by
Tukey post-test (n⩾ 3), Sidak’s post-test or by Student’s t test
(n⩽ 2). Differences were considered significant for P value ⩽ 0.05.

Results

Sequencing and production of recombinant OPB

OPB from L. (L.) amazonensis PH8 strain has already been
sequenced and studied in silico years ago (de Matos Guedes
et al., 2007). In this work we cloned and sequenced OPB gene
from L. (L.) amazonensis LV79 strain, which is shown in Fig
Sup 1 along with its translation. LV79 OPB is similar to the
sequence reported for PH8 strain, except for a change in 1 nucleo-
tide, generating a valine instead of an isoleucine at the 558
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position, as depicted in Fig Sup 1. This substitution occurs outside
of relevant sites for enzyme activity, such as the catalytic triad and
S1 and S2 subsites, as indicated in Fig Sup 2.

The alignment of L. (L.) amazonensis LV79 OPB with
sequences from other Leishmania species indicated high identity
and similarity, as shown in Table 1. Structures of L. (L.) amazo-
nensis and L. (L.) major OPBs (published by de Matos Guedes
et al., 2007 and McLuskey et al., 2010) after in silico and crystal
studies, respectively, were very similar. Besides, L. (L.) amazonen-
sis and L. (L.) major sequences display the same residues in the
catalytic triad and S1 and S2 subsites (Fig Sup 2), suggesting
that the 2 enzymes probably have similar enzymatic activities.
Apart from these residues, we also observe conservation in resi-
dues involved in interactions between the catalytic and the propel-
ler domain, which also determine enzyme activity and specificity.
These residues, already cited by McLuskey et al. (2010), are
E179-R664, which form a salt-bridge that affects substrate binding
pocket; E621 and Y499, important for the preference for RR resi-
dues; E623, which connects the 2 domains in the active enzyme;
D504-R366 and H404-Q506, which connect the 2 domains and
probably influence substrate specificity; E538-R302, forming a
salt-bridge that is broken when OPB changes conformation and
replaced by a bridge between S271 and R534.

Since active recombinant L. (L.)major OPB had been previously
produced in a bacterial system (McLuskey et al., 2010), we
attempted to produce L. (L.) amazonensis OPB in Escherichia
coli. The analysis of the samples from the recombinant OPB
expression and purification steps is shown in Fig. 1. As can be
noted, a his-tagged protein was present mainly in the soluble frac-
tion (Fig. 1A) and was efficiently recovered using nickel columns
(Fig. 1B). The size of the protein seems a little larger than expected
even considering the addition of his and T7 tags at the N-terminal
end, as sometimes happens in SDS-PAGE migration.

Recombinant OPB activity at different pHs and in the presence
of inhibitors

The recombinant enzyme was analysed in terms of activity in dif-
ferent pHs and in the presence of commercial inhibitors, following
procedures previously employed to study L. (L.) major and L. (L.)
donovani OPBs (McLuskey et al., 2010; Swenerton et al., 2011).

Figure 2A shows that activity of L. (L.) amazonensis OPB is
highest at pH 9.5 and 10 and very low at pH around 5, like
OPBs from other Leishmania species. OPB activity was com-
pletely inhibited by antipain and leupeptin and diminished with
Mg2+ (Fig. 2B). Conversely, pepstatin had no effect, while
EDTA increased OPB activity.

Km and Vmax were determined employing different substrate
(Z-Arg-Arg-AMC) concentrations and the same conditions
used for assays in the presence of inhibitors. The Michaelis–

Menten equation showed a precise fit to the curve obtained
with the complete set of data points (correlation coefficient
(R) = 0.99), leading to values of Km = 2.1 ± 0.4 μM and Vmax =
1.7 ± 0.1 afu min−1.

Presence of OPB in promastigotes and amastigotes of L. (L.)
amazonensis

The recombinant protein was used to immunize mice and obtain
anti-OPB sera. Sera from 4 mice were tested in ELISA (data not
shown), and 1 was selected for use in Western blot of total pro-
mastigote and amastigote extracts. Day 2 represents the beginning
of the logarithmic phase, day 4 the initial stationary phase and
day 6 the late stationary phase. The results shown in Fig. 3 indi-
cate that L. (L.) amazonensis promastigotes from all stages and
amastigotes express OPB, and that the endogenous enzyme dis-
plays a mass below 98 kDa in SDS-PAGE gels, a little lower
than the recombinant OPB but above the expected 85 kDa pre-
dicted from OPB amino acid sequence.

Infection of peritoneal macrophages by L. (L.) amazonensis in
the presence of soluble OPB

The presence of OPB in L. (L.) amazonensis promastigotes
(Fig. 3) and the secretion of OPB by promastigotes previously
reported (Silverman et al., 2008, 2010) prompted us to analyse
whether soluble OPB could affect macrophage infection in vitro.
Peritoneal macrophages were plated and kept in the presence of
recombinant OPB throughout the experiment. Figure 4 shows
numbers of infected cells after 24 h. As controls we used
Pefabloc® (Sigma)-inhibited OPB and OPB inactivated by boiling
at 95°C for 5 min. Pefabloc serves as a control for inactive OPB,
while boiled OPB serves as a control for eventual residual LPS,
since this procedure denatures proteins but does not destroy
LPS. As can be noted in Fig. 4A, the presence of OPB before
and during infection increased the percentage of infected

Table 1. Identity and similarity between amino acid sequences of L. (L.)
amazonensis LV79 strain OPB and those from L. (L.) mexicana, L. (L.)
donovani, L. (L.) infantum, L. (L.) major and L. (V.) braziliensis OPBs

Leishmania spp. Identity (%) Similarity (%)

L. (L.) mexicana 99 99

L. (L.) donovani 91 95

L. (L.) infantum 91 95

L. (L.) major 90 95

L. (V.) braziliensis 84 92

Fig. 1. Recombinant L. (L.) amazonensis OPB expression and purification. (A) 10% SDS-PAGE showing soluble (S.F.) and insoluble (I.F.) fractions of bacterial extracts
after sonication. Protein marker: SeeBlue Plus2, Invitrogen. (B) 10% SDS-PAGE showing fractions (Fr.) 1–5 of the soluble fraction of the bacterial lysate eluted from
the nickel column. Protein marker: SeeBlue Plus2, Invitrogen.
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macrophages compared to control, Pefabloc and boiled condi-
tions. Results with Pefabloc-inhibited OPB and boiled OPB did
not differ from the control without OPB, indicating that the active
enzyme is necessary for modulation of infection. We observed no
differences in the number of intracellular parasites among the 4
conditions (Fig. 4B).

When peritoneal macrophages were exposed to soluble OPB
only in the 4 h of contact between Leishmania promastigotes
and macrophage, no changes in the percentage of infected cells
were observed (Fig Sup 3). These results indicate that active
OPB increased infection of peritoneal macrophages by L. (L.)
amazonensis when present before and during infection.

To explore whether the effect of recombinant OPB was
observed for other macrophage types, we employed bone marrow-
derived macrophages. Soluble OPB was added during plating and
throughout the experiment, using a design similar to the one
showed in Fig. 4. Interestingly, no increase in infection was
observed in the presence of OPB, even at 200 ng mL−1

(Fig. 5A). Similarly to what was observed for peritoneal macro-
phages, OPB did not affect the number of intracellular parasites
(Fig. 5B). These results indicate that OPB did not modulate the
infection of medullary macrophages by L. (L.) amazonensis, dem-
onstrating that macrophage types responded differently to OPB.

Discussion

In this paper we described the production of L. (L.) amazonensis
recombinant OPB. The sequence obtained for the LV79 strain

Fig. 2. Characterization of the enzymatic activity
of the recombinant OPB from L. (L.) amazonen-
sis. (A) Activity in different pHs. The substrate
Z-Arg-Arg-AMC was prepared in 0.2 M citrate-
phosphate and 50 mM Tris-HCl buffers. Mean
relative activities and standard deviations were
calculated based on 3 enzyme assays. For
more details see Materials and Methods.
Negative relative activities were considered as
0. (B) Activity in the presence of commercial
inhibitors and bivalent cations. Inhibitors were
pre-incubated with the enzyme for 10 min and
the activity was measured by hydrolysis of the
substrate Z-Arg-Arg-AMC in a 50mM Tris-HCl buf-
fer, pH 8.0. Negative relative activities were con-
sidered as 0. Mean relative activities and
standard deviations were calculated based on
3 enzyme assays. For more details see
Materials and Methods. Statistical analysis for
one-way ANOVA and Sidak’s multiple compari-
son (*P < 0.05; **P < 0.005; ****P < 0.0001).

Fig. 3. Western blot to assess the presence of OPB in L. (L.) amazonensis promasti-
gotes from days 2, 4 and 6 and amastigotes, in parallel with recombinant (Lama
OPB). 20 μg of each total protein extract and 0.5 μg of recombinant protein were
probed with the primary anti-OPB serum at a dilution of 1:500 and secondary anti-
mouse HRP at a dilution of 1:5000. Protein marker: SeeBlue Plus2, Invitrogen
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(Sup Fig 1) was very similar to the sequence reported for PH8
strain, except for a change in 1 nucleotide.

This recombinant protein showed larger size than the
expected, but the similarity in kinetic parameters with other
OPBs and purity of the band reinforce its identity as L. (L.) ama-
zonensis OPB. Anti-sera obtained from immunized mice recog-
nized a band of similar size in promastigotes and amastigotes,
slightly smaller than the band of the recombinant protein
(Fig. 3). Western blots of promastigote lysates obtained from cul-
tures at days 2, 4 and 6 cultures and axenic amastigotes indicated
that promastigotes from different stages and amastigotes
expressed OPB. This analysis is merely qualitative and OPB levels
may vary during differentiation since the protein may be secreted
at different levels and we only analysed whole cell lysates. Our
findings agree with a previous report showing OPB transcripts
in L. (L.) amazonensis procyclic and metacyclic promastigotes
(de Matos Guedes et al., 2007).

L. (L.) amazonensis OPB activity was analysed at different pHs
and in the presence of protease inhibitors (Fig. 2). The pH effects
on L. (L.) amazonensis OPB activity were similar to those
reported for L. (L.) major and L. (L.) donovani OPBs
(McLuskey et al., 2010; Swenerton et al., 2011). Interestingly,
OPBs optimal pHs are higher than the most neutral milieus
where OPB is found – inside promastigotes, secreted in the phle-
botomine fly or in the vertebrate host dermis. It is possible that
neutral physiological pH keeps the enzyme activity levels low
enough not to cause harm to parasite proteins.

Effective inhibitors for L. amazonensis OPB were also the same
observed for the 2 other species, and Km values for the substrate
Z-Arg-Arg-AMC were similar for L. (L.) amazonensis and L. (L.)
major OPBs (2.1 and 0.93 μM, respectively). These findings were
expected, since OPB sequence conservation was observed
among Leishmania species. The lack of OPB in mammals has
prompted some groups to search for potential OPB or OPB/
OPB2 inhibitors as eventual drugs for leishmaniasis (Goyal
et al., 2014; Sodero et al., 2017). The conservation in OPB activity
among the 3 species analysed (L. (L.) major and L. (L.) donovani
and L. (L.) amazonensis, in this work) suggests that drugs
designed for 1 species would probably be effective for others.

Since OPB is present in promastigotes from day 4 cultures
(Fig. 3) used in our infection experiments and considering that
data from literature showed OPB secretion in L. (L.) donovani
and L. (L.) major promastigotes (Silverman et al., 2008, 2010),
we evaluated the effect of soluble recombinant OPB in L. (L.)
amazonensis macrophage infections. In the first assay we used
peritoneal macrophages and included OPB in the medium during
the whole experiment. We observed that OPB increased the num-
ber of infected macrophages and that this effect was dependent on
enzyme structure and activity. A similar experiment including
OPB only during parasite–macrophage contact (Fig Sup 3)
showed no difference between OPB and control or boiled condi-
tions, indicating that OPB increase in infection depends on its
presence throughout infection. Since macrophages are very het-
erogeneous and exhibit high plasticity (Taylor et al., 2005;

Fig. 4. Infection of peritoneal macrophages with L. (L.)
amazonensis in the presence of recombinant OPB (100
ngmL−1), OPB inhibited with Pefabloc® (Sigma) (OPB +
Pefa, 100 ngmL−1) and denatured OPB (Denat. OPB,
100 ngmL−1) throughout the experiment. (A)
Percentage of infected macrophages. (B) Number of
amastigotes per macrophage. Results represented as
mean ± standard deviation of 3 technical replicates
from a representative experiment of 3 with similar pro-
files. Statistical analysis by one-way ANOVA and Tukey’s
multiple comparisons (*P ⩽ 0.01; **P⩽ 0.005; ***P ⩽
0.0005).

Fig. 5. Infection of MDMOs with L. (L.) amazonensis in
the presence of recombinant OPB (100 and 200 ng
mL−1), OPB inhibited with Pefabloc® (Sigma) (OPB +
Pefa 100 and 200 ngmL−1) and denatured OPB (Denat.
OPB, 100 and 200 ngmL−1) throughout the experiment.
(A) Percentage of infected macrophages. (B) Number of
amastigotes per macrophage. Results of a single experi-
ment, represented as mean ± standard deviation of 3
technical replicates. Statistical analysis by one-way
ANOVA and Tukey’s multiple comparisons.
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Ghosn et al., 2010; Gordon, 2012; Mills, 2015), we also analysed
the effect of OPB on the infection of medullary macrophages.
Interestingly, no difference in infection was observed in the pres-
ence of OPB throughout the experiment (Fig 5). This was not
completely unexpected since peritoneal and medullary macro-
phages display different receptors or in different abundances
(Taylor et al., 2005), and these (and other) phenotypic peculiar-
ities may affect their responses to OPB.

We believe this work contributes to a better knowledge of OPB
from a New World Leishmania species. Our enzymatic analysis
suggested that similar inhibitors or drugs may be used to target
the enzyme on several Leishmania species. The demonstration
that recombinant OPB increased macrophage infection by L. (L.)
amazonensis in vitro agrees with reports of lower infection for L.
(L.) major parasites deficient for OPB, suggesting that the protein
affects infection of many and maybe all Leishmania species.
Future studies will be done to evaluate the effect of OPB deletion
in L. (L.) amazonensis infectivity and to decipher the mechanism
by which soluble OPB increases macrophage infection.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182022000816.
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