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Lift on side-by-side intruders within a
granular flow
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For the first time, we used computer simulations to study lift forces on two static
disks placed side-by-side within a two-dimensional granular flow and found them
to be either repulsive or attractive depending on the flow velocity and separation
between the disks. Our simulations results reveal that differences in the flow velocity
between the disks and outside of that region are closely correlated with the lift force.
We propose an empirical function for the lift force based on this correlation and
our dimensional analysis. The specific region where the measured velocity exhibits
this correlation suggests that attractive lift is not a Bernoulli-like effect. Instead, we
speculate that it might be explained by a force balance based on Coulomb’s theory
of passive failure in a Mohr–Coulomb material. Our results confirm that repulsive lift
is due to the jamming of particles flowing between the disks.

Key words: complex fluids, granular media, granular mixing

1. Introduction
Historically, studying the drag and lift forces on objects immersed in fluids has

been an excellent way to advance the theory and application of fluid mechanics. The
flow around objects immersed within granular flows is also extremely instructive for
understanding the essential features of the mechanics of granular matter (Wieghardt
1975; Albert et al. 1999; Chehata, Zenit & Wassgren 2003; Geng & Behringer 2005;
Caballero-Robledo & Clément 2009; Ding, Gravish & Goldman 2011; Seguin et al.
2011; Guillard, Forterre & Pouliquen 2013, 2014).

Interest in granular matter by the scientific community has mainly focused on the
study of the drag force on objects immersed in a granular medium. Only recently have
lift forces attracted attention (Zuriguel et al. 2005; Nelson et al. 2008), especially
in the context of locomotion in sand, which has applications in biomechanics and
robotics (Ding et al. 2011; Goldman 2014).

The drag force on an intruder immersed in a stationary flow has been thoroughly
studied, both with a static object immersed in a flow of moving grains (Wieghardt
1975; Albert et al. 1999; Chehata et al. 2003; Geng & Behringer 2005; Seguin et al.
2011), and with an object moving at a constant velocity in a static granular medium
(Ding et al. 2011; Guillard et al. 2013, 2014). The consensus is that the drag force
is independent of velocity in slow flow, while in fast flows the drag force changes
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linearly with the square of the flow velocity. The former is a quasistatic regime where
friction and gravity dictate the dynamics, while the latter is an inertial regime (Faug
2015).

Concerning lift force, Ding et al. (2011) recently showed the existence of upward
lift forces on objects dragged horizontally in a granular medium. The lift force
depends on the shape of the object and is due to the asymmetry in pressure caused
by gravity between the upper and lower parts of the object. The authors successfully
modelled the stresses on the object using Coulomb’s theory of passive failure in a
Mohr–Coulomb material.

Objects immersed in fluids can also interact with other objects through hydrodynamic
interactions even if they are not in contact. The interaction of sedimenting or rising
pairs of particles side-by-side in a fluid is a classical set-up, which is nevertheless not
easy to describe analytically or to study experimentally (Wijngaarden & Jeffrey 1976;
Kim, Elghobashi & Sirignano 1993; Wu & Manasseh 1998; Legendre, Magnaudet &
Mougin 2003; Vélez-Cordero et al. 2011). Kim et al. (1993) numerically simulated
the interaction of two solid spheres placed side-by-side at low Reynolds numbers
(<150) and found that they repel each other when they are close together, with
a repulsion which grows with proximity. The two spheres attract each other at
intermediate distances and any lift, together with any other interaction, vanishes for
Xsep/D> 20, where Xsep is the size of the gap between the two spheres and D is the
diameter of the spheres. Drag on the spheres is found to increase when Xsep/D< 3.

Intruders immersed in granular media also interact with those that are far away. In
the context of granular materials, long-range interactions become especially relevant
for understanding the complex phenomenology of granular segregation: when a
mixture of different species of grains is agitated or forced to flow in specific
conditions, the grains of each species group together and segregate from the rest.
This phenomenon can have important implications for areas such as soil mechanics
and in mining, pharmaceuticals and food industry applications (Ottino & Khakhar
2000; Aumaître, Kruelle & Rehberg 2001; Sanders et al. 2004; Zuriguel et al. 2005;
Cattuto et al. 2006; Shaebani, Sarabadani & Wolf 2012). Another area for which
segregation is crucial is geophysics, as reported by studies on increased avalanche
mobility caused by segregation (Moro et al. 2010).

Local velocity fluctuations have been reported as being responsible for the
attraction between intruders immersed in an agitated granular medium (Aumaître
et al. 2001; Zuriguel et al. 2005; Cattuto et al. 2006; Shaebani et al. 2012), while
local flow velocity and a Bernoulli-like effect have been associated with the attraction
(Pacheco-Vazquez & Ruiz-Suarez 2010; Solano-Altamirano et al. 2013) and repulsion
(Zuriguel et al. 2005) of intruders within granular flows.

In a previous work by our group (Solano-Altamirano et al. 2013) we sought to
unravel the mechanisms behind the attraction and repulsion between heavy disks,
as they impact and penetrate a quasi-two-dimensional superlight granular medium
(Pacheco-Vazquez & Ruiz-Suarez 2010). By combining experiments and computer
simulations, we found that the flow in the gap between the intruders was always
faster than on their other sides, but the attraction existed only if the intruders were
penetrating at a speed greater than ∼1 m s−1. However, in such impact experiments,
many variables change continuously with time, including the speed, separation and
depth of the intruders. This makes it extremely difficult to understand the origins of
attractive and repulsive lifts.

We present here numerical simulations of a new version of this set-up, wherein the
intruders are kept fixed while the granular medium flowing around them is driven by
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gravity. This allows for the measurement of the forces on the intruders in a stationary
situation, and by systematically varying the intruders’ separation and the flow velocity,
we identified regimes characterized by attractive and repulsive lifts. We were able to
reproduce the lift force for different local flow velocities on both sides of the intruders,
and propose an empirical formula for the lift force, which reveals that the origin of the
attraction or repulsion is not a Bernoulli-like effect. However, our simulations are two-
dimensional and the size of our system turned out to be much smaller than the range
of interaction between intruders, so it is not necessarily true that the results presented
here would be reproduced in an experiment. That is why we are currently developing
an experimental set-up for which the preliminary results also show these attraction and
repulsion regimes, which we will report on a follow-up paper, together with computer
simulations in three dimensions and in much larger systems using parallel computing
with graphics processing units.

Our set-up represents the granular version of a classical set-up that has been
thoroughly studied in fluid mechanics (Wijngaarden & Jeffrey 1976; Kim et al. 1993;
Legendre et al. 2003; Vélez-Cordero et al. 2011). It is, in fact, surprising that it has
not been applied to granular flow until now.

2. Simulation implementation

Simulations were implemented using the discrete element method for soft particles
in two dimensions, which allows long-lasting multiple contacts between the particles.
The original code was developed by Wassgren (1996) and was adapted to include
periodic boundary conditions in the vertical dimension. Our numerical code considers
only the contact forces and gravity. For the normal component of the contact forces,
we used a model proposed by Walton & Braun (1986). In this model, the normal
contact force during a contact on a particle i due to another particle j, Fij

N , is modelled
using a linear spring during loading, and another linear, but stiffer, linear spring during
unloading:

Fij
N =

{−klδn̂ loading
−ku(δ − a0)n̂ unloading, (2.1)

where kl (ku) is the loading (unloading) spring constant, δ is the overlap between
particles, n̂ is the unit vector normal to the contact and a0 is the overlap at which the
unloading force is zero due to the plastic deformation of the particles. For each pair of
particles in a specific contact, a0= δmax(ku− kl)/ku, where δmax is the maximum overlap
for that contact: whenever δ 6 a0 the contact finishes. With these considerations, the
coefficient of restitution is

ε=
√

kl

ku
. (2.2)

The tangential force, Fij
S , is modelled as a Coulombic sliding friction element in

series with a linear tangential spring (Cundall & Strack 1979):

Fij
S =−min(µ|Fij

N|, kt|γ |) γ

|γ | , (2.3)

where µ is the coefficient of sliding friction, kt is the tangential spring constant, γ =
γ ŝ is the total tangential displacement and ŝ=−nyı̂ + nx̂ . The value of the tangential
displacement is restricted to be smaller than the maximum value γmax=µ|Fij

N|/kt. The
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Grain–grain Grain–disk Grain–wall

kl (kg s−2) 535 1649 50
ku (kg s−2) 2140 3365 1263
kt (kg s−2) 268 824 25
µ 0.5 0.7 0.5
ε 0.5 0.7 0.2

TABLE 1. Coefficients of friction µ and restitution ε, and stiffness of the springs used
in the simulations.

stiffness of the tangential spring is determined as a fraction of the normal loading
spring. In our case, kt/kl = 0.5.

The parameters of our simulations are shown in table 1 and they are the same
as those used in a previous work by our group (Solano-Altamirano et al. 2013). In
choosing these values we assumed that the macroscopic behaviour of the system
was not sensitive to the precise value of the stiffness constants because that is what
Wassgren (1996) found while simulating glass beads. However, we are now working
with extremely light particles and such an assumption may no longer hold. It has
been shown that when the normal contact stiffness is sufficiently large compared to
a characteristic pressure of the system, the simulation is in the asymptotic limit of
rigid grains and the macroscopic behaviour is insensitive to the stiffness value (Kneib
et al. 2016). The simulation is in the limit of rigid grains whenever the dimensionless
number N0= kn/P0d > 104, where P0 is a characteristic pressure of the system. In our
case N0 ∼ 6× 103, which means that we are not in the limit of rigid grains, but we
are not far from it. Although it will be interesting to study the effect of varying kn on
the macroscopic behaviour of our system, we believe that the current values of our
parameters are reasonable since in our previous work we were able to quantitatively
match our simulations with experimental results (Solano-Altamirano et al. 2013).

3. Simulation set-up

The system consists of a channel, delimited by a pair of vertical walls separated
by distance L, and two static disks of diameter D = 2.5 cm, located side-by-side
in the middle of the channel and separated from each other by a distance Xsep (see
figure 1). We placed two staggered rows of small walls at the bottom of the channel,
whose sizes can be varied, to allow for the control of the flow velocity U∞ and
to erase the flow memory. The second row of the small walls is useful to further
break the memory of the granular medium. From these control walls and the periodic
boundary conditions, long-lasting simulations and a homogenous velocity field along
the channel are possible (see figure 1 in the supplementary material available at
http://dx.doi.org/10.1017/jfm.2016.384).

In each simulation, we created 8000 grains with random initial radii, velocities and
positions, which are left to settle under the effect of gravity. Initially, the grains are
only a fraction of their final size to avoid overlap, and they grow with time until they
reach an average diameter of d=0.52 cm, with a size dispersion of 6 %. We simulated
the grain material as polystyrene, with a mass density of ρg = 0.014 g cm−3 (for the
sake of simplicity, we determined the density and mass of the grains as if the grains
were spheres of diameter d, although the simulation is performed in two dimensions).
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FIGURE 1. (Colour online) (a) Schematic representation of the simulation cell: a dense
granular flow confined by lateral walls with periodic boundary conditions in the vertical
direction. Small walls at the bottom of the cell control flow velocity and erase memory.
(b) Intruders are static disks of diameter D = 2.5 cm, separated by a distance Xsep. The
medium is composed of grains of diameter d=0.52 cm. (c) Snapshot of the region around
the intruders during flow. Positive lift and drag forces are defined, as are the ‘in’ and ‘out’
measurement regions.

The angle of repose of the simulated granular material was measured to be θ = 24.5◦,
which corresponds to an effective friction coefficient of µeff = tan(θ)= 0.45.

A wall, located at the bottom of the channel to contain the bed, is removed
at time t = 0 s to begin the flow. The height of the column above the intruders
stabilises at approximately h ∼ 33 cm (see supplementary movies 1–6). Although h
may vary, mainly because of the size of the voids behind the intruders, the variations
are small and do not account for the change in drag and lift forces, which were
found to depend linearly on h. We measured the lift force FL and drag FD on the
intruders, whose positive directions are depicted in figure 1(c) for the right intruder.
The mirror image of these forces correspond to the values for the left intruder. We
systematically varied the flow velocity, 0.28 6 U∞ 6 1.06 m s−1, and the separation
between intruders, 1.25 6 Xsep 6 11.25 cm, and for each configuration the simulation
lasted approximately 7 s, with a simulation time step of 2.7× 10−6 s. We registered
force and position data at a rate of 21 717 samples per second which, for simulations
of 7 s, makes the standard error of the mean of any averaged value to be extremely
small. That is why in most of the plots the error is smaller than the symbol size.

4. Lift and drag
When the flow begins, the lift and drag forces exhibit a transient behaviour, which

lasts for less than half a second, after which the forces stabilise and fluctuate around
a well-defined average value (see figure 2a,b). Interestingly, the average lift force can
be either attractive or repulsive, depending on the gap between the intruders and the
flow velocity (figure 2c,d): a repulsive lift is associated with a small gap and high
velocities. At intermediate separation distances, the lift becomes attractive, and reaches
a minimum (maximum attraction), and tends to zero at larger Xsep values (we could
not test greater separation distances to determine the exact range of intruder–intruder
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FIGURE 2. (Colour online) (a) and (b) Lift force on the right intruder as a function of
time for a single simulation corresponding to, (a) U∞= 1.1 m s−1 and Xsep= 2.5 cm and
(b) U∞ = 0.29 m s−1 and Xsep = 5 cm. The thick black lines are sliding averages (with
a time window of 0.05 s) showing attraction and repulsion. The force is registered at a
rate of 21 717 samples per second. (c) Average lift force 〈FL〉 as a function of intruders’
separation Xsep for different flow velocities U∞. Positive lift means repulsion. Inset: drag
force as a function of U∞. Drag is reduced when there are two intruders, but it does not
depend on Xsep. (d) 〈FL〉 as a function of U∞ for intruders at different separation distances.
The point with Xsep/d = 3.6 corresponds to a single simulation doubling the size of the
grains, which suggests that the quantity Xsep/d is the relevant parameter concerning the
lift force, although more simulations are needed to be conclusive on this point. The error
bars (standard error of the mean) are smaller than the size of the symbols.

interactions because we did not want the distance from the intruders to the walls to be
less than the size of the gap between the intruders). This behaviour reveals that there
are two competing mechanisms involved in determining lift. Later, we demonstrate
that repulsion results from the jamming of grains flowing between the intruders. In
contrast, the origins of the attraction are not yet clear, but we can demonstrate that
a Bernoulli-like effect is unlikely to explain either the attraction or repulsion, as has
been suggested in other studies (Zuriguel et al. 2005; Pacheco-Vazquez & Ruiz-Suarez
2010; Solano-Altamirano et al. 2013).

The behaviour of the average drag force 〈FD〉 is also interesting – compared to
the drag that occurs with a single intruder, drag is reduced when there is another
intruder placed alongside (see inset in figure 2c). Surprisingly, this drag reduction
does not depend on the gap size between the intruders, at least not for the separation
distances that we explored. This reflects the fact that the range of interaction of the
two intruders is much larger than the lateral size of our container and therefore lateral
confinement plays an important role. Indeed, lift and drag forces are very sensitive to
variations in the distance L between the lateral walls (see figure 3a,d).

The inset in figure 2(c) shows that the drag force, on either one or two intruders, is
almost constant despite variations in the flow velocity. This indicates that our system,
even for the fastest flows, is a quasistatic regime dominated by friction and gravity,
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FIGURE 3. (Colour online) Average drag and lift forces versus L, h and D (defined in
figure 1). The data in (b) and (e) are the only ones that follow a clear linear relation and
we performed a linear fit. The quantity heff refers to the effective height of the column
above the intruders due to the rain of grains impacting the surface of the granular column
(see § 6). Simulations with smaller grain size d are very demanding computationally so we
have only performed one simulation doubling the size of the grains for Xsep=3.75 cm (see
figure 2d).

in contrast with the inertial regime that is characterized by a dependence of the force
on the square of the flow velocity (Faug 2015). However, although it is clear that our
system is not in the inertial regime, the small variation of the drag force as a function
of U∞ indicates that it is not in a purely quasistatic regime either, where stresses are
rate independent and can be described with Mohr–Coulomb friction models. Instead,
this behaviour, which has been observed in other granular systems (Geng & Behringer
2005; Caballero-Robledo & Clément 2009; Kneib et al. 2016), seems to be consistent
with the inertial rheology for sheared dense granular materials, where the bulk friction
of the material is controlled by the non-dimensional inertia number I = tmicro/tmacro,
where tmicro is a microscopic time scale related to rearrangements and tmacro is a
macroscopic time scale related to shear rate (Andreotti, Forterre & Pouliquen 2013;
Kneib et al. 2016). It is worth noting that the flow behind the obstacles may be in
the inertial or collisional regime, but it is well established that the force on circular
objects immersed in granular flows depends solely on the grains that are upstream
from the centre of the object (Ding et al. 2011).

5. Local flow velocity
What are the roles played by the local flow velocity and local velocity fluctuations

around the intruders in the mechanisms responsible for attraction and repulsion?
To tackle this question we define square regions where field quantities such as
velocity, velocity fluctuations and mass density can be measured. Determining the
positions and size that these regions must have is important for making relevant
measurements. We define ‘in’ regions as those that are on the side of the gap
between the intruders, and ‘out’ regions as those that are in between the intruders
and the walls (inset in figure 4a). This is reasonable, since we were hypothesising
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FIGURE 4. (Colour online) (a–d) Dependence on flow velocity of the difference in
packing fraction times the square of the flow velocity on both sides of the intruders,
calculated in the regions adjacent to the upper quadrants of the intruders (see inset in a),
and divided by a power of the flow velocity with different exponents. (e–h) Dispersion of
data around the best linear fit in a plot of the average lift force versus 1(φv2) divided by
the corresponding power of U∞. It is clear that the expression that best represents 〈FL〉,
among those tested here, is 1(φv2)/U3/2

∞ .
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that the lift force is related to the difference between the field quantities in
the ‘in’ and ‘out’ regions. In these regions we measure the mean grain velocity
〈v(x, y)〉 = (1/n(x, y, τ ))

∑τ

t=t1(
∑

i vi(x, y))t, where vi(x, y) is the magnitude of the
velocity of the ith grain that is inside the region centred at (x, y) at time t, t1 is the
time at which the flow can be considered stationary, τ is the end of the simulation
and n(x, y, τ ) is the total number of grains counted on both sums; and we also
measure the average mass density 〈ρ(x, y)〉 ≈ ρg〈φ(x, y)〉t, where φ(x, y) is the area
fraction occupied by the grains in the region of measurement at a given time. The
difference in the field quantities in the ‘in’ and ‘out’ regions that we found useful
were 1〈v〉2 = 〈v(out)〉2 − 〈v(in)〉2 and 1(φv2) = 〈φ(out)〉〈v(out)〉2 − 〈φ(in)〉〈v(in)〉2.
Interestingly, we found that the flows around or below the intruder equator are not
related to the forces on the intruder. This finding is consistent with the lift on a
single intruder moving horizontally in a granular medium (Ding et al. 2011).

Zuriguel et al. (2005) suggested that the origin of repulsive lift forces between
intruders is a Bernoulli-like effect, where a difference in flow velocity on both sides of
the intruders results in a pressure difference with the form 1p=ρ〈v(out)〉2−ρ〈v(in)〉2.
In our system, the quantity 1〈φv2〉, calculated in the regions adjacent to the upper
quadrants of the intruders and plotted versus flow velocity, reproduces the lift force
behaviour reasonably well, especially for fast flows and for both repulsion and
attraction (figure 4a,e) (if the quantity 1〈v2〉 is plotted instead of 1〈φv2〉 versus
U∞, the plot does not change substantially; is like multiplying v2 by a factor of the
order of 0.7 (see figure 2 in the supplementary material)). However, the similarity
with the lift force is much better when the velocity difference is divided by U3/2

∞
(see figure 4c,g), which is also better than dividing by U1

∞ or U2
∞ (see figure 4). In

addition, if measurements are taken in the regions shown in figure 5(a), the similarity
with the lift force is even better (see figure 5). Therefore, although the difference
in the square of the flow velocity between the ‘in’ and ‘out’ regions seems to be
related to lift force, its relation with pressure does not seem to be solely captured
by multiplying by ρ, as suggested by Zuriguel et al. (2005). The fact that 1〈φv〉2
must be divided by U3/2

∞ suggests that the origin of repulsion and attraction is not a
Bernoulli effect. As such, we are obliged to conduct a dimensional analysis.

6. Dimensional analysis
Based on the data presented in the previous sections, we propose an equation for

the average lift force as follows:

〈FL〉 = f (µeff )ξ

Fr3/2
S1(ρgφv

2)+ F0, (6.1)

where f is a dimensionless function of the effective friction coefficient µeff , S= dD is
the relevant obstacle surface, Fr = U∞/

√
gd is the Froude number, ξ = ξ(h, d, D, L)

is a dimensionless function that depends on the geometry of the system and F0 is a
function of all the possible variables of the system but varies weakly with Xsep and U∞.
By performing variations on h, D and L (see figure 6), we find that, at least as a first-
order approximation, the function ξ has the form ξ = ξ(L, heff , D−3/2), where heff is
the effective height of the column above the intruders. Indeed, because of the periodic
boundary conditions, the hydrostatic pressure in the granular medium is augmented
with respect to the ρgh value by the pressure exerted by the ‘rain’ of grains impacting
the surface of the granular column after passing the obstacles at the bottom of the
cell. This extra pressure can be expressed in the form of a virtual column of height
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FIGURE 5. (Colour online) (a) Regions of measurements found empirically by trial and
error where the relation between the field quantities and the lift force were the best. The
squares have sides of size D/2. (b,c) Field quantity 1(ρgφv

2)/U3/2
∞ as a function of Xsep

and U∞ is very similar to lift force in figure 2. (d) Dispersion of data around the best
linear fit in a plot of the average lift force versus 1(ρgφv

2)/U3/2
∞ . The fit is better than in

figure 4(g), which shows that the small regions in (a) are better than those in figure 4(a).
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FIGURE 6. (Colour online) Average lift force and local pressure difference 1(ρgφv
2)

arranged following (6.1) to study the dependence of ξ on (a) L, (b) heff and (c) D. The
lines are only qualitative guides to the eye to compare data with a linear behaviour. The
value of F0 =−3.5× 10−4 N was taken from the fit in figure 7(a).

hr=13.8 cm, so that the pressure would be peff =ρg(h+hr)=ρgheff with heff ∼48 cm
(see figure 3b). With these dimensional constraints, the expression for ξ in (6.1) can
be written as

ξ =
(

heff

D

)(
L
D

)(
D
d

)1/2

. (6.2)
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FIGURE 7. (Colour online) (a) Dispersion of data around the best linear fit in a plot of
the average lift force versus ξFr−3/2S1(ρgφv

2). Most of the data correspond to systematic
variations of Xsep and U∞, but the plot also includes data corresponding to variations of
D, L, h and d (see figure 1 for their definitions). From the linear fit we get the parameters
f (µeff )= 4.6× 10−2 and F0=−3.5× 10−4 N of (6.1). (b) Comparison between the average
lift force calculated from the force on intruders and the lift force obtained from (6.1) for
three different velocities.

When the average lift force is plotted against the term ξFr−3/2S1(ρgφv
2), with ξ

given by (6.2), the data follow a better linear pattern than those presented in the
previous sections (see figure 7a). From the linear fit in figure 7(a) we obtain the
missing parameters in (6.1): f (µeff )=4.6×10−2 and F0=−3.5×10−4 N. We note that
most of the data plotted in figure 7(a) correspond to simulations in which systematic
variations are made on Xsep and U∞, but the plot also includes simulations where D,
L, h and d vary, which demonstrates the robustness of (6.1) and (6.2) as a first-order
approximation of those variables.

Figure 7(b) shows the average lift force calculated, either directly from the force
on intruders, or using (6.1), as a function of Xsep for three different velocities. The
reproduction of the lift force through the difference in the flow velocity in the ‘in’
and ‘out’ regions works remarkably well, although it is not perfect.

There may be a number of reasons for the dispersion of the data observed in
figure 7. First, the term F0 in (6.1) may be a function of all the system variables,
although its contribution to the lift force is small. The fact that F0 varies weakly
with Xsep and U∞ indicates that it might stem primarily from intrinsic properties of
the granular medium. In addition, negative F0 means that there exists an attractive
lift force even when the local pressure difference given by 1(ρgφv

2) is zero. The
origin of this attraction in a symmetric flow remains for the moment as an open
question, but we could speculate that fluctuations could play a role here. Second,
the expression for the prefactor ξ in (6.2) is an empirical formula that is at best a
first-order approximation of the real behaviour. This follows at once from the fact
that it is not compatible with the two limiting cases in which the variables become
very large or very small. For example, it is clear that the lift force cannot be infinite
for a container of infinite width L; instead, it should become saturated at some point,
probably following the pressure saturation, such as that described by Janssen in a
silo (Pacheco-Vázquez et al. 2011). An interesting result in our system is that the
lift force changes sign when we double the size of the grains in the medium (see
figure 2d). This shows a strong dependence of the local flow velocity, the term
1(ρgφv

2), on the size of the grains d. Therefore, the scaling of the lift force as
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FIGURE 8. (Colour online) Average flow velocity at the middle point between intruders,
vmp, plotted as a function of flow velocity U∞. The dashed line is the average velocity
expected from continuity at the middle area of the intruders due to the reduction in the
cross-section: veq= LU∞/(L− 2D). A comparison with the data in figure 2(d) shows that
repulsive lift is related to the saturation of vmp due to jamming.

d5/4 (almost linear) predicted by (6.1) and (6.2) is probably not the only contribution
by d to the lift force. Larger forces for larger grains have been reported on objects
dragged horizontally (Albert et al. 1999; Ding et al. 2011), the result of which is at
odds with the observation reported in other work (Chehata et al. 2003; Seguin et al.
2011), in which the drag on an object immersed in a vertical granular flow increases
when the size of the grains decreases. Clearly, the role of grain size on drag and lift
forces is not well understood and will require further detailed study. Finally, the linear
dispersion of data in figure 7 may also be related to the choice of the regions where
the flow is measured, which in our case was determined by trial and error. There is
no guarantee that they represent the best choices until an analytical derivation can be
made of the relation between lift and local flow.

7. Jamming between intruders
The variation of the average lift force as a function of Xsep reveals the competition

of two mechanisms, one of which causes attraction and the other repulsion between
the intruders. These two regimes are evident in figure 2(c), which also shows that
the repulsive mechanism is favoured by a small intruder separation and large flow
velocities. It has been proposed that the origin of repulsion may be the jamming
of particles trying to flow through the gap between intruders (Pacheco-Vazquez &
Ruiz-Suarez 2010; Solano-Altamirano et al. 2013), but as yet there has been no direct
proof. Now, however, with our current set-up, we can support this idea by measuring
the average flow velocity at the middle point between the intruders, vmp, and plotting
it as a function of U∞ (figure 8). When we compare this plot with the lift force
as a function of U∞ (figure 2d), we observe that whenever vmp varies linearly with
U∞, there is attraction between the intruders, while repulsion is correlated with
vmp remaining constant. When the separation between the intruders is 2.5 cm, as
in figure 8, the results are especially illustrative in showing how vmp transits from
linearity to a constant value when U∞ increases. This saturation of vmp to a constant
value is favoured by small gaps between intruders and by fast flows, as is the case
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for the repulsive lift force. Therefore, it is a signature of the jamming of grains
trying to flow through the gap between intruders, imposing the maximum possible
flow through the gap and pushing apart the intruders, which causes repulsion when
U∞ increases.

What, then, causes attraction? Figure 8 shows that the proximity of the intruders,
when jamming has not occurred, accelerates the flow between the intruders and
favours attraction. Moreover, the lower the velocity, the stronger the attraction.
Therefore, the presence of a neighbour intruder at an intermediate distance facilitates
flow in the gap between the intruders, an effect that is enhanced at slow flow
velocities. This scenario supports that proposed by Seguin et al. (2011), where
the drag force on a cylinder penetrating a granular medium can be understood as
analogous to a hot cylinder penetrating a fluid whose viscosity decreases when
the temperature increases, i.e. when the flow is slow, the temperature between the
intruders increases further and the viscosity is at its lowest. This means the extension
of the kinetic theory to dense granular flows is a good candidate for describing drag
and lift in systems with multiple intruders.

8. Discussion

In summary, we found a strong correlation between the lift force and the difference
between local flow velocity and local packing in the ‘in’ and ‘out’ regions. The term
1(ρgφv

2) is the same as that found in the lift on an object immersed in a fluid due
to the Bernoulli effect. However, the fact that the regions where flow velocity and
packing must be measured are not near the middle of the intruders, but in a specific
place upstream, suggests that the flow interaction mechanism with the immersed
object is not the same as that in a fluid. Besides, the prefactor Fr−3/2 ∝U−3/2

∞ is not
present in Bernoulli equations. This makes us think that the correlation between 〈FL〉
and 1(ρgφv

2) is not necessarily causal, and, based on the fact that the regions of
measurement must be upstream from the intruders, we speculate that lift and drag may
be related to the local flow around the intruders. A force balance using Coulomb’s
theory for passive failure, as performed by Ding et al. (2011) for the analysis of
lift on an object dragged horizontally, may be apt. An extension of kinetic theory to
granular flows may also be useful for describing lift and drag in this system (Seguin
et al. 2011), as would a local rheology model for dense granular flows based on the
non-dimensional shear rate I (Andreotti et al. 2013). We also found that the range of
interaction between intruders, and between intruders and the lateral walls, was much
greater than what our experimental set-up allowed us to study due to computational
limitations, which explains the strong dependence of the lift force on L (figure 3a,d)
as well as the bizarre result that the drag reduction due to the presence of a neighbour
intruder does not change with the separation between intruders (inset in figure 2c).

Our system is an excellent set-up for studying the interaction between intruders
immersed in a granular flow because measurements are made with the intruders in
a stationary state, in contrast to the impact and penetration of objects in a static
granular medium that our group studied previously (Solano-Altamirano et al. 2013),
where depth, pressure and the separation distance between the intruders changed over
time. Our motivation for working with static intruders immersed in a granular flow
was to develop a better understanding of repulsion and attraction by the impact and
penetration of objects in a static granular medium. However, it is not clear now that
the results presented here are valid for impact experiments, because when the granular
medium is flowing there is agitation in all the grains, which was not present in the
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impact experiments. We are currently examining the relation between these two set-
ups.

On the other hand, an alternate system that is more closely related to our set-up
is a horizontal cylinder half-filled with a granular material, which rotates at different
velocities: when big, heavy intruders are immersed in the granular medium and are
free to move, they exhibit attractive (repulsive) lift for slow (fast) rotations (Zuriguel
et al. 2005). It is possible that the regimes of attraction and repulsion described in that
work are analogous to the lift force as a function of Xsep that we show in figure 2(c).
However, we do not see any correlation between the lift force and the fluctuations in
the velocity of the grains around the intruders, as occurs in the case of the rotating
cylinder. We note that our system is two-dimensional, and it has no walls in the
third dimension, as it would in experiments. Therefore, it may be that an equivalent
three-dimensional experiment would yield a different phenomenology, so it is unclear
how valid a comparison would be of the results of our simulations with those of
experiments. We are currently performing experiments in a quasi-two-dimensional cell
and preliminary results show both repulsion and attraction between intruders, but the
role of local flow velocity and velocity fluctuations has not yet been analysed.

9. Conclusions
In conclusion, we studied for the first time the lift and drag of two static intruders

placed side-by-side within a granular flow, and observed both attractive and repulsive
lift, depending on the separation between the intruders and the flow velocity. The lift
force has close correlations with the local flow velocity and packing density around
the intruders and we propose an empirical formula that relates these quantities, which
should be regarded as a first-order approximation. In addition, we found that the range
of the interaction between intruders is much larger than the size of our system, so
the dimensional analysis and equations presented here would be valid only for such
a situation.

The extent to which our simulations prove useful for understanding real three-
dimensional experiments is not yet completely clear, but we are confident that the
simplicity of our set-up will attract the interest of many scientists working to advance
the understanding of long-range interactions between grains in granular flows.
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