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Abstract We prove that either the images of the mapping class groups by quantum representations

are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators.

Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least
for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class

groups extending the previous work of Barge and Ghys (Math. Ann. 294 (1992), 235–265) and of

Gambaudo and Ghys (Bull. Soc. Math. France 133(4) (2005), 541–579). These quasi-homomorphisms
are pull-backs of the Dupont–Guichardet–Wigner quasi-homomorphisms on pseudo-unitary groups along

quantum representations.
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1. Introduction and statements

The main motivation of this paper is to obtain new information about the images of
mapping class groups by quantum representations, by analyzing their 2-cohomology.
McMullen [40] addressed the question of the arithmeticity of Burau representations
of braid groups at roots of unity and Venkataramana [46, 47] solved it affirmatively
in the case where the order of the root is bounded by twice the number of strands.
Burau representations are particular examples of quantum representations in genus zero.
Whether the image of quantum representations of mapping class groups of higher genus
is arithmetic or thin seems to be a challenging problem with possible implications for the
fine structure of mapping class groups. One additional difficulty in both the present case
and the Burau representation at roots of unity of higher order is the absence of unipotents.
Another, seemingly unrelated, question that arose recently is the determination of the
kernel of the quantum representations at a fixed level, to be compared with the normal
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subgroup generated by given powers of Dehn twists. It is known that the intersection of
infinitely many of these kernels is trivial, according to the asymptotic faithfulness result
by Andersen ([2]; see also [19, 35] for different proofs). Our aim is to prove first that
the two questions above are directly related; in particular, arithmeticity implies a large
number of normal generators for the kernel, hence many others besides powers of Dehn
twists. Our second result shows that in infinitely many cases, the real 2-cohomology of
the image of the quantum representations is non-trivial and hence these images are not
virtually free.

One ingredient in this work is the relation between Burau and quantum representations,
which we use to estimate the signature of Hermitian forms invariant by the mapping
class groups. As a consequence, quantum representations are Zariski dense within
semi-simple groups with a large number of pseudo-unitary factors (see also [21]).
We then apply Matsushima’s vanishing theorem to prove that either the images of
quantum representations are not higher rank irreducible lattices, or else the number
of normal generators of the kernels of the quantum representations is bounded from
below by linear functions on the level of the representation. In the second part,
we consider the family of quasi-homomorphisms on mapping class groups defined
in [21], extending and inspired by the previous work of Barge and Ghys [5] and of
Gambaudo and Ghys [25]. These quasi-homomorphisms are constructed as trivializations
of pull-backs of Dupont–Guichardet–Wigner cocycles along quantum representations
of mapping class groups Mg of oriented surfaces of genus g > 2 into pseudo-unitary
groups. Although Bestvina and Fujiwara proved in [6] that there are uncountably many
quasi-homomorphisms on mapping class groups, which could be derived using the action
of mapping class groups on curve complexes, it seems that there are very few explicit
ones. Explicit computations using arithmetic properties of the signatures from the first
part give then the non-triviality of 2-cohomology classes on the image of the quantum
representations, at least for small levels.

1.1. Quantum representations

In [7], Blanchet, Habegger, Masbaum and Vogel defined the topological quantum field
theory (TQFT) functor Vp, for every integer p > 3 and a primitive root of unity ζ of
order 2p. These TQFTs should correspond to the so-called SU (2)-TQFT, for even p
and to the SO(3)-TQFT, for odd p (see also [34] for another version of SO(3)-TQFT).
It is known that these TQFTs determine and are determined by a series of projective
representations of the mapping class groups.

Definition 1.1. Let p ∈ Z+, p > 5 and ζ be a primitive 2pth root of unity.

1. The quantum representation ρp,ζ is the projective representation of the mapping
class group associated to Vp, the TQFT at the root of unity ζ .

2. We denote by ρ̃p,ζ the linear representation of the central extension M̃g of the
mapping class groups Mg of the genus g closed oriented surface, which resolves the
projective ambiguity of ρp,ζ (see [26, 39]).

3. Furthermore, N (g, p) denotes the dimension of the space of conformal blocks
associated by the TQFT Vp to the closed oriented surface of genus g.

https://doi.org/10.1017/S147474801500047X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801500047X


Images of mapping class groups by quantum representations 279

Recall now that Mg is perfect when g > 3 and that the universal central extension M̃g
u

of Mg is a subgroup of index 12 in the central extension M̃g (see [39]). We will often

consider the restriction of ρ̃p,ζ to the perfect subgroup M̃g
u

since the latter has no other

central extensions than itself.

Remark 1.1. The TQFT Vp is unitary in the case ζ = Ap, where

Ap =


− exp

(
2π i
2p

)
, if p ≡ 0 (mod 2);

(−1)
p−1

2 exp
(
(p+ 1)π i

2p

)
, if p ≡ 1 (mod 2).

Notice a slight change with respect to the convention [21] where a typo arose in the

expression for odd p.

For prime p > 5 we denote by Op the ring of cyclotomic integers Op = Z[ζp], if p ≡
−1 (mod 4) and Op = Z[ζ4p], if p ≡ 1 (mod 4) respectively, where ζr denotes a primitive

rth root of unity. The main result of [28] states that there exists a free Op-lattice Sg,p
in the C-vector space of conformal blocks associated by the TQFT Vp to the genus g
closed orientable surface and a non-degenerate Hermitian Op-valued form on Sg,p both

invariant under the action of M̃g via the representation ρ̃p,ζ . Therefore the image of the

mapping class group consists of unitary matrixes (with respect to the Hermitian form)

with entries in Op. Let Up,g(Op) and PUp,g(Op) be the group of all such matrixes and

respectively its quotient by scalars.

When p is prime, p > 5 and g > 3, then it is known that ρ̃p,Ap takes values in SUp,g
(see [15, 24]). It is known that SUp,g(Op) is an irreducible lattice in a semi-simple

algebraic group Gp,g obtained by the so-called restriction of scalars construction from

the totally real cyclotomic field Q(ζp + ζp) to Q. Specifically, the group Gp,g is a product∏
σ∈S(p) SUσp,g. Here S(p) stands for a set of representatives of the classes of complex

embeddings σ of Op modulo complex conjugacy. The factor SUσp,g is the special unitary

group associated to the Hermitian form conjugated by σ , thus corresponding to some

Galois conjugate root of unity.

Denote by ρ̃p and ρp the representations
∏
σ∈S(p) ρ̃p,σ (Ap) and

∏
σ∈S(p) ρp,σ (Ap),

respectively. Notice that the real Lie group Gp,g is a semi-simple algebraic group defined

over Q.

In [21], the first author proved that ρ̃p(M̃g) is a discrete Zariski dense subgroup of

Gp,g(R) whose projections onto the simple factors of Gp,g(R) are topologically dense, for

g > 3 and p > 5 prime, p ≡ −1 (mod 4).

Remark 1.2. 1. Notice that, when p ≡ 1 (mod 4) the image of ρ̃p(M̃g) is contained

in Gp,g(Z[i]) and thus it is a discrete Zariski dense subgroup of Gp,g(C). Thus we

have to replace each factor SU (m, n) of Gp,g(R) by its complexification SL(m+
n,C). There are a number of essential changes to be made if we wish to extend

Theorem 1.1 to this case, contrary to the situation in [21]. However, for Theorem 1.2

the discreteness is not an issue.

https://doi.org/10.1017/S147474801500047X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801500047X


280 L. Funar and W. Pitsch

2. When p = 2r , for a prime r > 5, according to [7, Theorem 1.5] there is an

isomorphism of TQFTs between V2r and V ′2⊗Vr . Furthermore, the image of the

TQFT representation associated to V ′2 is finite. Thus, the restriction of ρ̃p to the

finite index subgroup ker ρ̃′2 ⊂ M̃g is the tensor product of a trivial representation

and ρ̃r , hence is a direct sum of copies of ρ̃r . The projection on a factor gives us

a homomorphism π : ρ2r (ker ρ̃′2)→ Gr,g. Therefore, up to passing to a finite index

subgroup of M̃g the image π ◦ ρ̃2r is a discrete Zariski dense subgroup of Gr,g.

1.2. Main results

The questions addressed here concern the description of the image of ρp,ζ and its kernel.

The first problem is whether the image of ρp,ζ is of finite index in PUp,g(Op), and in

particular a higher rank lattice. Let Mg[p] denote the (normal) subgroup of Mg generated

by the pth powers of all Dehn twists. It is known that Mg[p] ⊂ ker ρp,ζ , and the second

problem is whether this inclusion is strict. This was stated in [37] and in unpublished

notes by Jørgen Andersen. For instance, this inclusion is an equality when the surface

is a 1-holed torus and the representations are 2-dimensional (see [22, 37]) or a 4-holed

sphere (see [3]). Notice that Mg[p] has a small normally generating system.

Our first result states that whenever ρ̃p(M̃g
u
) is isomorphic to a higher rank lattice the

group ρ̃p(M̃g
u
) should be the quotient of M̃g

u
by a large number of relations, growing

linearly with p.

To state this properly we need more notation. Set sp,g for the number of simple

non-compact factors of the semi-simple Lie group Gp,g(R). We also write s∗p,g for the

number of such factors of non-zero signature, i.e. of the form SU (m, n) with m 6= n,

mn 6= 0. Each simple factor is associated to a primitive root of unity ζ of order 2p
having a positive imaginary part. Those ζ corresponding to non-compact simple factors

or non-compact with non-zero signature will be called non-compact roots and respectively

non-compact roots of non-zero signature. Denote also by rp,g the minimal number

(possibly infinite) of normal generators of ker ρ̃p within M̃g
u
, namely the minimum

number of relators to be added in order to obtain the quotient ρ̃p(M̃g
u
).

Theorem 1.1. Let g > 4, p prime, p ≡ −1 (mod 4). Either ρ̃p(M̃g
u
) is not isomorphic to

a higher rank lattice, or else rp,g > sp,g. Moreover,

sp,g >

⌈
g− 3

2(g− 1)
p+

3
2

⌉
, for p > 2g− 1, g > 4,

where dxe denotes the smallest integer greater than or equal to x.

A consequence of our theorem above is the following.

Corollary 1.1. Let g > 4, p prime, p ≡ −1 (mod 4) such that p > 2g− 1. Then the

quotient Mg/Mg[p] is not isomorphic to a higher rank lattice.

The way one proves this theorem is by finding an upper bound for the dimension of the

cohomology group H2(ρ̃p(M̃g
u
),R) in terms of the number of normal generators. This is

carried on in § 2.1. The necessary estimates for sp,g and the real rank of Gp,g are provided

in §§ 3.2 and 3.3, after having set the notation for the skein TQFT in § 3.1.
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Lower bounds for these dimensions are more difficult to obtain, and this is the

subject of the second part of the article. Here we use the aforementioned family of

quasi-homomorphisms on mapping class groups arising as trivializations of pull-backs of

Dupont–Guichardet–Wigner cocycles along quantum representations. We first need an

explicit formula for these quasi-homomorphisms, which will be stated in Proposition 4.2

§ 4. Then computations of signatures arising in non-unitary TQFTs obtained in § 5.1 for

small values of the level provide the necessary ingredients for the following result.

Theorem 1.2. For p ∈ {5, 7, 9} and infinitely many values of g, we have dim H2

(ρ̃p(M̃g
u
),R) > 1.

Since ρp(Mg) is of finite index within ρ̃p(M̃g
u
), from the 5-term exact sequence in

cohomology, Corollary 1.2 follows.

Corollary 1.2. For p ∈ {5, 7, 9} and infinitely many values of g, we have dim H2(ρp(Mg),

R) > 1.

An immediate consequence is the fact that ρp(Mg) is not a virtually free group. This

can be improved, as follows. For a group 0 that is virtually torsion-free we denote by

vcd(0) its virtual cohomological dimension, i.e. the cohomological dimension of any of

its finite index torsion-free subgroups (see [9, VIII.11]).

Proposition 1.1. If p 6∈ {2, 3, 4, 6, 8, 12} and g > 2, (p, g) 6= (10, 2) then we have:

vcd(ρ̃p(0̃g)) > g+
[

g− 2
2

]
.

In particular, ρ̃p(0̃g) is not virtually a free product of finite groups.

Moreover the cohomology classes in Theorem 1.2 are not related to known classes on

mapping class groups.

Proposition 1.2. For any g > 2, the map induced in cohomology in degree 2

ρ∗p : H2(ρp(Mg),R)→ H2(Mg,R)

is the trivial (zero) map.

Remark 1.3. The restriction to p ∈ {5, 7, 9} comes from our inability to obtain modular

properties for the signatures of TQFTs for general p. A general theory for these is

beyond the scope of this paper and partial results in this direction will appear in [12].

We expect the result to hold for all primes p. However, these cases with small p are

already interesting since the representations ρ̃p are known to be Zariski dense in the

corresponding semi-simple Lie groups Gp,g. Our method could improve this lower bound

for specific values of p and g, but could not do better than [ g2 ] + 1 without additional

information about the group ρ̃p(M̃g
u
). The arithmetic progressions above are rather

explicit; for instance, g ≡ 1 (mod 24) is convenient for p ∈ {5, 7}.
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2. Quasi-homomorphisms on mapping class group quotients

2.1. Restriction homomorphisms and proof of Theorem 1.1

Proposition 2.1. We have dim H2(ρ̃p(M̃g
u
),R) 6 rp,g, if g > 3.

Proof. The 5-term exact sequence in cohomology associated to the exact sequence

1→ ker ρ̃p → M̃g
u
→ ρ̃p(M̃g

u
)→ 1,

gives us:

0 = H1(M̃g
u
,R)→ Hom(ker ρ̃p,R)M̃g

u ι
→ H2(ρ̃p(M̃g

u
),R)→ H2(M̃g

u
,R) = 0.

By exactness of the sequence above, ι is an isomorphism and hence identifies

Hom(kerρ̃p,R)M̃g
u

with H2(ρ̃p(M̃g
u
),R). The next lemma shows that dim Hom(kerρ̃p,R)M̃g

u

6 rp,g and Proposition 2.1 follows.

Lemma 2.1. Assume that rp,g is finite and let {a1, a2, . . . , arp,g } be a minimal system

of normal generators for ker ρ̃p within M̃g
u
. Then the evaluation homomorphism E :

Hom(ker ρ̃p,R)M̃g
u
→ Rrp,g , given by E( f ) = ( f (a1), f (a2), . . . , f (an)) is injective.

Proof. Any element x ∈ ker ρ̃p is a product x =
∏

i gi ai g−1
i , for some gi ∈ M̃g

u
. Since

f ∈ Hom(ker ρ̃p,R)M̃g
u

is conjugacy invariant we have f (x) =
∑

i f (gi ai g−1
i ) =

∑
i f (ai )

and the lemma follows.

Proposition 2.2. If sp,g > rp,g then ρ̃p(M̃g
u
) is not a lattice in Gp,g.

Proof. Recall from [21] that Gp,g is a real semi-simple linear algebraic group defined

over Q. Since Gp,g is obtained by restriction of scalars from an anisotropic unitary

group it follows that all elements of Gp,g(Z) are semi-simple, as being obtained as Galois

conjugates of unitary and hence diagonalizable matrixes. Therefore, by Borel’s theorem,

Gp,g(Z) is a cocompact lattice in Gp,g(R). This was also noticed in [38].

We know as part of Matsushima’s vanishing theorem that for cocompact lattices 0

in semi-simple Lie groups G the restriction homomorphism H j (G,R)→ H j (0,R) is an

isomorphism as long as j 6 rkRG− 1 (see [8, Ch. 7, Proposition 4.3]). We will show in

Proposition 3.2, § 3.3 that Gp,g(R) is of rank at least 3 for any odd p > 5, and hence

H2(Gp,g(R),R)→ H2(0,R) is an isomorphism for any lattice 0 in Gp,g(R).
Now, Gp,g(R) is a product of sp,g pseudo-unitary groups of type SU (m, n), each

factor being a simple group of isometries of some irreducible Hermitian space. Then

by [31] we have that H2(Gp,g(R),R) = Rsp,g is the vector space generated by the set

of Dupont–Guichardet–Wigner classes of the simple factors. In particular, if sp,g > rp,g
then the restriction map H2(Gp,g(R),R)→ H2(ρ̃p(M̃g

u
),R) cannot be an isomorphism

by dimensional reasons and so ρ̃p(M̃g
u
) cannot be isomorphic to a lattice in Gp,g(R).

Proof of Theorem 1.1. Assume that ρ̃p(M̃g
u
) is isomorphic to a higher rank irreducible

lattice. For p as in the hypothesis one knows that ρ̃p(M̃g
u
) is a discrete subgroup of

Gp,g(R). Then, by the Margulis super-rigidity theorem (see [36]) and the arithmeticity
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of lattices in higher rank Lie groups there exists a finite index subgroup of ρ̃p(M̃g
u
),

which is a lattice in a product P of simple factors of Gp,g(R). Therefore the Zariski

closure of ρ̃p(M̃g
u
) is contained in the subgroup P. On the other hand, as observed

before, ρ̃p(M̃g
u
) is Zariski dense in Gp,g and hence P = Gp,g(R), so that ρ̃p(M̃g

u
) must

be a lattice in Gp,g(R). Now Proposition 2.2 settles the first part of the theorem. We

postpone the proof of the lower bound sp,g >
⌈

g−3
2(g−1) p+ 3

2

⌉
, for p > 2g+ 1, until § 3.2;

see Proposition 3.1.

Proof of Corollary 1.1. First, Mg[p] is normally generated by the pth powers of Dehn

twists along a set of curves containing one simple closed curve for each integer 1 6 h 6 g
2 ,

which is bounding a subsurface of genus h along with one non-separating simple curve.

This gives an upper bound of tg = 1+ [ g2 ] for the number of normal generators of Mg[p],
which is independent on p.

Assume that Mg/Mg[p] is a higher rank lattice 0 in the semi-simple Lie group H . We

know that there exists a surjection of 0 onto ρp(Mg) which is a discrete Zariski dense

subgroup of PGp,g. By the Margulis super-rigidity theorem (see [36]) there exists a

surjective continuous homomorphism H → PGp,g(R) covering this surjection. Therefore

the number of virtual Hermitian simple non-compact factors of H is at least the number

sp,g associated to PGp,g(R).
The proof of Proposition 2.2 applied to the surjection Mg → Mg/Mg[p] shows that

dim H2(Mg/Mg[p],R) 6 tg.

Finally, by Matsushima’s vanishing theorem we also have dim H2(0,R) > sp,g. This leads

to a contradiction for p large enough, as stated.

3. Estimates concerning the TQFT Hermitian form

3.1. The setting of the skein TQFT

We briefly review the properties of the TQFT Vp and refer to [7] for more details. A

TQFT is a functor from the category of surfaces into the category of finite-dimensional

vector spaces. Specifically, the objects of the first category are closed oriented surfaces

endowed with colored banded points and morphisms between two objects are cobordisms

decorated by uni-trivalent ribbon graphs compatible with the banded points. A banded

point on a surface is a point with a tangent vector at that point, or equivalently a germ

of an oriented interval embedded in the surface. There is a corresponding surface with

colored boundary obtained by deleting a small neighborhood of the banded points and

letting the boundary circles inherit the colors of the respective points.

The vector space associated by the functor Vp to a surface is called the space of

conformal blocks. Let Σg denote the genus g closed orientable surface and Hg be a genus

g handlebody with ∂Hg = Σg. Assume that there is a finite set Y of banded points on

Σg. Let G be a uni-trivalent ribbon graph embedded in Hg in such a way that Hg retracts

onto G, its univalent vertexes are the banded points Y and it has no other intersections

with Σg.

For an odd number p > 5, called the level of the TQFT, we consider the set of colors

in level p to be {0, 2, 4, . . . , p− 3}. An edge coloring of G is called p-admissible if the
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triangle inequality is satisfied at any trivalent vertex of G and the sum of the three colors

around a vertex is bounded by 2(p− 2). There is a similar description of p-admissibility

for even p.

Fix a coloring of the banded points Y. Then there exists a basis of the space of

conformal blocks associated to the surface (Σg,Y) with the colored banded points (or

the corresponding surface with colored boundary), which is indexed by the set of all

p-admissible colorings of G extending the boundary coloring. We denote by Wg the

vector space associated to the closed surface Σg without banded points, or equivalently,

where all banded points are given the color 0.

In fact, an admissible p-coloring of G provides an element of the skein module Sζ (Hg)

of the handlebody evaluated at a primitive 2pth root of unity ζ . This skein element is

obtained by cabling the edges of G by the Jones–Wenzl idempotents prescribed by the

coloring. Let H g denote the complementary handlebody in the 3-sphere S3. Then there

is a sesquilinear form:

〈 , 〉 : Sζ (Hg)× Sζ (H g)→ C

defined by

〈x, y〉 = 〈x t y〉.

Here x t y is the element of Sζ (S3) obtained by the disjoint union of x and y in Hg ∪ H g =

S3, and 〈 〉 : Sζ (S3)→ C is the Kauffman bracket invariant.

Eventually the space of conformal blocks Wg is the quotient Sζ / ker〈 , 〉 by the left

kernel of the sesquilinear form above. It follows that Wg is endowed with an induced

Hermitian form Hζ . The projections of skein elements associated to the p-admissible

colorings of a trivalent graph G as above form an orthogonal basis of Wg with respect

to Hζ .
Let G ′ ⊂ G be a uni-trivalent subgraph whose degree-one vertexes are colored,

corresponding to a subsurface Σ ′ of Σg with colored boundary. The projections in Wg
of skein elements associated to the p-admissible colorings of G ′ form an orthogonal basis

of the space of conformal blocks associated to the surface Σ ′ with colored boundary

components.

There is a geometric action of the mapping class groups of the handlebodies Hg and

H g respectively on their skein modules and hence on the space of conformal blocks.

Moreover, these actions extend to the projective action ρp,ζ of Mg on Wg respecting the
Hermitian form Hζ . Notice that the mapping class group of an essential (i.e. without

annuli or disk complements) subsurface Σ ′ ⊂ Σg is a subgroup of Mg, which preserves

the subspace of conformal blocs associated to Σ ′ with colored boundary. This kind of

restriction to subsurfaces is an essential ingredient in § 3.2.

The functor Vp associates to a handlebody Hg the projection of the skein element

corresponding to the trivial coloring of the trivalent graph G by 0. The invariant

associated to a closed 3-manifold is given by pairing the two vectors associated to

handlebodies in a Heegaard decomposition of some genus g and taking into account

the twisting by the gluing mapping class action on Wg.

One should notice that the skein TQFT Vp is unitary, in the sense that Hζ is a positive
definite Hermitian form when ζ = Ap, as chosen in § 1. The main concern of the present
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article is the case of a general primitive 2pth root of unity, in which case the isometries

of Hζ form a pseudo-unitary group.

3.2. Estimations on sp,g

Proposition 3.1. If g > 4 and p ≡ −1 (mod 4), then

sp,g >

⌈
g− 3

2(g− 1)
p+

3
2

⌉
, for p > 2g+ 1,

where dxe denotes the smallest integer greater than or equal to x.

Proof. This statement is essentially combinatorial, as the Hermitian form Hζ on the space

of conformal blocks is given rather explicitly in [7] in its diagonal form. Nevertheless the

combinatorial-arithmetic problem of counting the roots of unity for which the entries

of Hζ are all positive seems rather complicated. We propose here an alternative way to

bound from below sp,g by restricting the problem from mapping class groups to braids,

where computations are immediate. Although not sharp, our estimates are linear in p.

There is an obvious injection of the pure braid group P Bg−1 on (g− 1) strands into

Mg, when g > 3. Specifically, if the g-holed sphere is embedded in Σg, in such a way

that its complement consists of g 1-holed tori, then the map induced at the level of their

mapping class groups is injective. Now, the pure mapping class group of the (g− 1)-holed

disk is an extension of P Bg−1 by the free abelian group Zg−1 of Dehn twists along

(g− 1) boundary components. This extension splits non-canonically, thus providing an

embedding of P Bg−1 into Mg.

The restriction of the representation ρp,ζ of Mg to P Bg−1 is not irreducible. Set W0,g for

the space of conformal blocks associated to the disk with (g− 1) holes, whose boundary

circles are labeled by the colors (2g− 4, 2, 2, . . . , 2), the first label corresponding to the

disk boundary. In order to admit an extension to a p-admissible coloring we need to

impose the condition p > 2g− 1. Then the restriction ρp,ζ |P Bg−1 leaves invariant the

subspace W0,g ⊂ Wg. Moreover this representation naturally extends to one of the full

braid group Bg−1, since the colors of (g− 1) boundary circles of the subsurface coincide.

Eventually the projective representation of Bg−1 lifts to a linear representation of Bg−1.

Indeed, central extensions by Z of the braid groups Bg−1 are trivial, as Arnold [4] proved

that H2(Bn,Z) = 0. We will still denote this linear lift by ρp,ζ |Bg−1 .

Recall now that the (reduced) Burau representation βk : Bk → GL(k− 1,Z[q, q−1
]),

for k > 3, is defined on the standard generators g1, g2, . . . , gk−1 of the braid group Bk on

k-strands by the formulas:

βq(g1) =

(
−q 0
−1 1

)
⊕ 1k−3,

βq(g j ) = 1 j−2⊕

1 −q 0
0 −q 0
0 −1 1

⊕ 1k− j−2, for 2 6 j 6 k− 2,

βq(gk−1) = 1k−3⊕

(
1 −q
0 −q

)
.
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By taking q ∈ C∗ we obtain a representation βk(q) with values in GL(k− 1,C). The

representations βk(q) are irreducible unless q is a non-trivial kth root of unity, in

which case it has a (k− 2)-dimensional irreducible summand denoted by β̂k(q). Following

Formanek (see [17]) we call a complex representation of Bk of Burau type if it is isomorphic

to the tensor product of βk(q) (or β̂k(q)) with some 1-dimensional representation. The

latter are all of the form χ(y), where χ(y)(g j ) = y ∈ C∗, for j 6 k− 1.

Lemma 3.1. The representation ρp,ζ |Bg−1 on W0,g is of Burau type.

Proof. This is known to be true for g = 4, 5 (see e.g. [20, 23]). By induction on g one

shows that dim W0,g = g− 2. Explicit computations as those in [20] (for even p) show

that the elements ρp,ζ |Bg−1(gi ) have only two non-trivial eigenvalues. Up to rescaling

the images of gi (i.e. twisting by a 1-dimensional representation), the two non-trivial

eigenvalues are 1 and −ζ 8. Also the image of gi is a pseudo-reflection.

Formanek proved in [17, Theorem 10, 22] that irreducible representations of Bg−1 of

dimension at most g− 2 are either 1-dimensional or of Burau type, if g > 8 or g > 6 and

the image of gi is a pseudo-reflection. When p > 2g− 1 is prime, β̂k(q) (with qg−1
= 1)

cannot be a summand of ρp,ζ |Bg−1 , because one eigenvalue of gi is not a (g− 1)th root of

unity.

Notice that ρp,ζ , and hence ρp,ζ |Bg−1 , is semi-simple because it is Galois conjugate to

the unitary representation ρp,Ap .

If ρp,ζ |Bg−1 were not irreducible then it would split as a direct sum of 1-dimensional

representations. This is a contradiction, as the restriction of ρp,ζ |Bg−1 to B3 ⊂ Bg−1 is of

Burau type.

Therefore, up to twisting by some χ(y) (the explicit value of y is not needed) ρp,ζ |Bg−1

is equivalent to the Burau representation βqp of Bg−1 at the root of unity qp, where qp

is given by qp = ζ
8, for odd p.

Now, for k > 3 the Burau representation βk(q) of Bk has an invariant Hermitian form

defined by Squier in [43]. Squier’s original Hermitian form is degenerate when q is a

root of unity of order n 6 k. A slightly modified version H S
q of this form can be found

in [40, 48], where it is shown that it is non-degenerate unless q is a kth root of unity.

Since a Burau-type representation is irreducible it admits a unique invariant Hermitian

form, up to a real scalar.

In particular, the restriction of Hζ to the space of conformal blocks is a real multiple

of H S
ζ 8 . This also follows from stronger results from [18, 33] concerning the density of

images of Burau-type representation.

The signature of the form H S
q is given in [40, Corollary 3.2]. Squier’s form is definite

(either positive or negative) if and only if arg(qp) ∈ (−
2π

g−1 ,
2π

g−1 ) (see also [1, Lemma 9]).

If we set ζ = exp( (2k+1)π i
p ), then it suffices to restrict to those integral k ∈ {0, 1, . . . , p−3

2 }.

This condition on arg(qp) amounts to counting all such integers k for which in addition

2sπ −
2π

g− 1
6

4(2k+ 1)π
p

6 2sπ
2π

g− 1
, where s ∈ {0, 1, 2, 3, 4}.

The number of such integers is at most p
g−1 −

3
2 .
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In [21] the first author proved that the factors of Gp,g, for p ≡ −1 (mod 4) are in

one–one correspondence with the p−1
2 primitive 2pth roots of unity up to conjugacy. If

we discard the compact ones we derive that the number of non-compact factors in Gp,g

is at least g−3
2(g−1) p+ 3

2 .

Remark 3.1. It seems that there are precisely two conjugate values for which Hζ is

positive when p > 5 is odd prime and four values (obtained by conjugacy or changing

the sign) when p is twice an odd prime, respectively, unless Hζ is totally positive. A

similar statement might hold for all (not necessarily prime) odd large enough p.

Remark 3.2. Similar estimates hold true for g ∈ {2, 3}, by using the homomorphisms

P B3 → M2 and P B4 → M3 from [23]. We skip the details.

3.3. Estimates for the rank of Gp,g(R)
Proposition 3.2. For g > 2, prime p > 7 and p ≡ −1 (mod 4) the real rank of Gp,g(R)
is at least 2. Furthermore, for g > 4 and odd p > 5 each simple non-compact factor of

Gp,g(R) has rank at least 2. Moreover, the real rank of Gp,g(R) is at least (d g−3
2(g−1) p+

3
2e)(

p−1
2 )g−3, for g > 4, p > 2g+ 1 and p ≡ −1 (mod 4).

Proof. Let W±g (ζ ) be a maximal positive/negative subspace of the space Wg of conformal

blocks in genus g, for the Hermitian form Hζ . Consider a separating curve γ on the

closed orientable surface Σg whose complementary subsurfaces have genus g− 1 and 1
respectively. If we label γ by 0 then the spaces of conformal blocks associated to these two

subsurfaces are isometrically identified with the spaces of conformal blocks of the closed

surfaces obtained by capping off the boundary components. Therefore we have natural

isometric embeddings Wg−1⊗W1 ↪→ Wg. It is well known that W1 = W+1 (ζ ) is positive for

any ζ . Therefore we obtain the following isometric embeddings: W+g−1(ζ )⊗W1 ↪→ W+g (ζ )
and W−g−1(ζ )⊗W1 ↪→ W−g (ζ ). In particular, we have for odd p

dim W+g (ζ ) > (dim W1)
g
=

(
p− 1

2

)g

.

Lemma 3.2. If ζ is such that W+3 (ζ ) = W3, then W+g (ζ ) = Wg, i.e. the simple factor

associated to ζ is compact.

Proof. For a p-admissible coloring X of the trivalent graph G with g loops we denote

by the same letter X the corresponding vector of the basis of Wg defined in § 3.1. For a

vertex v we denote by av, bv, cv the colors of the three edges incident to v and for any

edge e we denote by ce the color of the edge e, as prescribed by X . The Hermitian norm

of such a vector X was computed in [7, 4.11], as follows:

Hζ (X, X) = ηg−1
∏

v∈V (G)

〈av, bv, cv〉 ·
∏

e∈E(G)

〈ce〉
−1,

where η is a constant independent of the genus, V (G) denotes the set of vertexes and

E(G) the set of edges of the graph G. The precise values of the symbols η, 〈a, b, c〉 and
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〈a〉 in terms of quantum numbers are given in [7] but they will not be explicitly needed

in what follows. We only need to know that all of them are real numbers.

Observe also that the positivity of the Hermitian form in genus 3 implies the positivity

for genus 2, as well. Now, there are two graphs with two loops and without leaves

(degree-one vertexes), the theta graph and the graph made of two loops joined by a

segment. The above formula for a vector corresponding to a coloring of the theta graph

shows that:

η〈a〉〈b〉〈c〉 > 0,

for any p-admissible triple a, b, c at a vertex. Therefore all symbols 〈a〉 have the same

sign as η. Using the other graph with two loops, we find that

〈a, a, b〉〈c, c, b〉 > 0,

for every p-admissible coloring for which the symbols above are defined. Thus the sign

of 〈a, a, b〉 is εb ∈ {−1,+1} and it only depends on b. Consider next a graph made of

three loops joined together by means of a tree with one vertex and three edges, each

edge having its endpoint on one loop. Take an arbitrary p-admissible triple of colors

a, b, c for the three edges of the tree and color the loops in a p-admissible way. This

is always possible, no matter how we chose the p-admissible triple a, b, c. The formula

above implies that:

〈a, b, c〉εaεbεc > 0.

But now it is immediate that for any vector X corresponding to a colored trivalent graph

without leaves with g > 2 loops we have Hζ (X, X) > 0. This implies that the Hermitian

form on every space of conformal blocks associated to a closed orientable surface is

positive definite.

It follows that either W+g (ζ ) = Wg is positive or else

dim W−g (ζ ) > (dim W1)
g−3 dim W−3 (ζ ) >

(
p− 1

2

)g−3

.

The two formulas above show that the rank of each simple non-compact factor of Gp,g

is at least ( p−1
2 )g−3.

On the other hand, if p is odd and (p, g) 6= (2, 5) then, by direct calculation one obtains
that the Hermitian form associated to the 1-holed torus with the boundary circle colored

by 2 is not totally positive. The argument above implies that the real rank of Gp,g(R) is

at least 2. A similar statement is valid for even p > 14.

Remark 3.3. When g = 2 and p = 7 the group Gp,g(R) is the product of two

pseudo-unitary groups SU (11, 3)× SU (10, 4). When g = 3 and p = 7 the group Gp,g(R)
is the product of two pseudo-unitary groups SU (58, 40)× SU (44, 54).

3.4. Proofs of Propositions 1.1 and 1.2

Proof of Proposition 1.1. Let Σg,n denote the compact orientable surface of genus g with

n boundary components and Mg,n the mapping class group of Σg,n . Then Σg decomposes
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into g+ [ g−2
2 ] pieces with disjoint interiors among which are g subsurfaces Σ1,1, [ g−2

2 ]

subsurfaces Σ0,4, and g− 2[ g2 ] ∈ {0, 1} pieces homeomorphic to Σ0,3.

If p 6∈ {2, 3, 4, 6, 8, 12}, g > 2 and (p, g) 6= (10, 2), then every subgroup of the form

ρp(M1,1) or ρp(M0,4) associated to a subsurface Σ1,1 or Σ0,4 of Σg contains a free

non-abelian group F2 on two generators (see [22, 23]). In particular, we find that

Fg+[ g−2
2 ]

2 ⊂ ρp(Mg). Recall that vcd is increasing with respect to the inclusion of groups

(see [9, Ch. VIII, 11, Ex. 1, Proposition 2.4]). Thus

vcd(ρ̃p(M̃g)) > vcd(Fg+[ g−2
2 ]

2 ) > vcd(Zg+[ g−2
2 ]) = g+

[
g− 2

2

]
.

Notice that we also have, by the same argument, vcd(ρp(Mg)) > g+ [ g−2
2 ]. Observe that

torsion-free nilpotent subgroups of ρ̃p(M̃g) are abelian, because Gp,g(Z) contains no

non-trivial unipotents, so that they cannot be used to get better lower bounds.

Remark 3.4. When p ≡ −1 (mod 4), vcd(Gp,g(Z)) is the dimension of the corresponding

non-compact symmetric space, since lattices are cocompact. If ρ̃p(M̃g) were of infinite

index in Gp,g(Z) then its top dimensional cohomology would vanish (see [9, VIII,

Proposition 8.1]). Therefore ρ̃p(M̃g) has finite index in Gp,g(Z) if and only if

vcd(ρ̃p(M̃g)) = vcd(Gp,g(Z)). Compare also with [44], where the author proved that

passing to an infinite index subgroup of a Poincaré duality group strictly decreases the

cohomological dimension.

Proof of Proposition 1.2. Since ρp(Mg) is of finite index in ρp(M̃u
g ), the map ρ∗p :

H2(ρp(Mg),R)→ H2(Mg,R) factors through ρ∗p : H2(ρp(M̃g
u
),R)→ H2(M̃g

u
,R), but

the group M̃u
g has no non-split extensions, so this last cohomology group is trivial.

4. Dupont–Guichardet–Wigner quasi-homomorphisms on mapping class

groups

4.1. Quasi-homomorphisms on M̃g

Guichardet–Wigner [31] and Dupont [16] introduced explicit bounded continuous cocycles
cSU (m,n), whose classes generate H2

b (SU (m, n);R) ∼= R and could be interpreted in terms

of the symplectic area of triangles. Let K be the maximal compact subgroup S(U (m)×
U (n)), A the group of unitary diagonal matrixes with real entries and N the group of

unitary unipotent matrixes in SU (m, n). Corresponding to the Iwasawa decomposition

SU (m, n) = K AN , we denote by x = k(x)a(x)n(x) the Iwasawa decomposition of the

element x ∈ SU (m, n). The construction due to Guichardet and Wigner in [31, Theorem 1]

is as follows.

Proposition 4.1. Let k be the Lie algebra of the compact group K and g = k⊕ p be the

Cartan decomposition of the Lie algebra g of SU (m, n). Consider a smooth function v :

SU (m, n)→ C∗ satisfying the following conditions:
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1. the restriction of v to the maximal compact K is a non-trivial morphism of K into

U (1) ⊂ C∗;
2. the restriction of v to exp p is strictly positive and K -invariant;

3. v(k · exp p) = v(k)v(exp p), for any k ∈ K and p ∈ p.

Then there exists a unique smooth 2-cocycle cv : SU (m, n)× SU (m, n)→ R such that

exp(2π
√
−1cv(g1, g2)) = arg(v(g1g2)

−1
· v(g1) · v(g2)), and cv(1, 1) = 0.

Moreover, the class of cv generates the Borel cohomology group H2(SU (m, n),R).
An example is the function v0 : K → U (1) given by v0(x) = det(x+), where x =(

x+ 0
0 x−

)
∈ S(U (m)×U (n)) and x+ is the U (m) component of x . Setting v0(exp p) = 1,

and v0(k · exp p) = v0(k)v0(exp p), extends v0 to a function on all of SU (m, n) with values

in U (1) that satisfies the conditions stated in Proposition 4.1. We therefore have the

associated continuous bounded cocycle denoted by cSU (m,n). We will later normalize the

cocycle cSU (m,n) to a cocycle whose class is the generator of the image of H2(SU (m, n),Z)
in H2(SU (m, n),R). We also consider the unique continuous lift 8 : ˜SU (m, n)→ R of v0
to the universal covering, which is determined by the condition 8(1) = 0.

Let G be a topological group. The ordinary cohomology group H2(G,R) is usually

an extremely large group; for instance, for non-compact Lie groups its dimension is

typically uncountable (see [41]). This is not anymore the case for the continuous

cohomology of Lie groups and in particular for their bounded cohomology group

H2
b (G;R). There is a canonical comparison map H2

b (G;R)→ H2(G;R) whose kernel

is described by quasi-homomorphisms: a map ϕ : G → R is a quasi-homomorphism if

supa,b∈G |∂ϕ(a, b)| <∞, where ∂ϕ(a, b) = ϕ(ab)−ϕ(a)−ϕ(b) is the boundary 2-cocycle.

The quasi-homomorphism ϕ is homogeneous if ϕ(an) = nϕ(a), for every a ∈ G and n ∈ Z.

Let us denote the vector space of quasi-homomorphisms by Q H(G) and its quotient

by the subspace generated by the bounded functions and the group homomorphisms by

Q̃ H(G). It is known that there is an exact sequence:

0→ Q̃ H(G)→ H2
b (G;R)→ H2(G;R).

Bestvina and Fujiwara proved in [6] that Q̃ H(Mg), and hence Q̃ H(M̃g) has uncountably

many generators.

Let g > 3, p > 5 be a prime number and SU (m, n) be the non-compact simple factor of

Gp,g(R) corresponding to the primitive 2pth root of unity ζ . Since the universal extension

M̃g
u

is perfect and has no non-trivial extensions, we have an isomorphism Q̃ H(M̃g
u
) '

H2
b (M̃g

u
,R). As M̃g

u
is of finite index in M̃g, we also have Q̃ H(M̃g) ' H2

b (M̃g,R). Thus,

there exists a quasi-homomorphism Lζ : M̃g → R, unique up to a bounded quantity,

verifying

∂Lζ = ρ̃∗p,ζ (cSU (m,n)).

Let Lζ denote the unique homogeneous quasi-homomorphism in the class of Lζ . To give

an explicit formula for the quasi-homomorphism Lζ : M̃g → R, we have to introduce the

Dupont–Guichardet–Wigner quasi-homomorphism 8 on the universal covering ˜SU (m, n)
of SU (m, n).
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Definition 4.1. A Dupont–Guichardet–Wigner quasi-homomorphism 8 : ˜SU (m, n)→ Q
is a quasi-homomorphism satisfying:

8(̃x ỹ)−8(̃x)−8(ỹ) = cSU (m,n)(x, y)

for all x, y ∈ SU (m, n) and their arbitrary lifts x̃, ỹ ∈ ˜SU (m, n).

The quasi-homomorphism is normalized if

8(T z) = 8(z)+ 1, for z ∈ ˜SU (m, n),

where T denotes the generator of ker( ˜SU (m, n)→ SU (m, n)). All Dupont–Guichardet–

Wigner quasi-homomorphisms are at bounded distance from each other and the unique

homogeneous normalized Dupont–Guichardet–Wigner quasi-homomorphism is given by

8(z) = limn→∞8(zn)/n. In fact, it was noticed by Barge and Ghys in [5, Remarque

fondamentale 2] that there is a unique homogeneous normalized quasi-homomorphism

on any central extension of a uniformly perfect group, in particular on ˜SU (m, n). The

homogeneous quasi-homomorphism associated to a continuous quasi-homomorphism is

also continuous, by the result of Shtern (see [42, Proposition 1]; thus 8 is continuous.

Barge and Ghys gave a formula for the homogeneous symplectic quasi-homomorphism

in [5, Theorem 2.10]. In the remaining part, we need the following extension to the

pseudo-unitary case.

Proposition 4.2. The homogeneous quasi-homomorphism Lζ is given by the formula:

Lζ (x) = 8(ρ̂p,ζ (x)),

where ρ̂p,ζ : M̃g
u
→ ˜SU (m, n) is the unique lift of ρ̃p,ζ (x) to ˜SU (m, n). Moreover, we

have:

Lζ (x) ≡
1

2π

 ∑
λ∈S(ρ̃p,ζ (x))

n+(λ)arg(λ)

 ∈ R/Z,

where S(u) is the set of eigenvalues of u and n+(λ) is the positive multiplicity of λ

(see § 4.4 for details).

4.2. Non-triviality of the quasi-homomorphism space

Proposition 4.3. If s∗p,g > rp,g then Q̃ H(ρ̃p(M̃g
u
)) cannot be trivial.

Proof. Denote by i p,ζ : ρ̃p,ζ (M̃g
u
)→ PU (m, n) the obvious inclusion.

In [10, Theorem 1.3], Burger and Iozzi proved that for any discrete group 0, two Zariski

dense representations ρ : 0→ SU (m, n), with 1 6 m < n, are non-conjugate if and only

if the corresponding cohomology classes ρ∗(cSU (m.n)) ∈ H2
b (0;R) are distinct. Moreover,

if distinct, then these classes are Q-linearly independent.

Following [21], when ζ runs over the non-compact primitive roots of non-zero signature

and positive imaginary part the bounded classes i∗p,ζ (cSU (m,n)) ∈ H2
b (ρ̃p(M̃g

u
),R) are

linearly independent over Q. If Q̃ H(ρ̃p(M̃g
u
)) were trivial, then the cohomology classes
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i∗p,ζ (cSU (m,n)) ∈ H2(ρ̃p(M̃g
u
),R) would also be independent over Q. But these are integral

classes, i.e. they lie in the image of H2(ρ̃p(M̃g
u
),Z), because they are pull-backs of integral

classes from H2(Gp,g(R),R). Therefore, they would be linearly independent over R. In

other words, we would produce s∗p,g linearly independent classes living within the vector

space Hom(ker ρ̃p,R)M̃g
u
, which is of dimension at most rp,g. This contradiction proves

the claim.

Remark 4.1. If Q̃ H(ρp(Mg)) were infinite-dimensional, then ρp(Mg) would not be

boundedly generated.

4.3. Proof of Proposition 4.2

We reduce the problem to the computations made earlier by Barge and Ghys in [5] for

the symplectic case. Given an integer n > 1, let Sp(2n,R) denote the real symplectic

group of 2n× 2n matrixes. There are two natural homomorphisms i : SU (m, n) ↪→
Sp(2(m+ n),R) and j : Sp(2n,R) ↪→ SU (n, n), and these lift uniquely to continuous

group homomorphisms S̃U (m, n) ↪→ S̃p(2(m+ n),R) and S̃p(2n,R) ↪→ S̃U (n, n). Let us

set in this section 8SU (m,n) for the homogeneous quasi-homomorphism 8 and 8Sp(2n,R)
for its symplectic cousin. Standard arguments show the following proposition.

Proposition 4.4. 1. The unitary homogeneous quasi-homomorphism 8SU (n,n) restricts

along the embedding Sp(2n,R) ↪→ SU (n, n) to the symplectic homogeneous

quasi-homomorphism 8Sp(2n,R).

2. The symplectic homogeneous quasi-homomorphism 8Sp(2(m+n),R) restricts along the

embedding SU (m, n) ↪→ Sp(2(m+ n),R) to 28SU (m,n), if mn 6= 0.

Remark 4.2. It was already noticed in [25, § 4] that the restriction of 8Sp(2(m+n),R) to

SU (m+ n) ↪→ Sp(2(m+ n),R) is trivial, as this subgroup is simply connected. The fact

that the restriction of the Maslov class on SU (m, n) is non-trivial was also stated in [25,

Corollary 4.4].

Then from [5, Theorem 2.10] we deduce the following proposition.

Proposition 4.5. The homogeneous Dupont–Guichardet–Wigner quasi-homomorphism

8 : ˜SU (m, n)→ R is the unique continuous lift of the map φ : SU (m, n)→ R/Z sending

1 to 0, defined when g is semi-simple by the formula:

φ(g) =
1

2π

 ∑
λ∈S(g)

n+(λ)arg(λ)

 ∈ R/Z,

where S(g) is the set of eigenvalues of g and n+(λ) their positive multiplicity.

We postpone the discussion and the definition of positive multiplicity to § 4.5.
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End of the proof of Proposition 4.2. Proposition 4.5 shows that 8 is uniquely

determined as a continuous lift of φ and the formula follows because ρ̃p,ζ (M̃g) ⊂ SU (m, n)
consists only of semi-simple elements.

The independence of Lζ ,8 on the chosen bounded cocycle cSU (m,n) is a consequence

of the fact that SU (m, n) is uniformly perfect.

Although the fact that all simple Lie groups are uniformly perfect seems to be folklore,

we did not find it explicitly in the literature. For all semi-simple Lie groups whose

maximal compact is semi-simple any element is the product of two commutators (see [13]).

However, this does not apply precisely to SU (m, n). One also knows that there are

elements that are not commutators (from [45]). An explicit bound for the number of

reflections needed to write any element in U (m, n) as a product was given in [14] and the

number of commutators could be deduced from it. Using a similar reasoning one shows

the following proposition.

Proposition 4.6. The group SU (m, n) is uniformly perfect, more precisely: any element

is a product of at most 14(m+ n) commutators.

4.4. Useful properties of Dupont–Guichardet–Wigner cocycles

Notice that the reduction mod Z of 8 descends to a map φ : SU (m, n)→ R/Z, given

by φ(x) = 8(̃x), where x̃ is an arbitrary lift of x . The quasi-homomorphism is easy

to compute on lifts of Borel subgroups of SU (m, n) such as AN . Recall that all Borel

subgroups of SU (m, n) are conjugate. The subgroup AN is simply connected, and contains

the identity matrix; therefore its preimage ÃN is a disjoint union of (simply) connected

components, each one homeomorphic to AN and canonically indexed by an element of

Z = ker(S̃U (m, n)→ SU (m, n)).

Lemma 4.1. The quasi-homomorphism 8 is locally constant on ÃN . More precisely, 8

takes the value d on the sheet of ÃN indexed by d. Consequently, if B is an arbitrary

Borel subgroup of SU (m, n) and B̃ denotes its preimage in S̃U (m, n), then 8 takes integer

values on B̃.

Proof. By construction, the function v0 is constant with value 1 on AN ; therefore its

continuous lift 8 takes integral values on ÃN , and as it is continuous, these values are
given by the integer indexing the connected component. Moreover, if g ∈ ÃN belongs

to the component indexed say by d, then for any n ∈ Z the element gn belongs to the

component indexed by nd. Therefore we have:

8(g) = lim
n→∞

1
n
8(gn) = lim

n→∞

1
n

dn = d.

If B is an arbitrary Borel subgroup, then there is an element g ∈ SU (m, n) such

that gBg−1
⊂ AN . As a consequence, if we denote by g̃ a preimage of g in S̃U (m, n),

conjugation by g̃ embeds B̃ into ÃN . As 8 is invariant under conjugation, the result

follows.
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Proposition 4.7. The homogeneous normalized quasi-homomorphism on S̃U (m, n) is

the unique continuous normalized lift of the map φ ◦ e : SU (m, n)→ R/Z, where

g = e(g)h(g)u(g) is the Jordan decomposition of g ∈ SU (m, n). Recall that e(g) is the

elliptic part, h(g) the hyperbolic part and u(g) the unipotent part of g.

Proof. Let g be an arbitrary element in SU (m, n) and g̃ ∈ S̃U (m, n) one of its lifts.

Choose also a lift ẽ(g) of e(g). Since e(g) commutes with g we have that 8(̃e(g)−1g̃) =
8(̃e(g)−1)+8(g̃). By construction, ẽ(g)−1g̃ = h(g)u(g) and since h(g) is conjugate to

some element in A and u(g) to some element in N , h(g)u(g) belongs to some Borel

subgroup of SU (m, n). By Lemma 4.1, this implies that 8(̃e(g)−1g̃) ∈ Z or equivalently:

8(g̃) = −8(̃e(g)−1) mod Z
= 8(̃e(g)) mod Z
= φ(e(g)) by definition of φ.

The second equality comes from the fact that, as 8 is homogeneous and normalized, for

any h ∈ S̃U (m, n), 8(h−1) = −8(h).

4.5. Positive eigenvalues of pseudo-unitary operators

Consider a pseudo-unitary operator g ∈ SU (m, n). Let H : V × V → C be the indefinite

Hermitian form defining the group SU (m, n), where dimC V = m+ n. We will assume

henceforth that 1 6 m 6 n.

The spectrum S(g) of g is symmetric with respect to the unit circle; namely if λ ∈ S(g)
then λ

−1
∈ S(g) (see [29, Ch. 10, § 5]). For a given λ ∈ S(g) we consider the root space

Vλ(g) = ker(g− λI )m+n
⊂ V . We have then V =

⊕
λ∈S(g) Vλ(g). Moreover, each Vλ(g)

splits as Vλ(g) =
⊕

i Vλ,i (g), where each subspace Vλ,i (g) corresponds to a Jordan block

with diagonal λ in the Jordan decomposition of g. The number of such subspaces

Vλ,i (g) (i.e. Jordan blocks) is the geometric multiplicity of λ, namely dim ker(g− λI ).
The collection of dimensions dim Vλ,i is the collection of partial multiplicities of λ.

Furthermore, the collection of partial multiplicities of λ ∈ S(g) agrees with the one

for λ
−1

.

We will use the canonical form of pseudo-unitary operators from [30, Theorem 5.15.1].

We will only need a weaker form and state it in the simplest form, though the statement

in [30] is more precise.

Proposition 4.8. Let g ∈ SU (m, n) have the set of Jordan blocks J1, J2, . . . , Ja+2b (where

a+ 2b 6 m+ n) and corresponding eigenvalues λ1, λ2, . . . , λa+2b, not necessarily distinct.

We suppose that |λ1| = |λ2| = · · · = |λa | = 1, |λa+2i−1| > 1 and λa+2i−1 = λ
−1
a+2i , for

1 6 i 6 b. Then there exists a non-singular matrix C such that the following two

conditions hold simultaneously:

C−1gC =
m+(g)⊕

i=1

λ ji K ji

m−(g)⊕
i=1

λsi Ksi

⊕
16i6b

(
λa+2i−1 Ka+2i−1 0

0 λ
−1
a+2i−1 Ka+2i

)
,
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C∗HC =
m+(g)⊕

i=1

Pji

m−(g)⊕
i=1

−Psi

⊕
16i6b

(
0 Pa+2i−1

Pa+2i 0

)
,

where we have the following:

1. The blocks K j are unipotent upper triangular matrixes (also called Toeplitz blocks),

for all j 6 a+ 2b.

2. Each matrix Pj is a permutation matrix of the form


0 0 0 · · · 0 1
0 0 0 · · · 1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 1 0 · · · 0 0
1 0 0 · · · 0 0

 having

the size of the Jordan block J j , for all j 6 a+ 2b.

3. The two sets { j1, j2, . . . , jm+(g)} and {s1, s2, . . . , sm−(g)} form a partition of

{1, 2, . . . , a}, so that m+(g)+m−(g) = a. The sign characteristic εi ∈ {±1} for

1 6 i 6 a is given by εi = 1 iff i ∈ { j1, j2, . . . , jm+(g)}.

4. The canonical form is unique, up to a permutation of equal Toeplitz blocks respecting

the sign characteristic.

When g is semi-simple the canonical form is simpler, as follows.

Corollary 4.1. Let g ∈ SU (m, n) be a semi-simple element with eigenvalues λi , 1 6 i 6
m+ n. Let us denote by λα, λ

−1
α , with α ∈ N (g) ⊂ {1, 2, . . . ,m+ n} those eigenvalues of

modulus different from 1, where |λα| > 1. Then there exists a non-singular matrix C such

that the following two conditions hold simultaneously:

C−1gC =
m+(g)⊕

i=1

(λ ji )⊕

m−(g)⊕
i=1

(λsi )⊕
⊕

α∈N (g)

(
λα 0

0 λ
−1
α

)
,

C∗HC =
m+(g)⊕

i=1

(+1)⊕
m−(g)⊕

i=1

(−1)⊕
⊕

α∈N (g)

(
0 1
1 0

)
.

Here the sets of indices { j1, j2, . . . , jm+(g)}, {s1, s2, . . . , sm+(g)} and N (g) form a partition

of {1, 2, . . . ,m+ n}. The canonical form is unique up to a permutation preserving the

eigenvalues and the sign characteristic.

Proof. This result seems to have been stated explicitly first by Krein (see [32]) for the

symplectic group and by Yakubovich in the present setting (see [49, p. 124]).

Definition 4.2. Let g be a semi-simple element of SU (m, n). The eigenvalues λi of g, for

i ∈ { j1, j2, . . . , jm+(g)}, i.e. those for which εi = +1, will be called positive (after Gelfand

and Lidskii, Krein and Yakubovich) and their positive multiplicity n+i is the multiplicity

among positive eigenvalues. By convention, the eigenvalues λα with |λα| > 1 are said

to be positive and their positive multiplicity coincides with the usual multiplicity. The
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remaining eigenvalues will be called negative eigenvalues of g. We will also denote by

n+(λ) the positive multiplicity of the eigenvalue λ (which is 0 for negative ones) of the

semi-simple g.

The positivity seems more subtle when g is not semi-simple. In fact, the signature of

each block ε j Pj equals 0 when its dimension n j is even and ε j , when its dimension n j

is odd, respectively. Further, the signature of

(
0 Pa+2i−1

Pa+2i 0

)
is always 0. Thus, every

eigenvalue involved in a Jordan block is positive with a positive multiplicity equal to

approximatively half of its partial multiplicity.

Lemma 4.2. Let g ∈ SU (m, n). Then in a suitable basis of V we can write simultaneously:

e(g) =
a⊕

i=1

diag(λi )
⊕

16i6b

diag
(
λa+2i−1

|λa+2i−1|

)
0

0 diag
(
λa+2i−1

|λa+2i−1|

)
 ,

H =
a⊕

i=1

εi X i
⊕

16i6b

(
I 0
0 −I

)
,

where diag(λi ) is a diagonal matrix of the size equal to the partial multiplicity ni of λi
and X i is the diagonal matrix of the same size with entries ±1 of signature 1

2 (1− (−1)ni ).

Proof. The proof is clear from the previous discussion.

Furthermore, the elliptic element e(g) is conjugate to some element
(

e(g)+ 0
0 e(g)−

)
of S(U (m)×U (n)), where e(g)+ ∈ U (m) corresponds to a maximal invariant positive

subspace of V for the Hermitian form H . The previous lemma gives an explicit formula

for e(g)+ in the form:

e(g)+ =
a⊕

i=1

diag+(λi )
⊕

16i6b

diag
(
λa+2i−1

|λa+2i−1|

)
,

where diag+(λi ) is a diagonal matrix of the size equal to its partial positive multiplicity,

defined as: n+i =

{
ni
2 , even ni
ni+εi

2 , odd ni
.

An immediate consequence is that

det(e(g)+) = exp

(
2π
√
−1

( a∑
i=1

n+i arg(λi )+

b∑
i=1

na+2i−1arg(λa+2i−1)

))
.

When g is already semi-simple, this formula simplifies to

det(e(g)+) = exp

2π
√
−1

 ∑
λ∈S(g)

n+(λ)arg(λ)

 .
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We formulate the result obtained so far in the following.

Lemma 4.3. For g ∈ SU (m, n) we have

φ(g) =
1

2π

( a∑
i=1

n+i arg(λi )+

b∑
i=1

na+2i−1arg(λa+2i−1)

)
∈ R/Z.

5. Evaluation of quasi-homomorphisms

5.1. Arithmetic properties of dimensions of conformal blocks

The aim of this section is to provide ground for the explicit computations of values of

quasi-homomorphisms in § 5.2. Our results here are far from being complete and might

only be seen as quantitative evidence in favor of various non-degeneracy conditions of

arithmetic nature.

5.1.1. Dimensions. The first step is an apparently unnoticed congruence satisfied by

the dimensions N (g, p) of the space of conformal blocks arising in the TQFT Vp. Before

proceeding, we need to introduce some notation.

We denote by θ(p) the order of the root of unity ζ
−12−p(p+1)
2p , where ζ2p is a primitive

2pth root of unity. Specifically, we have the following.

Lemma 5.1.

1. If p is odd we have:

θ(p) =

p, if g.c.d.(p, 6) = 1
p
3
, if p ≡ 0 (mod 3).

2. Assume p is even.

(a) If p = 12s, s ∈ Z

θ(p) =
{

2s, if s ≡ 0 (mod 2)
s, if s ≡ 1 (mod 2).

(b) If p = 4s, s ∈ Z, g.c.d.(s, 3) = 1

θ(p) =
{

2s, if s ≡ 0 (mod 2)
s, if s ≡ 1 (mod 2).

(c) If p = 6s, s ∈ Z, g.c.d.(s, 2) = 1 then θ(p) = 2s.

(d) If p = 2s, s ∈ Z, g.c.d.(s, 6) = 1 then θ(p) = 2s.

Proof. The proof is obtained by direct calculation.

Proposition 5.1. If g > 3 then

N (g, p) ≡ 0 (mod θ(p)).

If g = 2 then

10N (g, p) ≡ 0 (mod θ(p)).
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Proof. The universal central extension M̃g
u

is a subgroup of the central extension M̃g(12)
arising in the TQFT representation, which has Euler class 12 (see [39]). It was already

noticed in [15, 24] that the image ρ̃p(M̃g
u
) in the unitary group U (N (g, p)) is actually

contained in the subgroup SU (N (g, p)) for g > 3. This is a consequence of the fact that

M̃g
u

is perfect. The action of the central element of M̃g
u

is by means of the scalar matrix

ζ
−12−p(p+1)
2p (see e.g. [39]). This matrix has therefore unit determinant and hence the first

congruence follows. In the case g = 2 we have to use the fact that H1(M2) = Z/10Z and

follow the same lines.

We have also for small values of the genus g the following computations due to

Zagier [50]:

N (g, 2k) =


1
6 (k

3
− k), if g = 2

1
180 (k

2(k2
− 1)(k2

+ 11), if g = 3
1

7560 (k
3(k2
− 1)(2k4

+ 23k2
+ 191), if g = 4

and from [7]:

N (g, p) =
1
2g N (g, 2p), if p is odd.

Notice that, with the notations from [50] we have N (g, p) = D(g, k), when p = 2k and

N (g, p) = 1
2g D(g, p) if p is odd. As an immediate corollary, we obtain the following.

Lemma 5.2.

1. If g = 3 and p = 4n+ 2 or p = 8n± 3 then N (3, p) is odd.

2. If p = 5 then N (g, 5) is odd iff the genus g 6≡ 1 (mod 3).

Proof. Using the Verlinde formula (usually for even p) and the previous relation, we find

that the dimension N (g, 5) is given by

N (g, 5) =

(
5+
√

5
2

)g−1

+

(
5−
√

5
2

)g−1

.

Thus N (g, 5) is determined by the following recurrence with the given initial conditions:

N (g+ 1, 5) = 5N (g, 5)− 5N (g− 1, 5), N (1, 5) = 2, N (2, 5) = 5.

The mod 2 congruence follows by induction on g.

Corollary 5.1. The signature is non-zero (as needed in [10]) when N (g, p) is odd, and

thus for infinitely many values of g, p as in Lemma 5.2.

5.1.2. Signatures. The Verlinde formula for the dimensions N (g, p) admits

refinements for the case of the signatures σ(g, ζ2p) of the Hermitian forms Hζ in genus

g. Here the root of unity ζ2p is a primitive 2pth root of unity. More details will appear

in a forthcoming paper [12] devoted to this subject. The aim of this section is to gather

evidence to back up the following.
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Conjecture 5.1. Let us consider ζ a primitive 2pth root of unity, for prime p > 5 such

that neither ζ nor ζ is equal to Ap, for odd p and ±Ap, for even p, respectively. Then

for all g in some arithmetic progression, σ(g, ζ ) 6≡ 0 (mod p).

We have the following general behavior.

Proposition 5.2 [12]. For each p we have:

σ(g, p, ζ ) =
[

p−1
2 ]∑

i=1

λi (ζ )
g−1,

where λi (ζ ) runs over the set of roots of some polynomials Pζ with integer coefficients.

Remark 5.1. Observe that N (1, p) = [ p−1
2 ], which corresponds to the fact that

σ(g, p, ζ ) = N (1, p) for any ζ , because the genus one Hermitian form Hζ is always

positive, as the image of the quantum representations is always finite (see e.g. [27]).

In this section, we will denote by ζ2p = exp(π i
p ) the principal primitive root of unity.

The other primitive roots of unity are of the form ζ k
2p, with odd k. Moreover, it is enough

to restrict to the case when k ∈ {1, 3, 5, . . . p− 1}. Recall that P
ζ

p−1
2

2p

for p ≡ −1 (mod 4)

and P
ζ

p+1
2

2p

for p ≡ 1 (mod 4), respectively, are the polynomials associated to the unitary

TQFTs, thereby computing the dimensions of the space of conformal blocks according to

the Verlinde formula. With the help of a computer program run by F. Costantino, one

finds the following.

Example 5.1. 1. Let p = 5.

(a) We have

Pζ10 = x2
− 3x + 3

and the first terms of the sequence σ(g, 5, ζ10), g > 1 are

2, 3, 3, 0,−9,−27,−54,−81,−81, 0, 243.

(b) Further

Pζ 3
10
= x2

− 5x + 5

and the first terms of the sequence σ(g, 5, ζ10), g > 1 are the dimensions N (g, 5):

2, 5, 15, 50, 175, 625, 2250, 8125, 29 375, 106 250, 384 375.

2. Let p = 7.

(a) We have

Pζ14 = x3
− 8x2

+ 23x − 23

and the first terms of the sequence σ(g, 7, ζ14), g > 1 are

3, 8, 18, 29, 2,−237,−1275,−4703,−13 750,−31 156,−41 167.
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(b) Also

Pζ 3
14
= x3

− 14x2
+ 49x − 49

and the first terms of the sequence σ(g, 7, ζ 3
14), g > 1 are given by the dimension

N (g, 7):

3, 14, 98, 833, 7546, 69 629, 645 869, 6000 099, 55 765 626, 518 361 494,
4818 550 093.

(c) Eventually, we have

Pζ 5
14
= x3

− 6x2
+ 23x − 23

and the first terms of the sequence σ(g, 7, ζ 5
14), g > 1 are

3, 6,−10,−129,−406, 301, 8177, 32 801, 15 658,−472 404,−2440 135.

3. Let p = 9.

(a) We have

Pζ18 = x4
− 16x3

+ 97x2
− 257x + 257

and the first terms of the sequence σ(g, 9, ζ18), g > 1 are

4, 16, 62, 211, 446,−1509,−29 113,−259 040,−1823 114,−11 137 172,
−60 443 933.

(b) Further

Pζ 5
18
= x4

− 30x3
+ 243x2

− 729x + 729

and the first terms of the sequence σ(g, 9, ζ 5
18), g > 1 are the dimensions N (g, 9):

4, 30, 414, 7317, 137 862, 2637 765, 50 664 771, 974 133 540, 18 734 896 134,
360 344 121 174, 6930 952 607 259.

(c) Eventually

Pζ 7
18
= x4

− 10x3
+ 101x2

− 257x + 257

and the first terms of the sequence σ(g, 9, ζ 7
18), g > 1 are

4, 10,−102,−1259,−746, 90 915, 687 147,−2179 104,−67 636 010,
−303 038 972, 3064 220 783.

Remark 5.2. We have Pζ = Pζ . Moreover, for even p we also have Pζ = P−ζ .

Proposition 5.3. Conjecture 5.1 is true for p ∈ {5, 7, 9}.

Proof. We obtain from above that the sequence σ(g, ζ10) (mod 5), g > 1 is periodic with

period 24 and its terms read:

2, 3, 3, 0, 1, 3, 1, 4, 4, 0, 3, 4, 3, 2, 2, 0, 4, 2, 4, 1, 1, 1, 0, 2, 1, 2, 3, . . . .

Therefore σ(g, ζ10) ≡ 0 (mod 5) if and only if g (mod 24) ∈ {4, 10, 16, 22}.
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Furthermore, for p = 7 the sequence σ(g, ζ14) (mod 7), g > 1 is periodic with period

12 and its first terms read:

3, 1, 4, 1, 2, 1,−1, 1, 5, 1, 0, 1, 3, 1, 4, . . . .

Thus σ(g, ζ14) ≡ 0 (mod 7) if and only if g ≡ 11 (mod 12).
The sequence σ(g, ζ 3

14) (mod 7), g > 1 is eventually periodic. One can check that

σ(g+ 36, ζ 3
14) ≡ σ(g, ζ

3
14) (mod 7) for g > 55.

A more conceptual proof is as follows. It suffices to show that Pζ (0) is invertible (mod p).
The vector vg = (σ (h, ζ )h∈{g,g+1,...,g+[ p−1

2 ]−1}) is obtained from v1 by means of the formula

vg = Mg
ζ v1,

where Mζ is the companion matrix associated to Pζ . Therefore det Mζ = Pζ (0). If the

determinant is invertible mod p then the sequence of vectors Mg
ζ v1 cannot contain the

null vector mod p. But this sequence is eventually periodic. Therefore for g in some

arithmetic progression σ(g, ζ ) is non-trivial mod p. Using the explicit values of Pζ , one

settles immediately the cases p ∈ {5, 7, 9}.

5.2. Proof of Theorem 1.2

Recall from § 4.1 that we have a homogeneous quasi-homomorphism Lζ : M̃g → R
associated to a primitive 2pth root of unity ζ . Consider the map

lζ = Lζ |ker ρ̃p : ker ρ̃p → R.

Lemma 5.3. We have lζ ∈ Hom(ker ρ̃p,R)M̃g
u
, namely lζ is a group homomorphism

invariant by the conjugacy action of M̃g
u
.

Proof. The boundary of Lζ is ρ̃∗p(cSU (m,n)), which obviously vanishes on ker ρ̃p, namely

ρ̃∗p(cSU (m,n))(x, y) = 0, if either x or y ∈ ker ρ̃p.

This implies that lζ is a homomorphism.

Eventually recall that Lζ is a homogeneous quasi-homomorphism and thus it is a class

function. This implies that lζ is also a class function.

Recall from the proof of Proposition 2.1 that there is an isomorphism

ι : Hom(ker ρ̃p,R)M̃g
u
→ H2(ρ̃p(M̃g

u
),R).

We want to show that lζ 6= 0 and consequently ι(lζ ) ∈ H2(ρ̃p(M̃g
u
),R) is not vanishing.

Denote by h+g (ζ ) the dimension of the maximal positive subspace of the Hermitian

form Hζ .

Proposition 5.4. Suppose that h+g (ζ ) 6≡ 0 (mod p), p > 5 prime. Then ι(lζ ) 6= 0 ∈
H2(ρ̃p(M̃g

u
);R).
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Proof. Let c denote a generator of the center of M̃g
u
. We know that ρ̃p,ζ (c) = ζ−12

(see [39]), when p is odd. The formula of Proposition 4.2 yields

Lζ (c) ≡ −12h+g (ζ )arg(ζ ) (mod 2πZ).

Now, if Lζ (c) 6≡ 0 ∈ R/2πZ, then Lζ (c) 6= 0. This implies that Lζ (cn) 6= 0 for any n 6= 0.
Recall that cp

∈ ker ρ̃p,ζ . Thus lζ (cp) 6= 0 so that lζ is not identically zero, as claimed.

Proposition 5.5. If p ∈ {5, 7, 9} then lζ2p is non-zero for infinitely many values of g in
some arithmetic progression.

Proof. According to Proposition 5.4, it suffices to show that h+(ζ2p) 6≡ 0 (mod p). We
proved in Proposition 5.1 that N (g, p) ≡ 0 (mod p), so that this condition is equivalent to
proving that σ(g, ζ2p) 6≡ 0 (mod p). But this last statement is part of Proposition 5.3.

End of the proof of Theorem 1.2. From Proposition 5.5 and the proof of Proposition 2.1
we obtain that lζ2p is non-zero and hence a non-trivial class in H2(ρ̃p(M̃g

u
),R) for

infinitely many values of g and p ∈ {5, 7, 9}.

Remark 5.3. The same method provides examples when Lζ (T
p
γ ) 6= 0, and hence slightly

better lower bounds for the rank of H2(ρ̃p(M̃g
u
),R).

Remark 5.4. If we were able to show that there is at least one non-trivial
quasi-homomorphism on ρp,ζ (Mg) then it would follow that this group cannot be an
irreducible higher rank lattice in a semi-simple Lie group, according to the result of
Burger and Monod from [11].
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