

Neuroadaptive control of elastic-joint robots using robust
performance enhancement
C.J.B. Macnab and G.M.T. D’Eleuterio
University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Downsview, ON, M3H 5T6 (Canada)

(Received in Final Form: October 4, 1999)

SUMMARY
A neuroadaptive control scheme for elastic-joint robots is
proposed that uses a relatively small neural network.
Stability is achieved through standard Lyapunov techniques.
For added performance, robust modifications are made to
both the control law and the weight update law to
compensate for only approximate learning of the dynamics.
The estimate of the modeling error used in the robust terms
is taken directly from the error of the network in modeling
the dynamics at the currant state. The neural network used
is the CMAC-RBF Associative Memory (CRAM), which is
a modification of Albus’s CMAC network and can be used
for robots with elastic degrees of freedom. This results in a
scheme that is computationally practical and results in good
performance.

KEYWORDS: Neuroadaptive control; Elastic-joint robots; Neural
network; Performance enhancement

1. INTRODUCTION
The precision control of elastic-joint robots has become of
interest to a wide sector of the robot control community.
Robots with harmonic drives in their joints are becoming
increasingly popular because of their ability to provide in-
line gear reduction at high efficiency. The price paid is
structural flexibility in the joints. Flexibility results in both
tracking error and unwanted vibrations when a simple
controller, such as a PID controller, is used. An advanced
control strategy that can effectively control the elastic
degrees of freedom is highly desirable. One such control
strategy is based on Lyapunov stability theory. It takes
advantage of the mathematical form of highly geared
elastic-joint robots in a method reffered to commonly as
backstepping.1 This method can be model-based,2 robust,3

adaptive,4 or neuroadaptive.5 We are specifically interested
in achieving high tracking accuracy with an unknown
model, limiting us to an adaptive, neuroadaptive, or robust
approach. Unfortunately, an adaptive control approach
carries excessive computational burden for the control of
multilink manipulators. The neuroadaptive method poten-
tially offers a practical approach; it relies on many simple
calculations that can be executed in parallel. Even so, the
size of the neural network must be kept within reason when
serial processors are used. In addition, many neural-network
schemes to date require very large training times, a
procedure that may not be realistic for a robot on the job

site. Robust methods offer an alternative solution; the
control can be made robust to model uncertainty. However,
a conservative estimate of the uncertainties must be used,
which limits performance.

The aim of this paper is to develop a control method that
delivers good performance using a small-sized neural
network capable of learning only a rough approximation of
the dynamics. In this way learning can take place quickly,
and on-line computations at a high frequency become
realistic. The modeling error of the neural network is
measured on-line and used to make the performance robust
to the shortcomings of the neural network. The method is
still applicable, however, to larger neural networks. As more
basis functions are added to the network, they will quite
naturally contribute more to the control.

The solution to this problem is provided by developing a
training/control method in conjunction with a neural-
network structure. For training, a neuroadaptive
backstepping scheme is used to guarantee stability, which
uses a previously developed robust weight update known as
“leakage”.6,7 The stabilizing weight update is augmented
with an on-line learning term which speeds up the
convergence of the system. Also, the error in the on-line
learning is used as an estimate of model error, and is used in
a robust control term in order to compensate for the neural
network’s shortcomings. In addition, the robust leakage
term is modified to provide better learning. Thus, only
enough basis functions are needed in the neural network to
get a rough estimate of the dynamics and the robust terms
compensate for the difference. This results in dramatically
less basis functions neede in the neural network.

The Cerebellar Model Arithmetic Computer (CMAC)
developed by Albus8,9 is a type of neural network partic-
ularly suited to robotic control. It learns much faster than a
multilayer perceptron and uses far less computational time
than radial-basis-function associative memories. It has been
successfully applied to rigid-robot control by many, includ-
ing Miller10,11 and Graham and D’Eleuterio.12 In fact, it is
Miller’s learning scheme that is now commonly used. This
control scheme is normally characterized by learning a
trajectory quickly while using relatively few on-line basis
functions. It would be desirable to recapture these controller
qualities in the case of elastic-joint robots. Unfortunately,
the CMAC scheme may result in instability when applied to
robots with elastic degrees of freedom. To obtain stability,
the CMAC is combined with radial basis functions (RBFs)
to obtain the CMAC-RBF Associative Memory (CRAM).13

Robotica (2001) volume 19, pp. 619–629. Printed in the United Kingdom © 2001 Cambridge University Press

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

The result is CMAC-like structure capable of trajectory
learning.

2. RIGID ROBOT

2.1. Control Lyapunov function
Consider the equations of motion for an n-link rigid robot:

M(�)�̈+ f(�, �̇)=u, (1)

where

���n contains the angles between links,
M(�)��n�n is the inertia matrix,
f(�, �̇)��n contains (nonlinear) forces,
u��n contains the control torques.

The state space representation of (1) can be given as

x1 =
�

�, X2 =
�

�̇. (2)

Given the time-dependent desired trajectory and its deriva-
tives in joint coordinates as �d, �̇d, �̈d, then the auxiliary
error, as in Slotine and Li,14 is defined as

z =� �(x1 ��d)+(x2 � �̇d)=�e1 +e2,

where � is a positive-definite matrix. We are interested in
driving the errors in z to zero using a neural-network
controller. Consider the control Lyapunov function

V=
1
2

zTMz+
1

2�
w̃Tw̃. (3)

where � is a positive constant, and w̃ is a vector containing
the weight errors of the neural network. Then the time
derivative is

V̇=zT�Mż+
1
2

Ṁz��
1
�

w̃Tw̃. (4)

Consider that the unknown function in (4) can be written
as

Mż+
1
2

Ṁz=M(�e2 � �̈d)� f+u+
1
2

Ṁz. (5)

We are interested in using a neural network to model the
unknown (nonlinear) functions in (5). The output of an
associative-memory neural network with n inputs and m
basis functions can be described by �ŵ. The term ��Rn� m

contains the state dependant basis functions. The vector
ŵ�Rm contains the weights in the network, considered to
be estimates of the “ideal” weights. The vector w is used to
describe the “ideal” weights given a certain �, that results in
the best approximation. The error in the weights is then
denoted w̃=w� w̃. Now (5) is rewritten with the neural
model as

Mż+
1
2

Ṁz=�(x1, x2, �d, �̇d �̈d)w+d+u, (6)

where �w is the best neural model (given �) and d is the
disturbance error due to modeling limitations of a finite

number of basis functions in �. Neural-networks are
capable of uniform approximation of nonlinear functions
within a certain region of input space. Within this region of
uniform approximation d will be bounded so that d�dmax.
To use adaptive control techniques (4) is rewritten using the
relation w= w̃+ w̃ as follows:

V̇=zT(�w̃+d+u)+ w̃T ��Tz�
1
�

˙̂w�. (7)

The task is now to choose a control u and weight update ˙̂w
to ensure V̇<0, which ensures asymptotic stability. Also of
great interest are modifications to u and ˙̂w that improve the
performance without effecting the stability.

2.2. Stability
2.2.1. Dead-band. Consider the control

u=��w̃�Gz, (8)

where G is positive definite, with weight update
˙̂w=��Tz, (9)

then if d=0, i.e. perfect modeling capability is assumed as
in adaptive control,

V̇=�zTGz. (10)

Thus V̇�0, and is only negative semidefinite because there
is no dependence on w̃. According to a standard Lyapunov-
like analysis,15 z→0 and ˙̃w→0 as t→ ∞ . In other words,
the error will go to zero, but the model will not necessarily
converge to the correct weights. Note that d will always
exist in neural-network control because, even in simulation,
a finite number of basis functions will have approximation
errors. In this case

V̇=�zTGz+zTd. (11)

If we know the disturbance term is bounded, i.e. we are in
the region of uniform approximation, such that

�d��dmax, (11)

then

V̇� �z�(�z��min(G)�dmax), (12)

where �min(G) is the minimum eigenvalue of G (assuming G
is chosen to be symmetric). When �z�<dmax/�min(G) then V̇ is
no longer less than zero. In this case we get what is referred
to as parameter drift. That is, when the error gets close to
zero, the parameters drift towards infinity. To prevent this
effect, we can simply implement a dead band in the weight
update

˙̂w=���Tz
0

if �z�>dmax/�min(G)
otherwise.

(13)

Such a method has been used for some time in adaptive
control. One drawback, however, is that normally a very
conservative estimate of dmax must be used.

2.2.2. Robust control. Consider the modified robust con-
trol

Neuroadative control620

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

u=��w̃�
dmaxz
�z�

�Gz, (14)

where the second term dmaxz/�z� is referred to as min-max
control,16 and we have the same weight update as before,

˙̂w=��Tz. (15)

Then

V̇=�zTGz+zTd�
dmaxz

Tz
�z�

, (16)

and

V̇�� �z�(�min(G)�z�+dmax � �d�) (17)

Since dmax ≥ �d� we know V̇ ≤ 0. In reality it is undesirable
(and perhaps impossible) to have such a sharp transition in
the control force since it results in torque chatter when the
error is small. That is why a robust term like

u=��ŵ�
dmaxz
�z�+�

�Gz (18)

is used where � is a small positive number. This is referred
to as saturation-type control.17 Now

V̇=�zTGz+zTd�zTz
dmax

�z�+�
, (19)

�� �z�2�min(G)+ �z�dmax �
�z�2dmax

�z�+�
, (20)

�� �z�2�min(G)+
�z��

�z�+�
dmax . (21)

The point is that when �	1 then

�z��
�z�+�

	1,

so that the new disturbance term is made much smaller than
the original d. However, when

�z����2/2+�dmax

�min(G)
�

�

2
, (22)

we no longer have a negative-semidefinite Lyapunov
derivative, and parameter drift will again occur. To eliminate
this, one can choose a dead band based on (22), which is
much smaller than before. To obtain even smoother
transition in the torque, the robust control term can be
choosen to be

u=��w̃�
d 2

maxz
dmax�z�+�

�Gz. (23)

2.2.3. Robust weight update. Consider again the original
control

u=��w̃�Gz, (24)

and modified robust weight update
˙̂w=�(�Tz�v�z�w̃). (25)

Adding a penalty of form � w̃ to adaptive update rules was
the idea of Ioannou,6 and was referred to as leakage, since
it creates a “leaky” integrator. Narenda and Annaswamy7

multiplied this by �z�, a technique often referred to as �-
mod. As we shall see, this eliminates the parameter drift
effect. The resulting Lyapunov derivative is

V̇=�zTGz+zTd+v�z�w̃Tw̃. (26)

Using the fact that w̃=w� w̃,

V̇=�zTGz+zTd+v�z�w̃Tw̃�v�z�w̃Tw̃. (27)

We assume disturbance and ideal weights are bounded as

�d��dmax, �w��
max,

then using the relations

w̃Tw� �w̃� �w�, w̃Tw̃= �w̃�2,

we have

V̇�� �z�[�min(G)�z��dmax +v�w̃�(�w̃��
max)], (28)

and

V̇�� �z� ��min(G)�z��dmax +v ��w̃��

max

2 �2

�
v
2

max

4 �.

(29)

We can ensure that V̇<0 when

�z�>(v
2
max/4+dmax)/�min(G), (30)

or

�w̃�>
max/2+	
2
max/4+dmax/v. (31)

Thus outside a region B defined by (30) and (31), V̇<0. As
t→ ∞ then �z�, �w̃�→B. This also implies that V is
bounded, in turn implying that �z� �w̃� have uniform ultimate
boundedness (UUB).18 In this way we have assured that the
weight remains bounded inside a region, and have thus
eliminated the effect of parameter drift. Notice that the size
of �z� as t→ ∞ can be made arbitrarily small by picking
large enough G. However, no similar method exists for �w̃�.
Thus the neural network will still not learn the correct
weights, although this is not the control objective. To learn
the correct weights, a persistence of excitation condition on
the input is needed.15

2.3. Performance
Lyapunov functions are excellent for stability analysis.
Quantifying performance is more difficult. In general, the
larger the magnitude of V̇<0, the better the performance. In
this paper, performance-oriented modifications will be made
that do not affect the stability analysis, and performance
improvement will simply be demonstrated using simula-
tions.

2.3.1. Optimal control. Consider the case where d=0, and
apply control

Neuroadative control 621

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

u=���ŵ�Gz
�Gz

if zT�ŵ�0
otherwise.

(32)

Since this guarantees that V̇�0, no change in the stability
analysis has occurred. However, the effect has been to not
apply the control when V̇ is less than zero already. The term
optimal can be used since it limits the control effort.19 Also,
the performance is improved, as can be seen by demonstra-
tion in Section 5.

Again, sharp changes in the control are usually impos-
sible, or at least undesirable. For a modification to keep the
torques smooth consider the function

s=
1
1
� zT�w̃+1

0

if zT�w̃>0,

if ��>zT�w̃�0,
otherwise,

(33)

where � is a positive constant. The smooth control

u=�s�ŵ�Gz (34)

replaces (32).

2.3.2. On-line, direct learning. In previous methods of
neural network control, like Miller’s CMAC training
scheme,10,11 the neural network learns the inverse dynamics
of the current state directly and relies on generalization for
learning of the desired trajectory’s inverse dynamics. This
type of learning was modified for continuous time modeling
and shown to be Lyapunov stable by Macnab and D’Ele-
uterio.13 A similar type of scheme was developed for
adaptive control by Slotine and Li,20 which uses a filter to
eliminate acceleration measurement as well as a learning
gain matrix calculated using a recursive least squares
estimate.

Assuming perfect modeling ability, we have

Mż+
1
2

Ṁz=�(x1, x2, �d, �̇d, �̈d)w+u. (35)

On the desired trajectory, e1 =e2 =z1 =0 and (35) becomes

M(ẋ2 � �̈d)=�w+u. (36)

To ensure (ẋ2 � �̈d)=0, i.e. to stay on the trajectory, the
proper control is u=��w. Thus at z1 =0, we have ��w as
the inverse dynamics, that is the control force needed to
achieve a desired acceleration. The trick is to assume we are
already following the desired trajectory, and by denoting the
basis functions at this state as � we have

�(x1, x2, x1, x2, ẋ2)w=�u. (37)

The weights are easy to learn using gradient descent:

˙̂w=��T(�u��w̃). (38)

The idea is that learning done at � will genererlize to � on
the actual desired trajectory. Note that ẋ2 is an acceleration.
If acceleration cannot be measured, it must be estimated.
Yet, this estimate is not being used to provide stability, but
rather performance. Thus a noisy estimate is not necessarily
a problem.

Let us examine the effect on stability, assuming we have
control

u=��w̃�Gz, (39)

and modified weight update that includes on-line, direct
learning

˙̂w=� [�Tz�v�z�ŵ+��z��T(�u��w̃)]. (40)

Then using w̃=w� w̃,

V̇=�zTGz+zTd+ �z�w̃T[vw+��T(�u��w)]

� �z�w̃T(Iv+��T�)w̃. (41)

We can denote

� =
�

�u��w, (42)

where � is a term like d that represents shortcomings in the
basis functions, and as well as, in this case, any errors from
estimation of ẋ2. Since �T� is a positive-semidefinite
matrix, it can help the performance, but the stability based
on a worst-case scenario is derived from

V̇�� �z�[�min(G)�z��dmax + �w̃���max(�T�)

+v�w̃�(�w̃��
max)], (43)

resulting in slightly larger maximum bounds than in (30)
and (31).

2.3.3. Modeling error robust compensation. We will now
take advantage of the error produced in the Miller style
learning to create a robust control term that compenstaes for
the imperfect modeling ability of the neural network. This is
the first of the original contributions in this paper. The
scheme is illustrated for clarity in Figure 1. Let us define the
error

r =� �u��w̃. (44)

In the on-line, direct learning the control u is used as a
measurement of �w to learn this function directly with
gradient descent. Thus when the function has been learned,
i.e. �ŵ approximates �w, we can write

r
�u��w
d. (45)

The idea, then, is to use r as an estimate of how well the
neural network is capable of learning the functions along the
desired trajectory. Thus a robust term can be used in the
control which leads to

u=��ŵ�
�r�z

�z�+�
�Gz, (46)

where �r� must obviously be calculated using a previous
value or values of the control u. In this paper, a simple time
delay is assumed of the same discreate time step, h, at which
neural network is operating, so that �r� is in reality
�r(t�h)�. Early in learning when �ŵ does not approximate
�w yet.

�r�> �d�, (47)

and later when �ŵ approximates �w,

�r�
�d�. (48)

Neuroadative control622

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

So early in learning this acts simple as a robust control term
that compensates for the fact that the dynamics are as yet
unlearned. Later in learning, it compensates for the
shortcomings of the approximation ability of the network.

Let us denote

� =
�

dmax �
�r� �z�
�z�+�

. (49)

We can safely assume that later in learning

�max	dmax, (50)

so that the disturbance term in the steady state has been
dramatically reduced. Combined with the previous modified
weight updates, (40), the Lyapunov derivitive, continuing
from (43), is now

V̇�� �z���min(G)�z���max

+�	v�w̃��
��max(�T�)+v
max

2	v �2

�
(��max(�T�)+v
max)

2

4v �.

We can ensure that V̇<0 when

�z�>
1

�min(G) �(��min(�T�)+v
max)
2

4v
+�max�, (51)

or

�w̃�>
1

	v �(��max(�T�)+v
max

2	v

+��max +
(��max(�T�)+v
max)

2

4v �1/2� (52)

The result is that arbitrary performance criteria can be met
with less cost in torque chatter than with a strictly robust
type of scheme.

2.4. Modified robust weight update
This section introduces the second original contribution of
the paper. The leakage term used to provide robustness in
the weight update is not ideal. Qualitatively, it is trying to
force the weights in ŵ to zero. Consider, instead

˙̂w=� [�Tz�v�z�(ŵ��)]. (53)

where � is to be selected. If the robust control, (46), is used
then the bounds for V̇<0 in equations (30), (31) become

�z�>(v�w���2
max/4+�max)/�min(G), (54)

or

�w̃�> �w���max/2+	�w���2
max/4+�max/v. (55)

In the previous result, w̃ could not be arbitrarily reduced.
Now, however, by choosing � close to ŵ, the bound of w̃
can be substancially reduced. It appears that � must be a
constant to guarantee stability. This will be useful when
some type of off-line pretraining is used (a common
technique) and then such an estimate �= ŵ0 exists at the
start of the on-line training phase. Consider, however, an on-
line modification of the form

�= ŵ, when �z�> �r�/�min(G), (56)

and

�̇=0, otherwise. (57)

Thus, when �z�> �r�/�min(G), no leakage at all is applied. In
this case, stability is guaranteed for �z�>�max/�min(G). We
argue that �r� is a very conservative estimate for �max, and
thus stability is guaranteed. When �z� ≤ �r�/�min(G), � is a
constant that is somewhat close to ŵ and the bound for �w̃�,
is reduced.

3. ELASTIC-JOINT ROBOT
The advantage in developing such a Lyapunov based control
strategy for a rigid robot is that it becomes straightforward
to apply it to an elastic-joint robot using the technique of
backstepping.1 The equations for an n-link elastic-joint
robot, shown in Figure 2, with large gear ratios can be
written as in Spong21 and they are

Fig. 1. High performance neurocontrol scheme for rigid robot.

Neuroadative control 623

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

M�̈+ f1(�, �̇)+K(���)=0, (58)

J�̈+ f2(�, �̇)�K(���)=u, (59)

where new variables introduced are � which contain the
motor angles after gear reduction, f1, f2��n which contain
(nonlinear) forces, K��n�n, a constant diagonal matrix of
joint stiffnesses, and J��n� n, a constant diagonal matrix of
joint inertias after gear reduction. Defining the state
variables as

x1 =
�

�, x2 =� �̇, x3 =
�

�, x4 =� �̇,

then the errors are defined as

e1 =
� x1 ��d e2 =

� x2 � �̇d ,

and

z1 =
�

�e1 +e2 , z2 =
� x3 �x*3, z3 =

� x4 �x*4,

where x*3, x*4 are considered to be virtual control terms and
must be calculated on-line.

The unknown functions can be written as

K�1Mż1 +
1

2
K�1Ṁz1 =�1w1 �x1 +(z2 +x*3), (60)

ż2 =�2w2 �x2 + (z3 +x*4), (61)

Jż3 =�3w3 +u, (62)

where the terms �iwi are used to represent

�1w1 = K�1M(e2 � q̈d)�K�1f1 +
1

2
K�1Ṁz1, (63)

�2w2 = � ẋ*3 +x2, (64)

�3w3 = �Jẋ*4 � f2 +K(x1 �x3), (65)

and the explicit dependencies are

�1(x1, x2, �d, �̇d, �̈d),

�2(x1, x2, x3, �d, �̇d, �̈d, �
(3)
d),

�3(x1, x2, x3, x4, �d, �̇d, �̈d, �
(3)
d , � (4)

d),

In this paper, the basis functions will not depend on � (3)
d ,

� (4)
d . This is justified in a neural-network scheme because the

input variables simply act to index the memory. As long as

the inputs �d, �̇d, �̈d uniquely define the trajectory, no other
imformation is needed.

3.1. Stability
A controller can be defined as follows: the stabilizing virtual
control terms are

x*3 =��1ŵ1 +x1 �G1z1, (66)

x*4 =��2ŵ2 +x2 �z1G2z2, (67)

where terms G1, G2 are positive-definite gain matrices. The
stabilizingt control term is

u=��3ŵ3 �z2 �G3z3. (68)

The stabilizing weight update laws are

˙̂wi =�(�T
i zi �v�z�ŵi), for i=1, 2, 3 (69)

where z=col{z1, z2, z3}, � is a positive constant used as an
adaption or learning gain, and v is a small positive constant.
To see this, consider the Lyapunov function,

V=
1
2

zT
1K

�1Mz1 +
1

2
zT

2z2 +
1
2

zT
3Jz3 +

1
2 �

3

i=1

1
�

w̃T
i w̃i. (70)

The time derivative is

V̇=zT
1(�1w1 +d1 �x1 +z2 +x*3)+zT

2(�2w2 +d2 �x2 +z3 +x*4)

+zT
3(�3w3 +d3 +u)� �3

i=1

1
�

w̃T
i

˙̂wi , (71)

where the terms di are disturbances due to modeling
limitations in �i. To use adaptive control the equation is
rewritten using the relation wi = w̃i + ŵi as follows

V̇=zT
2(�1ŵ1 +d1 �x1 +z2 +x*3)+zT

2(�2ŵ2 +d2 �x2 +z3 +x*4)

+zT
3(�3ŵ3 +d3 +u)+ �3

i=1

w̃T
i (�

T
i zi �

1
�

˙̂wi). (72)

The control terms (66)–(68) and parameter updates (69)
substituted in (72) result in

Fig. 2. Planar, two-link elastic-joint robot.

Neuroadative control624

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

V̇=�zTGz+zTd+v�z�w̃Tŵ, (73)

where

G=diag{G1, G2, G3},

d=col{d1, d2, d3},

w=col{w1, w2, w3}.

In the same manner as before, we can ensure that V̇<0
when

�z�>(v
2
max/4+dmax)/�min(G), (74)

or

�w̃� >
max/2+	
2
max/4+dmax/v. (75)

Thus V̇(z, w̃)<0 outside a compact set B. The same
conclusions apply as for the rigid case. In particular, we can
ensure that the state converges arbitrarily close to the
trajectory by increasing G, but we cannot not guarantee that
the neural network weights will come close to their correct
values.

3.2. Performance
We can add our performance modifications quite simply.
Consider with perfect modeling that

K�1Mż1 +
1
2

K�1Ṁz1 = �1(x1, x2, �d, �̇d, �̈d)w1 �x1 +x3. (76)

When e1 =e2 =z1 =z2 =0, the function is evaluated at the
actual, instead of the desired, states, and for ease of
presentation it will be denoted �1. Then we have

�1(x1, x2, x1, x2, ẋ2)w1 =x1 �x3, (77)

and the error function

r1 =(x1 �x3)��1ŵ1. (78)

The same method can be used for ŵ3 since ideally

Jż3 =�3(x1, x2, x3, x4, �d, �̇d, �̈d)w3 +u. (79)

Again, at zero error the result is

�3(x1, x2, x3, x4, x1, x2, ẋ2)w3 =�u, (80)

with error function

r3 =�u��3ŵ3. (81)

The updates for ŵ2 can be done in a more straightforward
manner since

�2w2 =� ẋ*3 +x2. (82)

The value of ẋ*3 can be estimated by differentiation. The
error is

r2 =(� ẋ*3 +x2)��2ŵ2. (83)

The optimal control term factor is calculated as before,

si =
1
zT

i �iŵi /�i +1
0

if zT
i �iŵi >0,

if ��i <zT
i �iŵi �0,

otherwise,

for i=1, 2, 3, (84)

Now consider the virtual controls and the actual control

x*3 =�s1�1ŵ1 �
�r1�z1

�z1�+�
+x1 �G1z1 , (85)

x*4 =�s2�2ŵ2 �
�r2�z2

�z2�+�
+x2 �z1 �G2z2, (86)

u=�s3�3ŵ3 �
�r3�z3

�z3�+�
�z2 �G3z3, (87)

along with the weight updates,

˙̂w=�(�T
i zi �v�z�(ŵi ��i)+��z��i

Tri) for i=1, 2, 3. (88)

where �i is chosen as in Section 2.4. Considering that the
errors can be denoted

ri =�iw̃+�i, i=1, 2, 3 (89)

�i =dmax �
�ri� �zi�
�zi�+�

, i=1, 2, 3 (90)

where �i are disturbances due to modeling limitations and
perhaps differentiation, then using the notation

�=col{�1, �2, �3}, (91)

�=diag{�1, �2, �3}, (92)

the Lyapunov derivative is

V̇=�zTGz+z�+ �z�w̃T[v(w��)+��T�]

� �z�w̃T(v1+��T�)w̃, (93)

which can be bounded as in the rigid case:

V̇�� �z�[�min(G)�z���max + �w̃���max(�T�)

+v�w̃�(�w̃�� �w̃���max)], (94)

and the stability result is achieved as in the rigid case.

4. CRAM
In the previous section, the theory has been developed for
stable nueral-network control for a generalized associative
memory. In fact, this theory is easily extended to multilayer
perceptrons.22 The important assumption is that the basis
functions used are global in nature. However, the CMAC
network contains strictly “hypercube” basic function. It can
easily be demonstrated that this leads to instability when
applied to a plant with elastic degree of freedom. In this
section, a proposed hybrid of CMAC and RBF structures is
described that is stable and also reproduces some of the
desirable properties of the CMAC.

Let us first discuss why multilayer perceptrons may not
be suitable for robotic control even though they are popular
in the literature. Multilayered perceptrons (MLPs) learn
relatively slowly and a great number of learning trials is
needed to learn a robotic trajectory. A real robot moves
slowly enough that long training times are impractical to
accomplish. Qualifications to this are vibrational dynamics
and motor dynamics where one can easily have many
repetitions in a short time span. It is desirable in a robotic

Neuroadative control 625

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

system to be able to learn a trajectory in only a few learning
trials. RBF (associative memory) networks have also been
proposed in the literature.23 The associative-memory
approach learns much faster than the MLP approach
however, RBF networks suffer from the curse of dimension-
ality. That is, the number of basis functions needed to
approximate a function increases exponentially with the
number of inputs. Thus for multilink robotic systems with
full state input even careful placement of RBFs will result in
a computationally intensive controller. To save memory,
some sort of local functions must be used, as in the CMAC
algorithm.

The reason that CMACs are unstable for flexible systems
is that the state can input oscillate between discrete
hypercube functions. Consider a CMAC that only has the
desired coordinates as inputs, and those desired coordinates
have no frequency content close to the natural frequencies
of the system. In this case, the control will not excite the
unstable dynamics. The restriction imposed is that only
simple trajectories can be learned. However, this describes
the type of task required for the vast majority of typical
manipulator operations. For stability, the basis functions
must also have knowledge of the currant state. This can be
accomplished with the proposed CMAC-RBF Associative
Memory (CRAM). Each CMAC cell has an RBF associated
with it. The state variables are input to RBFs whose centers
are placed dynamically at the point when the associated
CMAC cell is activated. In this way, excellent function
approximation is possible. A small disturbance is introduced
over learning trials because each RBF center changes
position each time a CMAC cell reentered. Overall, the
resulting network is able to handle flexibilities while
maintaining the efficient memory structure of the CMAC.
The scheme is illustrated in Figure 3.

The basis functions are calculated as follows. In the
CMAC, one hypercube cell per CMAC layer is uniquely
indexed by the inputs {�d, �̇d, �̈d} which contains 3n
components. The vector of inputs has a normalized position
inside the cell, which can be denoted hj on the jth layer, and
this is the input to determine the value of the jth cell’s basic
function. The 3n components of hj are denoted hi,j . . . h3n,j ,
and the basic function value is

fj =�3n

i=1

(h2
ij �2h3

ij +h4
ij). (95)

The actual state input to �i is x=col{x1, . . . , xi+1} and is
input to an RBF. The total CRAM basis function can thus be
written

Fj =fj · exp[� (x�c)T(x�c)/(2�2
s)]. (96)

where c is the center of the RBF, which has been
dynamically placed near the trajectory as the corresponding
CMAC cell was first activated. An example of this basis
function for two inputs is drawn in Figure 4. The factor �2

s

is chosen to trade off accuracy and generalization. As a final
step, the normalized basis functions denoted F̄j are used. In
terms of the adaptive control notation, the term �1 for a two
link robot is of the form

�1 =�F̄1

0
· · ·
· · ·

F̄k

0
0
F̄1

· · ·
· · ·

0
F̄k
�. (97)

The result for a two dimensional input vector, without the
normalization, is illustrated in Figure 3 where there are
three layers of CMAC shown each with three coarse cells.

Fig. 3. CMAC-RBF associative memory (CRAM).

Neuroadative control626

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

5. SIMULATION RESULTS
The robot model selected for numerical simulation was that
of a two-link planar elastic-joint robot as in Figure 2, with
physical parameters shown in Table I. The natural fre-
quencies at �1 =�2 =0 are 0.81 Hz and 1.02 Hz and the
damping ratios are 0.0015. This results in a manipulator
where the elastic deflections are significant and where
vibrations take a long time to dissipate. The task in the
simulation is to “catch” an object moving at 15cm/s in the
y direction, and then come to an (almost) immediate stop as
illustrated in Figure 5. This demands a matching of
trajectories. The path of the object is not input as the desired
trajectory. Rather the trajectory is planned in Cartesian
coordinates in order to accelerate smoothly to the desired
ẏ=15cm/s velocity, and when y=75cm is reached the stop is
commanded in joint coordinates. This task is difficult in two
ways. First, the initial desired acceleration, and the final
commanded deceleration, are both quite large, so that it is
difficult with a relatively small neural network to get an

accurate dynamical model. This can lead to very poor
performance in other schemes where learning occurs until
some small error is reached. The second difficulty is that
accuracy is required in the tip velocity as well as the tip
position. In joint coordinates, this translates into fairly large,
variable accelerations and velocities.

The nonlinear effects are quite significant when the
accuracy is the most important.

The modifications presented in this paper sequentially
augment, in the order presented, resulting in five different
control schemes. The labels A through E are used as in
Table II. The control parameters were chosen as
�+G1 =G2 =G3 =diag{2, 2}, �=1.0, v=1.0, �=1.0,
�1 =�2 =�3 =10�6, �s =0.1, �=0.01..

The objective was to obtain good performance with a
small neural network. To this end, only 25 CMAC layers are
used to learn each function, corresponding also to 25
activated weights that need to be integrated. The number of
total weights is more because many functions must be
learned. Each �i, for i=1, 2, 3 has n=2 outputs. In addition
�1 and �3 have desired outputs also at �1 and �3. thus the
number of weights used was 50 for each output, �1 in �3 and
25 for each output in �2 for a total of 250 on-line weights
for our two link robot. Note that for the CMAC algorithm,
when learning is done in other parts of the state space more
weights are stored in the physical memory, but no increased

Fig. 4. CRAM basis function.

Table I. Manipulator physical properties

property link 1 link 2

mass kg 1.0 1.0
tip mass kg 2.0 1.0
length m 1.0 1.0

joint 1 joint 2

motor inertia N · m2 0.4 0.2
stiffness (N · m · s)/rad 10.0 5.0

Table II. Controller simulations

Label (Virtual) Control Weight Update

A unmodified (66)–(68) unmodified (69)
B optimal unmodified
C optimal on-line learning
D optimal and robust on-line learning
E optimal and robust (85)–(87) on-line learning and modified robust (88)

Fig. 5. Catching task schematic.

Neuroadative control 627

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

on-line computational burden occurs. The cells sizes used in
the CMAC are listed in Table III.

The learning curve in Figure 6 clearly shows that each
performance modification in fact improves the performance.
Note the dramatic improvement using the robust control
term, included in control (D). This is because the neural
network is incapable of learning the dynamics with much
accuracy during the high acceleration and deceleration parts
of the trajectory. However, the neural network does improve
the performance during the “tracking phase” of the
trajectory when low accelerations are needed. If the
trajectory had low commanded accelerations throughout,
the on-line learning would result in much improved

performance on the learning curve as demonstrated in
Macnab and D’Eleuterio.13 A significant result is that the
modified robust weight update, included in control (E), does
improve the performance significantly over the entire
trajectory. This allows performance improvement without
more of the added torque chatter associated with the robust

Table III. CMAC cell
sizes

Inputs Cell Size Range

�d 0.4–3.0 rad
�̇d 0.15–0.2 rad/s
�̈d 0.4–1.0 rad/s2

Fig. 6. Learning curve.

Fig. 7. First learning trial.

Fig. 8. 100th learning trial.

Fig. 9. Cartesian coordinates in time (100th trial).

Fig. 10. Cartesian errors in time (100th trial).

Neuroadative control628

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

control term. The amount of performance improvement can
be viewed in task space, for the 1st and 100th learning trials,
as in Figures 7 and 8. The Cartesian coordinates and
Cartesian errors in time can be viewed in Figures 9 and 10.

6. CONCLUSION
A neural network scheme has been presented for control of
elastic-joint robots. This scheme is more practical to
implement than other neural-network approaches ones
owing to reduced training times and reduced on-line
computational burden. A neural network architecture
referred to as CMAC-RBF Associative Memory (CRAM)
produces many of the properties of the CMAC algorithm in
the elastic case. This results in stability, fast training, and
reasonable on-line computations. To compensate for model-
ing limitations due to restricted size of the network, robust
performance enhancements to both control torque and
weight updates have been proposed. The estimate of the
disturbance in the robust term comes directly from the error
in the modeling of the current state. Their effect was
demonstrated through simulations, and the robust control
can result in excellent performance.

References
1. M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nolinear

adaptive Control Design (Wiley, New York, 1995).
2. S. Nicosia and P. Tomei, “A method to design adaptive

controllers for flexible joint robots,” Proc. IEEE Int. Conf.
Robotics and Automation Nice France (1992) pp. 701–706.

3. D.M. Dawson, Z. Qu and J. Carroll, “Robust tracking of rigid-
link flexible-joint electrically-driven robots,” Proc. 30th.
Conf. Decision and Control (1991) pp. 1409–1412.

4. B. Brogliato, R. Ortega and R. Lozano, “Global tracking
controllers for flexible-joint manipulators: a comparative
study,” Automatica 31 (7) 941–956 (1995).

5. C.M. Kwan, F.L. Lewis, and Y.H. Kim, “Robust neural
network control of flexible-joint robots,” Proc. 34th. Conf.
Decision and Control New Orleans (1995) pp. 1296–1301.

6. P.A. Ioannou, Robust Adaptive Control (Prentice-Hall, Upper
Saddle River, NJ, 1996).

7. N.S. Narendra and A.M. Annaswamy, “A new adaptive law
for robust adaptive control without persistance of excitation,”
IEEE Trans. Aut. Control AC-32 134–135 (1987).

8. J. Albus, “A new approach to manipulator control: the
cerebellar model articulation controller (CMAC),” J. Dyn.
Sys. Meas. Contr. 97, 220–227 (1975).

9. J. Albus, “Data storage in the cerebellar model articulation
controller (CMAC),” J. Dyn. Sys. Meas. Contr. 97, 228–233
(1975).

10. T.W. Millar, “Sensor-based control of robotic manipulators
using a general learning algorithm,” J. Robot. Autom. RA-3,
(2), 157–165 (1987).

11. T.W. Millar, “Real-time dynamic control of an industrial
manipulator using a neural-network based learning con-
troller,” IEEE Trans. Robot. Autom. 6, (1), 1–8 (1990).

12. P.W. Graham and G.M.T. D’Eleuterio, “A neural network
paradigm for robotic control,” Can. Aero. Space J. 37, (1),
17–26 (1991).

13. C.J.B. Macnab and G.M.T. D’Eleuterio, “Stable, on-line
learning using CMACs for neuroadaptive tracking control of
flexible-joint manipulators,” Proc. IEEE Int. Conf. robotics
and Automation Leuven, Belgium (1998) Vol. 1, pp.
511–517.

14. J. Slotine and W. Li, “On the adaptive control of robot
manipualtors,” J. Robotics Research 6, (3), 49–59 (1987).

15. K.S. Narendra and A.M. Annaswamy, Stable Adaptive
Systems (Englewood Cliffs, NJ, Prentic-Hall, 1989).

16. S. Gutman, “Uncertain dynamics systems–Lyapunov min-
max approach,” IEEE Transactions on Automatic Control. 24,
437–443 (1979).

17. Z. Qu and D.M. Dawson, Robust Tracking Control of Robot
Manipulators (IEEE Press, New York, 1996).

18. M.J. Corless and G. Leitmann, “Continuous state feedback
guaranteeing uniform ultimate boundedness for uncertain
dynamic systems,” J. Dyn. Sys. Meas. Contr. 26, 1139–1144
(1981).

19. R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control
Design: State-Space and Lyapunov Techniques, (Birkhauser,
Boston, 1996).

20. J. Slotine and W. Li, “Adaptive robot control: A New
Perspective,” Proc 26th IEEE Conf. Decision and Control.
Los Angeles (1987) Vol, 1, 192–198.

21. M.W. Spong and M. Vidyasager, Robot Dynamics and Control
(John wiley and Sons, New York, (1989).

22. M. Ciliz and C. Isik, “Stability and convergence of neurologic
model based robotic controllers,” Proc. IEEE Int. Conf.
Robotics and Automation. Nice France (1992) pp.
2051–2055.

23. R.M. Sanner, and J. Slotine, “Guassian networks for direct
adaptive control,” IEEE Trans. Neural Networks. 3, 837–863
(1992).

Neuroadative control 629

https://doi.org/10.1017/S0263574799002155 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002155

