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Thermomagnetic convection in a layer of
ferrofluid placed in a uniform oblique external

magnetic field
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Linear stability of magnetoconvection of a ferromagnetic fluid contained between two
infinite differentially heated non-magnetic plates in the presence of an oblique uniform
external magnetic field is studied in zero gravity conditions. The thermomagnetic
convection that arises is caused by the spatial variation of magnetisation occurring due
to its dependence on the temperature. The critical values of the governing parameters
at which the transition between motionless and convective states is observed are
determined for various field inclination angles and for fluid magnetic parameters
that are consistently chosen from a realistic experimental range. It is shown that,
similar to natural paramagnetic fluids, the most prominent convection patterns align
with the in-layer component of the applied magnetic field but in contrast to such
paramagnetic fluids the instability patterns detected in ferrofluids can be oscillatory.
It is also found that, contrary to paramagnetic fluids, the stability characteristics of
magnetoconvection in ferrofluids depend on the magnitude of the applied field which
becomes an additional parameter of the problem. This is shown to be due to the
nonlinearity of the magnetic field distribution within the ferrofluid.
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1. Introduction

Synthetic magnetic fluids, also known as ferrofluids, are stable colloidal suspensions
consisting of the carrier liquid (kerosene, water or mineral oil) and magnetic (iron,
cobalt, nickel etc.) nanoparticles. The most widely studied ferrofluids, however, are
based on colloidal magnetite (Fe3O4). Generally, the suspended ultra-fine magnetite
particles with diameter dp of the order of 10 nm are coated with a surfactant layer
preventing them from forming aggregates. Due to demagnetisation and chemical
sorption effects there is also a layer of demagnetised magnetite of thickness ∼1 nm
at the boundary of the magnetic core.

Studies on the magnetic properties of such colloids have been conducted since
the 1930s (Elmore 1938) but they intensified noticeably, starting from the 1960s
and 1970s (Finlayson 1970; Bogatyrev & Shaidurov 1976), when the industrial
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production of magnetic fluids became possible. Currently, a significant body of
literature exists devoted to the properties of ferrofluids, see, for example, Rosensweig
(1979, 1985), Bashtovoy, Berkovsky & Vislovich (1988), Blums, Cebers & Maiorov
(1997), Odenbach (2009) and references therein. In the absence of a magnetic field,
magnetic moments of individual particles in a ferrofluid are randomly oriented so
that the fluid has no net magnetisation. However, when placed in a magnetic field,
they orient along the applied field and the fluid becomes magnetised. The degree of
magnetisation depends on the strength of the applied field and the local temperature
and concentration of magnetic particles. Driven by the Kelvin force that arises, a
magnetised fluid tends to flow toward regions with a stronger magnetic field. Such
a fluid motion is referred to as magnetoconvection. It does not require gravity to
be initiated in a non-uniformly heated fluid and can be conveniently controlled by
varying the applied external magnetic field (Schwab, Hildebrandt & Stierstadt 1983;
Tangthieng et al. 1999; Bozhko & Putin 2003, 2009; Zablotsky, Mezulis & Blums
2009). Therefore it is considered to be an important alternative to gravitational
convection in heat exchange systems where natural convection cannot arise due to the
lack of gravity (orbital stations) (Odenbach 1995; Bozhko & Putin 2009) or extreme
confinement (microelectronics) (Matsuki & Murakami 1987; Mukhopadhyay et al.
2005; Koji, Hideaki & Masahiro 2007; Lian, Xuan & Li 2009). Thus in the current
study we focus on features of a pure magnetic convection by setting the gravitational
acceleration to zero in the governing equations. This also allows us to reduce the
number of governing parameters of the problem to keep this paper to a reasonable
length. The results we have obtained for mixed magneto-gravitational convection
regimes will be reported in a separate publication.

Consistent with our previous studies (Suslov 2008; Suslov et al. 2012) we consider
a planar geometry: a fluid layer confined by long and wide non-magnetic plates.
The choice of such a classical geometry is dictated by a number of factors. Firstly,
it is a common prototype configuration for realistic heat exchangers. Secondly, it
allows one to make significant analytical and computational progress without being
overwhelmed by geometrical details. Thirdly, this geometry is relatively easy to realise
in experiments. An alternative setup that has been extensively studied numerically
consists of two coaxial co-rotating or differentially rotating cylinders (e.g. Zebib 1996;
Tagg & Weidman 2007; Altmeyer et al. 2010). However as mentioned in Suslov
et al. (2010) experimental implementation of such a geometry is somewhat more
complicated and the magnetic field applied in this case is necessarily non-uniform,
which complicates the understanding of basic thermomagnetic mechanisms that are
of interest here.

There are a number of motivating factors for this study stemming from experimental
observations reported by our collaborators (Bozhko & Putin 1991; Bozhko et al. 1998;
Bozhko & Putin 2003; Suslov et al. 2012). In particular, it has been observed that
when a normal magnetic field is applied to a sufficiently wide and long ferrofluid
layer the convection patterns arising near the edges of the experimental layer differ
drastically in both orientation and behaviour from their counterparts in the central part
of the layer. Namely, while the most prominent pattern in the middle part of the layer
is stationary, propagating structures have been detected near the edges that form some
angle with the boundary, see figure 9 in Suslov et al. (2012). The exact reasons for
such a different behaviour of a ferrofluid near the edges of the flow domain remain
unclear to date and our present study explores one of the plausible explanations. At
the boundary between magnetic (ferrofluid) and non-magnetic (container wall) media
the magnetic field lines inevitably refract, which is the consequence of Maxwell’s
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boundary conditions for a magnetic field, see § 2. As a result, even if the applied
magnetic field is assumed to be normal to the layer, which was the case in the
majority of previous studies (e.g. Finlayson 1970; Suslov 2008), the field lines
necessarily curve near the layer edges so that they are effectively ‘sucked into’ the
magnetic medium. Such a behaviour of magnetic field lines near the borders is very
sensitive to the minor details of the border geometry and its defects so that it is
virtually impossible to know what the local inclination angle of the magnetic field is.
To render the problem tractable to analysis we resort to the following compromise:
we still consider an infinitely wide and long layer of fluid and assume that the applied
field is uniform, but we allow its arbitrary inclination with respect to the plane of
the layer. Effectively, this adds two field direction angles to the standard problem’s
parameter list, see § 2.

Since ferrofluids do not retain magnetisation in the absence of an externally
applied magnetic field they are sometimes classified as superparamagnets rather than
ferromagnets (Albrecht et al. 1997). The next motivating factor for our current study
is to demonstrate that such a terminology might be misleading if used blindly. We
will show that even though the governing equations used to describe the behaviour of
ferrofluids (see § 2) are indeed similar to those typically used for natural paramagnetic
fluids such as oxygen (e.g. Ageikin 1950; Huang, Edwards & Gray 1997), flow
instability patterns predicted using these equations in ferrofluids are qualitatively
different from those found in paramagnetic fluids. We will show in § 4 that this
distinction is brought about by a nonlinearity of the magnetic field inside a layer
of ferrofluid, which is caused by a field inclination and a much stronger degree of
ferrofluid magnetisation compared to that of paramagnetic fluids. This in turn leads to
another methodological motivation of our current study: in contrast to paramagnetic
fluids the flow stability characteristics of ferrofluids depend sensitively on the actual
values of their magnetic susceptibilities, which vary widely with the magnitude of the
applied field. Therefore special care should be taken when comparing computational
and experimental results for ferrofluids to make sure that the analysis has been
performed for fluid properties that vary in a way consistent with experimental
conditions. This aspect of theoretical ferrofluid research has received insufficient
attention in the previously reported studies and will be detailed in § 3. Remarkably,
in contrast to the previous studies of magnetoconvection arising in a normal field
(Finlayson 1970; Suslov 2008) we will show that the magnitude of the applied
inclined magnetic field becomes an additional governing parameter of the problem.

Prior to proceeding with presenting our results we should stress that ferrofluids
are complex multi-component colloidal systems and treating them as monofluids with
spatially uniform properties cannot be justified in general. There is a growing body
of evidence that effects such as gravitational sedimentation (Bozhko & Tynjala 2005;
Bozhko et al. 2013) and thermophoresis (Völker & Odenbach 2003; Lange 2004;
Ryskin & Pleiner 2004, 2007) of magnetic nano-particles as well as magnetoviscosity
(e.g. Bashtovoy et al. 1988; Odenbach & Raj 2000; Odenbach 2002a,b, 2004;
Odenbach & Müller 2005; Pop & Odenbach 2006; Engler, Borin & Odenbach
2009) can significantly affect experimentally observed ferrofluid flows. The detailed
set of specific assumptions and physical conditions under which the governing
equations considered in § 2 are expected to be accurate has been discussed in Suslov
et al. (2012) and will be justified in §§ 2–4. Here we just state that we assume that
the concentration of the magnetic phase remains uniform in the current study and
therefore we will only investigate the influence of the thermal and magnetic fields
on the flow structure. Such a simplified approach appears to be reasonable, at least
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in the initial study, since the time scale for establishing thermosolutal gradients is
significantly longer than that of the development of a thermomagnetic instability, and
sedimentation effects are not present due to the lack of gravity.

The rest of the paper is organised as follows. The linearised perturbation equations
are given in § 5 and their Squire-transformed form is interpreted in § 6. Their
numerical solutions, the values of the determined critical parameters and a physical
interpretation based on perturbation energy considerations are presented in § 7.
Concluding remarks are given in § 8.

2. Problem formulation and governing equations

We will follow the major steps of the analysis presented in Finlayson (1970) and
Suslov (2008). Namely, a linear flow stability analysis will be used to shed light
on the physical mechanisms of the observed convection and to provide parametric
guidance for further quantitative experimental study of fully nonlinear convection
states driven by complex mechanisms in thin layers of ferro-colloids.

Consider a layer of a ferromagnetic fluid that fills the gap between two infinitely
long and wide parallel non-magnetic plates as shown in figure 1. The plates are
separated by the distance 2d and are maintained at constant different temperatures
T∗ ±Θ . An external uniform magnetic field, He = (He

x, He
y, He

z ) such that |He| = He,
where He

x = He cos δ, He
y = He sin δ cos γ and He

z = He sin δ sin γ , is applied at an
arbitrary inclination to the layer. This field causes an internal magnetic field H such
that |H| =H within the layer. The external field induces fluid magnetisation M such
that |M| = M, which is assumed to be co-directed with the internal magnetic field:
M = χ∗H, where χ∗ is the integral magnetic susceptibility of the fluid. As discussed,
for example, in Odenbach (2004) and references therein this is true if the magnetic
particle size does not exceed dp ∼ 13 nm (the estimations based on the experimental
data, see § 3, show that for the fluid used in the cited experiments the average
value of dp satisfies this condition). In this case the ratio of the Brownian particle
magnetisation relaxation time τB = (4πd3

pη∗)/(kBT), where kB = 1.38× 10−23 J K−1 is
the Boltzmann constant, to the viscous time τv=ρ∗d2/η∗ characterising the macroflow
development is τB/τv ∼ 10−5. Here, ρ∗ is the fluid density and η∗ is the dynamic
viscosity. Thus it is safe to assume that the orientation of the magnetic moments of
individual particles, and thus of the fluid magnetisation, follows the direction of a
local magnetic field. The orientation of magnetic particle aggregates, however, can in
principle be affected by the mechanical torque due to the local shear of the flow so
that they can misalign with the local magnetic field. Yet the experiments reported in
Odenbach & Müller (2005) show that such a misalignment only becomes noticeable
for shear rates exceeding 15 s−1 while the shear rate for typical convection flows
that are of interest here are of the order of 0.1 s−1 or even smaller. Therefore the
misalignment of the magnetisation and magnetic field vectors can be safely neglected.
We also assume that the fluid magnetisation depends only on magnetic field and
temperature, which is the case when the concentration of magnetic particles remains
uniform in experiments (we do not consider gravitational sedimentation, thermo- or
magneto-phoresis of solid particles).

We choose the right-hand system of coordinates (x, y, z) with the origin in the mid-
plane of the layer in such a way that the plates are located at x = ±d and the y
and z axes are parallel to the plates. Assuming that the temperature difference 2Θ
between the walls is sufficiently small, we adopt the Boussinesq approximation of the
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320 H. Rahman and S. A. Suslov

FIGURE 1. Sketch of the problem geometry. The vector of external magnetic field, He,
forms angles δ and γ with the coordinate axes.

continuity, Navier–Stokes and thermal energy equations, which are complemented with
Maxwell’s equations for the magnetic field:

∇ · v = 0, (2.1)

ρ∗
∂v

∂t
+ ρ∗v · ∇v =−∇p+ η∗∇2v +µ0M∇H, (2.2)

∂T
∂t
+ v · ∇T = κ∗∇2T, (2.3)

∇× H = 0, ∇ · B= 0, (2.4a,b)

where

B=µ0(M + H), M = M(H, T)
H

H. (2.5a,b)

In the above equations v is the velocity vector with the respective components
(u, v, w) in the x, y and z directions, t is time, T is the temperature, p is the
pressure, B is the magnetic flux density, κ∗ is the thermal diffusivity of the fluid, and
µ0 = 4π× 10−7 H m−1 is the magnetic constant. The subscript ∗ denotes the values
of the fluid properties evaluated at the reference temperature T∗ and reference internal
magnetic field H∗ (to be defined in § 4). In writing (2.2) we assume that the fluid
remains Newtonian. It has been found in experiments of Bogatyrev & Gilev (1984)
that this is a reasonable approximation for fluids with the concentration of solid phase
not exceeding f = 0.1. The more recent measurements (however with different fluids)
reviewed in Odenbach (2002b, chap. 4) have indicated that ferrofluids placed in a
magnetic field can also behave as Bingham fluids with a non-zero yield stress that
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Thermomagnetic convection in an oblique field 321

increases approximately quadratically with the applied magnetic field. However the
yield-stress magnitude remains very small for the field strength range relevant to the
current study so that the Newtonian fluid approximation is well justified here.

As shown by numerous studies cited in § 1 the viscosity of concentrated ferrofluids
depends on the applied magnetic field and the local flow shear that influence the
concentration of aggregates formed as a result of a dipole interaction between
magnetised particles. In general, both the average and local values of viscosity can
vary. Even though many experiments aiming at quantifying such a dependence have
been reported in the literature (e.g. Odenbach 2002a; Odenbach & Müller 2005; Pop
& Odenbach 2006), the data collected in these experiments cannot be used directly to
model flows in geometries and conditions that are significantly different from those
of rheological experiments. Fortunately, in our study the reference layer-average fluid
viscosity only enters the non-dimensional governing equations in combination with
other fluid properties, forming the magnetic Rayleigh number (see § 3). We allow its
value to vary over a wide range, which effectively includes all experimental conditions
even though the exact value of magnetoviscosity remains unknown. The unknown
variation of the local viscosity and other fluid properties subject to the action of the
locally varying magnetic field and shear presents a more daunting problem. It is well
known (e.g. Suslov & Paolucci 1995a,b) that, if sufficiently large, such a variation
can strongly influence the structure of the flow and its stability. Yet to make analytical
progress in the absence of a quantitative rheological model we are forced to neglect
these spatial variations of fluid properties in (2.2). This is consistent with a widely
used Boussinesq thermal approximation adapted for magnetic fluids (Bashtovoy et al.
1988) and is expected to be reasonable if the temperature and magnetic field variation
across the layer remain small. The qualitative agreement between the computational
results and the experimental observations reported in our previous work (Suslov et al.
2012) indicates that indeed such a simplification preserves sufficient accuracy of the
model and makes it tractable. We provide a further discussion and a quantitative
justification of this simplification in §§ 3 and 4.

The last term in (2.2) represents a ponderomotive (Kelvin) force that acts on a
magnetised fluid in a non-uniform magnetic field, driving it toward regions with a
stronger magnetic field as discussed in Bashtovoy et al. (1988). In order to close the
problem, a magnetic equation of state is required, which is assumed to be in the
simplest linear form valid for small temperature and field variations within the layer,

M =M∗ + χ1H −K1T, 1H ≡H −H∗, 1T ≡ T − T∗. (2.6a−c)

Here H∗ and M∗=χ∗H∗ are the magnitude of the magnetic field and the magnetisation
at the location with temperature T∗, χ = ∂M/∂H|(H∗,T∗) is the differential magnetic
susceptibility and K = ∂M/∂T|(H∗,T∗) is the pyromagnetic coefficient. Using (2.6) we
rewrite (2.5) as

M = χH + (χ∗ − χ)H∗ −K1T
H

H. (2.7)

Subsequently, eliminating the magnetisation in favour of the magnetic field, we obtain
from (2.4b)

(1+ χ)∇ · H + (χ∗ − χ)H∗ −K1T
H

(∇ · H −∇H · e)−K∇T · e= 0, (2.8)
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322 H. Rahman and S. A. Suslov

where e= (e1, e2, e3)≡ H/H is the unit vector in the direction of the magnetic field.
This equation shows that thermomagnetic coupling occurs mostly when the magnetic
field and the temperature gradient have components in the same direction.

It is convenient to redefine pressure p entering the momentum equation (2.2) so
that it includes both a hydrostatic component and a Kelvin force potential (see also
Odenbach 2002a, pp. 86, 87). In order to do this we use (2.6) to write

µ0M∇H = µ0[M∗ + χ1H −K1T]∇H
= µ0∇

[
M∗H + 1

2χ1H2
]−µ0K1T∇H. (2.9)

We will demonstrate in § 7.4 that only the non-potential component

FK =−µ0K1T∇H (2.10)

of the Kelvin force can lead to the destabilisation of a static mechanical equilibrium
and result in magnetoconvection. Upon introducing the modified pressure

P= p−µ0
[
M∗H + 1

2χ1H2
]
, (2.11)

(2.2) is written as

ρ∗
∂v

∂t
+ ρ∗v · ∇v =−∇P+ η∗∇2v −µ0K1T∇H. (2.12)

We impose the standard no-slip/no-penetration and thermal boundary conditions

v = 0, 1T =±Θ at x=∓d (2.13a,b)

for velocity and temperature, respectively. The magnetic boundary conditions are

(He − H)× n= 0, (Be − B) · n= 0 at x=±d, (2.14a,b)

where superscript e denotes fields outside the layer and n = (1, 0, 0) is the normal
vector to the walls. Using (2.8), condition (2.14b) is rewritten as

[((1+ χ)H + (χ∗ − χ)H∗ ±KΘ) e− He] · n= 0 at x=±d. (2.15)

3. Non-dimensionalisation and problem parameters
The governing equations and boundary conditions are non-dimensionalised using

(x, y, z)= d(x′, y′, z′), v= κ∗
d

v′, t= d2

κ∗
t′, P= ρ∗κ

2
∗

d2
P′, 1T =Θθ ′, (3.1a−e)

H = KΘ
1+ χ H ′, H = KΘ

1+ χH′, M = KΘ
1+ χ M′, M = KΘ

1+ χM′. (3.1f−i)

Then omitting primes for simplicity of notation, we obtain

∇ · v = 0, (3.2)
∂v

∂t
+ v · ∇v =−∇P+ Pr∇2v − RamPrθ∇H, (3.3)
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∂θ

∂t
+ v · ∇θ =∇2θ, (3.4)

∇× H = 0, (3.5)

(1+ χ)(∇ · H −∇θ · e)+ (χ∗ − χ)N − (1+ χ)θ
H

(∇ · H −∇H · e)= 0, (3.6)

M = [χH + (χ∗ − χ)N − (1+ χ)θ ]e, (3.7)

with the boundary conditions

[((1+ χ)(H ± 1)+ (χ∗ − χ)N) e− He] · n= 0, (3.8)
v = 0, θ =∓1 at x=±1. (3.9)

The dimensionless parameters appearing in the problem are

Ram = µ0K2Θ2d2

η∗κ∗(1+ χ), Pr= η∗
ρ∗κ∗

, N = H∗(1+ χ)
KΘ

. (3.10a−c)

The magnetic Rayleigh number Ram characterises the importance of magnetic forces,
Prandtl number Pr characterises the ratio of viscous and thermal diffusion transport,
and parameter N represents the non-dimensional magnetic field at the reference
location.

Typical parameter values that are reported in the recent experiments (Suslov et al.
2012; Bozhko et al. 2013) are listed in table 1. Based on physical quantities listed
in this table we estimate the value of Prandtl number Pr to be around 55 and use
this for our computations. Note, however, that our previous results (Suslov 2008) for
a normal field have been reported in terms of magnetic Grashof number for Pr= 130.
However, this does not prevent us from performing a meaningful comparison of the
current and past results because in the case of pure magnetoconvection (in the absence
of gravity) considered here the critical values of Ram are found to be invariant with
respect to the values of Prandtl number. Thus for comparison with the previous results
we simply use the relationship

Grm(Pr)= Ram

Pr
, (3.11)

where Ram is the invariant value reported in the current paper and Pr is the value of
Prandtl number used elsewhere.

Among other important physical quantities characterising the field-dependent
magnetic properties of the fluid are the differential and integral magnetic susceptibilities
χ and χ∗ and pyromagnetic coefficient K, which depend on the applied magnetic
field and the temperature. The pyromagnetic coefficient K only enters the governing
equations as a component of the non-dimensional groups (3.10) so that its exact
value is not required for the current analysis, see a similar discussion of fluid
viscosity in § 2. However we will see in § 4 that the magnitude of K (and thus of
parameter N) can be conveniently used to distinguish between paramagnetic and
ferromagnetic fluids. At the same time, the values of magnetic susceptibilities χ and
χ∗ are important problem parameters entering the governing equations directly. It is
a common practice to estimate them from the Langevin magnetisation law

ML(H)=M∞L(ξ), L(ξ)= coth ξ − 1
ξ
, ξ =µ0π

Msd3
pH

6kBT
, (3.12a−c)
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Notation Parameter Typical value

f Volume concentration of magnetic phase 0.1
ρ∗ Density 1.44× 103 kg m−3

β∗ Coefficient of thermal expansion 7.7× 10−4 K−1

κ∗ Thermal diffusivity 1× 10−8 m2 s−1

η∗ Dynamic viscosity in absence of magnetic field 7.66× 10−3 kg m−1 s−1

He External magnetic field 0–3.5× 104 A m−1

T∗ Average (reference) temperature in the layer 293 K
2Θ Temperature difference between the walls 1–30 K
2d Distance between the walls 6 mm

TABLE 1. The typical values of experimental parameters and properties of the ferrofluid
manufactured in the Scientific Laboratory of Practical Ferromagnetic Fluids, Ivanovo,
Russia under Technical Conditions 229-001-02068195-2002 and used in experiments
reported in Suslov et al. (2012) and Bozhko et al. (2013).

where M∞ is the experimentally measured saturation magnetisation of the fluid, L(ξ)
is Langevin’s function and ξ is Langevin’s parameter. Here Ms is the saturation
magnetisation of a magnetic phase at a given temperature and d3

p is the average
cube of the diameter of a magnetised core of solid particles. Due to the Curie effect
(demagnetisation of a ferromagnetic fluid with increasing temperature) and thermal
expansion of the carrier fluid, the saturation magnetisation of magnetic material and
ferrofluid vary as

Ms =Ms∗
1− β2T2

1− β2T2∗
, (3.13)

M∞ =M∞∗
1− β2T2

1− β2T2∗
(1− β∗(1− f )(T − T∗)), (3.14)

where β∗ is the coefficient of thermal expansion of the carrier fluid, β2 is the Curie
coefficient and f is the volume fraction of the magnetic phase. In this study, magnetite
particles with Ms∗ = 480 kA m−1 and β2 = 8 × 10−7 K−2 at reference temperature
T∗= 293 K are considered, which correspond to the experimental fluids referred to in
the previous publications (Suslov 2008; Suslov et al. 2012; Bozhko et al. 2013). The
fluid saturation magnetisation measured at T∗ = 293 K was M∞∗ = 43 kA m−1.

However, both experimental measurements and molecular dynamics simulations
show that the magnetisation law of a realistic ferrofluid deviates significantly from
the Langevin dependence. The main reason for this is that Langevin’s law assumes no
inter-particle interactions, which is not the case for experimental fluids with magnetic
phase concentration as high as f = 0.1. A comprehensive review of this issue is given
in Ivanov et al. (2007). There the authors showed that a significant improvement
of the accuracy of the magnetisation law for a ferrofluid is obtained via the use of
the so-called second-order modified mean field (MMF2) model that is essentially a
two-term expansion of the Weiss mean field model (Weiss 1907; Tsebers 1982). It is
obtained by replacing the Langevin parameter ξ with

ξ̄ =µ0π
Msd3

pH̄

6kBT
, H̄ =H + 1

3
ML(H)

(
1+ 1

48
dML(H)

dH

)
. (3.15a,b)
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Here H̄ is the effective magnetic field that takes into account mean magnetic
interactions between particles in a concentrated magnetic fluid.

The only physical quantity that remains unknown in the above formulae is the
average cube of the diameter of magnetised particle cores. This quantity depends
strongly on the (unknown) size dispersion of nano-particles and their aggregates
present in the fluid. Thus d3

p was determined by matching the predictions of the initial
differential magnetic susceptibility limH→0 χ(H) of the fluid with its experimentally
determined value χ = 3 (Pshenichnikov 2007; Lebedev & Lysenko 2011). It turned
out that the MMF2 model produces this value if d3

p ≈ 1.64× 10−24 m3.
Even though the MMF2 model is shown to produce accurate values for magnetic

properties of a ferrofluid, it requires the value of a local magnetic field H as an
input. However, this quantity depends on the geometry of the problem considered. For
example, it was shown in Suslov (2008) that when an external magnetic field He is
applied perpendicularly to an infinite differentially heated layer of a ferrofluid bounded
by parallel non-magnetic plates the internal magnetic field in the mid-plane of the
layer is H∗=He/(1+χ∗). The values of H∗ and the corresponding fluid magnetisation
M∗ are shown in figure 2(c) for the experimental range of external magnetic field
0 6 He 6 35 kA m−1. If the magnetic field is applied obliquely then the relationship
between the external and internal fields becomes much more complicated, see § 4.
However, in this study we are mostly interested in the qualitative behaviour of the
system for relatively small field inclination angles 0◦ 6 δ 6 15◦. Therefore the data
presented in figure 2 for δ = 0◦ will suffice for parameter estimation purposes.

The comparison of relevant quantities obtained using Langevin and MMF2 models
given in figure 2 demonstrates that Langevin’s law systematically underestimates the
values of the magnetic susceptibilities and the pyromagnetic coefficient. Thus we use
MMF2 curves to choose the range of parameters for which the numerical results
will be presented. As seen from figure 2(a) the values of magnetic susceptibilities
change over the range of the applied magnetic field from (χ, χ∗) = (3, 3) to just
below (χ, χ∗) = (1.5, 2.5). Thus we will report the numerical results for these two
pairs of values. We also note that the previous numerical results are available (see
Suslov 2008) for (χ, χ∗) = (5, 5). Therefore, for comparison purposes we will also
perform computations for this pair of parameters as well as for (χ, χ∗)= (3, 5). Note
that as discussed in Finlayson (1970) and Suslov (2008), χ = χ∗ along the linear
segment of the magnetisation curve. However, χ < χ∗ when the fluid’s magnetisation
approaches saturation. Therefore, by choosing different values of the differential and
integral magnetic susceptibilities, we investigate the effect of nonlinearity of the
magnetisation law on flow stability.

As mentioned previously, the value of the pyromagnetic coefficient K enters the
definition of magnetic Rayleigh number. In this study the data from figure 2(b) are
not used to limit the computational range of Ram but, rather, are presented here to
enable the design of chambers for future experiments where the thickness of the gap
between the walls will need to be chosen so that it results in the values of parameters
close to critical ones reported in this study.

Figure 2(d) shows the values of the normally applied non-dimensional external
magnetic field He′ and the corresponding reference internal magnetic field N0=N|δ=0◦

(here we use a prime to denote a non-dimensional external field in figure 2(d) and
to distinguish it from the dimensional external field He; however, for simplicity of
notation we will use He to denote the non-dimensional field in the subsequent text).
These parameters are not independent. It has been shown in Suslov (2008) that

He′ = (1+ χ∗)N0 (3.16)
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FIGURE 2. The comparison of magnetic fluid properties defined using Langevin’s law and
the MMF2 model for δ = 0◦ and T∗ = 293 K (Θ = 7.5 K is chosen in (d)).

when δ= 0◦. It is also known that neither of these two parameters affects the stability
characteristics of the flow when the magnetic field is perpendicular to the layer if
the magnetisation law is linear (Finlayson 1970; Suslov 2008). However, when the
nonlinearity of magnetisation is taken into account and when the field is applied
obliquely the role of these parameters becomes non-trivial. It will be demonstrated
in § 4 that whenever δ 6= 0◦ the magnetic field lines within the layer curve. This
curvature will be shown to be responsible for a qualitative change in the behaviour
of the perturbation fields compared to that observed when δ = 0◦. The relationship
between parameters N and He′ for a general oblique field cannot be given explicitly
(apart from some limiting cases discussed in § 4) yet it is still well approximated by
(3.16). It is convenient to use N0 for expressing solutions for magnetic field within
the layer symbolically and He′ for parameterising the numerical stability results.
Figure 2(d) shows that for all experimentally relevant conditions the value of He′
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(and N0) remains large and close to constant for fixed temperature difference 2Θ
between the walls. Therefore we choose He′ = 100 in our computations, which is
close to the values achieved in experiments. Our calculations show that the numerical
stability results become almost independent of He′ when its value exceeds 40 (this is
the case when the temperature difference between the walls does not exceed about 30
K, which is the experimental maximum). We also present some selected results for
He′ = 10. This would correspond to the temperature difference 1T between the walls
of more than 100◦, which is experimentally unachievable with the fluids used in the
referenced experiments. However, such a value of He′ could be realistic for a stronger
magnetisable fluid (e.g. one with a higher concentration of magnetic particles and thus
with a larger pyromagnetic coefficient). Therefore, we present the numerical results
for He′ = 10 as well, which allows us to see more clearly the peculiar qualitative
effects brought about by the inclination of a magnetic field and the resulting curvature
of magnetic field lines (see figure 5a,c below).

4. Basic flow
We look for steady motionless solutions of (3.2)–(3.9) in the form

v0 = 0, θ0 = θ0(x), P0 = P0(x), H0 = (Hx0(x),Hy0(x),Hz0(x)). (4.1a−d)

They should satisfy

DP0 =−RamPrθ0e10DHx0, D2θ0 = 0, (4.2a,b)

D
((

1+ M0

H0

)
Hx0

)
= 0, (4.3)

DHy0 = 0, DHz0 = 0, (4.4a,b)
and the boundary conditions

θ0 =±1, Hy0 =He
y, Hz0 =He

z , (4.5a−c)
(

1+ M0

H0

)
Hx0 =He

x at x=∓1, (4.6)

where H0 ≡
√

H2
x0 +H2

y0 +H2
z0, M0 ≡

√
M2

x0 +M2
y0 +M2

z0 and D ≡ d/dx. Upon

introducing the unit vector e0(x)≡ (e10(x), e20(x), e30(x))=
(
Hx0/H0,Hy0/H0,Hz0/H0

)
in the direction of the magnetic field the basic flow solutions of (4.2) are written as

θ0 =−x and P0 = RamPr
∫ x

0
x̄e10DHx0 dx̄+C, (4.7)

where C is an arbitrary constant. Equations (4.4) along with boundary conditions
(4.5) result in expressions for tangential components of the magnetic field that are
constant inside the fluid layer, Hy0(x) = He

y and Hz0(x) = He
z . In view of (3.7) and

(4.6), equation(4.3) is integrated to obtain a nonlinear algebraic equation for the
x-component of the unperturbed magnetic field

((1+ χ)(H0 − θ0)+ (χ∗ − χ)N)Hx0 =He
xH0. (4.8)

It is known (e.g. Suslov 2008) that for a perpendicular field when e0 = (1, 0, 0) the
basic flow component of the magnetic field in the x direction across the layer is given
by Hx0 = N0 − x, where N0 is defined by (3.16). However, when the external field is
applied obliquely a nonlinear equation (4.8) does not have a closed-form solution and
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has to be solved numerically. Yet by evaluating this equation at the reference position
x = 0 we obtain exact expressions for the magnetic field and its x component there:

Hx0(0)=N0 cos δ, N ≡H0(0)=N0 cos δ
√

1+ (1+ χ∗)2 tan2 δ. (4.9a,b)

It follows from (4.9) and (3.16) that the magnetic field in the mid-plane of the layer
monotonically increases from N0 for a normal field to He when the applied field is
tangential to the layer.

Taking into account that N0� x as discussed in § 3 the solution of (4.8) can also
be written asymptotically as

Ha
x0

N0 cos δ
= 1− 1+ χ

(1+ χ∗)3 sin2 δ + (1+ χ) cos2 δ

N
N0

x
N0

+ sin2 δ

(1+ χ)2(1+ χ∗)3
(

N2

N2
0
+ 1

2
χ∗ − χ
1+ χ∗ cos2 δ

)

((1+ χ∗)3 sin2 δ + (1+ χ) cos2 δ)3

x2

N2
0
+ o
(

x2

N2
0

)
. (4.10)

A similar asymptotic approach was used in Hennenberg et al. (2006) to determine
the approximate expression for the magnetic field in a layer of magnetic fluid subject
to longitudinal temperature gradient (in contrast to the transverse gradient considered
here).

If the magnetisation law is linear, that is if χ = χ∗, the above expression simplifies
to

Ha
x0

N0 cos δ
= 1− x

N
+ (1+ χ)2 sin2 δ

N2
0

N2

x2

N2
+ o

(
x2

N2

)
. (4.11)

The first two terms in the asymptotic solution (4.11) are equivalent to expression
(9) given in Huang et al. (1997) for a magnetic field in a layer of paramagnetic
fluid with χ = χ∗ � 1. However, the nonlinearity of the magnetic field in the layer
was fully neglected in Huang et al. (1997). As seen from expressions (4.10) and
(4.11) this is only true when N0→∞, that is when pyromagnetic coefficient K→ 0,
see definition (3.10). This is shown to be a good approximation in the case of
paramagnetic fluids (Huang et al. 1997); however, K is large in the current problem,
see figure 2(b). Therefore N0 is finite and the nonlinearity of the magnetic field
inside the layer of ferromagnetic fluid cannot be ignored. This is confirmed by fully
nonlinear numerical solutions for the magnetic field shown for the finite values of
χ = χ∗ = 3 in figure 3. The degree of nonlinearity increases with decreasing value
of the applied magnetic field provided that the value of the pyromagnetic coefficient
does not vary significantly. Yet the three-term asymptotic solution (4.10) remains
robust, providing accuracy within 1–2 % of the numerically computed values in all
regimes considered.

Importantly, figure 3 demonstrates that the relative deviation of the magnetic field
within the layer from its average value cannot exceed 1/N0. Using the data presented
in figure 2(d) one then concludes that the field varies within the layer by less than
4 %. This is a natural measure of the error that is introduced in the model considered
by assuming that the field-dependent fluid properties remain constant in (2.2).

Once the magnetic field within the layer is determined the unperturbed fluid
magnetisation is computed using

M0 = χH0 + (χ∗ − χ)N − (1+ χ)θ0. (4.12)
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FIGURE 3. Numerical solution for the magnitude H0 of the undisturbed magnetic field
(a,d) and its cross-layer component Hx0 (b,e), for He = 100 (a,c), He = 10 (d,e), χ =
χ∗= 3 and various field inclination angles δ. (c,e) The corresponding relative error of the
asymptotic solution (4.10).

Typical distributions of the magnetisation and magnetic pressure across the layer
are shown in figure 4. Both figures 3 and 4 demonstrate that the field inclination leads
to a noticeable difference between the magnitudes of the cross-layer components of
magnetic and magnetisation fields and their full magnitudes. This difference is more
pronounced near the cold wall, which introduces an asymmetry in basic flow fields
that will be shown to influence the stability results qualitatively. The other observation
is that the magnitude of the external magnetic field influences the fields inside the
layer: weaker oblique external fields lead to a stronger nonlinearity of internal fields
(compare the top and bottom rows in figures 3 and 4). The symmetry-breaking effect
of the field inclination is also evident in the behaviour of the magnetic pressure P0
shown in figure 4(c,f ). As the field inclination angle increases, the pressure near the
cold wall grows with respect to that near the hot wall. As will be discussed later
this leads to the preferential shift of instability structures toward the hot wall, which
introduces a further asymmetry and qualitative change in stability characteristics
compared to the normal field case considered in Finlayson (1970) and Suslov (2008).

The behaviour of magnetic field lines inside a layer of ferrofluid is shown in
figure 5(a,c). In contrast to the case of a normal field considered in Finlayson (1970)
and Suslov (2008), the non-dimensional magnitude (relative to the fluid magnetisation)
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FIGURE 4. Numerical solution for the magnitude M0 of the undisturbed fluid
magnetisation (a,d), its cross-layer component Mx0 (b,e) and magnetic pressure P0
(c,f ), for He = 100 (a–c), He = 10 (d–f ), χ = χ∗ = 3 and various field inclination
angles δ.

of the obliquely applied field strongly affects the geometry of magnetic lines. The
curvature of magnetic lines is especially pronounced in stronger magnetisable fluids
(plot (c) as contrasted to plot (a)). This has a profound effect on the distribution
of the normal non-potential component FK0 = −θ0(dH0/dx) of the non-dimensional
Kelvin force, which can be viewed as a magnetic buoyancy force. It is shown in
figure 5(b,d). Such a force is positive near the left wall and negative near the right
wall, which corresponds to an inherently unstable situation when hot fluid near x=−1
is forced to flow toward the cold wall at x= 1 and vice versa. This situation is similar
to an unstably stratified layer of a regular fluid heated from below in a downward
gravitational field. Yet such similarity is complete only if the external magnetic
field is normal to the layer. In this case, similar to its gravitational counterpart,
the magnetic buoyancy is a linear function of the cross-layer coordinate x and its
non-dimensional value is independent of the strength of the applied field, see dashed
lines in figure 5(b,d). However, when an oblique field of the same magnitude is
applied to the layer at least three qualitative differences arise due to the nonlinearity
of the induced internal field. Firstly, the magnetic buoyancy force becomes more
uniform across the layer so that the onset of thermomagnetic instability is expected
to be delayed compared to the normal field situation. Secondly, the magnetic buoyancy
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FIGURE 5. Refraction of magnetic lines (a,c) and the distribution of the Kelvin force (b,d)
in a layer of magnetic fluid heated from the left for the field inclination angles δ = 10◦
(solid line), δ = 0◦ (dashed line), γ = 0◦, χ = χ∗ = 3, He = 100 (a,b) and He = 10 (c,d).

force becomes a function of the magnitude of the applied magnetic field. Thirdly,
and most importantly, the nonlinearity of the internal magnetic field leads to the
situation where the layer that is unstably stratified with respect to magnetic buoyancy
is effectively reduced to a sublayer in the vicinity of the hot wall, see figure 5(d).
Therefore, in contrast to the case of a normal field, the cross-layer symmetry of the
instability structures that arise is broken. In the following sections we will establish
and quantify the physical features of instability patterns that are brought about by the
inclination of an external field and were not found in the previous studies reported
in Finlayson (1970) and Suslov (2008).

5. Linearised perturbation equations
In order to investigate linear stability of the basic state discussed in § 4 with respect

to infinitesimal disturbances that are assumed to be periodic in the y and z directions
we consider a standard normalform representation of the perturbed quantities and write
them as

(v, P, θ, H,H, M,M)
= (v0, P0, θ0, H0,H0, M0,M0)

+ [(v1(x), P1(x), θ1(x), H1(x),H1(x), M1(x),M1(x))eσ t+i(αy+βz) + c.c.], (5.1)
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where σ = σ R+ iσ I is the complex amplification rate, α and β are real wavenumbers
in the y and z directions, respectively, and c.c. denotes the complex conjugate of the
expression in square brackets. To satisfy (3.5) identically, it is convenient to introduce
a perturbation φ1(x)eσ t+i(αy+βz) of the magnetic potential so that

H1 = [Dφ1, iαφ1, iβφ1]T, (5.2a)
H1 = H1 · e0 = e10Dφ1 + i(αe20 + βe30)φ1, (5.2b)

M1 = χH1 − (1+ χ)θ1e0 + (1+ χ)θ0 − (χ∗ − χ)N
H0

(H1e0 − H1), (5.2c)

M1 =M1 · e0 = χH1 − (1+ χ)θ1. (5.2d)

The linearisation of (3.2)–(3.9) about the basic state leads to

0=Du1 + i(αv1 + βw1), (5.3)

σu1 + Pr(α2 + β2 −D2)u1 +DP1 + e10RamPrDHx0 θ1

+RamPrθ0e10D2φ1 + RamPrθ0

(
i(αe20 + βe30)+ (1− e2

10)
DHx0

H0

)
Dφ1

− iRamPrθ0e10(αe20 + βe30)
DHx0

H0
φ1 = 0, (5.4)

σv1 + Pr(α2 + β2 −D2)v1 + iαP1

+ iαRamPrθ0e10Dφ1 − αRamPrθ0(αe20 + βe30)φ1 = 0, (5.5)
σw1 + Pr(α2 + β2 −D2)w1 + iβP1

+ iβRamPrθ0e10Dφ1 − βRamPrθ0(αe20 + βe30)φ1 = 0, (5.6)
σθ1 +Dθ0u1 + (α2 + β2 −D2)θ1 = 0, (5.7)

0= (D2 − α2 − β2)φ1 + (1− e2
10)

(
χ∗ − χ
1+ χ N − θ0

)
D2φ1

H0

−
[

e10

(
χ∗ − χ
1+ χ N − θ0

)(
2i(αe20 + βe30)+ 3(1− e2

10)
DHx0

H0

)

+ (1− e2
10)Dθ0

]
Dφ1

H0
−
[ (

χ∗ − χ
1+ χ N − θ0

)

×
(
α2 + β2 − (αe20 + βe30)

2 + i(αe20 + βe30)(1− 3e2
10)

DHx0

H0

)

− i(αe20 + βe30)e10Dθ0

]
φ1

H0

−
(

i(αe20 + βe30)+ (1− e2
10)

DHx0

H0

)
θ1 − e10Dθ1. (5.8)

The disturbance velocity and temperature fields are subject to standard homogeneous
boundary conditions

u1 = v1 =w1 = θ1 = 0 at x=±1. (5.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.709


Thermomagnetic convection in an oblique field 333

A perturbation of a magnetic field within a fluid layer causes perturbation of the
external magnetic field for non-magnetic boundaries as discussed in Finlayson (1970).
If there are no induced currents outside the layer and a non-magnetic medium
(air) fills the surrounding space, then the external magnetic field has a potential
φe

1(x) exp(σ t + iαy+ iβz), which, as follows from (2.4) and (2.5), satisfies Laplace’s
equation

(D2 − α2 − β2)φe
1 = 0, (5.10)

in the regions x<−1 and x>1. A physically relevant bounded solution can be written
as

φe
1(x)=





A exp
(√

α2 + β2x
)
, x<−1

B exp
(
−√α2 + β2x

)
, x> 1.

(5.11)

Upon taking into account (2.5), the linearisation of the magnetic boundary conditions
(2.14) leads to

Dφe
1 =

(
1+ χ + (1− e2

10)
(χ∗ − χ)N ± (1+ χ)

H0

)
Dφ1

− ie10(αe20 + βe30)
(χ∗ − χ)N ± (1+ χ)

H0
φ1, (5.12)

φe
1 = φ1 at x=±1. (5.13)

After eliminating A and B from (5.11) and (5.13) we obtain the boundary conditions
for φ1 at x=±1:

(
1+ χ + (1− e2

10)
(χ∗ − χ)N ± (1+ χ)

H0

)
Dφ1

±
√
α2 + β2φ1 − ie10(αe20 + βe30)

(χ∗ − χ)N ± (1+ χ)
H0

φ1 = 0. (5.14)

6. Squire’s transformation
Upon using the generalised Squire’s transformations

(x, y, z)= (x̄, ỹ, z̃), θ0 = θ̃0, Hx0 = H̃x0, H0 = H̃0, σ = σ̃ , α2 + β2 = α̃2,

β = β̃, u1 = ũ, αv1 + βw1 = α̃ṽ, w1 = w̃, θ1 = θ̃ , P1 = P̃, φ1 = φ̃,
Ram = R̃am, Pr= P̃r, N = Ñ, χ = χ̃ , χ∗ = χ̃∗,

e10 = ẽ10, αe20 + βe30 = α̃ẽ20,





(6.1)

(5.3)–(5.8) become
0=Dũ+ iα̃ṽ, (6.2)

σ̃ ũ+ P̃r(α̃2 −D2)ũ+DP̃+ ẽ10R̃amP̃rDH̃x0θ̃ + R̃amP̃rθ̃0ẽ10D2φ̃

+ R̃amP̃rθ̃0

[
iα̃ẽ20 + (1− ẽ2

10)
DH̃x0

H̃0

]
Dφ̃ − iα̃R̃amP̃rθ̃0ẽ10ẽ20

DH̃x0

H̃0
φ̃ = 0, (6.3)

σ̃ ṽ + P̃r(α̃2 −D2)ṽ + iα̃P̃+ α̃R̃amP̃rθ̃0(ĩe10Dφ̃ − α̃ẽ20φ̃)= 0, (6.4)
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σ̃ w̃+ P̃r(α̃2 −D2)w̃+ iβ̃P̃+ β̃R̃amP̃rθ̃0(ĩe10Dφ̃ − α̃ẽ20φ̃)= 0, (6.5)

σ̃ θ̃ +Dθ̃0ũ+ (α̃2 −D2)θ̃ = 0, (6.6)

0= (D2 − α̃2)φ̃ + (1− ẽ2
10)

(
χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)
D2φ̃

H̃0

−
[
(1− ẽ2

10)Dθ̃0 + ẽ10

(
χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)(
2iα̃ẽ20 + 3(1− ẽ2

10)
DH̃x0

H̃0

)]
Dφ̃

H̃0

−
[ (

χ̃∗ − χ̃
1+ χ̃ Ñ − θ̃0

)(
α̃2(1− ẽ2

20)+ iα̃ẽ20(1− 3ẽ2
10)

DH̃x0

H̃0

)

− iα̃ẽ20ẽ10Dθ̃0

]
φ̃

H̃0
−
(

iα̃ẽ20 + (1− ẽ2
10)

DH̃x0

H̃0

)
θ̃ − ẽ10Dθ̃ , (6.7)

with the boundary conditions

(
1+ χ̃ + (1− ẽ2

10)
(χ̃∗ − χ̃)Ñ ± (1+ χ̃)

H̃0

)
Dφ̃

± |α̃|φ̃ − iα̃ẽ10ẽ20
(χ̃∗ − χ̃)Ñ ± (1+ χ̃)

H̃0
φ̃ = 0, (6.8)

ũ= ṽ = w̃= θ̃ = 0 at x̄=±1. (6.9)

Equation (6.4) is obtained by multiplying (5.5) by α, (5.6) by β, adding them together,
and dividing the result by α̃. Note that only (6.5) contains w̃ and β̃ and thus it can be
solved for any particular value of β̃ after σ̃ , P̃ and φ̃ are found from (6.2)–(6.4), (6.6)
and (6.7), which form an equivalent two-dimensional problem obtained by formally
setting w̃ = β̃ = 0. It is important to note though that the notion of an equivalent
two-dimensional problem in the current context is somewhat different from that arising
in problems dealing with non-magnetic fluids. The reason is that even if w̃ and β̃

are set to zero in the above Squire-transformed equations the external magnetic field
remains three-dimensional. In general it still has three non-zero components in the x, y
and z directions and thus it needs to be described using two coordinate angles δ and γ
that act as independent control parameters of the problem. The above transformations
simply mean that we conveniently view the y direction as the periodicity direction of
the perturbation structures that arise, while the vector of the applied magnetic field can
be arbitrarily oriented. More specifically, the axes of the instability rolls are considered
to be always parallel to the z axis in figure 1 so that γ = 0◦ (γ = 90◦) means that the
magnetic field has a component in the plane of the fluid layer that is perpendicular
(parallel) to the roll axes. The values of 0◦<γ < 90◦ are interpreted accordingly. For
the sake of brevity in the following sections we will for convenience refer to instability
patterns computed using the above transformed equations for γ = 0◦ and γ = 90◦

as transverse and longitudinal rolls, respectively, while patterns obtained for all other
values of γ will be referred to as oblique rolls. We will also refer to angle δ as the
field inclination angle and angle γ as the angle between the axes of the instability
rolls and the in-layer component of the applied magnetic field.
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7. Numerical results
7.1. Discretisation

Equations (6.2)–(6.7) are discretised using the pseudo-spectral Chebyshev collocation
method as introduced in Ku & Hatziavramidis (1984), Hatziavramidis & Ku (1985)
and implemented in Suslov & Paolucci (1995a,b). This spatial approximation
converges exponentially quickly so that 71 collocation points used in the current
computations guarantee that all digits in the reported numerical results are significant
and accurate. Upon discretisation and exclusion of (6.5), which is the only equation
containing β, the system of (6.2)–(6.7) results in a generalised algebraic eigenvalue
problem for the complex amplification rate σ̃

(σ̃X + Y )q = 0, (7.1)

where X and Y = Y(σ̃ , R̃am, P̃r, χ̃ , χ̃∗; δ, γ ) are matrices and eigenvector q contains
the discretised components of (ũ, ṽ, P̃, θ̃ , φ̃)T. The eigenvalue problem is solved using
the MATLAB (MATLAB 2013) function eig. Once both σ̃ and q are found (6.5) is
written as

(
Pr
(
D2 − α̃2

)− σ̃) w̃= iβ̃
(

P̃+ R̃amP̃rθ̃0

(
ẽ10Dφ̃ + iα̃ẽ20φ̃

))
(7.2)

and solved for w̃. The inverse Squire’s transformation (6.1) then recovers full three-
dimensional solutions for perturbations.

7.2. Check of numerical accuracy
In order to test the numerical code, the critical values for the magnetic convection
threshold in a perpendicular (δ= 0◦) external magnetic field with magnitude He= 100
for the case of P̃r = 130 and χ̃ = χ̃∗ = 4 have been computed using relation (3.11),
and the critical values G̃rmc = 1.387 and α̃c = 1.928 are obtained, which agree well
with the values of G̃rmc= 1.385 and α̃c= 1.95 computed from the corresponding data
reported in Finlayson (1970). The magnetic convection threshold for P̃r = 130 and
χ̃ = χ̃∗ = 5 is also determined and the critical values G̃rmc = 1.3981 and α̃c = 1.9365
are obtained, which are identical to those reported in Suslov (2008). As an additional
check the critical values of R̃amc = 160.543 and α̃c = 1.8045 were computed for the
normal field He= 100 in the limit of a paramagnetic fluid with χ̃ = χ̃∗= 10−3. These
values are in excellent agreement with the respective values of 2568.476/16= 160.530
and 3.609/2 = 1.8045 reported in Huang et al. (1997) (the coefficients of 1/16 and
1/2 are due to the differences between the non-dimensionalisation scales used).

7.3. Flow stability characteristics
The numerical values of critical parameters for thermomagnetic convection arising in
magnetic fields of various orientations and intensities are given in tables 2–4. The data
in the tables warrant a number of general conclusions.

The magneto-convective instability arising in a normal field remains stationary
regardless of the specific magnetic properties of the fluid and the magnitude of the
applied magnetic field. This is in agreement with the findings previously reported,
for example, in Finlayson (1970), Huang et al. (1997) and Suslov (2008). However,
in contrast to all previous studies, the instability threshold R̃amc is found to depend

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.709


336 H. Rahman and S. A. Suslov

χ̃ χ̃∗ α̃c R̃amc c̃c Σk Re(Σm1) Im(Σm1)

5 5 1.936 181.7 0 0.0982 1.584 0
1.920 178.0 0 0.0984 1.559 0

3 5 1.860 159.3 0 0.0997 1.424 0
1.846 157.0 0 0.0998 1.407 0

3 3 1.915 178.3 0 0.0985 1.565 0
1.909 176.8 0 0.0986 1.554 0

1.5 2.5 1.847 159.1 0 0.0998 1.427 0
1.843 158.3 0 0.0998 1.421 0

1 3 1.797 145.9 0 0.1007 1.325 0
1.792 145.1 0 0.1007 1.320 0

1 2 1.827 155.0 0 0.1001 1.397 0
1.825 154.5 0 0.1001 1.393 0

0.5 1.5 1.801 150.0 0 0.1005 1.357 0
1.799 149.2 0 0.1005 1.355 0

TABLE 2. The critical values of R̃am, α̃ and disturbance wave speed c̃=−σ̃ I/α̃ and the
corresponding perturbation energy integrals Σk and Σm1 for magnetoconvection at δ = 0◦,
He = 100 (odd-numbered lines), He = 10 (even-numbered lines) and various values of χ̃
and χ̃∗.

χ̃ χ̃∗ α̃c R̃amc c̃c Σk Re(Σm1) Im(Σm1)

5 5 2.428 2049 0.0256 0.0506 1.9562 −0.0037
2.468 1935 0.2048 0.0505 1.9993 −0.0354

3 5 2.510 2796 0.0279 0.0472 1.7755 −0.0026
2.534 2577 0.2332 0.0476 1.8146 −0.0273

3 3 2.116 533.8 −0.0011 0.0822 2.2432 −0.0044
2.135 548.3 −0.0085 0.0809 2.2420 −0.0421

1.5 2.5 2.051 433.2 −0.0012 0.0873 2.0035 −0.0029
2.061 439.8 −0.0108 0.0866 2.0058 −0.0287

1 3 2.221 724.9 0.0018 0.0757 1.9704 −0.0033
2.228 721.9 0.0167 0.0750 1.9575 −0.0321

1 2 1.967 329.4 −0.0014 0.0926 1.8328 −0.0019
1.973 333.5 −0.0139 0.0923 1.8391 −0.0192

0.5 1.5 1.894 259.3 −0.0012 0.0962 1.6545 −0.0012
1.898 261.4 −0.0121 0.0960 1.6594 −0.0115

TABLE 3. Same as table 2 but for transverse rolls at δ = 10◦ and γ = 0◦.

not only on the values of the magnetic susceptibilities χ and χ∗ but also on the
magnitude of the applied magnetic field, namely, the decrease of the characteristic
non-dimensional field parameter N promotes instability and increases the wavelength
of the patterns that arise. This dependence, however, remains relatively weak: the
largest difference between the critical values of magnetic Rayleigh numbers and
wavenumbers is found to be under 3.5 % and 1.5 %, respectively, for a fluid with
the highest degree of magnetisation investigated (χ = χ∗ = 5) when the external
magnetic field is changed by a factor of 10. The comparison of the current results
with our previous study (Suslov 2008) shows that the dependence of the critical
parameters on the magnitude of the magnetic field is traced back to the form of the
constitutive magnetisation (2.7). Its linearisation used in all previous studies cited
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χ̃ χ̃∗ α̃c R̃amc c̃c Σk Re(Σm1) Im(Σm1)

5 5 1.937 385.2 0 0.0982 1.5844 0
1.943 389.6 0 0.0978 1.6117 0

3 5 1.903 458.9 0 0.0988 1.5105 0
1.908 457.2 0 0.0984 1.5258 0

3 3 1.916 267.0 0 0.0985 1.5650 0
1.917 270.3 0 0.0985 1.5747 0

1.5 2.5 1.865 251.6 0 0.0995 1.4640 0
1.866 253.5 0 0.0994 1.4693 0

1 3 1.842 313.1 0 0.0999 1.4094 0
1.844 313.7 0 0.0997 1.4146 0

1 2 1.844 226.5 0 0.0998 1.4315 0
1.845 227.8 0 0.0998 1.4346 0

0.5 1.5 1.816 203.2 0 0.1002 1.3879 0
1.817 204.1 0 0.1003 1.3893 0

TABLE 4. Same as table 2 but for longitudinal rolls at δ = 10◦ and γ = 90◦.

above eliminates the dependence of the threshold values on the amplitude of the
normal magnetic field. However, as shown in § 4 such an idealisation is only robust
for the case of paramagnetic fluids with small magnetic susceptibilities but it should
not be expected to be uniformly valid for realistic ferromagnetic fluids.

If the dependence of the fluid magnetisation on the magnitude of the applied
magnetic field remains linear, that is if χ ≈χ∗, see figure 2, then the magnetoconvection
threshold parameters decrease monotonically with the values of magnetic suscepti-
bilities to their limiting values (R̃amc, α̃c) ≈ (160.5, 1.805) that are independent of
the magnitude of the applied magnetic field. However, when the fluid magnetisation
approaches saturation so that χ < χ∗, the variation of the differential and integral
susceptibilities have opposite influences on the threshold: the decrease of χ at
fixed χ∗ promotes instability while the decrease of χ∗ at fixed χ delays it. In
realistic ferrofluids, however, the values of both χ and χ∗ decrease with the
increasing magnetic field, but at different rates, see figure 2(a). Therefore, it is
not straightforward to anticipate what the overall effect of a changing magnetic field
on the convection onset could be and one needs to rely on the specific computational
results. In particular, the data in table 2 show that the critical value of magnetic
Rayleigh number decreases by more than 10 % when progressively stronger magnetic
field is applied to a layer of experimental ferrofluid with the initial susceptibilities
χ = χ∗ ≈ 3 that are reduced to χ ≈ 1.5 and χ∗ ≈ 2.5 during a typical experimental
run.

It is remarkable that, as seen from tables 3 and 4, when an oblique magnetic
field is applied to the layer the trends described above are reversed even for small
field inclination angles δ: now the decrease of χ at fixed χ∗ delays instability while
the decrease of χ∗ at fixed χ promotes it. This indicates the qualitative difference
between the instability mechanisms present in normal and oblique fields that we
will discuss in more detail in the following sections. The numerical data given in
tables 2–4 also demonstrate a very strong stabilisation effect of the field inclination
compared to the normal field situation that is further illustrated in figures 6(a) and
8(a). Such a stabilisation is observed regardless of the specific magnetic properties
of the fluid for all investigated values of χ and χ∗.
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FIGURE 6. (a) Critical magnetic Rayleigh number R̃amc and (b) wavenumber α̃c as
functions of the field inclination angle δ for transverse rolls at He = 10 and γ = 0◦. The
respective plots for He = 100 are indistinguishable within the figure resolution.

–0.2

0

0.2

0.4

0.6

0.8

0 5 10 15
–0.02

0

0.02

0.04

0.06

0.08

0 5 10 15

(a) (b)

FIGURE 7. Critical wave speed c̃=−σ̃ I/α̃c as a function of the field inclination angle δ
for transverse rolls at γ = 0◦ for (a) He = 10 and (b) He = 100.

An even more striking effect of the field inclination is evident from the data
presented in table 3: the transverse instability rolls computed for γ = 0◦ become
oscillatory resulting in waves propagating along the direction of the field component
that is tangential to the plane of the fluid layer. This is a somewhat unexpected
result given that the unperturbed problem possesses a full planar symmetry with no
preferred direction. Moreover Huang et al. (1997) even argued that the instability
in this problem can only be stationary. The resolution of this apparent paradox is
prompted by the comparative computational data presented in table 3 for He = 10
and He = 100 and by figure 7. They show that the magnitude of the disturbance
wave speed |̃c| = ∣∣σ I/α̃c

∣∣ is approximately inversely proportional to the magnitude of
the applied magnetic field He, which in turn is proportional to the field parameter
N characterising the nonlinearity of the magnetic field distribution within a layer.
It is assumed in Huang et al. (1997) that N → ∞ and effectively postulated that
the magnetic field within the layer varies linearly. No unsteady patterns were found
there. Therefore, we conclude that the main reason for the appearance of oscillatory
instability in the current problem is the nonlinearity of the magnetic field within the
ferrofluid layer as has been discussed in § 4.

The values of the threshold parameters for longitudinal rolls computed for γ = 90◦
are given in table 4. Remarkably, they remain strictly stationary for all values of the
governing parameters. Figure 8(a) shows that, similar to the critical magnetic Rayleigh

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.709


Thermomagnetic convection in an oblique field 339

200 1.84

1.86

1.88

1.90

1.92

1.94

400

600

800

0 5 10 15 0 5 10 15

(a) (b)

FIGURE 8. Same as figure 6 but for longitudinal rolls at γ = 90◦.

number for transverse rolls, the one for longitudinal rolls increases quickly with the
field inclination angle δ. However, for all non-zero angles it remains smaller than
that of transverse rolls. This is consistent with findings of Huang et al. (1997) for
paramagnetic fluids and confirms an experimental fact that the axes of thermomagnetic
rolls appearing away from the boundaries always align with the tangential component
of the magnetic field since this configuration is found to be less stable than a
transverse one. Having said this, we emphasise that even though longitudinal rolls are
always expected to dominate the observed instability patterns, the possibility of the
existence of transverse rolls should not be ignored for at least two reasons. Firstly,
unlike in paramagnetic fluids, in ferrofluids they are qualitatively different from their
longitudinal counterparts as they are unsteady. They are also characterised by a
wavenumber that depends sensitively on the field inclination angle, see figure 6(b),
while the wavenumber of longitudinal rolls remains almost constant as the field
inclination is increased, see figure 8(b). Secondly, near the boundaries of a layer the
longitudinal rolls may be suppressed due to the geometry of the boundary or other
influences that are not present in unbounded domains so that oscillatory transverse
rolls might be preferred. The experimental observations reported in our previous work
(Suslov et al. 2012) (see figures 9 and 11 there) indeed indicate that this might have
been the case in the near-boundary regions of a finite experimental enclosure.

Given that the two limiting cases of transverse and longitudinal rolls have
qualitatively different characteristics it is of interest to investigate how and at what
value of the intermediate angle the transition between stationary and oscillatory
patterns occurs. Thus we have computed the stability characteristics of oblique
rolls for various values of magnetic susceptibilities and field inclination angles.
These are presented in figures 9–11. They confirm that both the critical magnetic
Rayleigh number and wavenumber increase continuously and monotonically from
longitudinal to transverse rolls and the rate at which they do grows quickly with the
field inclination angle. The only exception is the behaviour of the wavenumber for
relatively large field inclination angles when it reaches its maximum value for oblique
rolls forming an angle of about 45◦ with the tangential field component and then
starts decreasing. Of particular interest is the behaviour of the disturbance wave speed.
It grows continuously from zero for longitudinal rolls to its maximum for transverse
rolls; however, the most rapid growth is observed for γ . 50◦ and γ & 130◦. This
suggests that if the value of magnetic Rayleigh number is gradually increased in an
experiment then the stationary rolls aligned with the tangential component of the field
will appear first. Subsequently, they would be unsteadily modulated by a periodic
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FIGURE 9. (a) Critical magnetic Rayleigh number R̃amc, (b) wavenumber α̃c and (c) wave
speed c̃ as functions of the azimuthal angle γ for various angles δ for He = 100 and
χ̃ = χ̃∗ = 5.
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FIGURE 10. Same as figure 9 but for χ̃ = χ̃∗ = 3.
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FIGURE 11. Same as figure 9 but for χ̃ = 1.5 and χ̃∗ = 2.5.

pattern forming an angle of about 40–45◦ with the axes of the stationary rolls. A
further increase of magnetic Rayleigh number would lead to the increase of the
modulation frequency and wavenumber and to the re-orientation of the modulating
pattern so that it would become closer to orthogonal with respect to the original
stationary rolls.
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It is also noteworthy that the R̃amc and α̃c curves are symmetric with respect to
the γ = 90◦ line, while the c̃c line is centro-symmetric with respect to (c̃c, γ ) =
(0,90◦). To shed light on why this is so refer to figure 5(a,c) where the concave south–
west/north–east magnetic field lines are shown for γ = 0◦. If γ is changed to 180◦
the magnetic field lines re-orient to become north–west/south–east and convex. As has
been discussed above, the appearance of oscillatory disturbances is a consequence of
the nonlinearity of the magnetic field. Therefore we conclude that it is this change
of the curvature of magnetic lines in the plane perpendicular to the roll axes that is
responsible for the change of the sign of the disturbance wave speed.

7.4. Perturbation energy balance
To confirm the physical nature of the observed instabilities it is instructive to
consider the mechanical energy balance in a way similar to that used for example
in Hart (1971), Suslov & Paolucci (1995a), Suslov, Bozhko & Putin (2008)
and Suslov et al. (2012). We multiply the momentum equations (6.3) and (6.4) by
the complex-conjugate velocity components ū and v̄, respectively, add them together
and integrate by parts across the layer using the boundary conditions (6.9) and the
continuity equation (6.2) to obtain

σ̃Σk =Σvis +Σm1 +Σm2, (7.3)

where

Σk =
∫ 1

−1
(|ũ|2 + |ṽ|2)︸ ︷︷ ︸

Ek

dx̄> 0, (7.4a)

Σvis =
∫ 1

−1
−P̃r(α̃2(|ũ|2 + |ṽ|2)+ |Dũ|2 + |Dṽ|2)︸ ︷︷ ︸

Evis

dx̄=−1, (7.4b)

Σm1 =
∫ 1

−1
−R̃amP̃rDH̃x0ẽ10θ̃ ¯̃u︸ ︷︷ ︸

Em1

dx̄, (7.4c)

Σm2 =
∫ 1

−1
Em2dx̄ (7.4d)

and

Em2 = −R̃amP̃rDH̃x0
¯̃u θ̃0

H̃0

(
(1− ẽ2

10)Dφ̃ − iα̃ẽ10ẽ20φ̃
)

− R̃amP̃rθ̃0

(
ẽ10
¯̃uD2φ̃ + iα̃(ẽ10

¯̃v + ẽ20
¯̃u)Dφ̃ − α̃2ẽ20

¯̃vφ̃
)
. (7.5)

Given that Σk is positive definite, the perturbation energy balance (7.3) determines the
complex growth rate σ of linear instability. It does not contain the modified pressure
P as it integrates to zero identically. This confirms that the potential component of
the Kelvin force included in P indeed has no effect on the stability of a layer of
ferromagnetic fluid as has been stated in § 2. The viscous dissipation contribution to
the energy perturbation balance is always negative and, given that the eigenfunctions
of the linearised problem are defined up to a multiplicative constant, we scale
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them in such a way that Σvis ≡ −1. The remaining two terms are of magnetic
nature. As discussed in Suslov et al. (2012), Σm1 represents the variation of fluid
magnetisation (and thus of the local Kelvin force) due to the thermal perturbations
while Σm2 describes the energy contribution associated with the induced magnetic
field variations. Separating the real (Re) and imaginary (Im) parts of (7.3) we obtain
at the critical point

0=Re(Σm1 +Σm2)− 1, σ̃ IΣk = Im(Σm1 +Σm2). (7.6a,b)

The energy terms with positive real parts promote instability, while the ones with
negative suppress it. Equation (7.6b) demonstrates that the nature of the detected
oscillatory instabilities is purely magnetic.

Tables 2–4 contain numerical data for various perturbation energy terms that enable
us to draw a number of general conclusions. Firstly, the magnitude of the kinetic
energy term Σk never exceeds the value of about 10 % of the viscous dissipation,
while the magnitude of the magnetic contribution Σm1 always exceeds the dissipation
value. This confirms that the instability is of magnetic rather than hydrodynamic or
thermal nature and that the visible fluid motion triggered by the instability is not the
main recipient of the energy supplied to the system (in experiments such as those
described in Suslov et al. (2012) the energy is supplied by heat exchangers attached
to the layer walls). Secondly, since Re(Σm1) is always positive we conclude that the
specific mechanism triggering the instability is the thermally induced variation of fluid
magnetisation. Thirdly, since Re(Σm1)> 1 then, according to (7.6a), Re(Σm2)< 0. This
means that the variation of the applied magnetic field caused by perturbations always
plays a stabilising role. In summary, the analysis of mechanical energy balance shows
that the energy received by the system through a thermal exchange with the ambient is
mostly spent on varying the local magnetisation of the fluid. In turn the latter triggers
fluid motion, which is an observable signature of instability. The remaining part of
the received energy is spent on modifying the magnetic field. Since the variation of
magnetic field is not limited to the interior of the layer this energy largely leaves it
and thus cannot be used for supporting a mechanical instability within the system.

Typical distributions of the perturbation energy integrands for instability patterns
arising in normal and oblique fields are shown in figures 12 and 13, respectively.
Since the integrand behaviour for longitudinal rolls is found to be qualitatively similar
to that for stationary rolls arising in a normal field, only the results for transverse
rolls are presented here. As expected, the viscous dissipation Evis occurs mostly
near the solid boundaries and the kinetic energy Ek of perturbations is maximised
near the centre of the layer. Figures 12(b) and 13(b) show that the magnetisation
variation effect Em1 plays a destabilising role uniformly across the complete width of
the layer and with the maximum near its centre. On the other hand, the stabilising
effect of magnetic field modification Em2 is most pronounced near the walls of the
layer. This is intuitively expected since the internal magnetic field near the walls
defines the external field via the field-matching boundary conditions (5.12) and (5.13).
The overall role of the Em1 and Em2 effects does not change in the oblique field;
however, the field inclination introduces a noticeable asymmetry. The maximum of
the destabilising influence shifts toward the hot wall: compare the locations of the
maxima of the dash-dotted lines in figures 12(b) and 13(b). This is because the
unstable magnetic buoyancy stratification in oblique fields is more pronounced near
the hot wall, see figure 5(b,d) and the discussion in § 4. While the magnitude of
Re(Em1) determines whether the instability is present, figure 13(c) shows that it is
the magnitude of Im(Em2) that predominantly defines the sign of σ̃ I and thus the
propagation direction of transverse and oblique rolls.
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FIGURE 12. Disturbance energy integrands at the critical point of magnetoconvection
threshold R̃amc = 176.8, α̃c = 1.909 at He = 10, δ = γ = 0◦ and χ = χ∗ = 3.
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FIGURE 13. Same as figure 12 but for R̃amc = 548.4, α̃c = 2.135, δ = 10◦.

7.5. Perturbation fields
To complete this report we present the plots of typical perturbation fields arising
in normal and inclined magnetic fields. The mechanism driving convection is
straightforward to see from figure 14 for a normal field. Consider, for example,
the region near y= 3. There the thermal perturbation θ1 leads to local cooling. As a
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FIGURE 14. Perturbation eigenfunctions of (a) the fluid velocity v1 = (u, v), (b)
temperature θ1, (c) magnetisation M1 and (d) magnetic field H1, for magnetoconvection
at He = 10, δ= γ = 0◦ and χ̃ = χ̃∗ = 3 at the critical point R̃amc = 176.8, α̃c = 1.909. The
field values increase from black to white.

result this region becomes more strongly magnetised, see figure 14(c) for M1, and the
fluid there is driven toward the hot wall where the basic magnetic field is stronger,
see figure 3(a,d). This is reflected in the plot of the velocity field (figure 14a)
showing that indeed cool fluid flows toward the hot wall (from right to left) there.
This situation is similar to gravitational convection arising in a fluid heated from
below.

When the applied magnetic field is inclined the mechanism driving convection
remains the same, even though it is less straightforward to recognise it from figure 15.
The thermal and magnetisation perturbation cells align with the applied magnetic field
and so does the main fluid flow direction.

It is noteworthy that the perturbation cells for magnetic field H1 corresponding to
transverse rolls do not align with the rest of the perturbation field, see figure 15(d).
They also become asymmetric. At the same time the structure of the perturbation
fields for longitudinal rolls in an inclined field (not shown) remains very similar to
that seen in figure 14 for a normal field. Therefore, it is logical to conclude that the
phase shift between the magnetic field H1 and the rest of the perturbation fields is
responsible for the change of the instability character to oscillatory for transverse and
oblique rolls.
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FIGURE 15. Same as figure 14 but for R̃amc = 548.4, α̃c = 2.135, δ = 10◦.

8. Conclusions
In the current study the stability of a differentially heated layer of ferrofluid has

been analysed and contrasted to that of a layer of paramagnetic fluid considered
previously in Huang et al. (1997). The magnetic properties of a ferrofluid have
been estimated using the experimental data and the modified mean field model
that has been shown to be more accurate than the classical Langevin’s law of
magnetisation (Pshenichnikov 2007; Lebedev & Lysenko 2011). In contrast to the
linear distribution of magnetic field that exists in a layer of a paramagnetic fluid, the
magnetic field in a layer of a ferrofluid varies nonlinearly. The nonlinear distributions
of unperturbed magnetic and magnetisation fields have been derived asymptotically
and computed numerically for a range of fluid properties corresponding to realistic
ferrofluids, including that used in previous experiments (Suslov et al. 2012). It
has been shown that unlike in paramagnetic fluids such distributions in ferrofluids
depend not only on the inclination of the applied magnetic field, but also on its
magnitude.

The field nonlinearity found in ferrofluids is responsible for breaking the symmetry,
which in turn results in several qualitative differences between instabilities detected
in para- and ferromagnetic fluids. In particular, it is shown that in ferromagnetic
fluids the instability arises preferentially near the hot wall bounding the layer.
This is traced back to the curvature of the magnetic field lines inside a ferrofluid
layer. The instability leading to the appearance of oblique and transverse rolls in a
ferrofluid is found to be oscillatory, which is not the case in paramagnetic fluids.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.709


346 H. Rahman and S. A. Suslov

Even though, similar to paramagnetic fluids, our linear stability analysis demonstrates
that stationary longitudinal rolls are least stable, the possibility of the existence of
propagating oblique and transverse rolls cannot be disregarded in experimental studies,
especially those concerned with flows in finite geometries where the proximity of
solid boundaries can suppress longitudinal rolls. The cited experimental observations
indeed indicate that. Moreover, our preliminary results of weakly nonlinear analysis
of perturbed thermomagnetic flows that will be reported elsewhere indicate that the
bifurcation leading to the appearance of stationary longitudinal rolls is supercritical.
However, this might not be the case for propagating oblique and transverse patterns
where the degree of symmetry breaking is generally higher than for longitudinal
rolls. Therefore it may be possible that the character of a bifurcation leading to
non-stationary convection patterns could change to subcritical, at least in some
parametric regions. In this case, in a realistic experiment, stationary longitudinal and
finite-amplitude propagating oblique patterns can co-exist and interact. Even if it is
confirmed that the bifurcation for travelling patterns remains supercritical so that
non-stationary flow structures appear at necessarily larger governing parameters than
the critical values for longitudinal rolls, they will still be experimentally observable
in the form of time-dependent small-amplitude modulations of the main stationary
structures once and thus cannot be disregarded.

Disturbance energy considerations have been used to determine that the physical
cause of the detected instabilities is the variation of fluid magnetisation due to
thermal disturbances. However, the related variation of a magnetic field is found to
draw energy from the perturbed field, thus playing a stabilising role. It is also found
that it is this magnetic field variation effect that determines the propagation direction
of oblique and transverse instability patterns in a ferrofluid layer in inclined magnetic
fields.
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