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Density fronts are common features of ocean and atmosphere boundary layers.
Field observations and numerical simulations have shown that the sharpening of
frontal gradients, or frontogenesis, can spontaneously generate inertia–gravity waves
(IGWs). Although significant progress has been made in describing frontogenesis
using approximations such as quasi-geostrophy (Stone, J. Atmos. Sci., vol. 23,
1966, pp. 455–565, Williams & Plotkin J. Atmos. Sci., vol. 25, 1968, pp. 201–206)
semi-geostrophy (Hoskins, Annu. Rev. Fluid Mech., vol. 14, 1982, pp. 131–151), these
models omit waves. Here, we further develop the analytical model of Shakespeare
& Taylor (J. Fluid Mech., vol. 736, 2013, pp. 366–413) to describe the spontaneous
emission of IGWs from an initially geostrophically balanced front subjected to
a time-varying horizontal strain. The model uses the idealised configuration of an
infinitely long, straight front and uniform potential vorticity (PV) fluid, with a uniform
imposed convergent strain across the front, similar to Hoskins & Bretherton (J. Atmos.
Sci., vol. 29, 1972, pp. 11–37). Inertia–gravity waves are generated via two distinct
mechanisms: acceleration of the large-scale flow and frontal collapse. Wave emission
via frontal collapse is predicted to be exponentially small for small values of strain
but significant for larger strains. Time-varying strain can also generate finite-amplitude
waves by accelerating the cross-front flow and disrupting geostrophic balance. In both
cases waves are trapped by the oncoming strain flow and can only propagate away
from the frontal zone when the strain field weakens sufficiently, leading to wave
emission that is strongly localised in both time and space.

Key words: atmospheric flows, ocean processes, waves in rotating fluids

1. Introduction

Inertia–gravity waves (IGWs) are of fundamental importance in both the atmosphere
and ocean due to their ability to transfer significant amounts of energy, momentum
and other tracer properties. For example, in the ocean IGWs provide a mechanism
for energy loss from large-scale flows (e.g. Williams, Haine & Read 2008) and can
drive significant vertical mixing (e.g. Polzin 2010). In the atmosphere, these waves
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have the ability to initiate and modulate convection (Zhang 2004). Substantial sources
of IGWs include flow over topography and moist convection in the atmosphere
(Plougonven & Zhang 2014), and forcing by tides and surface wind stresses in the
ocean (Wunsch & Ferrari 2004). Recent work suggests that fronts, or regions of
large horizontal density gradient, and their associated geostrophic jets, are a further
important source of IGWs (e.g. Alford, Shcherbina & Gregg 2013; Plougonven &
Zhang 2014). Despite the importance of IGWs, their generation mechanisms at fronts
are still not fully understood. There are two broad mechanisms of IGW generation at
fronts that are widely discussed in the literature: geostrophic adjustment (e.g. Rossby
1938; Blumen 1972; Ou 1984; Tandon & Garrett 1994; Blumen 2000; Shakespeare &
Taylor 2013) and spontaneous emission (e.g. Ford, McIntyre & Norton 2000; Viudez
& Dritschel 2006; Plougonven & Zhang 2007; Danioux et al. 2012). In geostrophic
adjustment, the system is instantaneously displaced from geostrophic balance and
then adjusts back towards this state, releasing energy in the form of IGWs in the
process (e.g. Blumen 1972). On the other hand, spontaneous emission involves the
generation of IGWs from an initially ‘balanced’ (i.e. long time scale, slow manifold)
flow. Geostrophic adjustment relies on an imposed external influence or ‘initial
condition’, whereas spontaneous emission is a fundamental transient feature of the
dynamical equations. The process of spontaneous emission is therefore expected to
be ubiquitous in the ocean and atmosphere, and is arguably more important in terms
of the global wavefield and associated tracer fluxes (Plougonven & Zhang 2014).
Unfortunately, spontaneous wave emission is also far more difficult to quantify
since, by definition, it involves the breakdown of the balanced approximations
(e.g. geostrophy, quasi-geostrophy, semi-geostrophy) that form the basis of our
understanding of most geophysical flows (Vanneste 2013). Zhang (2004), among
others, proposed that the mechanism of spontaneous emission can be considered
as a generalisation of geostrophic adjustment, called ‘balance adjustment’. In this
paradigm, departures from a suitably balanced state are treated as internally forced
imbalances to which the system adjusts via the emission of waves, as per the classical
geostrophic adjustment scenario. As such, the two mechanisms of wave generation at
fronts, geostrophic adjustment and spontaneous emission, may be closely related – a
topic investigated further in the present work.

Baroclinic instability is a major source of spontaneous IGWs in both the atmosphere
and the ocean (Vanneste 2013), which exhibit large-scale baroclinic waves and eddy
fields. Sharp horizontal buoyancy gradients (fronts) and strain flows are ubiquitous
features of these fields. A convergent strain can act to amplify relatively weak
buoyancy gradients through a process known as frontogenesis (e.g. Hoskins &
Bretherton 1972). This strain-driven sharpening of the buoyancy gradients ultimately
causes a breakdown of geostrophic balance (Juckes 1994) and the generation of IGWs
as the frontal scale collapses (Snyder, Skamarock & Rotunno 1993). In addition, the
eddies are themselves naturally time-dependent according to a ‘baroclinic life-cycle’
and thus cause the surrounding strain field to accelerate and decelerate with time.
Eddy fields consequently exhibit highly variable strains in time and space, and this
variability can itself generate IGWs even in the absence of a sharp frontal gradient
(Snyder et al. 1993; Viudez & Dritschel 2006; Vanneste 2013). Williams et al. (2008)
measured the generation of IGWs during a baroclinic life-cycle in a rotating two-layer
annulus experiment at small (∼0.1) Rossby numbers. They found that the baroclinic
eddies leak ∼1 % of their energy to IGWs each inertial cycle. Alford et al. (2013)
obtained a result with a similar order of magnitude for the energy loss via wave
emission from an actively strained, mesoscale front observed in the ocean mixed
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Spontaneous wave generation during frontogenesis 819

layer. Collectively, these studies suggest that wave generation at strained fronts within
eddy fields may provide a significant contribution to the ocean energy budget.

Given the complexity of fully three-dimensional baroclinic instability discussed
above, it has proven useful to use two-dimensional (2D) models to examine
small-scale flow evolution within a large-scale eddy field. Hoskins & Bretherton (1972,
hereafter, HB) introduced a 2D, rigid-lid model to study the effect of convergent strain
within a baroclinic wave on the evolution of a smaller-scale buoyancy gradient (a
front). They derived an analytical solution for the secondary flow in the limit of small
strain, using the semi-geostrophic equations. The semi-geostrophic approximation
requires that the cross-front acceleration is much slower than the inertial acceleration,
i.e. Du � fv where D represents the material derivative. Time derivatives are
therefore neglected in the semi-geostrophic limit, and thus IGWs are filtered from
the solution. While the semi-geostrophic approximation is valid (and IGW generation
negligible) for many flows, it breaks down for unbalanced initial conditions and
strongly strained flows where the horizontal strain rate α is of similar order to the
inertial frequency f ; one example is at submesoscale fronts in the ocean mixed layer
(Shcherbina et al. 2013).

Among its various applications, the HB solution is a convenient balanced state
for the study of spontaneous wave emission. Ley & Peltier (1978) computed the
neglected ‘unbalanced’ ageostrophic flow arising from the model and used it to force
a correction to the HB solution. This correction was found to take the form of a
packet of IGWs, which produced a pressure minimum at a fixed distance ahead of
the front. Ley & Peltier proposed that such wave emission provides a mechanism
for the formation of squall lines in the warm sector ahead of an advancing cold
front – such squall lines are a common feature of atmospheric weather systems (e.g.
Karan et al. 2010). Garner (1989) and Snyder et al. (1993) studied the difference
between the HB solution and numerical primitive equation models, and found it to
be dominated by a field of largely stationary IGWs. These waves were attributed
to three mechanisms: generation via the geostrophic adjustment of initial conditions
of semi-geostrophic balance (mechanism 1), implying the existence of some more
balanced primitive equation solution (Garner 1989), generation via a time-dependent
strain field (mechanism 2) and generation via frontal collapse (mechanism 3). Griffiths
& Reeder (1996) and Reeder & Griffiths (1996) obtained similar results from their
numerical model of upper-level frontogenesis and, in particular, found that wave
generation becomes more pronounced as frontogenesis varies rapidly. Despite these
efforts, a theoretical model for spontaneous wave generation from this idealised 2D
system via the above mechanisms (2, 3) is still lacking.

Shakespeare & Taylor (2013, hereafter, ST13) examined frontogenesis in a quasi-2D,
rigid-lid model of a frontal system, as initially introduced by HB and discussed above.
A key feature of their model was the introduction of the ‘generalised momentum
coordinate’, which allowed the unification of previous work by Blumen & Wu (1995),
Blumen (2000) and others, describing geostrophic adjustment and wave emission at
unbalanced fronts, with that of HB describing the evolution of balanced fronts
subjected to a convergent strain flow. The generalised model formulated in ST13 is
able to simultaneously represent strain-driven frontal collapse and the generation and
propagation of IGWs. Unlike HB, no assumption was made as to the smallness of
the cross-front acceleration. However, ST13 focused on the breakdown of the HB
model due to unbalanced initial conditions at small strains, δ = α/f ∼ 0.1, and the
attendant wave generation via geostrophic adjustment (mechanism 1). In that limit,
the generalised model solution is composed of an IGW field driving oscillations
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about a time-varying mean state given by the HB solution. The strain flow traps
the generated IGWs in the frontal zone and drives the decay of the wave amplitude
with time.

Here, we will consider the breakdown of semi-geostrophy associated with larger
strain fields, but purely balanced initial conditions. Since semi-geostrophic balance
breaks down for large strain, the requirement of balanced initial conditions will
necessitate the expansion of the ST13 model to incorporate a time-dependent strain
field, such that the model can be initialised with zero strain in a geostrophically
balanced state. The analytical solution presented in ST13 also required an ad hoc
linearisation of the horizontal momentum equations, which was shown to be valid
a posteriori for the cases considered therein. Here, we will more rigorously consider
the system via a scaling analysis of the governing equations, assuming balanced
initial conditions, and determine the parameter values for which the neglect of
the nonlinear terms is valid. We find that the neglected nonlinear terms are small
compared to the leading-order retained terms wherever the product of the Rossby
number and non-dimensional strain, Ro δ, is sufficiently small. Two subsets of the
generalised model will be investigated: first, the limit of small strain δ, corresponding
to the semi-geostrophic solution of HB, which does not permit IGWs; and secondly,
the limit of small Rossby number Ro, which permits large strain and accurately
describes second-order effects such as wave generation. However, in contrast to
ST13, here we will only consider ‘spontaneously generated’ waves, which we define
in the present context as waves generated at an initially balanced front subject to
an imposed convergent strain. Such waves will arise both through time-variation
of the strain field, even for an arbitrarily weak buoyancy gradient (mechanism 2),
as well as for a constant strain in the limit of frontal collapse (mechanism 3).
The spatial structure of the generated wavefield in each case is strongly influenced
by the effect of the large-scale strain flow on wave propagation, as argued by
Plougonven & Snyder (2005).

The layout of the paper is as follows. In § 2 we introduce the governing equations
following ST13, generalised here to include a time-dependent strain field. A scaling
analysis is performed (§ 2.1) to identify the parameter values for which the nonlinear
terms in the governing equations may be neglected. In § 3, we consider the special
case of zero potential vorticity (PV) to show that time-variation in the large-scale
strain field drives inertial oscillations about the geostrophically balanced state. Then,
in § 4, the more general uniform PV flow is solved for constant strain using a
Green’s function method. We demonstrate the tendency of the flow to develop a
strong stationary wavefield as the front collapses, and separate the flow into a wave
and secondary circulation component. In § 5, we consider the most general case of
uniform PV and a time-dependent strain field, using the results from previous sections.
Lastly, in § 6 we discuss the implications of our results in terms of frontal evolution
and energy loss from balanced flows.

2. Model equations

Following ST13, we consider a uniform PV flow trapped between rigid lids and
subject to a strain field (U, V, 0)= (−αx, αy, 0) in the Cartesian (x, y, z) directions.
The action of the strain drives a secondary flow (u, v, w). The model is quasi-2D in
the sense that along-front (y) gradients are neglected. ST13 assumed that the strain α
was constant in time – here, we permit the strain to vary in time to allow the model
to describe a greater range of geophysical situations. The key feature of the model is
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Spontaneous wave generation during frontogenesis 821

the use of the generalised momentum coordinate, defined (for a time-dependent strain)
by the transformation

X = eβ(t)
(

x+ v
f

)
, Z = z, T = t, (2.1a–c)

where f is the inertial frequency and, following HB, β(t) is the time-integrated strain,

β(t)=
∫ t

0
α(t′) dt′, (2.2)

which is non-dimensional. We will write the strain parameters as explicit functions
of time (i.e. α = α(t), β = β(t)) where appropriate throughout this work to prevent
confusion with the constant-strain case. The coordinate X defined in (2.1) is conserved
for any strain α(T); that is,

DX
Dt
= 0. (2.3)

All derivatives and other properties of the coordinate transformation are listed
in table 1 of ST13, where exp δT must be replaced by expβ(T) for a time-
dependent strain field – the expressions are otherwise identical. Following ST13,
the incompressible, inviscid, Boussinesq, rotating fluid equations, when transformed
to generalised momentum coordinates, become

∂u
∂T
+ Ro w

∂u
∂Z
− v − δ(T) u+ vg = 0, (2.4a)

∂v

∂T
+ Ro w

∂v

∂Z
+ u+ δ(T) v = 0, (2.4b)

∂b
∂T
+ Ro w

∂b
∂Z
= 0, (2.4c)

plus continuity (see table 1 of ST13) and hydrostatic balance. The geostrophic velocity
vg is defined by

vg = 1
ρ0 f

∂p
∂x
, (2.5)

for reference density ρ0 and perturbation pressure p. Equation (2.5) and hydrostatic
balance give rise to the thermal wind equation, which in momentum coordinates
becomes

∂vg

∂Z
− Ro eβ(T)

(
∂b
∂X
+ ∂v
∂X

∂vg

∂Z
− ∂v
∂Z
∂vg

∂X

)
= 0. (2.6)

Conservation of PV, q, may be derived from (2.4) and continuity as

∂q
∂T
+ Ro w

∂q
∂Z
= 0, q= ∂b

∂Z

(
1− eβ(T)Ro

∂v

∂X

)−1

. (2.7)

The assumption of uniform PV then implies that

∂b
∂Z
− q0

(
1− eβ(T)Ro

∂v

∂X

)
= 0, (2.8)
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Buoyancy scale 1B

Horizontal velocity scale
√
1BH

Vertical velocity scale
√
(1B H3)/L2

Time scale 1/f

Rossby number Ro (
√
1BH/fL)

Froude number F
√
(1B/N2H)

Deformation ratio (or large-scale Rossby number) δ(T) (α(T))/f
Burger number (Ro/F) Bu (NH/fL)

TABLE 1. The non-dimensional parameters and variable scales employed herein. The
fundamental physical scales are the inertial frequency f , the horizontal buoyancy step
across the front 1B, the buoyancy frequency N, the strain α, the initial horizontal width
L and the height H.

where the uniform PV, q0, can be written in terms of the Froude number, q0 = F−2

(see table 1). The equations have been non-dimensionalised using the same scales
as ST13, which are also listed in table 1 for reference. The physical scales are the
initial width of the frontal zone L, the height H, the buoyancy transition across the
front 1B, the background stratification N2, the inertial frequency f and the strain
α(T). Following ST13, the time evolution of the hydrostatic system (L/H� 1) is thus
entirely controlled by the three independent non-dimensional parameters; the Rossby
number Ro=√(1B H)/( fL), the non-dimensional strain δ(T)=α(T)/f and the Burger
number Bu= (NH)/(fL) (also see table 1).

Of the three independent non-dimensional parameters (Ro, Bu, δ), the buoyancy
difference 1B across the front only appears in the Rossby number. Here, Ro thus
provides a non-dimensional measure of the size of the buoyancy step b0(X) imposed
on the rigid lids. Indeed, the parameter Ro is equivalent to the ‘nonlinearity parameter’
governing the relative surface height displacement in shallow-water step-adjustment
problems (e.g. Kuo & Polvani 1997). We observe that while the convergent strain will
act to increase horizontal gradients (i.e. by reducing the frontal width with time), it
will not alter the net magnitude of buoyancy transition 1B across the front. A small
Ro therefore implies an initially weak front, but does not preclude the formation of a
sharp/strong front with time as the frontal width contracts. While the frontal width L
remains constant in generalised momentum coordinates, the frontal width in Eulerian
coordinates (i.e. the actual width) is LE = L J−1, where J−1 is the inverse Jacobian of
the coordinate transformation:

J−1 = ∂x
∂X
=
(

e−β(T) − Ro
∂v

∂X

)
. (2.9)

The physical/frontal Rossby number at a given time is therefore Rof = Ro J, which
grows with time, and becomes infinite in the limit of discontinuity formation. For
balanced initial conditions, the along-front velocity v will be non-zero initially,
implying that the frontal Rossby number Rof will exceed Ro even at time zero.

The background stratification N2 only appears in the Burger number Bu, and thus
Bu is the non-dimensional scale that governs the speed of wave propagation and
adjustment in the system or, equivalently, the background PV (dimensionally, q0=N2
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Spontaneous wave generation during frontogenesis 823

with our definition of PV; see table 1 of ST13). The non-dimensional strain δ(T)
governs the magnitude of the imposed large-scale convergent flow field. In fact, δ(T)
may be interpreted as a large-scale Rossby number RoL characterising the large-scale
strain flow:

RoL =
∣∣∣∣
1
f
∂U
∂x

∣∣∣∣= α(T)/f = δ(T). (2.10)

A small strain δ thus implies that the large-scale phenomenon that is responsible for
generating the strain field (such as a baroclinic eddy field or wave) is characterised
by a small Rossby number.

Perhaps the major advantage of generalised momentum coordinates is the simplicity
of the buoyancy (2.4c) and PV conservation (2.8) equations. Indeed, these two
equations, plus the rigid-lid boundary condition w= 0 and b= b0(X) (for arbitrary b0)
at Z = 0, 1, are sufficient to linearly relate the perturbation along-front velocity v,
the cross-front streamfunction ψ and the buoyancy field b. The xz-plane velocity
components may be determined from ψ in the usual way, via

u= ∂ψ
∂z

and w=−∂ψ
∂x
. (2.11a,b)

It will prove convenient to express the relations between the field variables v, ψ and
b in terms of the integral of the along-front velocity,

φ(X, Z, T)=
∫ Z

0
v(X, Z′, T) dZ′, (2.12)

such that

v(X, Z, T)= ∂

∂Z
φ(X, Z, T), (2.13a)

b(X, Z, T)= b0(X)+ F−2 Z − Ro F−2eβ(T)
∂

∂X
φ(X, Z, T), (2.13b)

ψ(X, Z, T)=
(
−δ(T)− ∂

∂T

)
φ(X, Z, T). (2.13c)

The relations (2.13b), (2.13c) have been modified here (cf. (2.27) and (2.30) of ST13)
to incorporate a time-dependent strain. Note that (2.13) depend only on buoyancy and
PV conservation, and thus apply independent of any dynamical balance assumption.
The entire time evolution of the system is thus known if φ(X,Z,T) can be determined
subject to boundary conditions of φ(X, 0,T)=φ(X, 1,T)= 0 to enforce w=−∂xψ = 0
on the rigid lids. Applying the horizontal momentum (2.4a), (2.4b), thermal wind (2.6)
and PV conservation (2.8) equations, in addition to relations (2.13a) and (2.13b), one
may write the evolution of φ as
[(

∂2

∂T2
+ 1− δ(T)2 + δ′(T)

)
∂2

∂Z2
+ Bu2e2β(T) ∂

2

∂X2

]
φ(X, Z, T)=F +N . (2.14)

The function F on the right-hand side of (2.14) is the linear forcing defined by

F = Ro b′0(X) eβ(T), (2.15)
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824 C. J. Shakespeare and J. R. Taylor

where b′0(X)= ∂Xb |Z=0,1 (from (2.13b)) is the imposed buoyancy gradient at the rigid
lids that forces motion in the interior as it is amplified by the convergent strain field.
The function N on the right-hand side of (2.14) is the sum of the nonlinear terms:

N = Ro
∂

∂Z

[
w
∂u
∂Z
+
(
δ − ∂

∂T

)(
w
∂v

∂Z

)]
− Ro eβ(T)

[
∂v

∂X
∂va

∂Z
− ∂v
∂Z
∂va

∂X

]
, (2.16)

where va ≡ v − vg is the ageostrophic velocity. Similar to ST13, we will neglect
the explicit nonlinear terms. In the next section, we perform a scaling analysis to
determine under what conditions the neglect of N in (2.14) is valid.

2.1. Scaling analysis
Unlike ST13, here we will only consider initial conditions that are appropriately
‘balanced’ such that the time-variation in the solution is controlled by the strain
forcing, implying that the time derivative ∂T ‘scales with’ the strain δ – here denoted
as ∂T ∼ δ – rather than the natural wave response of the system. Applying this result
and relations (2.13), we can write scales for the velocity field and streamfunction as

v ∼Φ, ψ ∼ δ Φ, (2.17a,b)

assuming that φ ∼ Φ. In determining further scales we will neglect any nonlinear
terms, and then employ the linearised scales to determine under what conditions the
neglect is valid. Using (2.17), scales for the velocities u= ∂zψ and w=−∂xψ may be
written as

u∼ δ Φ, w∼ δ eβ(T)Φ, (2.18a,b)

since ∂x ∼ eβ(T). Substitution of (2.18) into the x-momentum equation (2.4a) yields a
scale for the ageostrophic velocity,

va ∼ δ2Φ, (2.19)

neglecting the contribution of the nonlinear advection term. Using these results, it may
be shown that the nonlinear terms N (2.16) scale as

N ∼ Ro δ2 eβ(T)Φ2, (2.20)

the linear forcing F (2.15) as

F ∼ Ro eβ(T) (2.21)

and the left-hand side (LHS) of (2.14) as

LHS∼Φ + δ2Φ + Bu2 e2β(T)Φ. (2.22)

Neglecting N , the magnitude of φ must be determined by a balance between the
linear forcing (2.21) and the LHS (2.22):

Φ ∼ Ro eβ(T)

1+ δ2 + Bu2 e2β(T)
. (2.23)

We can now determine under what conditions the neglect of the nonlinear terms is
valid. For a first estimate of model validity, we require that the summed magnitude
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of the linear terms (LHS) greatly exceeds that of the neglected nonlinear terms; that
is,

(1+ δ2 + Bu2 e2β(T))Φ� Ro δ2 eβ(T)Φ2, (2.24)

or, substituting (2.23),

E = Ro2 δ2 e2β(T)

(
1+ δ2 + Bu2 e2β(T)

)2 � 1, (2.25)

where E is a measure of the relative fractional error in neglecting the nonlinear terms.
Thus, for the neglect of the nonlinear terms to be valid at time zero, we must have

Ro2 δ2� (1+ δ2 + Bu2
)2
. (2.26)

In other words, the product of Ro and δ must be sufficiently small for the model to
be valid at time zero. The relative error E will be less for larger Bu. Equation (2.26)
represents the weakest possible limit on model validity. If the leading-order terms
on the left-hand side of (2.14) balance the forcing such that the scaling in (2.26)
holds, then the large-scale circulation predicted by the model should be accurate, but
smaller-amplitude features such as higher-mode waves may not be well described by
the model. On the other hand, if the leading-order terms on the left-hand side of
(2.14) happen to cancel, the neglected terms could play a more significant role, and
the model solution may not be valid. A more stringent constraint on model validity
can be obtained by requiring that the magnitude of the smallest linear term (i.e. in
(2.22)) exceeds that of the largest neglected nonlinear term:

δ2Φ� Ro δ2 eβ(T)Φ2, (2.27)

or, substituting the scale for φ (2.23),

Ro2 e2β(T)

1+ δ2 + Bu2 e2β(T)
� 1. (2.28)

Thus, for the neglect of the nonlinear terms to be valid at time zero in this more
stringent limit, we must have

Ro2� 1+ δ2 + Bu2. (2.29)

In other words, the Rossby number Ro must be sufficiently small for validity at time
zero, where the term ‘validity’ in this more stringent limit implies that both the large-
scale circulation and smaller-scale features will be well described by the model.

We have derived constraints on the parameter values for the validity of the neglect
of the nonlinear terms at time zero, assuming suitably balanced initial conditions.
We now consider the validity at later times. First, note that the coordinate system
(and model) breaks down when the inverse Jacobian of the momentum coordinate
transformation (2.9) vanishes. The vanishing of J−1 implies the formation of a
discontinuity in velocity and buoyancy fields. The inverse Jacobian vanishes when φ
grows sufficiently large; that is, from (2.9),

Φ ∼ Ro−1 e−β(T), (2.30)
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826 C. J. Shakespeare and J. R. Taylor

using the scales derived above. We observe that the constraint on model validity (2.27)
in the more stringent limit discussed above may be rewritten as

Φ� Ro−1 e−β(T). (2.31)

Thus, if (2.29) holds at T = 0, Φ�Ro−1, then the model is valid except near the time
or location of discontinuity formation, when eβ(T)� 1. Similarly, the weak constraint
on model validity (2.24) may be rewritten as

Φ� Ro−1 e−β(T)(1+ δ−2(1+ Bu2)). (2.32)

Thus, given that the initial condition (2.26) is satisfied, the model is valid except near
the time or location of discontinuity formation. Further, if δ is small, then the neglect
of the nonlinear terms will be valid even in the limit of discontinuity formation.

2.2. The generalised model
Given the above scaling analysis, the neglect of the nonlinear terms in (2.14) is valid
– in the sense that these terms are small compared to leading-order linear terms –
as long as the product Ro δ is sufficiently small, as defined by (2.26). As such, we
call (2.14) with N ≡ 0 the ‘generalised model’. For constant strain, (2.14) with
N ≡ 0 is equivalent to (2.34) of ST13. A vital feature of the generalised model is
that it permits the propagation of IGWs (as a result of the explicit time derivative
in (2.14)). The weak constraint on model validity (2.26) ensures that the large-scale
secondary circulation associated with frontogenesis is well described, but second-order
effects, such as wave generation, may not be. The relative size of neglected effects
may be estimated from (2.25). If we instead consider the limit of small Rossby
number, defined by (2.29), both first- and second-order flow will be well described
by the generalised model – neglected effects are strictly third order. The physical
interpretation of this small Rossby limit is that of an initially weak front, somewhat
analogous to the small-step limit of shallow-water free-surface height adjustment
problems. The front is only weak at early times and will sharpen with time as the
frontal width contracts (e.g. the frontal Rossby number is Rof = Ro J, as discussed
previously), although the above scaling arguments suggest that the generalised model
may break down where O(Rof )= 1. Perhaps the most important feature of this small
Rossby limit is that it permits an accurate analytical description of wave generation
occurring at a strained front, since the included time derivative and strain terms in
(2.14) that are associated with wave generation are guaranteed to exceed neglected
terms in this limit.

One important subset of the generalised model is the limit of weak strain, δ2� 1.
In this limit, the generalised model equation (2.14) may be further simplified by the
neglect of the O(δ2) terms on the left-hand side, yielding

[
∂2

∂Z2
+ Bu2 e2β(T) ∂

2

∂X2

]
φ =F , (2.33)

where F is given by (2.15), as previously. This derivation assumes that the time-
variation in the strain is also small, δ′(T) � 1. Equation (2.33) is identical to the
‘HB model’ of frontogenesis (Hoskins & Bretherton 1972). The neglect of the O(δ2)
terms (including the time derivative) in (2.14) filters IGWs from the solution. As δ is
small, the relative error E associated with the neglected nonlinear terms (2.25) will be
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Spontaneous wave generation during frontogenesis 827

small. Given this reduction of our model to the HB model in the limit of small strain,
our model can be described as a generalisation of the HB model permitting large
strain rates and IGWs. The physical interpretation of the weak-strain limit is that the
large-scale flow is strongly affected by rotation, or Ro2

L� 1, where RoL is the Rossby
number of the large-scale flow. While we model the (dimensional) large-scale flow as
(−α x, α y, 0) in the region of the front, this is only an approximation to a flow that
would have significant spatial and temporal variability. For instance, in the atmosphere
the ‘large-scale flow’ might be associated with locally convergent regions of a global-
scale baroclinic wave (e.g. Hoskins 1982). In the ocean, the ‘large-scale flow’ could
be associated with convergence within a mesoscale eddy field (e.g. Thomas, Tandon
& Mahadevan 2008). In each case, δ is the Rossby number describing the dynamics
of that spatially and temporally varying larger-scale flow field. For a global baroclinic
wave in the atmosphere or a mesoscale ocean eddy field, RoL ∼ 0.1 and this δ2� 1
limit is valid.

Given the influence of the Rossby number Ro on the validity of the generalised
model, it is useful to consider the effect of the Rossby number on the dynamics.
As already observed, a larger Rossby number Ro implies a stronger initial front and
consequently more rapid discontinuity formation and model breakdown. Furthermore,
the Rossby number appears in the governing equation (2.14) in two places: (i) in the
momentum coordinate transformation, X = eβ(T)(x+ Ro v); and (ii) in the forcing F
on the right-hand side (defined by (2.15)). As shown in ST13, the appearance of the
Rossby number in the coordinate transformation is related to the tilting/slumping of
the front during frontogenesis; the position of the front on the boundary will be O(Ro)
by the time of model breakdown. A small Rossby number thus implies that the front
remains relatively upright during frontogenesis due to rotational effects dominating the
gravity-driven tendency for frontal slumping. The Rossby number in the forcing term
F acts to scale the amplitude of the flow response to the applied strain. As expected,
stronger fronts lead to a larger amplitude secondary circulation.

Before proceeding further and solving the generalised model in specific cases, we
can gain significant insight into the dynamics from direct examination of the PDE
(2.14) with N = 0. Using the fact that φ must vanish on the boundaries at Z = 0, 1,
we can write φ as a sum of vertical sine modes:

φ(X, Z, T)=
∞∑

n=1

φ̂(X, n, T) sin nπZ. (2.34)

Substituting (2.34) into (2.14), we obtain
[
∂2

∂T2
+ 1− δ(T)2 + δ′(T)−

(
Bu
nπ

)2

e2β(T) ∂
2

∂X2

]
φ̂(X, n,T)=Ro An eβ(T) b′0(X), (2.35)

with An defined as

An = 2 (−1+ (−1)n)
n3π3

. (2.36)

Equation (2.35) is hyperbolic (wave-like) for all n so long as δ 6= 0 and Bu 6= 0. While
we will not attempt to solve (2.35) analytically at this point, we can readily write
down the equations for the characteristics:

X± = e−β(T)
(

X0 ± Bu
nπ

∫ T

0
eβ(T

′) dT ′
)
, (2.37)
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defined here in terms of the regular momentum coordinate, X = x+ Ro v = e−β(T) X,
which equals the Eulerian coordinate x at mid-depth (since v = 0 at Z = 0.5). The
region between the plus (X+) and minus (X−) characteristics is the region of
influence of X0, and indicates the area over which amplitude/energy associated with
vertical mode n, and initially at location X0, has spread by time T . In the case of a
constant strain δ, the characteristics from (2.37) become

X δ=const.
± = e−δT X0 ± Bu

nπ δ
(1− e−δT). (2.38)

Thus, at constant strain, the region of influence of a given X0 is

X0 e−δT − Bu
nπδ

6X 6X0 e−δT + Bu
nπδ

, (2.39)

at time T . If we now consider the limit of infinite time, T→∞, then the region of
influence for X0 becomes

− Bu
nπδ

6X 6 Bu
nπδ

, (2.40)

assuming that δ > 0. Since (2.40) applies for any X0, it implies that the solution φ is
identically zero for |X |>Bu/(nπδ) in the limit T→∞ for an appropriate choice of
boundary conditions (see appendix B for the detailed derivation). This ‘confinement’
result will prove important in formulating the general solution to (2.14) in § 4.

The fact that at large enough time the frontal circulation is entirely confined within
the region |X | 6 Bu/(nπδ) is a powerful result. It gives a fundamental scale for
the width of frontal circulation at large time. This width decreases with increasing
strain, δ, implying that for large strains we can expect significantly larger vertical
velocities. The edge of the confinement region is equivalent to the points at which
the group speed of the fastest IGWs of vertical mode n, cg = Bu/(nπ), equals the
strain flow speed at mid-depth, δX . In other words, X =±Bu/(nπδ) are the points at
which outward-propagating waves are expected to stagnate in the strain flow. Thus, the
convergent strain is effectively trapping the circulation within the region of possible
wave propagation. By contrast, in the infinite time limit of the HB model, which does
not include waves, there is no equivalent confinement effect, and the amplitude of the
solution is finite everywhere. We will discuss these differences between the generalised
and HB models in more detail when we formulate the general solution in § 4.

In the following sections, we examine in detail the dynamics of frontogenesis and
wave generation using the generalised model derived above. We focus on parameter
values corresponding to the small Rossby limit (2.29), where the scaling analysis
indicates the generalised model will be most accurate.

3. Inertial oscillations in zero-PV flow

It is useful to first examine the limit of zero PV, where the equations greatly
simplify. The assumption of zero PV requires that the background stratification N2

vanish and thus Bu= (NH)/(fL)→ 0. This limit allows the isolation of spontaneous
wave generation via acceleration of the large-scale flow from other mechanisms of
generation that occur simultaneously at non-zero PV. The zero-PV limit is also of
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practical interest, since the PV in ocean and atmosphere boundary layers is often
close to zero. With Bu→ 0, (2.14) with N ≡ 0 becomes simply

[
∂2

∂T2
+ 1− δ(T)2 + δ′(T)

]
∂v

∂Z
= Ro b′0(X) eβ(T), (3.1)

written here for convenience in terms of the along-front shear. The geostrophic
component of this shear may be computed by substitution of the buoyancy (2.13b)
into the thermal wind equation (2.6):

∂vg

∂Z
= Ro b′0(X) eβ(T). (3.2)

Equation (3.2) represents the ‘directly forced’ part of the flow and is equivalent to the
solution of the HB model (i.e. (2.33)). Using (3.1) and (3.2), we can write down an
equation for the time evolution of the ageostrophic part of the flow:

ζ ′′(T)+ (1− δ(T)2 + δ′(T)) ζ (T)=−2 δ′(T) eβ(T), (3.3)

where
∂va

∂Z
= Ro b′0(X) ζ (T). (3.4)

Consistent with the assumptions made in the model derivation (§ 2.1), we choose
initial conditions of geostrophic balance with v= vg and ∂Tv= 0, or ζ (0)= ζ ′(0)= 0.
We therefore require a strain field with δ(0)= δ′(0)= 0 such that there is no forcing
to the ageostrophic flow at time zero (i.e. the right-hand side of (3.3) vanishes).
However, as the strain is turned on and δ′(T) becomes non-zero, ageostrophic flow is
inevitably forced. As a simple example, consider applying a ‘pulse of strain’ to the
system

δ(T)= δ0 sin2

(
πT
τ

)
H(τ − T), (3.5)

where H is the Heaviside function. Such a strain profile could represent a region of
convergence interior to an eddy field, where the eddies evolve on a characteristic time
scale τ . Figure 1 shows the time-dependence of the solution for δ0 = 0.2 and τ = 8π
(4 days) in terms of the ageostrophic part ζ (T), the geostrophic part expβ(T) and
the full flow expβ(T)+ ζ (T). The strain field from (3.5) is shown in (a). The time-
variation in the strain forces ageostrophic flow (waves), which amplifies over time as
the strain acts and the integrated strain β(T) in (3.3) increases. The waves become
exactly inertial and obtain a constant magnitude as the strain vanishes (T = τ ). In
other words, for T >τ , the net flow is composed of non-decaying inertial oscillations
about the state of geostrophic balance – this end-state behaviour is identical to the
behaviour of the Blumen (2000) zero-PV model of frontogenesis. The key difference
is that the Blumen (2000) model assumed unbalanced initial conditions, whereas here
we have demonstrated a mechanism for the generation of inertial waves from purely
balanced initial conditions.

The spatial and temporal separability of the solution (3.2), (3.4) implies that
the generation of the inertial waves in this zero-PV model is independent of the
sharpness of the front; waves would be generated even with a linear buoyancy
gradient (i.e. constant b′0(X)). As such, the model provides an example of wave
generation due to the acceleration (or transience) of the large-scale flow (e.g. Viudez
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FIGURE 1. The geostrophic and ageostrophic responses to a pulse of strain in zero-PV
flow. The strain δ(T) (a) is defined by (3.5) with δ0= 0.2 and τ = 8π. The time-variation
of the strain drives ageostrophic flow ζ (T) in the form of an oscillation about the
geostrophic solution, expβ(T).

2007; Vanneste 2013), rather than generation via frontal collapse. Note that wave
generation via this transience mechanism requires the imposed strain field to vary on
a sufficiently fast time scale. Therefore, this mechanism by itself does not provide
a complete model for spontaneous wave generation from a slowly varying balanced
flow, since such a model would also require a description of the processes giving
rise to the rapid time-variation in the strain.

4. Constant strain
In the previous section we isolated the process of spontaneous IGW generation

by acceleration of the large-scale flow. In this section we wish to similarly isolate
the process of spontaneous IGW generation via frontal sharpening, and as such will
require δ to be constant here before returning to the more general case of time-varying
strain in § 5.

The presence of a non-zero background stratification (non-zero PV) significantly
complicates the situation compared with the zero-PV case discussed above. As the
strain field amplifies frontal gradients, the system is now able to adjust via the
emission of IGWs. Following Zhang (2004), the problem can be interpreted as one
of continuous adjustment (on wave time scale 1/f ) to the applied strain (on time
scale 1/α) and, unlike the zero-PV case, geostrophic balance is no longer necessarily
a sensible balanced state for the flow. Indeed, a balanced state may not even exist
owing to the breakdown of time-scale separation as δ= α/f tends to 1 (e.g. McIntyre
2009). We instead consider the flow field as being composed of two parts; a secondary
circulation, as in HB – that is, a directly forced response to the applied strain – and
a wavefield. In this section we have two main objectives. First, we seek to determine
a generalised secondary circulation (GSC) that extends the HB secondary circulation
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to finite strain; secondly, we seek to quantify the size of the wavefield in comparison
to this ‘quasi-balanced’ secondary circulation.

The evolution of the frontal system in the generalised model is fully described by
the PDE (2.14) with constant strain δ and N ≡ 0. We seek a forced solution to the
PDE of the form

φ(X, Z, T)=
∫ ∞

−∞
φI((X − X0) e−δT, Z) b′0(X0) dX0, (4.1)

such that time-dependence in the solution only arises through the strain-driven
contraction of the horizontal coordinate. This form of solution eliminates the
propagating waves associated with initial conditions that were studied in ST13.
Equation (4.1) may be written more intuitively in terms of the regular momentum
coordinate (e.g. as in Blumen 2000),

X = X e−δT = x+ Ro v, (4.2)

as

φ(X , Z, T)=
∫ ∞

−∞
φI(X −X0, Z)

∂

∂X0
b0
(
X0 eδT

)
dX0. (4.3)

The function φI(X , Z) in (4.3) is the time-independent impulse response, or Green’s
function, for the problem. We show in appendix A that the Green’s function satisfies

[
∂2

∂Z2

(
δ2 X 2 ∂2

∂X 2
+ δ2 X

∂

∂X
+ 1− δ2

)
+ Bu2 ∂2

∂X 2

]
φI(X ,Z)=Ro δ(X ), (4.4)

where δ denotes the Dirac delta function. Given that this impulse response is
independent of time, time dependence only arises in the solution via the strain-driven
contraction of the boundary buoyancy gradient. As indicated by (4.3), the solution
at a given time is obtained by a convolution of the impulse response function with
the boundary gradient at that time; time has thus been reduced to a parameter in the
solution, as in the classical HB model. Note that the solution to the HB model of
frontogenesis may be obtained from a similar convolution, where the HB impulse
response φI,HB is defined by (4.4) with the O(δ2) terms neglected:

[
∂2

∂Z2
+ Bu2 ∂2

∂X 2

]
φI,HB(X , Z)= Ro δ(X ). (4.5)

In other words, (4.5) is equivalent to the classical Sawyer–Elliassen equation with
the buoyancy gradient forcing set to a delta function. The generalised model equation
(4.4), including the O(δ2) terms, can thus be thought of as a large-strain generalisation
of the Sawyer–Elliassen equation.

Apart from generating the full solution via (4.3), the impulse response functions
defined by (4.4) also provide information about the long-time state of the system. As
time progresses, any typical initially smooth boundary profile b0(X ) will be squeezed
towards a step, b0(X eδT)→H(X ), where H is the Heaviside function. The gradient
of the boundary profile therefore approaches a delta function, and thus the general
solution from (4.3) will collapse towards the impulse response function. Specifically,
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lim
T→∞

φ(X , Z, T) = lim
T→∞

∫ ∞

−∞
φI(X −X0, Z)

∂

∂X0
b0
(
X0 eδT

)
dX0

=
∫ ∞

−∞
φI(X −X0, Z) δ(X0) dX0

= φI(X , Z). (4.6)

We will employ this result in § 4.1 below to predict generic features of fronts at large
time from the impulse response functions.

4.1. The impulse response solution
Here, we derive and physically interpret the impulse response φI(X , Z) defined by
(4.4). The solution proceeds most readily if we consider φI as sum of vertical Fourier
modes (similar to (2.34)) such that the homogeneous boundary conditions, φI(X ,0)=
φI(X , 1)= 0, are satisfied. The PDE (4.4) in φI is then reduced to an ODE in φ̂I for
each vertical mode,

[(
X 2 −Xs(n)2

) ∂2

∂X 2
+ X

∂

∂X
+ σ 2

]
φ̂I(X , n)= An Ro

δ2
δ(X ), (4.7)

where An is defined as per (2.36),

σ =
√

1− δ2

δ
, Xs(n)= Bu

nπδ
, (4.8a,b)

and we assume that δ < 1. It is further convenient to change the horizontal coordinate
X to

ε(X )= σ arctan
X√

Xs(n)2 −X 2
, (4.9)

which transforms (4.7) to a very simple form,
[
∂2

∂ε2
− 1
]
φ̂I(X (ε), n)= nπ An Ro

Bu
√

1− δ2
δ(ε). (4.10)

The boundary conditions on φI are that it must vanish infinitely far from the front,
or φ̂I→ 0 as X →±∞. In appendix B, we use the characteristics of the generalised
model PDE (2.35) to show that, with these boundary conditions, the nth vertical
mode of φ(X , Z, T) vanishes in the region |X | > Bu/(nπδ) in the limit T →∞.
Equation (4.6) implies that the same result must apply to the impulse response φ̂I .
The boundary conditions on φ̂I may also be verified by solving (4.7) in Fourier space
(see appendix A, (A 3)) and taking the inverse Fourier transform numerically. The
resulting φ̂I is zero for |X |> Bu/(nπδ).

The physical reason for the sharp cutoff in amplitude at ±Xs(n) is associated with
the dynamics of IGWs in this strained, hydrostatic flow. The waves are responsible
for the transfer of energy away from the source at the origin and can only propagate
where their outward group velocity exceeds the inward strain flow speed (e.g. Jones
1969). Since X = Xs(n) is the location at which the strain flow magnitude first
exceeds the maximum wave group speed for each mode n, a wavepacket of vertical
mode n can only propagate out to this point. We call the set of Xs(n) the ‘stagnation
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points’ for each mode (hence the subscript ‘s’; this nomenclature was also used
in ST13). Further, the group speed of IGWs in a hydrostatic flow asymptotes to
the maximum group speed Bu/(nπ) in the limit of large horizontal wavenumber.
The convergent strain will tend to increase the wavenumbers of a wavepacket
propagating in the strain flow, k→∞, and thus the group speed of all wavenumber
components will asymptote towards Bu/(nπ) at large time. All wavenumbers will
thus be concentrated at the stagnation point at large time. In other words, the fact
that the large wavenumbers of the flow are non-dispersive implies that there is no
spreading mechanism to counteract the squeezing imposed by the strain field, leading
to a sharp cutoff in amplitude at the stagnation points. If non-hydrostatic effects are
included in the model, resulting in dispersion at high horizontal wavenumbers, then
the sharp cutoff no longer occurs, and the impulse response tends smoothly to zero
beyond the stagnation points. These non-hydrostatic dynamics will be examined in
detail in a upcoming paper.

It is interesting to note that the problem in ε coordinates (4.10) is mathematically
identical to that of calculating the geostrophically adjusted velocity for an initial step
displacement in the free surface height in rotating shallow water, as studied by Gill
(1976). Gill’s equation (5.5) may be written as

(
∂2

∂ε2
− 1
)
v(ε)= v′′0 (ε)− η′0(ε), (4.11)

where v is the steady state along-front flow, ε is the horizontal coordinate, and v0 and
η0 are the initial velocity and height fields, respectively. With v0 = 0 and η0 equal
to a unit step, (4.11) is identical to (4.10), up to scaling by a constant. While Gill
studied this problem in an infinite domain, the boundary conditions introduced above
imply that the analogous shallow-water flow is trapped between no-slip channel walls
at ε =±σπ/2. The presence of a strain field in the frontogenesis problem may thus
be thought of as constraining the flow between walls; as the strain tends to zero, we
have σ→∞ and so the ‘walls’ vanish.

Following Gill, it is straightforward to write down the exact solution to (4.10):

φ̂I(X , n)=





nπAn Ro

2 Bu
√

1− δ2

[
e−|ε| − e−(π σ)/2

cosh ε

cosh
π σ

2

]
|X |<Xs(n)

0 |X |>Xs(n).

(4.12)

The solution (4.12) is composed of two terms; the first, exp (−|ε|), is the directly
forced part (or particular solution) resulting from the applied impulse forcing and
is the solution – vanishing at infinity in ε coordinates – that one would obtain in
the absence of the constraint |ε| 6 σπ/2 (e.g. see (5.7) of Gill). However, with
these ‘walls’ this part of the solution does not independently satisfy the boundary
conditions. A second term, cosh ε, corresponding to the wave (or homogeneous)
solutions, must be introduced to satisfy the boundary conditions. We can understand
the origin of this cosh ε term by consideration of the infinite-domain shallow-water
problem where, as shown by Gill, the adjustment of the initial height displacement
generates Poincaré waves that propagate unimpeded away from the adjustment region.
However, with the introduction of channel walls, the generated waves will instead
reflect from the channel walls and set up a standing wavefield in the channel. We can
interpret the cosh ε part of the solution as corresponding to the time-averaged part of
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FIGURE 2. (a) The relative amplitude r (4.13) of the ‘wave’ term in the generalised model
solution (4.12), and the relative strength of wave generation R (4.20), as a function of
the strain δ. (b) The fraction of amplitude from an impulse forcing going into the wave,
R, and GSC, 1−R, components of the flow for a given value of strain.

this standing wavefield. The amplitude of this ‘wave’ term relative to the particular
solution (exp (−|ε|)) is

r= e−(πσ)/2

cosh
π σ

2

. (4.13)

Equation (4.13) is a function only of the strain δ and is plotted in figure 2(a).
The figure shows that the ‘wave’ term is exponentially smaller than the particular
solution for strains less than about δ= 0.2, but becomes of comparable size for larger
values of strain. This exponential smallness is an important feature, which we will
revisit below.

We now consider the problem of explicitly dividing the impulse response solution
(4.12) into secondary circulation and wave components. The solution (4.12) is defined
in terms of the function φ which, while mathematically useful, is difficult to interpret
physically. However, using the relation between the streamfunction and φ (2.13c),
and the definition of the impulse response solution (4.3), it may be shown that the
streamfunction impulse response is defined by

ψI(X , Z)= δ
(

X
∂φI

∂X
− φI

)
. (4.14)

Substituting φI from the solution (4.12) into yields
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ψ̂I(X , n) = −δ nπAn Ro

2 Bu
√

1− δ2


(e−|ε| − r cosh ε

) (
1+ |X | ε ′(X )

)
︸ ︷︷ ︸

GSC

+ r
(
X ε ′(X ) sinh ε + |X | ε ′(X ) cosh ε

)
︸ ︷︷ ︸

WAVE


 . (4.15)

Now consider dividing ψ̂I(X ,n) into a GSC, accounting for the effects of finite strain,
and a wave part. We require that the GSC part is finite everywhere in the domain and
limits to the HB secondary circulation impulse response in the limit of small strain.
We require that the wave component of the streamfunction be proportional to r (4.20),
as in the general solution for φI (4.12), such that it is exponentially small as δ→ 0.
The streamfunction impulse response in (4.15) has been divided into two components
satisfying these requirements. Indeed, it may be shown that at small δ,

ψ̂I,GSC(X , n)= ψ̂I,HB(X , n)+O(δ3), (4.16)

plus higher-order terms, where

ψ̂I,HB(X , n)= −δ nπ An Ro
2 Bu

e−(nπ)/Bu|X |
(

1+ nπ

Bu
|X |

)
(4.17)

is the HB model impulse response (as may be determined from substituting the
solution to (4.5) into (4.14)).

The exact separation of the circulation into GSC and wave components (4.15)
is somewhat arbitrary, and the distinction between the components becomes more
difficult to interpret at large values of δ. Nonetheless, the separation performed above
has two important properties. First, in the limit of small strain, the GSC component
limits to the secondary circulation from the HB model as indicated in (4.16), and as
will be shown in § 4.2, the wave component is well described by stationary mode
one IGWs. Secondly, if the strain forcing turns off (i.e. a time-dependent strain,
see § 5), the propagating part of the resulting flow is entirely contained within the
wave component. In light of these observations, the term ‘wave’ is invoked here
to qualitatively describe the dynamical response of the system, even though the
distinction between the wave and GSC parts of the flow may not be formally valid
(particularly for large values of the strain).

The streamfunction impulse responses from the HB model, and the GSC and wave
components from the generalised model, are shown in figure 3 for two values of
strain δ. First, considering the small-strain case, δ = 0.2, we observe that differences
between the GSC impulse response and the HB impulse response are relatively small,
as should be expected. The major difference is that the GSC response is confined
within the region |X | < Bu/(πδ), whereas the HB response is non-zero for all X .
This confinement of the secondary circulation in the generalised model is due to the
effect on strain on wave propagation; that is, waves can only propagate where their
outward group speed exceeds the incoming strain flow speed. By contrast, waves in
the HB model are assumed to be ‘free’ and can thus propagate out to ±∞. As seen in
figure 3(a), the confinement of the GSC leads to an increased amplitude in the centre
of the frontal zone (near X = 0) and a reduction on the flanks, compared to the HB
secondary circulation.
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FIGURE 3. The streamfunction impulse response ψI evaluated at Z = 0.5 for the GSC
and wave components of the general solution (4.15), and the HB solution ((4.17), HB),
for strains of (a) δ = 0.2 and (b) δ = 0.9. The impulse forcing is located at X = 0, and
the spread of energy away from this point is indicated by arrows for the first two non-
zero modes n= 1 and n= 3. Energy can only spread over the region X 6 Bu/(nπδ) for
each mode. The parameter values used are Bu= 1.5 and Ro= 0.6, consistent with other
examples considered later in this paper.

Now consider the wave part of the streamfunction, ψI,W , as defined in (4.15). Since
ψI,W scales with r, which is exponentially small for small strains (see figure 2), we
expect ψI,W to be relatively small in comparison to the GSC for δ = 0.2. Figure 3
shows that ψI,W is close to zero everywhere except near the stagnation points,
Xs = ±Bu/(nπδ), where it becomes infinite. As with the GSC response, the wave
response is identically zero for X > Xs. This structure of ψI,W is consistent with
the idea that IGWs generated by the squeezing of the front are confined within
X < Xs, and stagnate at X = Xs, and thus wave energy will accumulate at
X =Xs. The infinities in the wave impulse response at the stagnation points require
careful interpretation. We observe that the full time-dependent wave streamfunction
ψW , which may be reconstructed from ψI,W via

ψW(X , Z, T)=
∫ ∞

−∞
ψI,W(X −X0, Z)

∂

∂X0
b0(X0 eδT) dX0, (4.18)

will remain finite for all time for any smooth initial buoyancy profile b0. However,
in the absence of the formation of a discontinuity at the front or viscous effects, the
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infinities in the impulse response imply that the magnitude of ψW at the stagnation
points will continuously increase with time. In other words, the waves stagnating at
±Xs will continuously amplify with time, consistent with the wave capture paradigm
of Buhler & McIntyre (2005).

Figure 3(b) shows the streamfunction impulse responses for a larger value of strain,
δ= 0.9. The difference between the HB and GSCs is now of order one for all X , due
to the strong confinement of energy in the generalised model greatly intensifying the
secondary circulation and localising it near the front. The wave component ψI,W is an
order-one contribution to the overall streamfunction, and greatly exceeds the GSC near
the first vertical mode stagnation points. The higher vertical mode signals (n = 3, 5
etc.) are also visible as large-amplitude spikes near each of their stagnation points,
Xs = ±Bu/(nπδ), indicating the accumulation of wave energy from each mode at
those locations.

The integral of the net streamfunction impulse responses (ψI) is equal for both the
HB and generalised models, and is controlled by the magnitude of the impulse forcing
in the original differential equation (4.7),

∫ Xs

−Xs

ψI(X, n) dX =−2δ
∫ Xs

−Xs

φI(X, n) dX =−2δAn Ro, (4.19)

by substituting (4.14), followed by (4.12). For the generalised model, this ‘impulse of
amplitude’ is split between the GSC and wave streamfunctions. As shown in figure 3,
the relative size of the wave component varies significantly with strain δ. To quantify
this variation, we compute the X -integrated wave streamfunction, normalised by the
total streamfunction amplitude from (4.19),

R =

∫ Xs

−Xs

ψI,W(X, n) dX

−2δ An Ro
= e−(πσ)/2 + σ

e−(πσ)/2 + e(πσ)/2
= r

2
(1+ σ e(πσ)/2). (4.20)

The ratio R can be interpreted as the relative strength of wave – as opposed to
secondary circulation – generation associated with an element of horizontal buoyancy
gradient acted on by convergent strain δ. The ratio is a function of δ only and
is plotted in figure 2 (2a; log scale, 2b; linear scale). Unsurprisingly, given the
definition of the wave streamfunction in (4.15), the ratio R is exponentially small
for small strains, but finite for larger strains. Indeed, for δ→ 0 (4.20) implies that
R→ 1/δ exp−π/(2δ), meaning that virtually all the energy supplied by the impulse
forcing goes into the secondary circulation, consistent with the Hoskins & Bretherton
(1972) paradigm. In contrast, for a forcing frequency approaching the inertial, δ→ 1,
(4.20) implies that R→ 1/2, such that the impulse forcing is evenly split between
the wave and GSC streamfunctions. We will see in § 5 that the scale given by (4.20)
provides a useful upper limit on the amplitude of propagating frontogenesis waves
generated by a time-dependent strain field acting on a front – this is despite the
separation of the wave and GSC streamfunctions in (4.15) being somewhat arbitrary.

The exponential smallness of spontaneous wave generation for small strain
(i.e. small large-scale Rossby number RoL) implied by (4.20) has previously been
predicted in ‘toy models’ (see Vanneste 2008, and references therein). The sharp cutoff
in wave generation at approximately δ = 0.2 in figure 2 has important consequences
for the production of waves in eddy fields, which exhibit substantial spatially varying
strain fields. Figure 2 suggests that we should expect wave generation to be localised
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to a number of distinct regions of relatively large strain, with exponentially smaller
(i.e. negligible) generation outside of these regions. Such behaviour is consistent
with numerical studies of spontaneous generation in eddy fields (e.g. Danioux et al.
2012). Equation (4.20) may also provide a theoretical foundation for gravity-wave
parametrisations in numerical models, which often depend on the local strain
(Plougonven & Zhang 2014, and references therein).

Based on the impulse responses displayed in figure 3, we can infer some features
of the flow at large time during frontogenesis forced by a constant strain – or more
generally around any sufficiently sharp, strained front. The GSC and frontal zone will
have a fundamental length scale, or width, of 2Xs(1) = 2 Bu/(πδ) corresponding to
the stagnation point for the fastest-propagating mode one wave. In dimensional units,
the width is 2NH/(πα). Stationary gravity waves associated with each vertical mode
will appear at or near the stagnation points ±Bu/(nπδ). The wave amplitudes will
grow as frontogenesis proceeds and wave energy accumulates at these locations. The
highest-amplitude wave will be associated with the first vertical mode appearing at the
stagnation points on the edges of the frontal region. Referring to figure 3, this mode
will drive a thin band of intense upwelling (since w=−J ∂Xψ) ahead of the front on
the warm side (vice versa on the cool side). These mode one waves can be expected
to be visible even for relatively small values of strain, since the GSC response tends
to zero at these locations. Waves associated with the higher vertical modes overlay
the frontal zone and will, for small strains, tend to add relatively weak ‘fine-scale
structure’ to the GSC-dominated fields in this region.

4.2. Full solution
Equation (4.3) demonstrates how the full time-dependent solution φ(X , Z, T) may
be generated by summation of the impulse responses of infinitesimal elements dX0
of buoyancy gradient at that time. The partial time derivative ∂Tφ(X , Z, T) may be
similarly generated from its impulse response:

∂Tφ(X , Z, T)=−δ
∫ ∞

−∞
(X −X0)

∂φI(X −X0, Z)
∂X

∂

∂X0
b0
(
X0 eδT

)
dX0. (4.21)

Once φ(X , Z, T) and ∂Tφ(X , Z, T) have been obtained, the along-front velocity,
buoyancy and streamfunction fields at time T can be computed by expressing (2.13)
in coordinate X :

v(X , Z, T)= ∂

∂Z
φ(X , Z, T), (4.22a)

b(X , Z, T)= b0
(
X eδT

)+ F−2 Z − Ro F−2 ∂

∂X
φ(X , Z, T), (4.22b)

ψ(X , Z, T)=−δ φ(X , Z, T)− ∂Tφ(X , Z, T). (4.22c)

Further, we can define the time-dependent GSC as

ψGSC(X , Z, T)=
∫ ∞

−∞
ψI,GSC(X −X0, Z)

∂

∂X0
b0
(
X0 eδT

)
dX0, (4.23)

where ψI,GSC is the GSC impulse response defined in (4.15). The wave streamfunction
may then be computed as the difference, ψW = ψ − ψGSC. As noted previously, this
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FIGURE 4. The vertical velocity field from the generalised model w, the Hoskins and
Bretherton model wHB and the difference between the two, evaluated just prior to the
critical time for parameter values of Ro=0.6, Bu=1.5, and δ=0.2. Black denotes positive
and grey denotes negative velocities. Contours of buoyancy are overlaid on the top plot
(thick grey lines).

separation of wave and GSC streamfunctions is not unique. We will now examine the
behaviour of these time-dependent fields in detail.

First, it is useful to consider an explicit example of the differences between the
generalised and HB models in a parameter regime, δ and Ro both small, where both
are expected to be valid. In figure 4 we display the vertical velocity fields at late time
arising from the generalised model, w, the HB model, wHB, and the difference between
the two, w − wHB, for parameter values of δ = 0.2 and Ro = 0.6, and a buoyancy
profile of b0(X) = 1/2 erf(X/

√
2). Since all time dependence in the model arises

through the straining of the boundary buoyancy profile as per (4.3), initial conditions
on the model fields cannot be explicitly set and are instead determined implicitly
from relations (2.13) using the field φ from (4.3) with T = 0. The HB model predicts
a single thermally direct overturning cell with upwelling on the warmer (right-hand)
side, and downwelling on the cooler side. The generalised model velocity field is
broadly similar, dominated by an analogous large-scale overturning cell, but contains
a number of additional features. The most obvious addition is the formation of
distinct lines of intensified vertical flow on the periphery of the frontal region (at
Xs(1) = ±Bu/(πδ) = ±2.4), associated with the mode one gravity wave. Similar
bands of up/downwelling were observed by Garner (1989, e.g. see their figure 5) and
Snyder et al. (1993, e.g. see their figure 1) in their numerical simulations, although
in those cases it is difficult to determine whether the feature is arising due to waves
generated by frontogenesis (as here) or waves arising due to the initial conditions
(e.g. as in ST13), since both types of waves stagnate at ±Xs(1). One key difference
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FIGURE 5. The GSC (ψGSC, a) and wave streamfunction (ψW , b), for parameter values
of Ro= 0.6, Bu= 1.5, and δ = 0.2. The GSC and wave impulse response functions from
figure 3(a) have been overlaid in grey.

between the wave types is that the amplitude of the waves associated with initial
conditions decay with time due to the action of the strain field (see ST13), whereas
the amplitude of the waves associated with frontogenesis amplify with time as the
front sharpens. Thus at sufficiently late time, or for a sufficiently sharp front, the
frontogenesis waves are expected to dominate.

Figure 4 also shows additional fine structure associated with higher vertical modes
in the vertical velocity field. For example, note the slight ‘bumps’ in the contours near
x'±0.8 associated with the third vertical mode. There are also sizeable differences
between the HB and generalised models at the location of the front (x'±0.3) on the
upper and lower boundaries; this ‘updraft–downdraft couplet’ feature was observed by
Snyder et al. (1993, their figure 2 and footnote 2) when comparing the HB prediction
with the output of their numerical model. The feature appears due to the higher along-
front velocity magnitudes (v) near the origin in the generalised model (as a result of
the strain-imposed limit on wave propagation ensuring that more energy remains in the
frontal zone; see figure 3), which cause the front to slump/slant further as represented
by the momentum coordinate transformation, x =X − Ro v. Consequently, there is
an outward shift of the frontal position (and the associated extremum of the vertical
velocity) in the generalised model compared with the HB model, giving rise to the
couplet feature observed in the difference field.

In figure 5, we consider the time evolution of the system (same parameter values)
via a Hovmöller plot of the GSC and wave streamfunctions at mid-depth. The GSC
at mid-depth is initially squeezed inwards and amplified by the strain, but by t∼10
it approaches a steady state consistent with the GSC impulse response function
(i.e. from figure 3a, overlaid in grey). Thus, as argued in the previous section, the
impulse response provides a snapshot of the long-time state of the system. The wave
streamfunction in figure 5 shows the accumulation of wave energy into distinct packets
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at the stagnation points, consistent with the wave impulse response (overlaid in grey).
However, in contrast to the GSC, the convergent strain then acts to continually
amplify these wavepackets with time. The waves do not propagate owing to the
trapping effect of the strain field, and are essentially fixed in space at the stagnation
points. Note that the wave streamfunction in figure 5 is two orders of magnitude
smaller than the GSC. A consequence of this is that distinct wave features (e.g. as
in figure 4) are only visible at late time, once wave energy has accumulated at the
stagnation points.

One of the most important applications of the generalised model is to flows that
have order-one strains (i.e. order-one large-scale Rossby numbers RoL), such as
frontogenesis in a submesoscale eddy field in the ocean mixed layer. As an example,
consider a case with parameter values of δ = 0.9, but Ro = 0.6 and Bu = 1.5 as
before. The initial conditions are again implicitly defined through (4.3) and relations
(2.13). Figure 6 shows the time evolution of the wave and GSC streamfunctions, with
buoyancy contours overlaid in black at each time step. In contrast to the previous
small-strain example, here the wave and GSC streamfunctions are of the same
order of magnitude. Initially, both streamfunctions are characterised by a single-cell
thermally direct overturning (t = 0), which rapidly intensifies as the frontal scale
contracts (t = 1.3). The GSC remains as a single cell and continues to intensify as
time proceeds. However, the wave streamfunction splits into two distinct wavepackets
(t= 2), which then intensify with time. As in the previous example, the waves do not
propagate and are essentially fixed in space at the stagnation points, Xs(1)=±0.53.
For a more realistic flow with a temporally or spatially varying strain field (see § 5),
these generated waves tend to be released and disperse rather than remaining fixed at
the stagnation points and amplifying indefinitely. The structure of the wave and GSC
streamfunctions at t= 2.7 (i.e. at long time, T� δ−1) is consistent with the impulse
responses for the same parameter values shown in figure 3(b).

Between t = 0 and t = 1.3 in figure 6, the strain rapidly amplifies the horizontal
buoyancy gradients, but this amplification is counterbalanced by a flattening of
the isopycnals in the frontal zone. It was observed in ST13 that such flattening
is indicative of adjustment and wave generation processes, giving credence to the
‘balance adjustment’ theory of Zhang (2004). Viewed from this perspective, the
system adjusts to the strain-generated imbalance in the frontal zone by generating
inertia–gravity wavepackets (t= 1.3, 2). The amplitude of these waves then increases
with time as their horizontal scale contracts.

The adjustment process can only occur in the interior, since buoyancy conservation
requires that b= b0(X)+F−2Z on the boundaries at all time, leading to the formation
of a sharp front on the boundary (see t = 2.7 in figure 6). A scale for the depth of
the frontal feature can be determined based on the impulse solutions above. Taking
the GSC (exp−|ε|) part of the impulse response solution (4.12), we observe that
the amplitudes of the vertical modes in this solution decay exponentially with mode
number n. Such exponential decay implies that the lowest vertical modes dominate the
solution. The solution amplitude (and thus degree of adjustment) near to the boundary,
Z� 1/(nπ), must therefore be small, and the front will be sharp in this region. For
small X , where the front is located, (4.12) yields a scale depth for the front of

h∼ 1
nπ
∼
√

1− δ2

Bu
, (4.24)

for δ < 1. Thus, for order-one strains we expect frontal features to be concentrated
in a very shallow boundary layer near the surface, as figure 6 exemplifies. Strong
adjustment and wave generation is expected outside the boundary layer.
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FIGURE 6. The time evolution of the wave ψW (a) and GSC ψGSC (b) streamfunctions for
parameter values of Ro= 0.6, Bu= 1.5 and δ= 0.9, at times of t= 0, 1.3, 2 and 2.7 (just
prior to the critical time), with time increasing down the page. Buoyancy contours are
overlaid in black in each case. Grey contours enclose the region |X| 6 1, demonstrating
the convergent action of the strain field, and the simultaneous slumping of the front.

5. Time-dependent strain

Here, we return to the more general case of a time-dependent strain field, with the
objective of describing the response of an initially weak front, as defined by (2.29),
that is initially in geostrophic balance, to an imposed strain field. We will employ the
pulse-like strain profile from (3.5) to exemplify the situation of a strain field that is
smoothly switched on, and acts for a finite period of time τ , during which it obtains
a maximum value of δ0, before being smoothly switched off. Such a strain field is
expected to be ubiquitous in geophysical flows, particularly in strong eddying regions
in the ocean mixed layer. The temporal variation of the strain in the model can be
thought of as either (a) representing the lifetime of the eddies responsible for forming
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FIGURE 7. The solution of the time-dependent model (2.14) with N ≡ 0, computed
numerically, for parameter values of Ro = 0.1 and Bu = 1. The imposed strain field
(b) is defined in (3.5) with δ0 = 0.2 and τ = 8π. The boundary profile of buoyancy is
b0(X)= 1/2 erf(X/

√
2). (a) Hovmöller of the streamfunction evaluated at mid-depth. The

contour spacing is logarithmic from 1 to 100 % of the maximum value, with grey contours
indicating negative (clockwise) overturning. (c) The maximum value of the along-front
velocity v. (d) The frontal width d= J−1.

the convergent strain field or (b) the time taken for a patch of fluid (comprising the
front) to advect through a convergent region within a large-scale eddy field. The latter
case invokes a temporal variation in the model strain to represent a spatial variation
in the physical strain. The numerical solutions presented below proceed by Fourier
transforming the PDE (2.14) with N ≡ 0 (noting that the right-hand side forcing term
vanishes sufficiently far from the front) and solving the resultant time ODE for each
mode, then reconstructing the solution from a summation of the modes.

Consider an explicit example with parameter values representative of a front in
a mesoscale eddy field in the ocean mixed layer; Ro = 0.1 (initially weak front),
Bu= 1 (a length scale of the order of the Rossby radius), δ0 = 0.2 (the approximate
Rossby number for a mesoscale eddy) and τ = 8π (the time scale for the eddy
of 2π/δ ∼ τ = 4 days). Figure 7 displays the solution of our model for the above
parameter values. The pulse of strain (figure 7b) pushes the system out of the initial
geostrophic balance and drives a thermally direct secondary circulation (similar to
the HB model), which forms the dominant feature of the Hovmöller plot of the
streamfunction at mid-depth (figure 7a). Note that the contours in this plot are
logarithmically spaced from 1 to 100 % of the maximum value. The time-varying
strain also acts to smoothly sharpen the front, as demonstrated by the time series
of frontal width shown in figure 7(d). Consistent with this frontal sharpening, the
along-front velocity magnitude (figure 7c) increases to maintain the front close to
geostrophic balance. The streamfunction (figure 7a) exhibits wave generation on the
flanks of the secondary circulation (i.e. associated with the first vertical mode) as
the front sharpens, similar to the case of constant strain (§ 4). These frontogenesis
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waves are initially trapped by the strain field but begin to propagate as the strain
weakens. The time-variation in the strain field also drives the generation of waves.
These transience waves are visible as a near-inertial oscillation in the frontal zone
for T > τ , and slowly propagate outwards with time. Thus, for T > τ the system
consists of near-inertial oscillations about a state of geostrophic balance, plus a
propagating wavefield. The behaviour of the front for T > τ is thus identical to the
large-time behaviour predicted by the model of ST13 for an unstrained flow. In that
case unbalanced initial conditions were responsible for wave generation, whereas here
the dual mechanisms of frontogenesis and acceleration of the large-scale strain flow
themselves generate IGWs from purely balanced initial conditions.

While the impulse response solution presented in § 4 is no longer valid for a
time-dependent strain field, many of the properties of that solution still apply. The
characteristics of the sine-transformed generalised model equation (2.35) were derived
in § 2.2 for both time-varying (2.37) and constant (2.38) strains. As noted in that
section, the region between the plus (X+) and minus (X−) characteristics indicates
the area over which amplitude/energy associated with vertical mode n, and initially
at location X0, has spread by time T . The highest horizontal wavenumbers (k→∞)
propagate along the lines X±, while the lowest wavenumbers (k → 0) essentially
remain fixed along the centre line, X =X0 e−β(T). Comparing (2.37) with (2.38), we
expect the behaviour of time-dependent strain flows to be similar to the constant-strain
case, except that the stagnation points will be time-dependent. In both cases, a pair
of positive (or negative) characteristics initially separated by a distance 1X0 will be
squeezed together by the convergent strain field, to a separation distance of 1X0e−β(T)
by time T . This convergence implies that waves will be concentrated in a small region
of width 1XW = e−β(T) around the stagnation points as time progresses, leading to
the formation and amplification of wavepackets in these narrow regions as seen in
§ 4. The relative amplitude RA of the wave streamfunction compared to the GSC
may be estimated using the ratio R derived previously (4.20) for the net integrated
amplitudes, and the relative width of the regions in which the streamfunctions are
concentrated,

RA =R
1XGSC

21XW
=R

Bu eβ(T)

nπ δ
≈ Bu eβ(T)

nπ δ2
e−π/(2δ) for δ 6 0.2, (5.1)

where δ is an appropriate mean (or maximum) value of the time-dependent strain.
These results will prove useful in interpreting the numerical solution introduced in
figure 7.

In figure 8, we examine the generation and properties of the IGWs in detail by
dividing the flow into the secondary circulation and wave components. GSC (left-hand
panel) is computed as defined in § 4, but evaluated at each time T using the value of
the strain at that time; that is,

ψGSC(X, Z, T)=
∫ ∞

−∞
ψI,GSC((X − X0) e−β(T), Z) b′0(X0) dX0. (5.2)

This part of the flow is directly forced, and only exists during the time T < τ where
the strain is non-zero (see (4.15)). Given the form of the time-dependence in (5.2)
it is clear that – as with the general constant-strain solution in § 4 – propagating
waves will not be present in the GSC part of the flow. Defining the wave part of flow
(subscript W, right-hand panel in figure 8) as the difference between the GSC and the
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FIGURE 8. The solution of the time-dependent model (2.14) with N ≡ 0, computed
numerically, for parameter values of Ro= 0.1 and Bu= 1, as in figure 7. Hovmöller plots
of the GSC and wave components of the vertical velocity (a,b) and streamfunction (c,d)
are displayed, evaluated at mid-depth (z= 0.5). The stagnation lines for the first vertical
mode are shown on the (b) (black dashed lines; from (2.37) with X0 = 0). The family
of characteristics X+ and X− defined by (2.37) for the first vertical mode are shown on
the (c) (solid black lines). Streamfunction contours for the unstrained adjustment of the
maximum GSC for T > τ = 8π (shown by a dashed black line) are overlaid on the (c),
with black denoting positive (anticlockwise) and grey negative (clockwise) overturning.

full flow, ψW =ψ −ψGSC, ensures that all propagating signals are contained within this
component. In other words, while ψW is not a unique separation of the wavefield, it
is an upper limit. As expected, the wavefield in figure 8 persists when the strain field
is switched off. Hovmöller plots of the streamfunction (c,d) and vertical velocity (a,b)
fields are displayed in the figure, evaluated at mid-depth. The wave streamfunction is
at least an order of a magnitude weaker than the secondary circulation (see the colour
bar scales).

We will first consider the frontogenesis waves. The amplitude of the frontogenesis
wave streamfunction may be estimated by substitution of the parameter values
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into (5.1), yielding a relative amplitude RA = 0.04 in agreement with figure 8. The
maximum distance from the origin of the frontogenesis wavepacket with time is
plotted in figure 8(a) as dashed black lines. These ‘stagnation lines’ for the first
vertical mode are given by (2.37) with X0 = 0 and n= 1. Note that these stagnation
lines converge between roughly t = 10 and t = 20 in the figure. During this time,
wave energy cannot disperse and instead accumulates along these lines (as seen in
§ 4), leading to the formation of a wavepacket. This behaviour is reinforced by the
family of characteristics X+ and X− for the first vertical mode (defined by (2.37)),
shown in figure 8(c) as solid black lines. The convergence of the characteristics
between t = 10 and t = 20 indicates the confinement of energy initially spread over
a broad region (1X ∼ 1) at t = 0 into a region of width e−β(t) by time t, leading
to the formation of a (relatively) high-amplitude wavepacket. Correspondingly, an
initial wavenumber of k0 becomes k= k0eβ(t) after a time t. By time τ , the integrated
strain is β ∼ 2.5, implying an order-of-magnitude amplification (k/k0 = eβ ∼ 12) of
the initial wavenumbers. For T > τ , the wavepacket is composed of a narrow band
of high-wavenumber, high-frequency waves, which disperse weakly with time as the
packet propagates outwards (at or near to the maximum speed of Bu/π). Specifically,
the wavepacket is composed of only the first vertical mode n = 1 and a spread of
horizontal mode numbers around k = eβ(t). Applying the hydrostatic IGW dispersion
relation (e.g. ST13), the dominant frequency of a first vertical mode wavepacket
subjected to integrated strain β is

ω=
√

1+
(

Bu eβ

π

)2

. (5.3)

For the current example, the dominant frequency is thus ω∼ 4, or 4f in dimensional
units. The result is clearly highly sensitive to the integrated strain β – a smaller
β would lead to a wavepacket consisting of a broader band of lower-wavenumber,
lower-frequency, lower-amplitude waves that disperses more strongly. For example, an
integrated strain of half the present value leads to a dominant frequency of ω ∼ 1.5,
closer to the inertial frequency.

In contrast to the frontogenesis waves, the transience waves in figure 8 are
dominated by low-wavenumber, near-inertial signals. The transience waves are
generated as a result of the time-dependent strain changing the quasi-steady secondary
circulation (GSC) that can be supported at the front. For instance, consider impulsively
switching off the strain field at some time T0. In the absence of strain, for T > T0,
the system possesses a steady state corresponding to geostrophic balance with zero
secondary circulation. Thus, switching off the strain will trigger the geostrophic
adjustment of the GSC towards this steady state. Such geostrophic adjustment of a
now unstrained flow will be associated with the generation of freely propagating IGWs
– or transience waves. For a smoothly switched off strain, as in figure 8, the same
adjustment process gives rise to transience wave generation, but the wave amplitude
will be smaller than in the impulsive case and the waves will be (partially) trapped
until the strain vanishes. In either case, the wavenumber spectrum of the waves is
controlled by the GSC streamfunction that is undergoing adjustment, implying lower
wavenumbers, frequencies and group velocities compared with the frontogenesis
waves.

The generation and propagation of waves due to geostrophic adjustment at a
front was discussed in ST13. In that case, the initial condition considered was an
unbalanced buoyancy gradient (or mass imbalance). Here, the ‘initial condition’ is the
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state of the flow when the strain is switched off, and corresponds to an unbalanced
streamfunction (or momentum imbalance). However, the dynamics of the adjustment
process are unchanged and we can use the results of ST13 to understand the transience
wave generation seen in figure 8. By approximating the smooth switch-off (over time
scale τ/2) of the strain field supporting a frontal secondary circulation of ψGSC at τ/2
as an impulsive switch-off, we can derive an approximate response streamfunction
ψT,W for the transience wave generation for T >τ . Following ST13, the Fourier mode
amplitude of the response is

ψ̂W,T(k, n, T)= ψ̂0 cos



√

1+
(

Bu k
nπ

)2

(T − τ)

 , (5.4)

where k is the wavenumber in momentum coordinates. The contours of the
(approximate) transience wave streamfunction ψW,T , computed from (5.4), are overlaid
on the wave streamfunction plot in figure 8. The initial streamfunction ψ0 has been
taken as the GSC at T = τ/2; that is, ψ0=ψGSC(X,Z, τ/2). The displayed contours of
the approximate transience wave streamfunction closely match the full wave response
for T > τ .

Transience waves are also generated by the switching on of the strain field via an
analogous adjustment mechanism to that discussed above. The waves are visible in
the Hovmöller plot of ψW in figure 8(d) as near-inertial oscillations for T < τ/2. In
the limit of an impulsive switching on of the strain field at T = 0, these transience
waves are identical to the waves associated with initial conditions that were studied
in ST13.

6. Discussion

In § 2, we introduced the governing equations for a quasi-2D, hydrostatic,
Boussinesq, uniform PV fluid, trapped between rigid lids with an initial buoyancy
gradient, b′0(X). A time-dependent strain field then amplifies this gradient and drives
a flow in response. This configuration provides an idealised model to examine
frontogenesis and the associated spontaneous wave generation occurring in eddy
fields in the atmosphere and ocean. We derived a generalised model that is valid –
in the sense that neglected terms are small compared to leading-order retained terms
– if the product Ro δ is sufficiently small (as defined by (2.26)) and for appropriately
balanced initial conditions. One subset of the generalised model is the weak-strain
limit studied by Hoskins & Bretherton (1972), α2� f 2, where α is the strain rate and
f is the inertial frequency, in which the along-front velocity remains geostrophically
balanced for all time and no wave motions exist. We call this weak-strain limit
the ‘HB model’. A second subset of the generalised model is the weak-front limit,
as defined by (2.29), where the initial buoyancy gradient on the boundary must be
small, but the strain α can be order f . The key feature of the weak-front limit is
that the generalised model yields an accurate description of both IGW generation
and the large-scale secondary circulation. The weak-front limit does not neglect any
terms in the rotating fluid equations which are retained in the HB model, but instead
retains additional terms relating to wave propagation. The additional terms vanish
for sufficiently weak strains, and thus the weak-front limit reduces to the HB model.
The time evolution of the system in the generalised and HB models are completely
described by the PDEs in field φ, (2.14) with N ≡ 0 and (2.33), respectively. The
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along-front velocity, buoyancy and cross-front streamfunction may then be generated
from φ for each limit via (2.13).

The generalised model was solved analytically in § 4 for the case of a steady strain
field, using a Green’s function method. While the model solution breaks down for a
sufficiently sharp front (as does the HB model), we are able to make some qualitative
statements about the differences between the two models. First, a finite strain field
has the effect of confining the frontal circulation within a region of 2NH/(πα)
approximately the deformation axis – we define a secondary circulation (GSC) that
accounts for this effect and generalises the HB secondary circulation to finite strain.
Secondly, a steady strain field drives the formation of stationary IGWs as the front
sharpens. The first vertical mode tends to appear on the periphery of the frontal zone
(at a distance of ±NH/(πα) from the centre of the front). For small Ro, the front
remains largely vertical and this mode is visible a distinct band of strong vertical flow
ahead of the front. As such, this wave feature provides a potential dynamical model
for the formation of squall lines ahead of cold fronts in the atmosphere. Ley & Peltier
(1978) previously obtained a similar result from an ad hoc fast-time-scale correction
to the solution of Hoskins & Bretherton (1972). Stationary waves associated with
the higher vertical modes tend to overlay the frontal zone and add fine structure to
the fields in this region. We emphasise that the formation of these stationary waves
is independent of the initial conditions, suggesting that they should be a ubiquitous
feature of fronts, at least for small Rossby numbers. Similar fine structure and squall
line type features have been observed in numerical models of frontogenesis such as
Garner (1989) and Snyder et al. (1993).

Since the generalised model only accurately describes second-order flow features
in the limit of small Rossby number (2.29), the wave features described above are
not expected to be quantitatively valid for larger Rossby numbers. However, even
neglecting the wavefield, the effect of the strain is important in modifying the first-
order secondary circulation for all Rossby numbers. Specifically, the GSC contains
an additional dynamical/physical correction relative to the HB secondary circulation;
namely, that spread of energy and momentum during frontogenesis is associated with a
finite group velocity, which limits the outward spread of the frontal circulation into the
oncoming strain flow. As such, this confinement effect is expected to be a ubiquitous
feature of fronts for parameter values where the generalised model is applicable (2.26),
which includes the weak-strain HB limit.

Spontaneous IGW emission at a front occurs via two mechanisms: large-scale flow
acceleration (transience waves) and frontal sharpening (frontogenesis waves). The
flow acceleration mechanism was isolated in the limit of zero-PV flow (§ 3) where
inertial waves are generated via a time-varying strain flow independent of the frontal
sharpness. In § 4, it was demonstrated that stationary IGWs evolve naturally from a
front subject to constant strain, as the frontal scale contracts. In the more general
situation of an initially weak, balanced front subjected to a time-dependent strain
field (as in § 5), both mechanisms are active. With a time-varying strain flow, the
frontogenesis IGWs are initially confined by the convergent strain field and wave
energy is forced to accumulate at locations set by the vertical mode number, leading
to the formation of high-amplitude wavepackets as the frontal scale shrinks. As the
strain weakens, these wavepackets begin to propagate away from the front. The
time-dependent strain also generates transience waves. These waves arise since a
change in the strain magnitude implies a change in the magnitude of the secondary
circulation that can be sustained at a front, thus giving rise to an adjustment process.
The transience waves tend to exhibit lower wavenumbers and frequencies than
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frontogenesis waves, although the propagation of the waves away from the frontal
zone can still only occur once the strain field weakens sufficiently. In general, it is
likely to be difficult to determine which wave generation mechanism is responsible
for individual features in observed flow fields, particularly as waves triggered by
initial conditions may also be present.

Using the analytical solutions developed in § 4 we were able to compute estimates
of the relative amplitude of the frontogenesis wave streamfunction compared to the
secondary circulation (the ‘mean flow’). A scaling for the relative wave amplitude was
given in (5.1). In terms of the physical scales of the problem, this reduces to

RA = N H f
πα2 LF

e−(πf /2α). (6.1)

The parameter LF in (6.1) is the minimum frontal width, which in our model is given
by LF = L e−β(t). A key feature of (6.1) is that it implies exponentially small wave
generation for strain rates α smaller than ∼0.1f –0.2f , but finite generation above this
threshold. Equation (6.1) may thus provide a theoretical basis for parametrisations
of gravity-wave emission from frontal zones in numerical models of the atmosphere,
which at present are based on largely arbitrary thresholds (Plougonven & Zhang 2014).

Our results may have important implications for energy loss from balanced flows
via IGW emission. Danioux et al. (2012) demonstrate that wave generation in an eddy
field is highly intermittent in both space and time. In particular, wavepackets tend
to be emitted in discrete ‘generation events’ from thin filamentary density structures
associated with high-strain regions. Our model provides a possible explanation for
this intermittency. In § 4, we demonstrated that wave generation via frontal sharpening
is exponentially small for small strain (see (4.20) and figure 2) but becomes first
order for larger strain, and consequently we expect a localisation of wave emission to
small regions of high strain. Further, as noted above, waves generated via convergent
straining across a front remain trapped in the vicinity of the front while the strain
remains large and then begin to propagate as distinct wavepackets as the strain
weakens – for example, by advection of the frontal feature into a region of weaker
strain in an eddy field. Consequently, we expect a tendency for the emission of
wavepackets to be highly localised in time as well as space. The localisation in time
due to trapping by the strain field emphasises that the effect of the large-scale strain
on the propagation of waves is vitally important in determining the structure of the
observed wavefield (e.g. Plougonven & Snyder 2005).

The present model provides a simple, idealised theoretical framework from which
to study IGW generation at fronts in more complex situations. It should be noted,
however, that other factors – including spatially variable mean and eddy flows, vertical
variations in shear and stratification, along-front variations, and many other features of
more realistic flows, all of which are neglected here – can significantly influence the
propagation and generation of waves. Furthermore, the generalised model developed
herein is only stringently valid for small Rossby numbers, whereas many fronts in the
ocean and atmosphere have order-one Rossby numbers. Despite this, the qualitative
similarity of the wavefields in our analytical solutions to those observed in prior
numerical models of the same system at order-one Rossby numbers (e.g. Snyder
et al. 1993) suggest that the mechanism of spontaneous wave generation may be well
captured by the generalised model. The effects of larger Rossby numbers and the
other factors noted above will be examined in a future study directly comparing the
model predictions developed here to the observed frontogenesis and IGW generation
in a fully nonlinear numerical model.
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Appendix A. Green’s function solution
Here we show that, as stated in the text, the convolution given by (4.1) – with the

impulse response defined by (4.4) – is the forced solution to the generalised model
(PDE (2.14) with N ≡ 0) when the strain δ is constant. We begin by taking a Fourier
transform in X of (2.14) with δ constant to obtain

[
∂2

∂Z2

(
∂2

∂T2
+ 1− δ2

)
− k2Bu2e2β(T)

]
φ̂(k, Z, T)=−ık Ro eδT b̂0, (A 1)

where k is the horizontal wavenumber in generalised momentum coordinates and a hat
denotes the Fourier transform. The forced solution is assumed to have the form given
by (4.1), the Fourier transform of which is

φ̂(k, Z, T)=−ık b̂0 eδT φ̂I(k eδT, Z). (A 2)

Substituting (A 2) into (A 1) and simplifying yields
[
∂2

∂Z2

(
1+ 3δ2 K

∂

∂K
+ δ2 K 2 ∂2

∂K 2

)
−K 2 Bu2

]
φ̂I(K , Z)= Ro, (A 3)

where K = k eδT is the wavenumber in regular momentum coordinates (i.e. X =
X e−δT). At this point, we make use of the Fourier identities

F−1
[
K n f̂ (K )

]
= ın ∂n

∂X n
f (X ), F−1

[
∂n

∂K n
f̂ (K )

]
= ın X n f (X ), (A 4a,b)

where F−1[ ] denotes the inverse Fourier transform. Inverse Fourier transforming (A 3)
with respect to K , and applying the identities (A 4), yields

[
∂2

∂Z2

(
δ2 X 2 ∂2

∂X 2
+ δ2 X

∂

∂X
+ 1− δ2

)
+ Bu2 ∂2

∂X 2

]
φI(X , Z)= Ro δ(X ).

(A 5)
Equation (A 5) is identical to (4.4) in the main text. Thus, (4.3) with the impulse
response defined by (4.4) is the forced solution to the generalised model at constant
strain.

Note that the general solution of the generalised model (PDE (2.14) with N ≡ 0) at
constant strain is the sum of the forced solution derived above, plus the wave solutions
associated with initial conditions, which were studied in ST13 (see (4.23) of ST13).

Appendix B. Boundary conditions on the Green’s function solution
Here we show, using the characteristics of the constant-strain hydrostatic generalised

model (2.38), that: (i) the frontal circulation is identically zero for |X |>Bu/(nπδ) in
the limit of infinite time; and (ii) the appropriate boundary conditions on the Green’s
function derived in § 4 are φ̂I(|X |> Bu/(nπδ), n)= 0.
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Consider the region of dependence of a point X1 just outside of the confinement
region for the nth vertical mode (defined as |X |< Bu/(nπδ)). That is, let

X1 = Bu
nπδ
+1X (B 1)

for 1X a small positive constant. The region of dependence of the point X1 at time
T1 is bordered by the positive (X+) and negative (X−) characteristics (from (2.38))
that intersect at this point. Thus, the region of dependence at time T1 is X0 6X 6X2,
where

X0 = Bu
nπδ
+1X eδT1 and X2 = Bu

nπδ

(
2eδT1 − 1

)+1X eδT1 . (B 2a,b)

Now consider the limit T1→∞ and define

X ∞
0 = lim

T1→∞
X0 = lim

T1→∞

[
Bu

nπδ
+1X eδT1

]
. (B 3)

If we apply boundary conditions to ensure that φ (and its vertical sine transform φ̂)
vanish infinitely far from the front such that

lim
|X |→∞

φ̂(X , n, T)= 0 (B 4)

for all times, it follows that

φ̂(X >X ∞
0 , n, T)= 0. (B 5)

In other words, the boundary condition ensures that φ̂ is everywhere zero in the region
of dependence of the point X1: φ̂(X0 6X 6X2, n, 0)= 0. Further, we choose a
boundary buoyancy gradient profile b′0(X=X eδT) such that b′0(X>X ∞

0 eδT)= 0. The
forcing to the model PDE (2.35), Ro An eβ(T) b′0(X), is therefore everywhere zero in the
region of dependence. Thus, as T1→∞, since the initial condition and forcing are
zero in the region of dependence, it follows that

φ̂

(
X1 = Bu

nπδ
+1X , n, T1→∞

)
= 0. (B 6)

Since this result applies for any 1X , it follows that

lim
T→∞

φ̂(X , n, T)= 0 for X >
Bu

nπδ
. (B 7)

A similar argument may be made to show that

lim
T→∞

φ̂(X , n, T)= 0 for X <− Bu
nπδ

. (B 8)

Thus we conclude that the solution to (2.35) is identically zero for |X |> Bu/(nπδ)
in the limit T→∞, and hence the frontal circulation is entirely confined in the region
|X | 6 Bu/(nπδ). Further, since the nth vertical mode Green’s function φ̂I(X , n) is
the infinite time limit of φ̂(X , n,T), as per (4.6), the appropriate boundary conditions
for the Green’s function are φ̂I(|X |> Bu/(nπδ), n)= 0.
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