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Abstract

We introduce exact methods for the simulation of sample paths of one-dimensional
diffusions with a discontinuity in the drift function. Our procedures require the simulation
of finite-dimensional candidate draws from probability laws related to those of Brownian
motion and its local time, and are based on the principle of retrospective rejection
sampling. A simple illustration is provided.
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1. Introduction

Beskos et al. [2], [3] introduced a collection of efficient ‘exact algorithms’ for the simulation
of skeletons of diffusion processes. While the methodology is intrinsically limited in the
multivariate case to processes that can be transformed into unit-volatility diffusions with drifts
which can be written as the gradient of a potential, for one-dimensional nonexplosive diffusions
the algorithm’s applicability depends, more or less, only on smoothness conditions on the
diffusion and drift coefficients.

Being able to simulate one-dimensional diffusions with discontinuous drifts is however
of considerable interest, not least because this then allows us to tackle reflecting boundaries
by suitable unfolding procedures. Therefore, in this paper we focus on extending these exact
algorithms to the case of discontinuous drift. Namely, we consider solutions to one-dimensional
stochastic differential equations (SDEs) of the form

dXt = α(Xt ) dt + dBt , X0 = x, t ∈ [0, T ], T < ∞, (1)

where B denotes one-dimensional Brownian motion and α is a discontinuous function which
satisfies assumptions as specified later.

These exact algorithms carry out rejection sampling in the diffusion trajectory space. The
difficulty for discontinuous drift lies in the choice of a suitable candidate measure for proposals
in rejection sampling and in performing the acceptance/rejection step, which reduces to
sampling a random variable with a Bernoulli distribution whose probability of success is
not explicitly computable. We address these problems by suggesting a new methodology
for sampling certain conditional laws of Brownian motion and its local time. We construct a
stochastic process to be used as a proposal within rejection sampling in this context, which
we call the ‘local-time-tilted biased Wiener process’; this is to be contrasted with the simpler

doi:10.1017/apr.2016.54 © Applied Probability Trust 2016

249

https://doi.org/10.1017/apr.2016.54 Published online by Cambridge University Press

http://www.appliedprobability.org
https://doi.org/10.1017/apr.2016.54


250 O. PAPASPILIOPOULOS ET AL.

‘endpoint-tilted Wiener process’ which has been used when the drift is continuous. Overall,
our approach is a natural evolution of the research program put forward in [2] for simulation of
diffusion sample paths using the Wiener–Poisson factorisation of the diffusion measure together
with retrospective rejection sampling principles. The present work forms part of the doctoral
thesis [6].

Concurrent to our work is that of Étoré and Martinez [5], who addressed the same funda-
mental problem as we do here. They followed a different approach to that which we take in this
article, one based on the limiting argument (with n → ∞) applied to their earlier results for
exact sampling of solutions to SDEs of the type dXt = α(Xt ) dt + dBt + n−1 dLt . They then
proved by indirect analytic arguments that their limiting algorithm does successfully simulate
exactly from the SDE in (1). In contrast, our paper offers a much simpler and more direct
algorithm with a direct probabilistic interpretation as rejection sampling on path space. It
is difficult to be precise about the computational cost comparison between the two methods,
although we estimate that our algorithms can be anything from 2–20 times quicker than those
in [5].

2. Derivation of algorithms

Our aim here is to sample from Q, the measure induced by the diffusionX on (C,C), the space
of continuous functions on [0, T ] with the supremum norm and cylinder σ -algebra. Note that
the strong solution to (1) exists under mild conditions, namely, if α is bounded and measurable
(see Theorem 4 of [7]). Denote by W the measure induced by Brownian motion started at x on
(C,C). We need the following Assumption 1 about the Radon–Nikodym derivative of Q with
respect to W.

Assumption 1. The Cameron–Martin–Girsanov theorem applies and the Radon–Nikodym
derivative dQ/dW is a true martingale:

dQ

dW
= exp

{∫ T

0
α(Xt ) dXt − 1

2

∫ T

0
α2(Xt ) dt

}
.

The first step towards performing an acceptance/rejection step is the substitution of the
stochastic integral

∫ T
0 α(Xt ) dXt . In existing exact algorithms for diffusions with sufficiently

smooth coefficients (see, e.g. [2] and [1]) this is done by application of Itô’s lemma to A(Xt),
whereA := ∫ u

0 α(y) dy. The discontinuity ofα precludes proceeding in the same way, although
we can generalise the approach by appealing to the generalised Itô formula.

Assumption 2. Let r1 < r2 < · · · < rn be real numbers, and define D = {r1, r2, . . . , rn}.
Assume that the drift function α : R → R is continuous on R\D, that α′ exists and is continuous
on R \D, and that the limits

α′(rk+) := lim
x↓rk

α′(x) and α′(rk−) := lim
x↑rk

α′(x), k ∈ {1, . . . , n},

exist and are finite.

Under Assumption 2, A is the difference of two convex functions and, almost surely (a.s.)
for t ∈ [0, T ],

A(Xt) = A(x)+
∫ t

0
α(Xs) dXs + 1

2

∫ t

0
α′(Xs) ds + 1

2

n∑
k=1

L
rk
t [α(rk+)− α(rk−)],

where Lrkt denotes local time at level rk and time t ; rk is omitted when rk = 0.
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Exact sampling of diffusions with a discontinuity in the drift 251

The algorithms that we present address the problem in the case where the drift function
α has one point of discontinuity which without loss of generality can be assumed to be at 0,
and we denote the discontinuity jump by θ = 1

2 (α(0+)− α(0−)). Then the Radon–Nikodym
derivative of Q with respect to W is

dQ

dW
= exp

{
A(XT )− A(x)− 1

2

∫ T

0
(α′(Xt )+ α2(Xt )) dt − θL0

T (X)

}
a.s. (2)

The main question here is how to use (2) for simulation. If (2) is used in rejection sampling,
it needs to be uniformly bounded above.

Assumption 3. There exist constants κ and M with

−∞ < κ ≤ 1
2 (α

2(u)+ α′(u))1{u	=0} ≤ κ +M.

On the basis of this assumption, we define ϕ(u) = 1
2 (α

2(u)+ α′(u))1{u	=0} − κ .
The main problem here is that the multiplicative term exp{A(XT )− θL0

T (X)} may be
unbounded. We address this issue by biasing—using exponential tilting—the dominating
measure W, by these terms. Thus we define S on (C,C) with paths starting at x and satisfying

dS

dW
∝ 1{LT (X)>0}(X)

g(XT , LT (X))

f xT (XT , LT (X))
+ 1{LT (X)=0}(X)

g∗(XT )
f x∗,T (XT )

,

with
g(b, l) := cgf

x
T (b, l)e

A(b)−lθ for l > 0, (3)

g∗(b) := cgf
x
∗,T (b)e

A(b), (4)

such that
∫
R

∫
(0,∞)

g(b, l) dl db + ∫
R
g∗(b) db = 1. Above, f and f∗ describe the joint law of

Brownian motion and its local time at level zero (see, e.g. [4]); thus,

f xs (b, l) db dl := P(Bs ∈ db, Ls ∈ dl | B0 = x)

= l + |b| + |x|
s
√

2πs
exp

{
− (l + |b| + |x|)2

2s

}
db dl for l > 0.

If x > 0 and b > 0 (or x < 0 and b < 0) then

f x∗,s(b) db := P(Bs ∈ db, Ls = 0 | B0 = x) = φx,s(b)(1 − e−2bx/s) db,

whereφμ,s denotes the density (	μ,s denotes the cumulative distribution function) of the normal
distribution with mean μ and variance s.

The above definitions of g and g∗ rely on Assumption 4 below.

Assumption 4. It holds that∫
R

∫
(0,∞)

f xT (b, l)e
A(b)−lθ dl db < ∞ and

∫
R

f x∗,T (b)e
A(b) db < ∞.

A fairly direct calculation then yields

dQ

dS
∝ exp

{
−

∫ T

0
ϕ(Xt ) dt

}
a.s.

Beskos et al. [2] showed that, for Radon–Nikodym derivatives of this form for bounded
ϕ > 0, provided finite-dimensional distributions of S can be simulated exactly, exact simulation
of sample paths from Q is feasible using retrospective rejection sampling employing auxiliary
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Poisson processes. We now present an algorithm which requiresAssumptions 1, 2 (with n = 1),
3, and 4. We denote by 0 = t0, t1, . . . , tn, tn+1 = T the time instances at which we want to
sample the diffusion. Recall that X0 = x. The following algorithm returns values of the
diffusion X together with its local time at a collection of chosen and random time points.

Algorithm 1. (Exact algorithm for drift with discontinuity.)

I Generate (XT , LT ) according to the law given by (3) and (4).

II Sample an auxiliary Poisson process
 on [0, T ] with a rate parameterM to get τ1, . . . , τk ,
and then ψi ∼ U(0,M) independent and identically distributed for i = 1, . . . , k.

III Generate X and L at times τ1, τ2, . . . , τk conditioned on values at 0 and T (see Sections
3.2 and 3.3).

IV Use 
 to perform rejection sampling:

(i) compute ϕ(Xτi ) for i ∈ {1, . . . , k};
(ii) if ϕ(Xτi ) < ψτi for each i ∈ {1, . . . , k}, proceed to V; otherwise, start again at I.

V GenerateX jointly withLat times t1, . . . , tn conditioned on values at {0, τ1, τ2, . . . , τk, T }
(see Sections 3.2 and 3.3).

VI Return (0, x, 0), (t1, Xt1 , Lt1), . . . , (tk+n,Xtk+n , Ltk+n), (T ,XT , LT ).

The practical and probabilistic challenges with this algorithm are contained in step I, which
requires simulation from a bivariate distribution for the endpoint of the path and its accumulated
local time at 0, and step III, which requires finite-dimensional distributions of Brownian motion
and its local time. In the rest of this section we address the first challenge and in Section 3 the
second challenge. However, as we show below, solving the second problem can also provide
alternative and more efficient solutions to the first, given an additional assumption.

2.1. Simulating the endpoint distribution

We first provide some further insight on the exponential tilting employed in the definition of S.
Note that we are biasing the joint distribution of (XT , LT (X)) under the Wiener measure, with
the terms eA(XT ) and e−θLT (X). This observation generates our first method for simulating from
S, when the discontinuity jump is positive, i.e. if θ > 0. We decompose the law of (XT , LT (X))
as the marginal law of XT and the conditional law of LT (X) |XT . The simulation of XT in
this case is done according to

h(u) ∝ eA(u)φx,T (u).

This step is in fact common to all exact algorithms for diffusions. Conditionally on XT drawn
according to this scheme, LT |XT is proposed according to the conditional law of local time
given point evaluation under the Wiener measure, as described in Section 3.1. Any value
produced in this way is then accepted with probability e−θLT (X). An accepted pair (XT , LT (X))
produced by this procedure is drawn from S.

When the jump is negative, θ < 0, the above procedure cannot work and the biasing due
to the local time has to be dealt with in a slightly more involved way, albeit still by rejection
sampling. We will simulate (XT , LT (X)) jointly in this case, and find it useful to use a mixture
distribution consisting of six mixture components appropriately chosen to dominate either the
tails or the central part of the probability distribution given byg andg∗ in the case (b ≥ 0, l > 0),
(b < 0, l > 0), or (b > 0, l = 0) (or (b < 0, l = 0) if x < 0). Suppose that ξ1, ξ3 > 0
and ξ2, ξ4 < 0. Let hi : R × (0,∞) → R (i = 1, . . . , 4) and hi : R → R (i = 5, . . . , 8) be
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probability distributions such that

h1 > 0 if and only if (b, l) ∈ [0, ξ1] × (0,∞),

h2 > 0 if and only if (b, l) ∈ (ξ1,∞)× (0,∞),

h3 > 0 if and only if (b, l) ∈ [ξ2, 0)× (0,∞),

h4 > 0 if and only if (b, l) ∈ (−∞, ξ2)× (0,∞),

h5 > 0 if and only if b ∈ [0, ξ3],
h6 > 0 if and only if b ∈ (ξ3,∞),

h7 > 0 if and only if b ∈ [ξ4, 0],
h8 > 0 if and only if b ∈ (−∞, ξ4).

We use the hi with i ∈ {1, . . . , 6} when x > 0, with i ∈ {1, 2, 3, 4, 7, 8} when x < 0
and with i ∈ {1, . . . , 4} when x = 0. Assume for now that x > 0. Choose K such that
6g(b, l)/hi(b, l) < K whenever hi > 0 for i = 1, . . . , 4, and 6g∗(b)/hi(b) < K whenever
hi > 0 for i = 5, 6; then the procedure for sampling the candidate end-pair (b, l) is as described
below.

Procedure 1. (Endpoint rejection sampling.)
repeat

U1 ∼ DiscreteUniform on {1, 2, . . . , 6}
U2 ∼ U(0, 1)

for i = 1 to 4 do

if u1 = i then

(b, l) ∼ hi

if u2 ≤ 6g(b, l)/(Khi(b, l)) then

accept (b, l)

for i = 5 to 6 do

if u1 = i then

b ∼ hi

if u2 ≤ 6g∗(b)/(Khi(b)) then

accept b, set l = 0

until b accepted

return (b, l)

3. Sampling procedures for Brownian motion and its local time

In this section we discuss sampling from the conditional laws L(Ls2 | Bs1 , Bs2 , Ls1) and
L(Bs2 , Ls2 | Bs1 , Bs3 , Ls1 , Ls3), where 0 ≤ s1 < s2 < s3. Note that (B,L) is a Markov
process, with increments whose distribution depends only on the first coordinate of the process,
which facilitates simulation of finite-dimensional distributions of the process as well as finite-
dimensional distributions of the process conditionally on its endpoints. Furthermore, we
observe that as far as simulating skeletons of the process conditionally on a starting point,
it suffices to describe how to generate observations from L(Ls2 | Bs1 , Bs2 , Ls1), which we do
in Section 3.1. Simulating finite-dimensional distributions conditionally on past and future
endpoints requires simulation from L(Bs2 , Ls2 | Bs1 , Bs3 , Ls1 , Ls3); we tackle this problem
in two steps, first in the simpler case where Ls1 = Ls3 , in which case Ls2 is also equal to
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those values, and then for the general case where the local time has changed between the two
endpoints.

3.1. Sampling from L(Ls2 | Bs1, Bs2, Ls1)

We compute the probability that the local time does not increase on [s1, s2]. Assuming that
b1 < 0 and b2 < 0 (or b1 > 0 and b2 > 0),

P(Ls2 = l1 | Bs1 = b1, Bs2 = b2, Ls1 = l1) = f
b1∗,s2−s1(b2)

φb1,s2−s1(b2)
= 1 − e−2b1b2/(s2−s1).

Now suppose that l2 > l1; then

P(Ls2 ∈ dl2 | Bs1 = b1, Bs2 = b2, Ls1 = l1)

= f
b1
s2−s1(b2, l2 − l1)

φb1,s2−s1(b2)
dl2

= l2 − l1 + |b2| + |b1|
s2 − s1

exp

{−(l2 − l1 + |b2| + |b1|)2
2(s2 − s1)

}
exp

{
(b2 − b1)

2

2(s2 − s1)

}
dl2,

and further, by substituting l := l2 − l1 + |b2| + |b1|,

∝ l

s2 − s1
exp

{
− l2

2(s2 − s1)

}
dl for l > |b2| + |b1|.

Procedure 2. (Sampling from L(Ls2 | Bs1 , Bs2 , Ls1)withBs1 = b1,Bs2 = b2, andLs1 = l1.)

I If b1b2 ≤ 0, proceed to II.

Otherwise,

sample U ∼ U(0, 1);

if u ≤ 1 − exp{−2b1b2/(s2 − s1)}, set l2 = l1 and finish here;

otherwise, proceed to II.

II Sample Z ∼ U(1 − exp{−(|b2| + |b1|)2/(2(s2 − s1))}, 1);

set y = √−2(s2 − s1) ln(1 − z);

set l2 = y + l1 − |b2| − |b1|.
3.2. Sampling from L(Bs2, Ls2 | Bs1, Bs3, Ls1, Ls3), where Ls1 = Ls3

In this and the next subsection we are interested in conditioning Brownian motion and its
local time on both past and future values. Here we consider Ls1 = Ls3 , which implies that
Bs 	= 0 for all s ∈ [s1, s3] a.s. Also, here Ls2 is trivially equal to Ls1 . Throughout this
subsection, we suppose that b1 > 0, b2 > 0, and b3 > 0; the case b1 < 0, b2 < 0 and b3 < 0
can be treated completely symmetrically.

Using Bayes’ theorem, we obtain

ν1(db2) := P(Bs2 ∈ db2 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l1)

= f
b1∗,s2−s1(b2)f

b2∗,s3−s2(b3)

f
b1∗,s3−s1(b3)

db2

= φμ,σ 2(b2)
(1 − exp{−2b2b1/(s2 − s1)})(1 − exp{−2b3b2/(s3 − s2)})

1 − exp{−2b3b1/(s3 − s1)} db2,
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where

μ := b1(s3 − s2)+ b3(s2 − s1)

s3 − s1
, σ 2 := (s2 − s1)(s3 − s2)

s3 − s1
. (5)

Next we introduce a measure ν2 which will be useful for auxiliary rejection sampling:

ν2(db2) := P(Bs2 ∈ db2 | Bs1 = b1, Bs3 = b3)

P(Bs2 > 0 | Bs1 = b1, Bs3 = b3)
;

so
dν1

dν2
∝ (1 − e−2b2b1/(s2−s1))(1 − e−2b3b2/(s3−s2)).

Procedure 3. (Sampling from L(Bs2 | Bs1 , Bs3 , Ls1 , Ls3), where Ls1 = Ls3 .)

I Sample Z ∼ truncated normal distribution N(μ, σ 2) on (0,∞), where μ and σ 2 are as
in (5).

II Sample U ∼ U(0, 1).

II If u < (1 − e−2b2b1/(s2−s1))(1 − e−2b3b2/(s3−s2)), set b2 = z; otherwise, start again at I.

3.3. Sampling from L(Bs2, Ls2 | Bs1, Bs3, Ls1, Ls3), where Ls1 �= Ls3

In this subsection we concentrate on sampling Brownian motion and its local time at s2 when
Ls1 = l1 	= Ls3 = l3. We need to consider three cases, namely when local time stays constant
over [s1, s2], over [s2, s3], and when not constant over either of these intervals.

1. Suppose that l1 = l2, but l1 	= l3. Note that here we consider only b1 > 0 and b2 > 0
(or b1 < 0 and b2 < 0). Define ξ1(b2, l1) and p1 as follows:

P(Bs2 ∈ db2, Ls2 = l1 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3) =: ξ1(b2, l1) db2,

p1 :=
∫ ∞

−∞
ξ1(b2, l1) db2 = P(Ls2 = l1 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3).

The upper limit of integration, if b1 < 0, or the lower, if b1 > 0, can be changed to 0.

2. Suppose that l2 = l3 but l1 	= l3. Note that here we consider only b3 > 0 and b2 > 0 (or
b3 < 0 and b2 < 0). Define ξ3(b2, l3) and p3 as follows:

P(Bs2 ∈ db2, Ls2 = l3 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3) =: ξ3(b2, l3) db2,

p3 :=
∫ ∞

−∞
ξ3(b2, l3) db2 = P(Ls2 = l3 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3).

The upper limit of integration, if b3 < 0, or the lower, if b3 > 0, can be changed to 0.

3. Suppose that l2 ∈ (l1, l3) and l1 	= l3. Define ξ2(b2, l2) and p2 as follows:

P(Bs2 ∈ db2, Ls2 ∈ dl2 | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3) =: ξ2(b2, l2) db2 dl2,

p2 :=
∫
(l1,l3)

∫
R

ξ2(b2, l2) db2 dl2

= P(Ls2 ∈ (l1, l3) | Bs1 = b1, Bs3 = b3, Ls1 = l1, Ls3 = l3).
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We introduced p1, p2, and p3 (where p1 + p2 + p3 = 1) so that we can use them to split
the simulation into two steps. First we determine the case and then conditioned on the case we
sample the value of Bs2 (or in case 3 of both Bs2 and Ls2 ). Observe that

ξ2(b2, l2) = f
b1
s2−s1(b2, l2 − l1)f

b2
s3−s2(b3, l3 − l2)

f
b1
s3−s1(b3, l3 − l1)

= c(l2 − l1 + |b2| + |b1|) exp

{
− (l2 − l1 + |b2| + |b1|)2

2(s2 − s1)

}

× (l3 − l2 + |b3| + |b2|) exp

{
− (l3 − l2 + |b3| + |b2|)2

2(s3 − s2)

}
,

where

c := 1

2π(s2 − s1)3/2(s3 − s2)3/2f
b1
s3−s1(b3, l3 − l1)

.

Note in the above formula for ξ2(b2, l2) the symmetry in b2 about 0; that is, ξ2(y, l2) =
ξ2(−y, l2) for y ∈ R and l2 ∈ (l1, l3). Assume that b2 > 0. Then, by substituting

u := l2 − l1 + |b2| + |b1|, v := l3 − l2 + |b3| + |b2|, (6)

we further have

ξ2(b2, l2) ∝ u exp

{
− u2

2(s2 − s1)

}
v exp

{
− v2

2(s3 − s2)

}
. (7)

Recall that L(Bs2 , Ls2 | Bs1 , Bs3 , Ls1 , Ls3) is a.s. equal to 0 outside R × [l1, l3]. Under
the linear transformation (b2, l2) → (u, v) given by (6), the region R1 := [0,∞)× [l1, l3] is
mapped onto the region R2 bounded by the lines

v = u+ l1 − l3 − |b1| + |b3|, v = u− (l1 − l3)− |b1| + |b3|,
v = −u− (l1 − l3)+ |b1| + |b3|.

Observe that the form of (7) allows sampling of two independent random variables with Rayleigh
distributions, but with different scale parameters. However, it is important to remember that
this distribution needs to be truncated to region R2.

Procedure 4. (Sampling from L(Bs2 , Ls2 | Bs1 , Bs3 , Ls1 , Ls3), where Ls1 	= Ls3 .)

I Sample U ∼ U(0, 1).

II Compute p1. If u > p1, proceed to III; otherwise,

set l2 = l1,

sample Z ∼ h(z) ∝ ξ1(z, l1),

set b2 = z and finish here.

III Compute p3. If u > p1 + p3, proceed to IV; otherwise,

set l2 = l3,

sample Z ∼ h(z) ∝ ξ3(z, l3),

set b2 = z and finish here.

IV Sample (U, V ) ∼ h(u, v) ∝ 1(u,v)∈R2(u, v)ue−u2/(2(s2−s1))ve−v2/(2(s3−s2)).
Set l2 = 1

2 (u− v + l3 + l1 − |b1| + |b3|).
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Sample Y ∼ Bernoulli(0.5).

If y = 1, set b2 = 1
2 (u+ v − l3 + l1 − |b1| − |b3|);

otherwise, set b2 = − 1
2 (u+ v − l3 + l1 − |b1| − |b3|).

Explicit formulæ for p1 and p3 can be found in Appendix A.

4. Examples

In this section we present simple examples of numerical simulation of diffusions with
discontinuous drift, namely satisfying SDEs (i) dXt = ai dt + dBt and (ii) dXt = sin(Xt −
θi) dt + dBt with a1, θ1 if Xt ≥ 0 and a2, θ2 if Xt < 0.

We produce 100 000 observations of diffusions at time T = 1 applying our exact methods,
and use them for kernel density estimation. Our method is substantially quicker than using
the Euler–Maruyama scheme with �t = 0.0001 (as used for the plots in Figure 1) or even
�t = 0.001. Moreover, coarser discretisation leaves the Euler–Maruyama scheme competitive
on running time, but with appreciable bias. In each example we set X0 = 0 to observe the
effect of the discontinuity in the drift.
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Figure 1: Kernel density estimation for X at time T = 1 using observations obtained by exact methods
(solid line) and the Euler–Maruyama method (dashed line).
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The computing time for implementation of these algorithms on an Apple MacBook Air
computer with 1.86GHz Intel® Core™ 2 Duo CPU was around 500s when using a mixture
distribution (see Section 2.1) to produce candidate (XT , LT ), and 50s when the two-step
procedure (first sampling XT then LT | XT ) was applied, figures which compare favourably
with Étoré and Martinez [5], who reported running times of over 1000s on a similar example.
All code was implemented in R, and it is considered that the algorithm using the mixture
distribution could be much more efficient with optimised code.

Appendix A. Explicit formulæ for p1(l1) and p3(l3) used in Section 3.3

p1(l1) = 1{b1>0}c1

×
[

exp

{
− (b1 + k1)

2

2(s3 − s1)

}(
σ 2 exp

{
− μ2

1

2σ 2

}
+ √

2πσ(μ1 + k1)(1 −	μ1,σ 2(0))

)

− exp

{
− (b1 − k1)

2

2(s3 − s1)

}(
σ 2 exp

{
− μ2

2

2σ 2

}
+ √

2πσ(μ2 + k1)(1 −	μ2,σ 2(0))

)]

+ 1{b1<0}c1

×
[

exp

{
− (b1 − k1)

2

2(s3 − s1)

}(
σ 2 exp

{
− μ2

3

2σ 2

}
− √

2πσ(μ3 − k1)	μ3,σ 2(0)

)

+ exp

{
− (b1 + k1)

2

2(s3 − s1)

}(
−σ 2 exp

{
− μ2

4

2σ 2

}
+ √

2πσ(μ4 − k1)	μ4,σ 2(0)

)]
,

p3(l3) = 1{b3>0}c2

×
[

exp

{
− (b3 + k2)

2

2(s3 − s1)

}(
σ 2 exp

{
− ν2

1

2σ 2

}
+ √

2πσ(ν1 + k2)(1 −	ν1,σ 2(0))

)

− exp

{
− (b3 − k2)

2

2(s3 − s1)

}(
σ 2 exp

{
− ν2

2

2σ 2

}
+ √

2πσ(ν2 + k2)(1 −	ν2,σ 2(0))

)]

+ 1{b3<0}c2

×
[

exp

{
− (b3 − k2)

2

2(s3 − s1)

}(
σ 2 exp

{
− ν2

3

2σ 2

}
− √

2πσ(ν3 − k2)	ν3,σ 2(0)

)

+ exp

{
− (b3 + k2)

2

2(s3 − s1)

}(
−σ 2 exp

{
− ν2

4

2σ 2

}
+ √

2πσ(ν4 − k2)	ν4,σ 2(0)

)]
,

where

c1 = 1

f
b1
s3−s1(b3, l3 − l1)2π(s2 − s1)1/2(s3 − s2)3/2

,

c2 = 1

f
b1
s3−s1(b3, l3 − l1)2π(s2 − s1)3/2(s3 − s2)1/2

,

k1 = l3 − l1 + |b3|, k2 = l3 − l1 + |b1|,
μ1 = b1(s3 − s2)− k1(s2 − s1)

s3 − s1
, μ2 = −b1(s3 − s2)− k1(s2 − s1)

s3 − s1
,

μ3 = −μ2, μ4 = −μ1,

ν1 = b3(s2 − s1)− k2(s3 − s2)

s3 − s1
, ν2 = −b3(s2 − s1)− k2(s3 − s2)

s3 − s1
,

ν3 = −ν2, ν4 = −ν1,

σ 2 = (s2 − s1)(s3 − s2)

s3 − s1
.
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