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Abstract. In this paper, we consider diffeomorphisms on a closed manifold M preserving
a hyperbolic Sinaı̆–Ruelle–Bowen probability measure µ having intersections for almost
every pair of stable and unstable manifolds. In this context, we show the ergodicity of µ
when the dimension of M is at most three. If µ is smooth, then it is ergodic when the
dimension of M is at most four. As a byproduct of our arguments, we obtain sufficient
(topological) conditions which guarantee that there exists at most one hyperbolic ergodic
Sinaı̆–Ruelle–Bowen probability measure. Even in higher dimensional cases, we show
that every transitive topological Anosov diffeomorphism admits at most one hyperbolic
Sinaı̆–Ruelle–Bowen probability measure.

1. Introduction
1.1. Sinaı̆–Ruelle–Bowen measures. Broadly speaking, Sinaı̆–Ruelle–Bowen (SRB)
measures are the invariant measures most compatible with the smooth volume when we
investigate the ergodic theory of dissipative systems. These measures were introduced by
pioneering works of Sinaı̆ [30] and Bowen and Ruelle [8] on the ergodic theory of Anosov
or Axiom A systems. (Note that Anosov systems satisfy Axiom A.) Their main result
can be stated in short that Axiom A attractors do support a unique invariant probability
measure having ‘nice’ ergodic properties. This measure is called SRB. See §2.5 for the
definition.

Subsequently, such measures have been shown to exist for dynamical systems beyond
uniform hyperbolicity, for instance, certain partially hyperbolic attractors (see Pesin and
Sinaı̆ [23] and Alves, Bonatti and Viana [1, 7]) and Hénon attractors (see Benedicks and
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Young [5]). Note that, in fact, some of them concern u-Gibbs measures rather than SRB
(see [4, 6] for more details). These results also give the finitude (including uniqueness) of
SRB measures. We should note here that the topology of the basins of SRB measures
could be much more complicated. For instance, due to the example constructed by
Kan [17], one can show that there exists a topologically transitive diffeomorphism on T3

admitting two hyperbolic SRB measures such that both basins are dense. Contrary to such
phenomena, Rodriguez Hertz et al [26] show that there exists at most one SRB measure for
topologically transitive surface diffeomorphisms. In this paper, we show that there exists
at most one hyperbolic SRB measure for some diffeomorphisms of dimension greater than
two (see Corollary 1.8 and also [13]).

This paper constitutes a direct continuation of [13].

1.2. Statement of results. Let M be a compact smooth Riemannian manifold with
a norm ‖ · ‖, f : M→ M a C1+α (α > 0) diffeomorphism of M preserving a Borel
probability measure µ and with D f : T M→ T M being the derivative of f . We let d
be the distance on M induced by the Riemannian metric.

For x ∈ M and v ∈ Tx M , we define the Lyapunov exponent of v at x by

χ(x, v)= lim sup
n→∞

1
n

log ‖Dx f n(v)‖.

The measure µ is said to be hyperbolic if χ(x, v) 6= 0 for µ-almost every x and every v ∈
Tx M and minv∈Tx M χ(x, v) < 0<maxv∈Tx M χ(x, v) for µ-almost every x . For x ∈ M ,
we set

Wu(x)=
{

y ∈ M : lim sup
n→∞

1
n

log d( f −n(x), f −n(y)) < 0
}
,

Ws(x)=
{

y ∈ M : lim sup
n→∞

1
n

log d( f n(x), f n(y)) < 0
}
.

If µ is hyperbolic, then Wu(x) and Ws(x) are, in fact, injectively immersed manifolds
with TxWu(x)⊕ TxWs(x)= Tx M for µ-almost every x (see [4]). These are called the
unstable and stable manifolds at x , respectively. Clearly, they are f -invariant, that is,
f (W τ (x))=W τ ( f (x)) for τ = u, s.

In [13], we introduce two notions of accessibility on µ, as follows. We say that µ
satisfies:
• the transversally almost accessibility property (TAAP for short) if, for µ⊗ µ-

almost every pair (x, y) ∈ M × M , there exist integers p, q ∈ Z and a point z ∈
Wu( f p(x)) ∩Ws( f q(y)) such that

TzWu( f p(x))+ TzWs( f q(y))= Tz M

or there exist integers j, k ∈ Z and a point w ∈Ws( f j (x)) ∩Wu( f k(y)) such that

TwWs( f j (x))+ TwWu( f k(y))= TwM; and

• the almost accessibility property (AAP for short) if, for µ⊗ µ-almost every pair
(x, y) ∈ M × M , there exist integers p, q ∈ Z satisfying either

Wu( f p(x)) ∩Ws( f q(y)) 6= ∅ (1.1)
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or
Ws( f p(x)) ∩Wu( f q(y)) 6= ∅. (1.2)

Clearly, TAAP implies AAP.
In [13], the authors showed that for Sinaı̆–Ruelle–Bowen (SRB) measure-preserving

diffeomorphisms, the AAP implies the ergodicity when dim Wu is constant almost
everywhere. In this paper, we show, without the assumption that dim Wu is constant,
that the AAP implies the ergodicity when the ambient manifold is of low dimension.

THEOREM 1.1. Let f : M→ M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M preserving a hyperbolic SRB probability measure µ. If µ satisfies
the AAP and dim M ≤ 3, then µ is ergodic.

For smooth measure-preserving (i.e. measures which are equivalent to the Riemannian
volume) diffeomorphisms, the AAP implies the ergodicity even for four-dimensional
manifolds.

THEOREM 1.2. Let f : M→ M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M preserving a hyperbolic smooth measure µ. If µ satisfies the
AAP and dim M ≤ 4, then µ is ergodic.

Next, we give several topologically sufficient conditions for the AAP, and hence for the
ergodicity of SRB (or smooth) measure. Let Per( f ) be the set of all periodic points of f .
For p ∈ Per( f ), set

W u(p)= {x ∈ M : d( f −n(x), f −n(p))→ 0 (n→∞)},

W s(p)= {x ∈ M : d( f n(x), f n(p))→ 0 (n→∞)}

and define

Per∗( f )= {p ∈ Per( f ) :W u(p) \ {p} 6= ∅, W s(p) \ {p} 6= ∅}.

THEOREM 1.3. Let f : M→ M be a C1+α diffeomorphism of a compact smooth manifold
M of dim M ≤ 3 preserving a hyperbolic SRB probability measure µ. Assume that f
satisfies the following condition.
(P) For every p, q ∈ Per∗( f ) there exist j, k ∈ Z such that

W u(p) ∩W s( f j (q)) 6= ∅ and W s(p) ∩W u( f k(q)) 6= ∅.

Then µ satisfies the AAP.

Note here that the intersection in condition (P) is not supposed to be transverse.

THEOREM 1.4. Let f : M→ M be a C1+α diffeomorphism of a compact smooth manifold
M of dim M ≤ 3 preserving a hyperbolic SRB probability measure µ. If f has the
specification property, then µ satisfies the AAP.

As an immediate consequence of Theorems 1.1, 1.3 and 1.4, we obtain the following
corollary.

COROLLARY 1.5. Let f be as in Theorems 1.3 or 1.4. Then it is ergodic.
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Here the specification property is stronger than topological transitivity (see §4
(Remark 4.4) for the definition). When M is a surface, it is shown by Rodriguez Hertz
et al [26] that topological transitivity implies the ergodicity of hyperbolic SRB measures
(see also [13]). When the dimension of the manifold M is greater than or equal to three, the
ergodicity of hyperbolic SRB measures would not follow from the topological transitivity,
in general. In fact, there exists a topologically transitive diffeomorphism of T3 preserving
a hyperbolic SRB probability measure which is not ergodic (see [6, 26]).

Example 1.6. Katok [18] constructed an area-preserving diffeomorphism k of the disk
with non-zero Lyapunov exponents almost everywhere such that the map is an identity and
has derivatives which are zero on the boundary of the disk. Take another disk and consider
the identity map on the disk. By gluing the two disks along the boundary circle, we obtain
a sphere and a diffeomorphism f (of class C∞) which preserves a smooth measure.

For such an f , Per∗( f )= Per∗(k). By the construction of k, we see that Per∗(k) fulfil
condition (P). Therefore, by Theorem 1.3, there exists at most one hyperbolic ergodic SRB
probability measure for f and even for diffeomorphisms that are topologically conjugate
to f , since condition (P) is preserved by the conjugacy.

Even in high-dimensional cases, we can obtain the ergodicity of hyperbolic SRB
probability measures as follows.

THEOREM 1.7. Let f : M→ M be a C1+α diffeomorphism of a compact smooth manifold
M preserving a hyperbolic SRB probability measure µ. If f is a transitive topological
Anosov diffeomorphism (that is, it is topologically conjugate to a topologically transitive
Anosov diffeomorphism), then µ satisfies the AAP, and hence it is ergodic.

All of the results related to the ergodicity show that there is at most one hyperbolic SRB
probability measure since almost every ergodic component of a hyperbolic SRB measure
is hyperbolic SRB. In particular, there is the following corollary.

COROLLARY 1.8. Let f : M→ M be a C1+α diffeomorphism of a compact smooth
manifold M. Then it admits at most one hyperbolic SRB probability measure if either:
(1) dim M ≤ 3 and f satisfies the condition (P);
(2) dim M ≤ 3 and f satisfies the specification property; or
(3) f is a transitive topological Anosov diffeomorphism.

Remark 1.9. We should stress that Corollary 1.8 does not assert the existence of an SRB
measure. In fact, even for case (3), there are both existence and non-existence results (see,
for example, [11] and [16]).

1.3. The Hopf argument beyond Anosov systems. Our approach is based upon
developing the Hopf argument into the ergodic theory of non-uniformly hyperbolic
systems. The Hopf argument, introduced by Hopf [15] and improved by Anosov and
Sinaı̆ [2, 3], is a simple but strong method in the ergodic theory of Anosov systems.
This method gives us a fairly geometric argument for ergodicity problems since it is, in
part, based upon the geometry of mutually transverse invariant foliations, called the strong
stable and strong unstable foliations. Although these foliations are not smooth in general,
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they possess the crucial absolute continuity. Subsequently, such foliations are shown to
exist for a broad class of dynamical systems, one partially hyperbolic by Brin and Pesin [9]
and by Hirsh, Pugh and Shub [14] and the other non-uniformly hyperbolic by Pesin [22].
Nevertheless, the Hopf argument does not extend naively to these dynamical systems.

It is conjectured by Pugh and Shub [24] that smooth measure-preserving partially
hyperbolic diffeomorphisms with the (essential) accessibility property are ergodic. (In fact,
it is a part of their main conjecture: stable ergodicity is Cr (r > 1) dense among the smooth
measure-preserving Cr partially hyperbolic diffeomorphisms.) Here a partially hyperbolic
diffeomorphism is called accessible if any two points can be connected by a path which
consists of pieces of smooth curves lying on strong stable and strong unstable manifolds.
It is almost needless to say that the main difficulty emerged from the non-conformal
dynamics along the central direction. This conjecture is proved by Rodriguez Hertz,
Rodriguez Hertz and Ures [28] in the case where the center bundle is one-dimensional
or under an additional assumption called center-bunching by Burns and Wilkinson [10]
(see [12, 27] for details).

In the case where the diffeomorphism is non-uniformly hyperbolic, the main issue is
ensuring the transverse intersection between the stable and unstable manifolds. Notice
that these two manifolds, Wu(x) and Ws(x), intersect transversely at almost every x .
However, a priori, there could be no points in Wu(x) ∩Ws(y) at which the intersection
is transverse even though both x and y are typical (that is, Lyapunov regular points; see
§2.1). In this paper, we show that the set of points (x, y) ∈ M × M for which the set
Wu(x) ∩Ws(y) contains some transverse intersection points (or is empty) could have,
a posteriori, full measure (see Proposition 3.5 for precise details). Consequently, under
the assumption of the AAP, we could implement the Hopf argument, as in the case of
Anosov diffeomorphisms, to show the ergodicity of SRB or smooth probability measures
for non-uniformly hyperbolic diffeomorphisms (Theorems 1.1 and 1.2).

1.4. Organization of this paper. The rest of this paper is as follows. In §2, we recall
some preliminary material from the non-uniformly hyperbolic theory and fix notation. In
§3, we investigate the Hopf argument and the absolute continuity property of laminations
in the non-uniformly hyperbolic dynamics and prove Theorems 1.1 and 1.2. We prove
Theorems 1.3 and 1.4 in §4. Theorem 1.7 is proved in §5.

2. Preliminaries
2.1. Lyapunov exponents. Let µ be a Borel probability measure that is invariant under
f . A point x ∈ M is said to be Lyapunov regular if there exist real numbers χ1(x) >
χ2(x) > · · ·> χr(x)(x) and a D f -invariant decomposition Tx M = E1(x)⊕ E2(x)
⊕ · · · ⊕ Er(x)(x) such that, for each i = 1, 2, . . . , r(x),

lim
n→±∞

1
n

log ‖Dx f n(v)‖ = χi (x) (v ∈ Ei (x) \ {0})

exists and

lim
n→±∞

1
n

log |det(Dx f n)| =

r(x)∑
i=1

χi (x) dim Ei (x).
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We denote by 0 the set of Lyapunov regular points. By the Oseledec multiplicative ergodic
theorem, 0 has full µ-measure. The numbers χi (x) are called the Lyapunov exponents of
f at the point x . The functions x 7→ χi (x), r(x) and dim Ei (x) are Borel measurable and
f -invariant. If the invariant measure is supposed to be ergodic, then they are constant
functions and we denote the constants by χi and dim Ei (i = 1, 2, . . . , r).

Note that the measure µ is hyperbolic if none of the Lyapunov exponents for µ
vanish and there exist Lyapunov exponents with different signs for µ-almost everywhere.
In what follows, we always assume that µ is hyperbolic, and we will denote u(x)=
max{i : χi (x) > 0} and s(x)=min{i : χi (x) < 0} for µ-almost every x ∈ M . Then
the associated decomposition is represented by Tx M = Eu(x)⊕ E s(x) and Eu(x)=
TxWu(x) and E s(x)= TxWs(x), where Eu(x)=

⊕u(x)
i=1 Ei (x), E s(x)=

⊕r(x)
i=s(x) Ei (x)

for µ-almost every x ∈ M . Note that s(x)= u(x)+ 1 (see [4]).

2.2. Lyapunov charts. Let ν be an ergodic hyperbolic Borel probability measure that is
invariant under f . Denote by χu = χ

ν
u the smallest positive Lyapunov exponents and by

χs = χ
ν
s the largest negative Lyapunov exponent. Fix sufficiently small ε = εν > 0 with

ε <min{χu, |χ s
|}.

It follows from [22] and [4, Theorem 5.4.6] that there exist 0ν ⊂ 0 with ν(0ν)= 1 and
a measurable function Cε : 0ν→ [1,∞) such that for, every x ∈ 0ν :
• for n ≥ 0,

‖Dx f −n(v)‖ ≤Cε(x)e−(χu−ε)n‖v‖ (v ∈ Eu(x)),

‖Dx f n(v)‖ ≤Cε(x)e(χs+ε)n‖v‖ (v ∈ E s(x));

• |sin ∠(Eu(x), E s(x))| ≥ Cε(x)−1; and
• Cε( f ±1(x))≤ eεCε(x).
For each l ∈ N, we let

3νε =
⋃
l≥1

3νl,ε, 3νl,ε = {x ∈ 0
ν
: Cε(x)≤ l}.

For notational simplicity, we may write 3νl or 3l instead of 3νl,ε and 3ν or 3 instead of
3νε if no confusion may arise. Obviously, 3l1 ⊂3l2 if l1 ≤ l2, and ν(3)= 1.

Let du
= dim Eu and ds

= dim E s . For notational simplicity, we write Ru
= Rdu

and
Rs
= Rds

. For v = (v1, v2) ∈ Rdim M
= Ru

× Rs we define a norm as

|v| =max{|v1|u, |v2|s},

where | · |u and | · |s denote the Euclidean norm on Ru and Rs , respectively. For ρ > 0, we
write

D(ρ)= {v ∈ Rdim M
: |v| ≤ ρ},

Du(ρ)= {v ∈ Ru
: |v|u ≤ ρ},

Ds(ρ)= {v ∈ Rs
: |v|s ≤ ρ}.

For each l ∈ N, by [19, 22], there exist a constant ql ∈ (0, 1] and a family of embeddings
{9x : D(ql)→ M}x∈3l such that the following hold.
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(1) 9x (0)= x . D09x (Ru)= Eu(x) and D09x (Rs)= E s(x).
(2) Let fx =9

−1
f (x) ◦ f ◦9x , if it makes sense. Then, for each i = 1, 2, . . . , r ,

|D0 fx (v)| ≥ eχu−ε|v| (v ∈ Ru),

|D0 fx (v)| ≤ eχs+ε|v| (v ∈ Rs).

(3) Lip( fx − D0 fx )≤ ε, where Lip(g) denotes the Lipschitz constant of a map g.
(4) there exists a constant K > 1 such that for every v, w ∈ D(ql),

K−1 d(9x (v), 9x (w))≤ |v − w| ≤ q−1
l d(9x (v), 9x (w)).

Here we identify Rτ (τ = u, s) with a subspace of TRdim M .
In what follows, for x ∈3l and δ ∈ (0, 1], we will write

R(x; δ)=9x (D(δql))

and call it a rectangle. In the case where the precise choice of the scaling parameter δ of
the rectangle does not matter, we simply write it as R(x).

It is well known that there exist families {Wτ
loc(x)} (τ = u, s) of smooth disks passing

through x ∈3l and positive numbers cl , rl , δl , Al and Bl such that:
(i) f n(3l)⊂3q for some positive integer q = q(l, n);
(ii) Wu(x)=

⋃
∞

n=0 f n(Wu
loc( f −n(x))) and Ws(x)=

⋃
∞

n=0 f −n(Ws
loc( f n(x))) for

x ∈ 0;
(iii) for each x ∈3l , the disk Wτ

loc(x) contains the closed ball centered at x of radius δl

with respect to the induced distance dτx on Wτ (x);
(iv) for each x ∈3l , y ∈3l ∩ B(x, rcl) and r ∈ (0, rl ], Wτ

loc(y) ∩ B(x, r) is connected,
and the map

3l ∩ B(x, rlcl) 3 y 7→Wτ
loc(y) ∩ B(x, rl)

is continuous with respect to the Hausdorff metric on the space of all closed subsets
of B(x, rl);

(v) if y ∈Wu
loc(x) and x ∈3l , then, for every n ≥ 0,

du
f −n(x)( f −n(y), f −n(x))≤ Ale−nBl du

x (y, x),

and if y ∈Ws
loc(x) and x ∈3l , then, for every n ≥ 0,

ds
f n(x)( f n(y), f n(x))≤ Ale−nBl ds

x (y, x)

(see, for example, [21]). Here we denote the ball in M centered at x of radius r by B(x, r).

2.3. Admissible manifolds. We recall the notion of admissible manifolds (see [19]).
Let x ∈3l , δ ∈ (0, 1] and γ ∈ (0, 1). A du-manifold V⊂ D(δql) is called a γ -admissible
unstable manifold near zero if V= graph ψu

= {(v, ψu(v)) : v ∈ Du(δql)}, where ψu
:

Du(δql)→ Ds(δql) is a C1 map such that |ψu(0)| ≤ qε(x)/10 and |Dψu
| ≤ γ . A ds-

manifold V⊂ D(δql) called a γ -admissible stable manifold near zero is defined similarly
by reversing the roles of stable and unstable directions.

A du-manifold V ⊂ M is called a γ -admissible unstable manifold near x if V =9x (V)
for some γ -admissible unstable manifold V near zero. A ds-manifold V ⊂ M called a
γ -admissible stable manifold near x is defined similarly. Denote the family of all γ -
admissible unstable manifolds near x by Uδ,γ (x) and the family of all γ -admissible stable
manifolds near x by Sδ,γ (x).
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LEMMA 2.1. [19, Proposition 2.5 and Corollary 2.2] Let x ∈3l . Then any admissible
unstable manifold near x intersects any admissible stable manifold near x transversely
and in exactly one point.

Moreover, for δ > δ′ > 0 and γ ′ > γ > 0, there is a constant κ = κ(3l) > 0 such that
if y ∈3l with d(x, y) < κ and V ∈ Uδ,γ (x), then

V ∩ R(y; δ′) ∈ Uδ′,γ ′(y).

2.4. Absolute continuity. In what follows, given x ∈3l and r ∈ (0, clrl ], we set

Vs(y)=Ws
loc(y) ∩ B(x, rl)

for y ∈3l ∩ B(x, r), where cl and rl come from §2.2. Set

Qs(x)=
⋃

y∈3l∩B(x,r)

Vs(y). (2.1)

Note that if Vs(y) ∩ Vs(y′) 6= ∅, then Vs(y)= Vs(y′). Thus, for z ∈ Qs(x), we will write

Vs(z)= Vs(y), (2.2)

where y ∈3l ∩ B(x, r) with z ∈ Vs(y) (if no ambiguity arises).
Let

Ls(x)= {Vs(y) : y ∈3l ∩ B(x, r)}

and let W1, W2 be two transversals to the family Ls(x). Using (2.2), we can write the
family Ls(x) in the form

Ls(x)= {Vs(z) : z ∈ Qs(x)}.

Then the homeomorphism, called a holonomy map, is defined as

h : Qs(x) ∩W1→ Qs(x) ∩W2 (2.3)

by setting
h(z)= Vs(z) ∩W2

for z ∈ Qs(x) ∩W1.
The holonomy map h is said to be absolutely continuous if it transforms Lebesgue zero

sets of W1 to Lebesgue zero sets of W2: that is, if the inherited volume m2 on W2 is
absolutely continuous with respect to h∗m1.

LEMMA 2.2. [22], [4, §8.6.1] The holonomy map h associated to the stable lamination
Ws is absolutely continuous and the Jacobian dm2/d(h∗m1) of the holonomy map is
bounded from above and bounded away from zero.

2.5. SRB measures. Let B be the Borel σ -algebra of M completed with respect to µ
and ξ a partition of M . Denote by Bξ the sub σ -algebra of B whose elements are unions
of elements of ξ . A countable system {Ai }i∈N ⊂ B is said to be a basis of ξ if, for any two
distinct elements C1, C2 of ξ , there exists Ai0 such that, up to sets of measure zero, either
C1 ⊂ Ai0 and C2 6⊂ Ai0 or C1 6⊂ Ai0 and C2 ⊂ Ai0 . A partition with a basis is said to be
measurable.
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We denote by Cξ (x) the element of ξ containing x ∈ M . For a measurable partition ξ
of M , there exists a canonical system of conditional measures: for µ-almost every x ∈ M ,
there is a probability measure µξx defined on Cξ (x) such that the function x 7→ µ

ξ
x (A) is

Bξ -measurable and µ(A)=
∫
µ
ξ
x (A) dµ(x) for every A ∈ B (see [29] for more details).

Let Wu
= {Wu(x) : x ∈3} be the unstable lamination and let ξu a measurable partition

of M . We say that ξu is subordinate to the Wu-lamination if, for µ-almost every x ∈ M ,
Cξu (x)⊂Wu(x) and Cξu (x) contains an open neighborhood of x in Wu(x).

The measure µ is said to be absolutely continuous with respect to the Wu-lamination
or Sinaı̆–Ruelle–Bowen (SRB) if, for every measurable partition ξu subordinate to the
Wu-lamination, µξ

u

x is absolutely continuous with respect to mu
x for µ-almost every

x ∈ M , where mu
x denotes the inherited volume on Wu(x). It is known that the densities

dµξ
u

x /dmu
x are strictly positive along Wu(x) for µ-almost every x ∈ M .

LEMMA 2.3. [20, 22] Let µ be a hyperbolic SRB probability measure invariant under f .
Then there exist finite or countably many invariant sets 30, 31, . . . such that:
(1)

⋃
i≥0 3i = M and 3i ∩3 j = ∅ whenever i 6= j ;

(2) µ(30)= 0, and µ(3i ) > 0 for each i ≥ 1;
(3) f |3i is ergodic with respect to νi (·)= µ(· ∩3i )/µ(3i ) for each i ≥ 1; and
(4) there is a sequence of numbers ni (i ≥ 1) and there are measurable sets 3k

i (k =
1, 2, . . . , ni ) such that:
(a)

⋃ni
k=1 3

k
i =3i and 3k1

i ∩3
k2
j = ∅ whenever k1 6= k2;

(b) f (3k
i )=3

k+1
i (k = 1, . . . , ni − 1), f (3ni

i )=3
1
i ;

(c) ( f ni |3k
i , niνi |3

k
i ) is isomorphic to a Bernoulli automorphism.

Let M f be the set of all f -invariant Borel probability measures on M and let µ ∈M f

be a hyperbolic SRB measure. Using the notation as in Lemma 2.3, we define E(µ)=
{νi }i≥1. Then there exist positive numbers {aν}ν∈E(µ) with

∑
ν∈E(µ) aν = 1 such that

µ(A)=
∑
ν∈E(µ) aνν(A) for any Borel set A.

3. Proofs of Theorems 1.1 and 1.2
3.1. AAP and TAAP. Recall that two submanifolds V and W of M are called transverse
at z provided that either z /∈ V ∩W or Tz V + Tz W = Tz M . We denote this by V tz W .

For p, q ∈ Z and (x, y) ∈ 0ν × 0%, define

Ip,q(x, y)=Wu( f p(x)) ∩Ws( f q(y))

and its subset

Tp,q(x, y)= {z ∈ Ip,q(x, y) :Wu( f p(x)) tz Ws( f q(y))}.

Here we remark that if x 6= y, then Ip,q(x, y) 6= Iq,p(y, x) and hence Tp,q(x, y) 6=
Tq,p(y, x), in general.

Put
Aν,%
=

⋃
p,q∈Z
{(x, y) ∈ 0ν × 0% : Ip,q(x, y) 6= ∅}

and
T ν,%

0 =

⋃
p,q∈Z
{(x, y) ∈ 0ν × 0% : Tp,q(x, y) 6= ∅}.

https://doi.org/10.1017/etds.2016.136 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.136


On the ergodicity of hyperbolic Sinaı̆–Ruelle–Bowen measures II 3051

Note again that given ν and % (ν 6= %), the set A%,ν differs from Aν,%. We know that
T ν,%

0 ⊂Aν,% and that both sets are f n
× f m-invariant for every n, m ∈ Z. Thus, for every

(ν, %) ∈ E(µ)× E(µ), one can check by (3) and (4) of Lemma 2.3 that ν ⊗ %(Aν,%)= 0
or 1 and that ν ⊗ %(T ν,%

0 )= 0 or 1. Moreover, we note that µ satisfies the AAP if and
only if ν ⊗ %(Aν,%)= 1 or % ⊗ ν(A%,ν)= 1 for every (ν, %) ∈ E(µ)× E(µ) and that it
satisfies the TAAP if and only if ν ⊗ %(T ν,%

0 )= 1 or % ⊗ ν(T %,ν

0 )= 1 for every (ν, %) ∈
E(µ)× E(µ).

LEMMA 3.1. [13, Lemma 3.2 and Remark 3.3] If ν, % ∈ E(µ) are such that ν ⊗ %(T ν,%

0 )=

1 or % ⊗ ν(T %,ν

0 )= 1, then ν = %.

Let us define

T ν,%

1 =

⋂
p,q∈Z
{(x, y) ∈ 0ν × 0% : Tp,q(x, y)= Ip,q(x, y)}.

Then T ν,%

1 is f n
× f m-invariant for every n, m ∈ Z.

For ν ∈ E(µ), the dimension of the unstable manifold is constant ν-almost everywhere.
We denote the constant by du(ν) and set ds(ν)= dim M − du(ν). Note that ds(ν)=

dim Ws(x) for ν-almost every x since ν is hyperbolic.

3.2. The case of du(ν)≤ du(%).

PROPOSITION 3.2. Let µ be a hyperbolic SRB Borel probability measure. Then ν ⊗
%(T ν,%

1 )= 1 for every pair (ν, %) ∈ E(µ)× E(µ) such that du(ν)≤ du(%).

Proof. This is proved in [13, Proposition 4.1] for every pair (ν, %) ∈ E(µ)× E(µ) such
that du(ν)= du(%).

Next, for every pair (ν, %) ∈ E(µ)× E(µ) such that du(ν) < du(%), we see that ν ⊗
%(Aν,%)= 0 and hence ν ⊗ %(T ν,%

1 )= 1, trivially. Indeed, suppose that ν ⊗ %(Aν,%)= 1.
Then there exists Xν of full ν-measure such that, for every x ∈ Xν , it holds that %(Aν,%

x )=

1, where we set Aν,%
x = {y ∈ 0% : (x, y) ∈Aν,%

} for x ∈ Xν . Fix x ∈ Xν in the following.
Since % is an SRB measure,

%(Aν,%
x )=

∫
%ξ

u

y (A
ν,%
x ) d%(y),

where ξu is a measurable partition subordinate to the Wu-lamination. It follows that
%
ξu

y (A
ν,%
x )= 1 for %-almost every y ∈Aν,%

x , and thereby mu
y(A

ν,%
x ) > 0. However, it holds

that mu
y({b ∈ 0

%
: Ip,q(x, b) 6= ∅})= 0 for every p, q ∈ Z, since du(ν) < du(%). This can

be proved by the same argument as in [13, §4.1]. For the sake of completeness, we
give a sketch of the proof. Fix any p, q ∈ Z, take a du(%)-dimensional disk V u(z) for
every z ∈ Ip,q(x, b) at which V u(z) intersects transversely with Ws(b) and consider a
projection π s

z along the stable manifolds (at 0%) from Bu(z, r)⊂Wu(x) onto V u(z).
Since du(ν) < du(%), we see that there exists a constant C > 0 such that, for any γ > 0,
there exists r = r(z) > 0 such that mu

z (π
s
z (B

u(z, r) ∩ Qs(b)))≤ Cγ (see (2.1) for the
definition of Qs(b)). By using the Besicovitch covering lemma for a cover {Bu(z, r) : z ∈
Ip,q(x, b), b ∈ 0% ∩Wu(y)}, we obtain that mu

y({b ∈ 0
%
: Ip,q(x, b) 6= ∅})= 0 (see [13,

Lemmas 4.1 and 4.3]).
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Therefore mu
y(A

ν,%
x )= mu

y(
⋃

p,q∈Z{b ∈ 0
%
: Ip,q(x, b) 6= ∅})= 0. This is a contra-

diction and ν ⊗ %(Aν,%)= 1 is impossible. �

When E(µ) 3 ν 7→ du(ν) is constant, we have the following theorem.

THEOREM 3.3. [13, Theorem 1.2] Let µ be a hyperbolic SRB Borel probability measure.
If µ satisfies the AAP and the dimension of the unstable manifold is constant µ-almost
everywhere, then it is ergodic.

3.3. Tangential intersection. We first recall the notion of tangency. Let V and W be
submanifolds of M . If the transverse property fails for V and W , that is, if there exists
z ∈ V ∩W such that

Tz V + Tz W ( Tz M,

then we say that z is a point of tangential intersection of V and W or that V and W have a
tangency at z.

LEMMA 3.4. Let µ be a hyperbolic SRB Borel probability measure. Then for (ν, %) ∈
E(µ)× E(µ),

ν ⊗ %({(x, y) ∈ 0ν × 0% : mu
f p(x)(Ip,q(x, y) \ Tp,q(x, y)) > 0})= 0.

Proof. For notational simplicity, set

Z = {(x, y) ∈ 0ν × 0% : mu
f p(x)(Ip,q(x, y) \ Tp,q(x, y)) > 0}.

Suppose, on the contrary, that ν ⊗ %(Z) > 0. Then there exists a positive ν-measure set
X ⊂ 0ν such that, for every x ∈ X ,

%({y ∈ 0% : (x, y) ∈ Z}) > 0.

Note that, for every x ∈ X and y ∈ Zx = {y ∈ 0% : (x, y) ∈ Z}, mu
f p(x)(Ip,q(x, y) \

Tp,q(x, y)) > 0 and TzWu( f p(x))+ TzWs( f q(y))( Tz M for every z ∈ Ip,q(x, y) \
Tp,q(x, y).

By the absolute continuity of an unstable lamination, there exists X0 ⊂ X with ν(X \
X0)= 0 such that, for every x ∈ X0, mu

f p(x)(W
u( f p(x)) \3ν)= 0. Note that TzWu(z)⊕

TzWs(z)= Tz M for every z ∈3ν , since µ is hyperbolic, and that mu
f p(x)((Ip,q(x, y) \

Tp,q(x, y)) ∩3ν) > 0 for every x ∈ X0 and y ∈ Zx .
Take x ∈ X0 and y ∈ Zx . Since Wu( f p(x))=Wu(z) and Ws( f q(y))=Ws(z) for

every z ∈ (Ip,q(x, y) \ Tp,q(x, y)) ∩3ν , TzWu( f p(x))⊕ TzWs( f q(y))= Tz M . We
arrive at a contradiction. �

3.4. The case of du(%)= 1. The following is a counterpart of Proposition 3.2. Then,
using this result, we show Theorems 1.1 and 1.2 in §3.5.

PROPOSITION 3.5. Let µ be a hyperbolic SRB Borel probability measure. Then ν ⊗
%(Aν,%

\ T ν,%

0 )= 0 for every pair (ν, %) ∈ E(µ)× E(µ) such that du(%)= 1.
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Proof. Note, first, that if ν ⊗ %(Aν,%)= 0, then ν ⊗ %(Aν,%
\ T ν,%

0 )= 0, trivially. Thus
it is enough to show that ν ⊗ %(Aν,%

\ T ν,%

0 )= 0 for (ν, %) satisfying ν ⊗ %(Aν,%)= 1.
Suppose, on the contrary, that ν ⊗ %(Aν,%

\ T ν,%

0 )= 1 while ν ⊗ %(Aν,%)= 1. Then there
exist p, q ∈ Z such that ν ⊗ %({(x, y) ∈ 0ν × 0% : Ip,q(x, y) 6= ∅, Tp,q(x, y)= ∅}) > 0.
We divide the rest of the proof into two parts.

Step 1. Let

A =
{
(x, y) ∈ 0ν × 0% :

I0,0(x, y) 6= ∅, T0,0(x, y)= ∅,
mu

x (I0,0(x, y) \ T0,0(x, y))= 0.

}
Then a = ν ⊗ %(A) > 0 by Lemma 3.4 and the f n

× f m-invariance of A. For any κ > 0,
there exists X (κ)⊂ 0ν with ν(X (κ)) > 0 such that, for any x ∈ X (κ),

%({y ∈ 0% : I0,0(x, y) ∩ Bs(y, κ) 6= ∅, (x, y) ∈ A}) > a/2. (3.1)

Indeed, by §2.2-(v) and the Fubini theorem, there exist N = N (κ) ∈ N and X̃ = X̃(κ)⊂
0ν with ν(X̃) > 0 such that, for any n ≥ N and x ∈ X̃ ,

%({y ∈ 0% : In,n(x, y) ∩ Bs( f n(y), κ) 6= ∅, ( f n(x), f n(y)) ∈ A}) > a/2.

Put X (κ)= f n(X̃), which is the desired set.
Take l > 1 so large that %(3%l ) > 1− (a/3) and fix x ∈ X (κl), where κl =min{ql , rl}/2

(see §2.2 for ql and rl ). Consider

Yl = Yl(x)= {y ∈3
%

l : I0,0(x, y) ∩ Bs(y, κl) 6= ∅, (x, y) ∈ A}.

By (3.1), we may assume that %(Yl) > 0.
Let ξu be a measurable partition subordinate to the Wu-lamination. Then∫

%ξ
u

y (Yl) d%(y)= %(Yl).

It follows that %ξ
u

y (Yl) > 0 for %-almost every y ∈ Yl , which means that mu
y(Yl) > 0 for

%-almost every y ∈ Yl , since % is an SRB measure. Define

Y u
l =

{
y ∈ Yl : lim

r→0

mu
y(B

u(y, r) ∩ Yl)

mu
y(Bu(y, r))

= 1
}
. (3.2)

By the Lebesgue density lemma, %(Y u
l )= %(Yl) > 0.

Step 2. Take y1 ∈ Y u
l . Recall that R(y1; 1)=9y1(D(ql)), where 9y1 : D(ql)→ M is as in

§2.2. Below, for notational simplicity, we will put R(y1)= R(y1; 1).
Let Qs(y1) be as in (2.1). By §2.2-(iv), for y ∈3l ∩ B(y1, rlcl), there exists a C1

function ψ s
y : Ds(ql)→ Du(ql) such that

9−1
y1
(Vs(y))= {(ψ s

y(v), v); v ∈ D
s(ql)} ⊂ Ru

× Rs

and the map y 7→ ψ s
y is continuous with respect to the C1 topology.

Let z ∈ I0,0(x, y1) ∩ Bs(y1, κl). Then:
• TzWu(x)⊂ TzWs(y1); and
• mu

x (Wu(x) ∩Ws(y1))= 0,
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FIGURE 1. For the proof of Proposition 3.5. The rectangle denotes the Lyapunov chart R(y1)⊂ Ru
× Rs

=

R× Rdim M−1 at y1 ∈ Y u
l . We write ã =9−1

y1 (a) for a ∈ R(y1) and W̃u(x)=9−1
y1 (W

u(x) ∩ R(y1)) in this
picture. Here z ∈ I0,0(x, y1) is a point of tangential intersection of Wu(x) and Ws (y1).

since ds(%)= dim M − 1 and (x, y1) ∈ A. Thus there exist a point w ∈Wu(x) \Ws(y1)

and a C1 curve c : [0, 1] →Wu(x) such that

c(0)= z, c(1)= w and c(t) ∈ R(y1) for every t ∈ [0, 1]. (3.3)

Since z ∈ Bs(y1, κl)⊂ Vs(y1), z̃1 = ψ
s
y1
(z̃2), where 9−1

y1
(z)= (z̃1, z̃2) ∈ D(ql)⊂

Ru
× Rs . Without loss of generality, we may assume that

w̃1 >ψ
s
y1
(w̃2),

where 9−1
y1
(w)= (w̃1, w̃2) ∈ D(ql).

Since y1 ∈ Y u
l , we can take a sufficiently small r > 0 and a subset Y ′ ⊂ Yl ∩ Bu(y1, r)

with positive mu-measure such that

w̃1 >ψ
s
y(w̃2) and z̃1 <ψ

s
y(z̃2)

for every y ∈ Y ′. By (3.3) and the intermediate value theorem, there exists 0< ty < 1 such
that

c̃(ty)1 = ψ
s
y(c̃(ty)2),

where 9−1
y1
(c(ty))= (c̃(ty)1, c̃(ty)2). This means that c(ty) ∈Wu(x) ∩Ws(y).

Since the dimension of the curve c is equal to du(%)(= 1), by the same argument as in
the proof of [13, Proposition 4.1], the curve c has a transverse intersection point at c(ty)

for mu-almost every y ∈ Y ′ (see Figure 1). This implies that

Tc(ty)Wu(x)+ Tc(ty)Ws(y)= Tc(ty)M

for mu-almost every y ∈ Y ′, which contradicts the fact that T0,0(x, y)= ∅ for every
y ∈ Yl = Yl(x). �
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3.5. Proofs. Here we prove Theorems 1.1 and 1.2. In both of the proofs, we consider
Aν,%, T ν,%

1 and T ν,%

0 corresponding to possible cases of pairs (du(ν), du(%)). Recall here
that these sets are not symmetric with respect to ν and %. This causes the asymmetry in
the argument below.

Proof of Theorem 1.1. Letµ be a hyperbolic SRB measure satisfying the AAP. Then every
pair of ergodic components (ν, %) ∈ E(µ)× E(µ) satisfies that either ν ⊗ %(Aν,%)= 1
or % ⊗ ν(A%,ν)= 1. First, we consider the case ν ⊗ %(Aν,%)= 1.

When the manifold M is two dimensional, there is only one case for the pair,
(du(ν), du(%))= (1, 1). Thus, by Theorem 3.3, µ is ergodic.

When the manifold M is three dimensional, there are four cases for the pair of
(du(ν), du(%))= (i, j), where i, j ∈ {1, 2}. By Proposition 3.2, ν ⊗ %(Aν,%

∩ T ν,%

1 )=

1 when (du(ν), du(%))= (1, 1), (1, 2) and (2, 2). By applying Proposition 3.5 to the
remaining case (du(ν), du(%))= (2, 1), ν ⊗ %(T ν,%

0 )= 1. Therefore it follows from
Lemma 3.1 that ν = % in every case, which means that µ itself is ergodic.

The proof of the other case % ⊗ ν(A%,ν)= 1 is similar and is omitted. �

Proof of Theorem 1.2. Let µ be a hyperbolic smooth measure satisfying the AAP. Then
every pair of ergodic components (ν, %) ∈ E(µ)× E(µ) satisfies that either ν ⊗ %(Aν,%)=

1 or % ⊗ ν(A%,ν)= 1. First, we consider the case ν ⊗ %(Aν,%)= 1. By Theorem 1.1, it is
enough to consider the case where the dimension of M is four.

Since the manifold M is four dimensional, there are nine cases for the pair of
(du(ν), du(%))= (i, j), where i, j ∈ {1, 2, 3}. By Proposition 3.2, ν ⊗ %(Aν,%

∩ T ν,%

1 )=

1 when (du(ν), du(%))= (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3). By Proposition 3.5,
ν ⊗ %(T ν,%

0 )= 1 when (du(ν), du(%))= (2, 1), (3, 1). Henceforth, we consider the
remaining case (du(ν), du(%))= (3, 2). Since both ν and ρ are absolutely continuous with
respect to the volume, they are absolutely continuous with respect to the stable lamination
(see [20, Corollaire 5.6]). Since (ds(%), ds(ν))= (2, 1), by applying Proposition 3.5,
ν ⊗ %(T ν,%

0 )= 1. Therefore it follows from Lemma 3.1 that ν = % in every case, which
means that µ itself is ergodic.

The proof of the other case % ⊗ ν(A%,ν)= 1 is similar and is omitted. �

4. Proofs of Theorems 1.3 and 1.4
In what follows, we give the proof of Theorem 1.3 only. The proof of Theorem 1.4 is the
same as that of Theorem 1.3, except for one part. See Remark 4.4 about the modification
for proving Theorem 1.4.

4.1. Set-up. Let ν and % be any ergodic components of µ. By ergodicity, there exist
positive integers du(ν) and du(%) such that dim Wu(x)= du(ν) for ν-almost every x ∈ M
and dim Wu(x)= du(%) for %-almost every x ∈ M , respectively. In the following sections,
we consider possible cases of pairs (du(ν), du(%)), respectively, and show, in each case,
that there exist subsets Aν and A% with ν(Aν) > 0 and %(A%) > 0 such that Aν × A% ⊂
Aν,% or A% × Aν ⊂A%,ν . This will imply that ν ⊗ %(Aν,%)= 1 or % ⊗ ν(A%,ν)= 1, that
is, that µ satisfies the AAP.
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4.1.1. An auxiliary lemma. To begin with, fix the notation. All through this
subsection 4.1.1, dim M , du(ν) and du(%) are arbitrary. Choose l > 1 so large that
ν(3l) > 0 and take x0 ∈ supp(ν|3l). Here we denote by supp(ν|3l) the support of ν|3l .
Thus ν(B(x0, r) ∩3l) > 0 for a given small number r > 0. Denote by B(ν) the ergodic
basin of ν defined as

B(ν)=
{

x ∈ M : lim
n→±∞

δn(x)= ν
}
,

where δn(x)=
∑n−1

i=0 δ( f −i (x))/n and δ(y) denotes the Dirac measure at y ∈
M . Since ν(B(ν))= 1 by the Birkhoff ergodic theorem, ν(B(x0, r) ∩3l ∩ B(ν))=
ν(B(x0, r) ∩3l) > 0. Thus by the Poincaré recurrence theorem, there exists a
subset Aν ⊂ B(x0, r) ∩3l ∩ B(ν)with ν(Aν)= ν(B(x0, r) ∩3l ∩ B(ν)) such that every
x ∈ Aν returns infinitely often to Aν under both forward and backward iteration of f . That
is, for every x ∈ Aν there exists an increasing sequence nk = nk(x) that tends to ±∞ as
k→±∞ such that f nk (x) ∈ Aν for all k ∈ Z.

Similarly, choose l > 1 so large that %(3l) > 0 and take y0 ∈ supp(%|3l). Then there is
a positive %-measure set A% ⊂ B(y0, r) ∩3l ∩ B(%) such that, for every y ∈ A%, there
exists an increasing sequence mk = mk(y) that tends to ±∞ as k→±∞ such that
f mk (y) ∈ A% for all k ∈ Z.

For x ∈ B(x0, r) ∩3l , set Vτ (x) as the component of Wτ (x) ∩ R(x0) that contains x :
that is,

Vτ (x)= Vτν (x)= C(Wτ (x) ∩ R(x0) : x),

where τ = s, u. Similarly, for y ∈ B(y0, r) ∩3l and τ = s, u, set

Vτ (y)= Vτ% (y)= C(Wτ (y) ∩ R(y0) : y).

LEMMA 4.1. For every x ∈ Aν , there exist x1, x2 ∈ { f n(x)}n∈Z such that Vu(x), Vu(x1)

and Vu(x2) are mutually disjoint.

Proof. Take x ∈ Aν and an increasing sequence nk = nk(x) ∈ Z such that f nk (x) ∈ Aν ,
chosen by the Poincaré recurrence theorem, as above.

First, we show that there exists k ∈ Z such that f nk (x) ∈ Aν \ Vu(x). Suppose that
f nk (x) ∈ Vu(x) for every k ∈ Z. By the property (v) in §2.2, we see that

f −nk (Vu(x))( Vu( f −nk (x))= Vu(x)

and that f −nk |Vu(x) : Vu(x)→ Vu(x) is a contraction for large nk � 1. Fix such an nk ∈

N. Then there there exists (unique) x∗ ∈ Vu(x) such that:
• f −nk (x∗)= x∗; and
• for every y ∈ Vu(x), f −nk m(y)→ x∗ as m→∞.
Therefore

δnk m(x)→
1
nk

nk−1∑
j=0

δ( f − j (x∗))

weakly as m→∞. On the other hand, δnk m(x)→ ν weakly as m→∞, since x ∈ Aν .
This gives a contradiction to the fact that ν is SRB. Therefore there exists nk ∈ Z such that
f nk (x) ∈ Aν \ Vu(x).
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By applying the same argument, we see that there exists n j ∈ Z such that f n j+nk (x) ∈
Aν \ (Vu(x) ∪ Vu( f nk (x))).

Set x1 = f nk (x) and x2 = f n j+nk (x). Then Vu(x1) and Vu(x2) are well defined since
both x1 and x2 belong to Aν . It is clear that Vu(x), Vu(x1) and Vu(x2) are mutually
disjoint. �

4.1.2. The case of du
= 2. Suppose that du(ν)= 2 in this subsection. By the C1

continuity of the local unstable manifolds on 3l , every Vu(x) (x ∈ Aν) is an admissible
unstable two manifold near x0. Since Vs(x0) is an admissible stable one manifold
near x0, we see that every Vu(x) intersects Vs(x0) transversely and in exactly one
point, by Lemma 2.1. Therefore there is an ordering on {Vu(x) : x ∈ Aν} according to
the canonical ordering on the one manifold Vs(x0). In particular, we can specify the
intermediate component among three elements from {Vu(x) : x ∈ Aν}. More precisely,
if Vu(xi ) (xi ∈ Aν, i = 1, 2, 3) are mutually disjoint and have the intersection point
{pi } = Vu(xi ) ∩ Vs(x0) with p1 < p2 < p3 according to the canonically given ordering
< on Vs(x0), then Vu(x2) is the intermediate one.

For an admissible two manifold V =9x0(V) such that V= graph ψ ⊂ R2
× R, let

V+ = {v = (v1, v2) ∈ D(ql) : v2 >ψ(v1)},

V− = {v = (v1, v2) ∈ D(ql) : v2 <ψ(v1)},

where we write v = (v1, v2) with respect to D2
× D1.

LEMMA 4.2. Suppose that du(ν)= 2 and take x ∈ Aν . Then there exist n ∈ Z and a
hyperbolic periodic point z ∈ B(x0, r) such that:
• V=9−1

x0
(C(W u(z) ∩ R(x0) : z)) is an admissible unstable two manifold; and

• for every connected subset A ⊂ D(ql) so that A ∩ (V+ ∪ V−) 6= ∅ and A ∩ V 6= ∅,
there exists K > 0 such that f 2kp(Wu( f n(x))) ∩9x0(A) 6= ∅ for every k ≥ K ,
where p ∈ N is the period of z.

Proof. By Lemma 4.1, we can find two more local unstable manifolds Vu(x1) and Vu(x2)

with x1, x2 ∈ { f n(x)}n∈Z such that Vu(x), Vu(x1) and Vu(x2) are mutually disjoint.
Therefore we can specify the intermediate component among these three and denote it
by Vu(x̄). (Hence x̄ is the renamed point from one of x, x1, x2.) The others are denoted
by Vu(x+) and Vu(x−), respectively.

Let ε ∈ (0,minσ∈{+,−} d(Vu(x̄), Vu(xσ ))). By the Katok closing lemma for non-
uniformly hyperbolic systems [19, Main lemma and Theorem 4.1], there exists a
hyperbolic periodic point z ∈ B(x̄, ε) of period p ∈ N such that the local stable and
local unstable manifolds of z are admissible stable and admissible unstable manifolds
near x0. Denote these local manifolds by V τ (z)= C(W τ (z) ∩ R(x0) : z) for τ = s, u.
Note that the component V u(z) is between Vu(x+) and Vu(x−). Note also that both
Vu(x+) and Vu(x−) intersect V s(z) transversely (and in exactly one point, respectively),
by Lemma 2.1. Denote them by z+ and z−, respectively.

Take any A ⊂ D(ql) so that A ∩ (V+ ∪ V−) 6= ∅ and A ∩ V 6= ∅. Here we suppose that
A ∩ V+ 6= ∅ as the other case can be dealt with analogously. By the inclination lemma
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with respect to z, there is K+ ∈ N such that

9x0(A) ∩ C( f 2kp(Vu(x+)) ∩ R(x0) : f 2kp(z+)) 6= ∅ (4.1)

for every k ≥ K+. Since x+ ∈ { f n(x)}n∈Z, Lemma 4.2 is obtained. �

Remark 4.3. In fact, Lemma 4.2 is valid for the case du
= dim M − 1.

4.2. The case of dim M = 3. First, we consider the three-dimensional case.

4.2.1. Case 1: (du(ν), du(%))= (2, 1). We divide the proof into three steps.

Step 1. Let Aν be as above. Fix x ∈ Aν . Take a hyperbolic periodic point zν ∈ B(x0, r)
and an admissible unstable manifold Vu

ν =9
−1
x0
(V u(zν)), as in Lemma 4.2.

Since ds(%)= 2, by Lemma 4.2 for y ∈ A%, we can take a hyperbolic periodic point
z% ∈ B(y0, r) and an admissible stable manifold Vs

% =9
−1
y0
(V s(z%)) having the same (but

‘dual’) properties. Below we may assume that both zν and z% are fixed points.

Step 2. By condition (P), there exists j ∈ Z such that W u(zν) ∩W s( f j (z%)) 6= ∅. To avoid
cumbersome notation, we consider j = 0.

Remark 4.4. Here we mention about the modification to prove Theorem 1.4. Recall first
the notion of specification. We say that f satisfies the specification property if, for each
δ > 0, there is N = N (δ) ∈ N such that, for any intervals I j ⊂ [a, b] ( j = 1, . . . , n) of
integers for some a, b ∈ Z with d(I j , Ik)≥ N (δ) for j 6= k and for x1, . . . , xn ∈ M , there
exists p ∈ M such that f b−a+N (p)= p and d( f i (p), f i (x j )) < δ for i ∈ I j . Now, by the
specification property, given δ > 0, there exists N = N (δ) ∈ N such that, for any n ≥ N ,
there exists pn ∈ M such that d( f −i (pn), zν) < δ and d( f N+i (pn), z%) < δ for every i =
0, . . . , n. Since δ > 0 can be chosen arbitrarily small, the limit point p = lim pn belongs
to both W u(zν) and W s(z%). This means that W u(zν) ∩W s(z%) 6= ∅. (This is the only
place where we use the specification property to prove Theorem 1.4.)

There are two cases: W s(z%) \ {z%} 6⊂W u(zν) or W s(z%) \ {z%} ⊂W u(zν). For the
former case, there exists q ∈W u(zν) ∩W s(z%) ∩ R(x0) such that the component

Vs(q)= Vs(z% : q)=9−1
x0
(C((W s(z%) \ {z%}) ∩ R(x0) : q))

satisfies Vs(q) ∩ (Vu
ν)
+
6= ∅ or Vs(q) ∩ (Vu

ν)
−
6= ∅. Therefore, by Lemma 4.2, there is

K ∈ N such that W s(z%) intersects f 2k(Wu(x)) for every k ≥ K .
Next, for the latter case W s(z%) \ {z%} ⊂W u(zν), we take another hyperbolic fixed

point wν ∈ B(x0, r) \ {zν} by the Katok closing lemma. By repeating the argument in
step 2, it should hold that W u(wν) ∩W s(z%) 6= ∅. This is impossible since W s(z%) \
{z%} ⊂W u(zν) and W u(wν) ∩W u(zν)= ∅.

Step 3. Fix any k ≥ K and take a ∈W s(z%) ∩Wu( f 2k(x)). For n ∈ N, let

Vu( f n(a))=9−1
y0
(C(Wu( f 2k+n(x)) ∩ R(y0) : f n(a))).

Then Vu( f n(a)) ∩ (Vs
%)
+
6= ∅ or Vu( f n(a)) ∩ (Vs

%)
−
6= ∅ for sufficiently large n ∈ N. Fix

any such an n ∈ N. By Lemma 4.2, there is J ∈ N such that Wu( f 2k+n(x)) intersects
f −2 j (Ws(y)) for every j ≥ J . Therefore we obtain that, for any (x, y) ∈ Aν × A%, there
exist r, t ∈ Z such that Wu( f r (x)) ∩Ws( f t (y)) 6= ∅.
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4.2.2. Case 2: (du(ν), du(%))= (1, 2). Since (ds(ν), ds(%))= (2, 1), by replacing
the role of stable and unstable manifolds in case 1, we obtain that, for any (x, y) ∈
Aν × A%, there exist r, t ∈ Z such that Ws( f r (x)) ∩Wu( f t (y)) 6= ∅.

4.2.3. Case 3: (du(ν), du(%))= (2, 2). Let Aν be as above. Fix x ∈ Aν . Take a
hyperbolic periodic point zν and an admissible unstable manifold Vu

ν =9
−1
x0
(V u(zν)), as

in Lemma 4.2. Also by the Katok closing lemma, there exists a hyperbolic periodic point
z% ∈ B(y0, r) such that the local stable and local unstable manifolds of z% are admissible
stable and admissible unstable manifolds near y0. Below we may assume that both zν and
z% are fixed points. Then by exactly same argument as in step 2 of case 1, we find an
intersection point between the unstable manifold W u(zν) and the stable manifold W s(z%).

There are two cases: W s(z%) \ {z%} 6⊂W u(zν) or W s(z%) \ {z%} ⊂W u(zν). For the
former case, there exists q ∈W u(zν) ∩W s(z%) ∩ R(x0) such that the component

Vs(q)= Vs(z% : q)=9−1
x0
(C((W s(z%) \ {z%}) ∩ R(x0) : q))

satisfies Vs(q) ∩ (Vu
ν)
+
6= ∅ or Vs(q) ∩ (Vu

ν)
−
6= ∅. Therefore, by Lemma 4.2, there

exists n ∈ Z and K ∈ N such that W s(z%) intersects f 2k(Wu( f n(x))) for every k ≥ K .
Furthermore, we have the following. Let {z} = Vu( f n(x)) ∩ V s(zν) and put

Vk =9
−1
x0
(C( f 2k(Wu( f n(x))) ∩ R(x0) : f 2k(z))).

Note that it is an admissible unstable manifold for every k ∈ N and that Vs(q) ∩ Vk 6= ∅ for
every k ≥ K . Then, by (4.1), Vs(q) ∩ V+k 6= ∅ and Vs(q) ∩ V−k 6= ∅ for every k ≥ K + 1.

Take y ∈ A%. Then, by the inclination lemma, for sufficiently large m� 1 there exists a
C1-curve V ′m ⊂ f m(Ws(y)) ∩ R(x0) such that 9−1

x0
(V ′m) is C1-close to Vs(q). Therefore

9−1
x0
(V ′m) ∩ V

+

k 6= ∅ and 9−1
x0
(V ′m) ∩ V

−

k 6= ∅ for every such m� 1. This implies that

∅ 6= V ′m ∩9x0(Vk)⊂Ws( f m(y)) ∩Wu( f 2k+n(x)).

Thus we obtain that, for any (x, y) ∈ Aν × A%, there exist r, t ∈ Z such that Wu( f r (x)) ∩
Ws( f t (y)) 6= ∅.

Next, for the latter case, W s(z%) \ {z%} ⊂W u(zν), we take another hyperbolic fixed
point wν ∈ B(x0, r) \ {zν} by the Katok closing lemma. By repeating the argument in step
2, it should hold that W u(wν) ∩W s(z%) 6= ∅. This is impossible since W s(z%) \ {z%} ⊂
W u(zν) and W u(wν) ∩W u(zν)= ∅.

4.2.4. Case 4: (du(ν), du(%))= (1, 1). Since (ds(ν), ds(%))= (2, 2), by replacing
the role of stable and unstable manifolds in case 3, we obtain that, for any (x, y) ∈
Aν × A%, there exist r, t ∈ Z such that Ws( f r (x)) ∩Wu( f t (y)) 6= ∅.

4.3. The case of dim M = 2. Next we consider the two-dimensional case. There is
only one case for the pair, (du(ν), du(%))= (1, 1). For this case, the proof is analogous to
the dim M = 3 case. Here note that Lemma 4.2 holds since du(ν)= 1= dim M − 1 (see
Remark 4.3).
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5. Proof of Theorem 1.7
Suppose that f : M→ M is topologically conjugate to a topologically transitive Anosov
diffeomorphism g : X→ X via a homeomorphism h : M→ X : that is, g ◦ h = h ◦ f . By
the stable and unstable manifolds theorem for g, there exists a constant δg > 0 such that
if dX (x, y)≤ δg , then W u

g (x) ∩W s
g (y) 6= ∅. Note that W s

g (y) passes through W u
g (x) at

every point in W u
g (x) ∩W s

g (y). Here and below, we refer the readers to the book [25] for
the facts about Anosov diffeomorphisms.

Step 1. Let ν and % be any ergodic components of µ ∈M f . Choose l ≥ 1 so large
that ν(3νl ) > 0 and %(3%l ) > 0. Then take x ∈3νl and y ∈3%l arbitrarily. We will find
an intersection point between the unstable manifold Wu

f ( f p(x)) and the stable manifold
Ws

f ( f q(y)) for some p, q ∈ Z.
There exist ε(x) > 0 and ε(y) > 0 such that Bu

X (h(x), ε(x))⊂ h(Vu
f (x)) and

Bs
X (h(y), ε(y))⊂ h(Vs

f (y)), respectively. Since g is topologically transitive Anosov, by
the Smale–Bowen spectral decomposition theorem, there exists a periodic point z ∈ X
of g such that W s

g (z) intersects Bu
X (h(x), ε(x)) transversely and W u

g (z) intersects
Bs

X (h(y), ε(y)) transversely. (Here we assume that z is a fixed point of g, without
loss of generality.) Thus, by the inclination lemma, there exists N = N (δg) ∈ N such
that gn(h(Vu

f (x))) intersects g−n(h(Vs
f (y))) transversely for every n ≥ N . Therefore

Wu
f ( f n(x)) ∩Ws

f ( f −n(y)) 6= ∅.

Step 2. Note that the dimension of the unstable manifold Wu
f (x) is constant for µ-

almost every x ∈ M , since f is conjugate to g. Indeed, for µ-almost every x ∈ M ,
h(Wu

f (x))⊂W u
g (h(x)), h(Ws

f (x))⊂W s
g (h(x)) and dim h(Wu

f (x))+ dim h(Ws
f (x))=

dim M = dim X . On the other hand, we see that both dim W u
g (·) and dim W s

g (·) are
constant on X such that dim W u

g (·)+ dim W s
g (·)= dim X , as g is Anosov. It follows that

dim h(Wu
f (x)) is constant for µ-almost every x ∈ M , and so is dim Wu

f (x).
Thus, by Proposition 3.2, it follows that ν ⊗ %(Aν,%

∩ T ν,%

1 )= 1, and hence ν = % by
Lemma 3.1. This means that µ is ergodic.
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