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A new formulation of the model used in the near-wall region for the turbulent heat flux is
developed, in order to extend the elliptic blending differential flux model of Dehoux et al.
(Intl J. Heat Fluid Flow, vol. 63, 2017, pp. 190–204) to various boundary conditions for
the temperature: imposed wall temperature, imposed heat flux or conjugate heat transfer.
The new model is developed on a theoretical basis in order to satisfy the near-wall budget
of the turbulent heat flux and, consequently, its asymptotic behaviour in the vicinity of
the wall, which is crucial for the correct prediction of heat transfer between the fluid and
the wall. The models of the different terms are derived using Taylor series expansions and
comparisons with recent direct numerical simulation data of channel flows with various
boundary conditions. A priori tests show that this methodology makes it possible to
drastically improve the physical representation of the wall–turbulence interaction. This
new differential flux model relies on the thermal-to-mechanical time scale ratio which
depends on the thermal boundary condition at the wall. The key element entering this ratio
is εθ , the dissipation rate of the temperature variance θ ′2. Thus, a new near-wall model for
this dissipation rate is proposed, in the framework of the second-moment closure based
on the elliptic blending strategy. The computations carried out in order to validate the new
differential flux model demonstrate the very satisfactory prediction of heat transfer in the
forced convection regime for all kinds of thermal boundary condition.

Key words: turbulence modelling

1. Introduction

In many industrial applications, the prediction of heat transfer between a fluid and
solid walls plays an essential role in design, and in particular in the dimensioning and
the selection of materials. On the one hand, a correct estimate of the mean heat transfer is
necessary to improve system performance, and on the other hand, the levels of temperature
fluctuations in the solid parts are essential to anticipate problems related to thermal
fatigue. These issues are particularly sensitive in the field of energy production, in which
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Électricité de France (EDF) is a major player, and particularly in nuclear engineering. A
reliable estimate of the turbulent heat flux, the mean temperature and its variance is a
key issue in order to improve the safety and efficiency of nuclear power plants. A typical
example is the case of T-junctions in which hot water and cold water are mixed. Indeed,
this situation can induce thermal fatigue and cause serious mechanical damages to the
structure, and, in some extreme cases, lead to failure of the pipe walls and fluid leakage.
This industrial issue is at the origin of a few incidents, such as the case of Civaux nuclear
power plant water leak in France in 1998, which occurred in the elbow of a pipe. This
issue has gradually gained importance in the literature (see e.g., Howard & Serre 2015,
2017), which highlights the importance of a detailed prediction of heat transfer, including
information about the amplitude of fluctuations.

Most of the industrial applications using computational fluid dynamics are still currently
treated with simple eddy-viscosity models and the simple gradient diffusion hypothesis
to take into account the turbulent heat flux. One of the most successful advanced
approaches in forced convection flows is the elliptic relaxation concept and in particular
the v2-f model, originally developed by Durbin (1991), Parneix, Behnia & Durbin (1998),
Manceau, Parneix & Laurence (2000) and Billard & Laurence (2012).

For industrial applications, it is crucial to predict the turbulent heat flux in the
wall-normal direction. Indeed, this flux dictates the heat exchanges between the fluid
and the wall, and is intimately related to the intensity of the wall-normal velocity
fluctuations. This makes Reynolds stress models promising approaches in order to
improve the predictions in complex configurations (Hanjalić & Launder 2011). For a good
representation of the near-wall region, the use of wall functions must be avoided (Durbin
1991). Among other models, the elliptic blending Reynolds stress model (EB-RSM,
Manceau & Hanjalić 2002; Manceau 2015) have been successfully applied to some heat
transfer cases (see, e.g. Angelino, Goldstein & Gori (2019), Benhamadouche, Afgan &
Manceau (2020), Dovizio, Shams & Roelofs (2019) for very recent applications). Although
the generalized gradient diffusion hypothesis can be sufficient to model the turbulent heat
flux for some applications, it suffers from intrinsic limitations, particularly for complex
flows and in the presence of buoyancy effects (Hanjalić 2002). Therefore, in recent years,
tremendous efforts have been devoted to the development of differential flux models
(DFMs) based on elliptic blending to account for the wall–turbulent heat flux interaction
(Choi & Kim 2008; Shin et al. 2008; Dehoux, Benhamadouche & Manceau 2017; Choi,
Han & Choi 2018).

Most of these DFMs involve the thermal time scale and thus the dissipation
rate of the temperature variance. It is usual to estimate this variable based on the
thermal-to-mechanical time scale ratio R. This ratio is often set at a constant value
(Spalding 1971), which constitutes a reasonable assumption far from the wall. Dehoux
et al. (2017) used a variable ratio that tends to the Prandtl number at the wall and
asymptotes to a constant value far from the wall. Craft, Ince & Launder (1996) proposed
an algebraic model for R which can deal with free shear flows, including flows influenced
by buoyancy. However, these simplified approaches are not valid for all situations, so it is
desirable to solve a transport equation for the dissipation rate of the temperature variance.
As pointed out by Hanjalić (2002), models using thermal or mixed time scales (e.g. Zeman
& Lumley 1976; Newman, Launder & Lumley 1981; Elghobashi & Launder 1983; Jones
& Musonge 1988; Abe, Kondoh & Nagano 1995; Shikazono & Kasagi 1996) violate the
superposition principle. However, as noted by Pope (1983), standard Reynolds-averaged
Navier–Stokes models, which reduce the dynamics of the entire turbulent spectrum to
time scales only, cannot both satisfy the superposition principle and correctly represent
the observed physics.
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A strong limitation of almost all these models is that their near-wall asymptotic
behaviour is valid only for the idealized case of vanishing temperature fluctuations,
i.e. imposed wall temperature, which corresponds to the boundary condition used in
a large majority of the available databases (e.g. Kasagi, Kasagi & Kuroda 1992; Abe,
Kawamura & Matsuo 2004). Recently, Tiselj et al. (2001) and Flageul et al. (2015)
performed direct numerical simulation (DNS) of turbulent channel flows in the forced
convection regime with either an imposed heat flux at the wall or conjugate heat transfer
(CHT). They highlighted that the thermal boundary conditions have a major influence
on the behaviour of turbulent quantities in the near-wall region. Configurations in which
temperature fluctuations are non-zero at the wall have been rarely studied by the turbulence
modelling community. Notable exceptions are the models developed by Sommer, So &
Zhang (1994) and Craft, Iacovides & Uapipatanakul (2010), which are both based on the
simple gradient diffusion hypothesis and wall functions to represent the influence of the
wall on the turbulent heat flux.

The motivation for the present work is thus to extend the DFM based on elliptic blending
(EB-DFM, Dehoux et al. 2017) to general thermal boundary conditions at the wall. Such
an extension will also make possible the future derivation of an elliptic blending algebraic
flux model (EB-AFM, Dehoux 2012), i.e. a simplified approach based on weak equilibrium
assumptions for the turbulent heat flux (Hanjalić 2002) that will inherit the improved
representation of the influence of the various boundary conditions.

The aim of the present paper is threefold: (i) deriving an improved model for the terms
appearing in the turbulent heat flux equation, based on asymptotic arguments, which
accommodates all thermal boundary conditions at the wall; (ii) providing a new transport
equation for εθ , the dissipation rate of the temperature variance, which is a key variable in
the temperature variance equation; the modelled equation must also be valid for all thermal
boundary conditions at the wall; and (iii) validating a posteriori, i.e. by full computations,
the new model in the forced convection regime.

In § 2, the thermal models that are used as a starting point are presented for the turbulent
heat flux and the temperature variance, with a particular focus on the modelling of the
near-wall region using the elliptic blending approach. In § 3, the asymptotic behaviour of
the terms involved in the transport equation for the turbulent heat flux is analysed using
Taylor series expansions, depending on the thermal boundary condition at the wall. The
last part of this section is devoted to the development and a priori tests of a new turbulent
heat flux model that satisfies the asymptotic behaviour in the near-wall region whatever the
boundary conditions. Section 4 is dedicated to the development of a new transport equation
for the dissipation rate of the temperature variance which is essential to obtain both an
accurate thermal-to-mechanical time scale ratio and an accurate temperature variance.
Finally, in § 5, the new model is numerically validated against the recent DNS database of
Flageul et al. (2015) for a channel flow with three types of wall boundary conditions: an
imposed temperature, an imposed heat flux and CHT.

2. Elliptic blending strategy

Throughout the present article, the instantaneous variables φ (velocity components
ui, pressure p or temperature T) are decomposed into φ = φ̄ + φ′, where φ̄ denotes the
Reynolds-averaged variable and φ′ its fluctuation.

With respect to the modelling of the Reynolds stresses, the elliptic blending Reynolds
stress model described in Manceau (2015) is used. The main characteristic of this model is
that the pressure and dissipation terms, φ∗

ij and εij, are modelled as a blending of a standard
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models used far from the walls (denoted with a h exponent) and near-wall models (denoted
with a w exponent), such that

φ∗
ij − εij = (1 − α3)(φw

ij − εw
ij )+ α3(φh

ij − εh
ij), (2.1)

where the blending function α is the solution of the elliptic relaxation equation

α − L2∇2α = 1. (2.2)

Similarly, with regard to the turbulent heat flux u′
iθ

′ that appears in the mean temperature
equation, the baseline model used in the present article is the elliptic blending differential
flux model proposed by Dehoux et al. (2017). The transport equation for the turbulent heat
flux reads as

Du′
iθ

′

Dt
= PU

θ i + PT
θ i + Dν+κ

θ i + Dt
θ i + φ∗

θ i − εθ i, (2.3)

where PU
θ i,PT

θ i,Dν+κ
θ i ,Dt

θ i, φ
∗
θ i and εθ i stand for the production by the mean velocity

gradient, the production by the mean temperature gradient, the molecular diffusion,
the turbulent diffusion, the scrambling term and the dissipation vector, respectively.
The production terms do not require modelling with the present second-moment
Reynolds-averaged Navier–Stokes closures. The turbulent diffusion term is modelled by
the generalized gradient diffusion hypothesis (see Daly & Harlow 1970) as

Dt
θ i = ∂

∂xj

(
cθu

′
ju

′
kτ
∂u′

iθ
′

∂xk

)
, (2.4)

where τ is Durbin’s time scale (Durbin 1991)

τ = max

(
T ,CT

√
ν

ε

)
; T = k

ε
. (2.5)

Molecular diffusion is modelled following Shikazono & Kasagi (1996),

Dν+κ
θ i = ∂

∂xj

(
κ + ν

2
∂u′

iθ
′

∂xj
+ nink

ν − κ

6
∂u′

kθ
′

∂xj

)
. (2.6)

In order for the model to be valid in near-wall regions, the same elliptic blending
approach as described above for the Reynolds stress is applied to the difference φ∗

θ i − εθ i
(Choi & Kim 2008; Shin et al. 2008),

φ∗
θ i − εθ i = (1 − αθ)(φ

w
θ i − εw

θ i)+ αθ(φ
h
θ i − εh

θ i). (2.7)

Following Dehoux et al. (2017), αθ is distinct from the elliptic blending factor α in (2.1)
and is obtained from the additional elliptic equation

αθ − L2
θ∇2αθ = 1, (2.8)

in which the thermal length scale Lθ is simply related to the dynamic turbulent length scale
by Lθ = 2.5L with L = CLmax((k3/2/ε),Cη(ν

3/4/ε1/4)). As for α, the boundary condition
at the wall is αθ = 0.
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Far from the wall, the standard model of Launder (1988) is used for φ∗
θ i, which reads, in

the absence of buoyancy, as

φh
θ i = −C1θ

1
τ

u′
iθ

′ + C2θu
′
jθ

′ ∂ui

∂xj
, (2.9)

and the dissipation tensor εh
θ i = 0 due to the assumed isotropy of the small scales. The

near-wall models for φw
θ i and εw

θ i are built in order to satisfy the near-wall asymptotic
behaviour of the turbulent heat flux. Dehoux et al. (2017) use

φw
θ i = −β 1

T

[
1 + Cφ

wθ (1 − αθ)
Pk

ε

]
u′

jθ
′ninj, (2.10)

εw
θ i = Cε

[
1 + Cε

wθ (1 − αθ)
Pk

ε

]( √
Pr√
RT

u′
iθ

′ + γ
1
T u′

jθ
′ninj

)
, (2.11)

where

β = γ =
√

Pr√
R

(2.12)

and

Cε = 1
2

(
1 + 1

Pr

)
, (2.13)

where ni is a pseudo-wall-normal vector evaluated as the normalized gradient of α and R
is the thermal-to-mechanical time scale ratio

R = Tθ
T , where Tθ = θ

′2

2εθ
and T = k

ε
. (2.14)

It is modelled by
R = (1 − αθ)Pr + αθRh, (2.15)

where Rh = 0.5 is the value recommended far from the wall for a Prandtl number Pr =
ν/κ around unity (Hanjalić 2002). Dehoux et al. (2017) showed that this model reproduces
forced, mixed and natural convection cases in a very satisfactory manner compared with
simpler approaches for an imposed wall temperature.

As indicated in the introduction, the resolution of θ ′2 can be important not only for
buoyant flows, but also for industrial configurations where thermal fatigue is an issue. The
transport equation for the temperature variance reads as

Dθ ′2

Dt
= 2Pθ − 2εθ + Dκ

θ + Dt
θ , (2.16)

where Pθ = −u′
jθ

′
(∂θ̄/∂xj) is the production by the mean temperature gradient and Dκ

θ =
(∂/∂xj)(κ(∂θ

′2/∂xj)) the molecular diffusion. For the turbulent diffusion Dt
θ , the Daly &

Harlow (1970) model is applied

Dt
θ = ∂

∂xj

(
Cθθ τu′

iu
′
j
∂θ

′2

∂xj

)
; (2.17)

where τ is Durbin’s time scale (2.5).
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In Dehoux’s model, the dissipation rate of the temperature variance, εθ , is evaluated
using

εθ = θ ′2

2RT . (2.18)

The full set of equations and coefficients is available in appendix A.
It is important to note that the asymptotic analysis leading to the models for φw

θ i, ε
w
θ i and

εθ is based on the very common assumption that the fluctuations of the wall temperature
are negligible due to the thermal inertia of the solid material, in such a way that a constant
temperature can be imposed at the wall. However, in some circumstances, it is crucial
to take into account the temperature fluctuations and their propagation in the solid wall
(Kasagi, Kuroda & Hirata 1989). For this reason, Flageul et al. (2015) have recently
produced DNS databases in order to identify the different heat transfer characteristics for
an imposed wall temperature, an imposed heat flux and CHT. Since the model of Dehoux
et al. (2017) presented above was derived using an asymptotic analysis valid for an imposed
wall temperature only, the remainder of the present article is devoted to the theoretical
analysis and the exploitation of the DNS databases to extend the model to various thermal
boundary conditions.

3. Modelling of the turbulent heat flux

As mentioned above, the main feature of the original model of Dehoux et al. (2017),
simply denoted as Dehoux’s model hereafter, is that it is consistent with the asymptotic
behaviour of near-wall turbulence for an imposed temperature. In order to extend its
validity, the asymptotic analysis is generalized to other thermal boundary conditions.

3.1. Near-wall behaviour of the source terms and Dehoux’s model limitations
In the vicinity of a wall located at y = 0, using the no-slip boundary condition and the
divergence-free constraint, it is easy to show that the Taylor series expansions of the
fluctuating velocities and temperature with respect to the wall-distance y are written as

u′(x, y, z, t) = a1(x, z, t)y + a2(x, z, t)y2 + O( y3),

v′(x, y, z, t) = b2(x, z, t)y2 + b3(x, z, t)y3 + O( y4),

w′(x, y, z, t) = c1(x, z, t)y + c2(x, z, t)y2 + O( y3),

θ ′(x, y, z, t) = t0(x, z, t)+ t1(x, z, t)y + t2(x, z, t) y2 + O( y3).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

The coefficients ak, bk, ck and tk are random variables independent of y. In order to
simplify the writing of the expressions, the dependency on (x, z, t) is set aside. The
asymptotic behaviour of u′

iθ
′
, k, ε, θ ′2 and εθ are easily deduced, as follows:

u′
θ ′ = a1t0 y + (a1t1 + a2t0)y2 + O( y3),

v
′
θ ′ = b2t0 y2 + (b2t1 + b3t0)y3 + O( y4),

w′
θ ′ = c1t0 y + (c1t1 + c2t0)y2 + O( y3),

⎫⎪⎪⎬
⎪⎪⎭ (3.2)

k = 1
2 u′

iu
′
i = 1

2(a
2
1 + c2

1)y
2 + O( y3), (3.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

68
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.683


Extension of the elliptic blending model 905 A1-7

PU
θ i + PT

θ i φθ i Dν+κθ i εθ i Dt
θ i

Imposed temperature O( y3) O( y) O(1) O(1) O( y3)

Imposed heat flux O( y2) O(1) O(1) O( y) O( y2)

Conjugate heat transfer O( y2) O(1) O(1) O(1) O( y2)

TABLE 1. Asymptotic behaviour of the source terms appearing in the exact transport equations
for u′

θ
′ and w′

θ
′ .

ε = ν
∂u′

i

∂xk

∂u′
i

∂xk
= ν(a2

1 + c2
1)+ O( y), (3.4)

θ ′2 = t2
0 + 2t0t1 y + (t2

1 + 2t0t2)y
2 + O( y3), (3.5)

εθ = κ
∂θ ′

∂xk

∂θ ′

∂xk
= κ

[(
∂t0

∂x

)2

+ t2
1 +

(
∂t0

∂z

)2
]

+ κ

[
2
∂t0

∂x

∂t1

∂x
+ 4t1t2 + 2

∂t0

∂z
∂t1

∂z

]
y

+ κ

[(
∂t1

∂x

)2

+ 2
∂t0

∂x

∂t2

∂x
+ 4t2

2 + 6t1t3 +
(
∂t1

∂z

)2

+ 2
∂t0

∂z
∂t2

∂z

]
y2 + O( y3). (3.6)

The leading-order terms of the Taylor series expansions of the thermal variables depend
on the temperature boundary condition. For an imposed temperature, θ ′ goes to zero at
the wall, and therefore t0 = 0. For an imposed heat flux, t0 /= 0, but the derivative of θ ′

in the wall-normal direction is zero, so that t1 = 0. Finally, for CHT, there is no specific
simplification: t0 and t1 can take any value.

The asymptotic behaviour of the exact source terms of the turbulent heat flux transport
equations can then be determined using the Taylor series expansions presented above. It
is not necessary to detail the calculations here, and only the final results are presented in
table 1 for the streamwise and spanwise components and in table 2 for the wall-normal
component. Three important observations can be made on the basis of these tables.
(i) The behaviour of the terms of the transport equations for u′θ ′ and w′θ ′ is the same,
as well as their expansions in (3.2), so that it is not necessary to detail the behaviour
of both components: in the rest of this paper, only the component u′θ ′ is considered.
(ii) The asymptotic behaviour of these exact source terms depends on the thermal
boundary condition to such an extent that the terms appearing at leading order are
different. For instance, for the wall-normal component (table 2), the dissipation term
εθ i is a dominant term for an imposed temperature, whereas it is negligible in the other
two cases. (iii) The production terms PU

θ i and PT
θ i and the turbulent diffusion term Dt

θ i are
always negligible compared to the molecular diffusion Dν+κ

θ i , the scrambling φθ i and the
dissipation εθ i terms; consequently it is sufficient to consider the last three terms in the
asymptotic analysis of the transport equation for the turbulent heat flux. Therefore, the
analysis focuses on the near-wall balance

Dν+κ
θ i + φθ i − εθ i = 0, (3.7)

that must be satisfied for all the cases.
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PU
θ i + PT

θ i φθ i Dν+κθ i εθ i Dt
θ i

Imposed temperature O( y4) O( y) O( y) O( y) O( y4)

Imposed heat flux O( y3) O(1) O(1) O( y2) O( y3)

Conjugate heat transfer O( y3) O(1) O(1) O( y) O( y3)

TABLE 2. Asymptotic behaviour of the source terms appearing in the exact transport equation
for v′

θ
′ .

Imposed temperature Imposed heat flux Conjugate heat transfer

Exact R ν/κ = Pr O(1/y2) O(1/y2)

TABLE 3. Asymptotic behaviour of the exact expression of the thermal-to-mechanical time
scale ratio R.

Dehoux’s model was derived in order to satisfy (3.7) in the case of an imposed
temperature at the wall. One of the limitations of this model is that it makes use of the
algebraic expression (2.15) to represent the thermal-to-mechanical time scale ratio R, in
order to avoid the resolution of a transport equation for the dissipation rate of the variance,
εθ . As shown is table 3, the wall-limiting behaviour of R strongly depends on the thermal
boundary condition: the exact R goes to the Prandtl number at the wall for an imposed
temperature, while it tends to infinity in the other two cases. However, in all cases, the
algebraic model (2.15) tends to the Prandtl number.

This situation is illustrated by figure 1, which shows an a priori evaluation of this
algebraic model for R; the elliptic equation (2.8) is solved by using the length scale
computed from the DNS data, in order to evaluate the value of R given by the algebraic
relation (2.15), which is independent of the thermal boundary condition. The comparison
made in figure 1 with the exact value of R given by (2.14) extracted from the DNS
databases shows that this model for R is not sufficiently general, since the near-wall
behaviour of the model is not sensitive to the thermal boundary condition.

The main consequence of this lack of generality of the model for R is that the models
(2.10) and (2.11) for the scrambling term φθ i and the dissipation term εθ i, respectively,
are not compatible with an imposed heat flux or CHT. This can be observed in figures 2
and 3 for εθ i, and in figure 4 for φθ i. The scrambling term is only shown for CHT as the
profiles are very similar with an imposed heat flux. For the tangential component εθ1 of the
dissipation term, the problem comes from the near-wall contribution εw

θ1 given by (2.11),
which goes to infinity at the wall as 1/y, while the asymptotic analysis of the exact term
shows that it goes to zero as y for an imposed flux and to a constant for CHT (table 1).
In contrast, for φθ1, the near-wall contribution φw

θ1 is correct, but its behaviour is strongly
perturbed by the component φh

θ1 given by (2.9) that goes to infinity at the wall and is not
sufficiently damped by the factor αθ in (2.7). Moreover, although the situation seems less
critical for the normal component of the dissipation term, its behaviour is also not correct
as it tends towards a non-zero value at the wall. Therefore, in order to derive a model
valid for an imposed heat flux and CHT as well as for an imposed wall temperature, the
asymptotic analysis of Dehoux et al. (2017) must be extended to various thermal boundary
conditions, which is done in § 3.2.
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DNS − imposed temperature
DNS − imposed heat flux
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FIGURE 1. Thermal-to-mechanical time scale ratio R for different temperature boundary
conditions. Channel flow DNS data of Flageul et al. (2015). For the CHT case, the solid and
the fluid have the same thermal conductivity and diffusivity.
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FIGURE 2. A priori evaluation of the dissipation term for an imposed heat flux. (a) Streamwise
component; (b) wall-normal component. Channel flow DNS data of Flageul et al. (2015).
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FIGURE 3. A priori evaluation of the dissipation term for CHT. (a) Streamwise component;
(b) wall-normal component. Channel flow DNS data of Flageul et al. (2015).
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FIGURE 4. A priori evaluation of the scrambling term for CHT. (a) Streamwise component;
(b) wall-normal component. Channel flow DNS data of Flageul et al. (2015).

3.2. Asymptotic behaviour of u′
iθ

′ with the right asymptotic behaviour of R
In the previous section, it has been concluded that the validity of Dehoux’s model is
limited to the case of an imposed temperature, mainly due to the model (2.15) for R, which
is not sufficiently general. However, the following question must also be raised: Would
correcting the expression for R be sufficient for the model to give the correct asymptotic
behaviour of turbulent heat flux? We will see in the present section that the answer is no.

The procedure is as follows: it is assumed that the exact asymptotic behaviour of
the thermal-to-mechanical time scale ratio R is respected in all the cases; the near-wall
behaviour of the solution of the modelled transport equation for the turbulent heat flux is
analysed and compared with the exact behaviour, in order to identify how the model can
be made more general.

If one uses the exact asymptotic behaviour of R, Dehoux’s model yields εw
θ1 = O(1) and

εw
θ2 = O( y) whatever the temperature boundary condition at the wall. By comparing with

tables 1 and 2, it can be seen that the model is correct for both an imposed temperature
condition and CHT. However, for an imposed heat flux, the near-wall behaviour of εw

θ i is
one order below that of the exact term. After considering several options, we have not
found any solution to modify the behaviour in this case without spoiling the behaviour
in the other two cases. Therefore, our strategy consists in keeping the near-wall model
εw
θ i proposed by Dehoux et al. (2017), and to account for the discrepancy with the exact

behaviour in the case of imposed heat flux in the derivation of the model φw
θ i. Indeed,

as mentioned above, as long as the near-wall balance between the molecular diffusion
Dν+κ
θ i , the scrambling term φθ i and the dissipation term εθ i is satisfied, the solution of the

transport equation for the turbulent heat flux will have the correct asymptotic behaviour.
Dehoux’s model for εw

θ i is associated with the model of Shikazono & Kasagi (1996) for
Dν+κ
θ i (2.6). The model φw

θ i must be derived in such a way that the correct near-wall balance
(3.7) is ensured. As demonstrated below, this can be achieved simply by modifying the
coefficient β in (2.10).

In order to determine the relevant value of β, it is necessary to analyse the asymptotic
behaviour of the solution of the transport equation for the turbulent heat flux, following
the same methodology as proposed by Durbin (1991) for the Reynolds-stress tensor.
Considering only the dominant terms in the near-wall region (3.7), solutions are sought
under the form of a Taylor series

u′
θ

′ = A1 y + B1 y2 + C1 y3 + O( y4) (3.8)
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and
v

′
θ

′ = A2 y + B2 y2 + C2 y3 + O( y4). (3.9)

Introducing these Taylor series into (3.7) leads to constraints that the expansion
coefficients Ai,Bi and Ci must satisfy, and, consequently, the asymptotic behaviour of the
solutions can be determined. The model φw

θ i must be formulated in order for these solutions
to match the exact asymptotic behaviour of the turbulent heat flux.

Using the models (2.6), (2.10) and (2.11) for Dν+κ
θ i , εw

θ i and φw
θ i, respectively, the near-wall

balance (3.7) writes as

ν + κ

2
∂2u′

θ
′

∂y2
+ ν + κ

2

(
∂2u′

θ
′

∂x2
+ ∂2u′

θ
′

∂z2

)
= (ν + κ)ψ

√
1

2νT u′
θ

′ (3.10)

and (
2
3
ν + 1

3
κ

)
∂2v

′
θ

′

∂y2
+
(

2
3
ν + 1

3
κ

)(
∂2v

′
θ

′

∂x2
+ ∂2v

′
θ

′

∂z2

)

= 2(ν + κ)ψ

√
1

2νT v
′
θ

′ + β
1
T v

′
θ

′
, (3.11)

where

ψ =
√
εθ

κθ
′2
. (3.12)

These equations can be simplified based on the expression (2.13) for Cε; the Taylor series
expansion 1/T = 2ν/y2(1 + aT y + bT y2 + O( y3)) deduced from the Taylor series
expansions of the turbulent kinetic energy k and its dissipation rate ε ((3.3) and (3.4));
the fact that the term (1 − αθ)(Pk/ε) that appears in the models εw

θ i and φw
θ i behaves as y3

in the vicinity of the wall; and the general forms of the solutions (3.8) and (3.9). Equations
(3.10) and (3.11) then become

(ν + κ)B1 + (3(ν + κ)C1 + χA1)y + O( y2)

= (ν + κ)ψ[A1 + (B1 + 1
2 aT A1)y + ( 1

2 bT A1 + 1
2 aT B1 + C1)y

2 + O( y2)] (3.13)

and (
4
3
ν + 2

3
κ

)
B2 + ((4ν + 2κ)C2 + χA2)y + O( y2)

= (ν + κ)ψ
[
A2 + (

B2 + 1
2 aT A2

)
y + (

1
2 bT A2 + 1

2 aT B2 + C2
)

y2 + O( y2)
]

2νβ
[

A2

y
+ (B2 + aT A2)+ (bT A2 + aT B2 + C2)y + O( y)

]
, (3.14)

where

χA1 = ν + κ

2

(
∂2A1

∂x2
+ ∂2A1

∂z2

)
and χA2 =

(
2
3
ν + 1

3
κ

)(
∂2A2

∂x2
+ ∂2A2

∂z2

)
. (3.15a,b)

In order to obtain this development up to order 1 and noticing that the lowest order of
u′
θ

′ and v ′
θ

′ is 1, the Taylor series expansion of 1/T had to be carried out up to order 2 as
ψ might introduce a term which behaves as 1/y at the wall.
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As the Taylor series expansion of ψ depends on the thermal boundary condition, two
cases need to be considered separately to obtain relations or constraints on the coefficients
Ai,Bi and Ci; on the one hand, an imposed temperature at the wall and on the other hand,
an imposed heat flux or CHT.

3.2.1. Imposed wall temperature
The case of an imposed wall temperature is considered first, for which t0 = 0. Using

the Taylor series expansions of θ ′2 and εθ given by (3.5) and (3.6), respectively, it is found
that ψ = 1/y(1 + aψ y + bψ y2 + O( y3)), such that for the streamwise component, (3.13)
writes as

(ν + κ)B1 + O( y) = (ν + κ)
A1

y
+ (ν + κ)

[(
1
2

aT + aψ

)
A1 + B1

]
+ O( y). (3.16)

For function (3.8) to be a solution of (3.16), the two sides of (3.16) must balance at each
order yn . Balancing the terms at the orders n = −1 and n = 0 yields

0 = (ν + κ)A1,

(ν + κ)B1 = (ν + κ)[( 1
2 aT + aψ)A1 + B1].

}
(3.17)

The first relation shows that A1 = 0. With A1 = 0, the second relation shows that there is
no particular constraint on B1 since any value satisfies this equation. In conclusion, any
solution u′θ ′ of (3.10) is of the form u′

θ
′ = B1 y2 + O( y3), which is the expected behaviour

for an imposed temperature at the wall. As mentioned above, this conclusion holds for w′θ ′

as well, i.e. w′
θ

′ = B3 y2 + O( y3).
For the wall-normal component v′θ ′, considering that β goes to 1 at the wall as in

Dehoux’s algebraic model (see (2.15)), (3.14) leads, after similar algebraic manipulations,
to consider the terms from order n = −1 up to order n = 1 (note that the second-order
term in the Taylor series expansion of ψ must be taken into account for this component).

The orders n = −1 and n = 0 yield A2 = B2 = 0, respectively. The order n = 1 gives,
using the fact that β tends to a constant value at the wall, (4ν + 2κ)(C2 + χA2) = (4ν +
2κ)C2. Since A2 = 0, χA2 is zero as well, and it is seen that any value of C2 satisfies the
relation. Therefore, any solution v′θ ′ of the equation is of the form v

′
θ

′ = C2 y3 + O( y4),
as expected for this component.

3.2.2. Imposed wall heat flux and conjugate heat transfer
As mentioned above, the case of an imposed heat flux (t1 is zero) and the case of

CHT (t0 and t1 are both non-zero) can be treated simultaneously. Indeed, the asymptotic
behaviour of ψ obtained using (3.5) and (3.6) is in both cases equal to ψ = O(1). The
objective is again to obtain the expected asymptotic behaviour at the wall u′

θ
′ = O( y)

and v ′
θ

′ = O( y2). As ψ goes to a constant at the wall, it is enough here to use the Taylor
series expansion of ψ up to order 1: ψ = ψ0 + a′

ψ y + O( y2).
After some algebraic manipulations, it is found that, for the streamwise component, it

is sufficient to consider the order n = 0, which leads to (ν + κ)B1 = (ν + κ)ψ0A1. Since
ψ0 /= 0, this equation imposes a relation between A1 and B1, without constraining the value
of A1 to be zero. Therefore, u′

θ
′ = O( y), which is the expected behaviour of the solutions.
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The analysis is valid for w′
θ

′ as well, i.e. w′
θ

′ = O( y). For the wall-normal component, at
orders n = −1 and n = 0, (3.11) yields

0 = 2βνA2,
1
3(4ν + 2κ)B2 = 2(ν + κ)ψ0A2 + 2νβ(aT A2 + B2),

}
(3.18)

respectively. The first relation gives A2 = 0 as far as β /= 0. We have reached the point
where we must make the correct choice for β in order to impose v ′

θ
′ = O( y2): β must be

chosen in such a way that the second line of (3.18) is satisfied for any non-zero value of
B2. The equation that must be satisfied is

β = 2
3

+ 1
3

1
Pr
, (3.19)

or, more generally, β must asymptote to this value at the wall in the case of an imposed
heat flux or CHT.

This section illustrates the fact that Dehoux’s model, with β = √
Pr/

√
R, designed for

an imposed wall temperature, is not valid for an imposed heat flux and CHT, even if a
correct model for R is used, as β tends to 0 with this formulation. In order to extend the
validity of the model, the β coefficient, which enters the near-wall model φw

θ i, must tend
to 1 at the wall for an imposed temperature and to 2/3 + 1/(3Pr) for the other two cases.
The next section is devoted to the derivation of such a model.

3.3. A new model for the scrambling term and a priori tests
In the present section, Dehoux’s model is extended to various thermal boundary
conditions, following the findings of the asymptotic analysis performed in the previous
section. The model is first derived, then an a priori evaluation of the model using the DNS
databases of Flageul et al. (2015) is performed.

As concluded in the previous section, the model must be able to naturally distinguish
the type of the thermal boundary condition at the wall in order to adapt the limiting
behaviour of the β coefficient. Now, to write a general model, i.e. a model that is expressed
in the same form in all configurations, it is necessary to involve in its expression one
or several quantities that are sensitive to boundary conditions. Only quantities that are
solutions of a second-order differential equation exhibit this property. In the context of
elliptic blending, it is tempting to rely on the αθ variable, whose wall boundary condition
could be defined differently depending on the thermal boundary condition at the same
wall. Unfortunately, αθ is involved in different terms of the model and such an approach
would skew the asymptotic behaviour of these terms. We have come to the conclusion
that the only way to sensitize the model to thermal boundary conditions is to involve a
dimensionless parameter dependent on θ ′2, εθ or both. Thus, the key parameter that enters
the model is the thermal-to-mechanical time scale ratio R = Tθ/T . Indeed, figure 1 and
table 3 show that R tends to the Prandtl number at the wall for an imposed temperature
and to infinity in other cases. Consequently, the ratio

√
Pr/

√
R is used in the expression

for β to sensitize the model to the type of wall thermal boundary condition. The proposed
expression is

β = 2
3

+ 1
3

1
Pr

+ 1
3

√
Pr√
R

(
1 − 1

Pr

)
, (3.20)

such that β tends to 1 for an imposed temperature (R → Pr) and to 2/3 + 1/(3Pr) for the
two other thermal boundary conditions (R → ∞). In contrast, as mentioned above, γ in
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(2.11) does not need to be modified, and the expression of Dehoux et al. (2017),

γ =
√

Pr√
R
, (3.21)

is used. With this simple but decisive modification of the model, the near-wall balance
between the molecular diffusion Dν+κ

θ i , the scrambling φθ i and the dissipation εθ i terms,
(3.7), is respected in the near-wall region, which is the necessary condition for reproducing
the adequate asymptotic behaviour of the turbulent heat flux components, as demonstrated
in § 3.2.

It is worth noting again that, for this model to be valid for the three types of wall
boundary conditions, it is necessary for the thermal-to-mechanical time scale ratio R to
have the correct limiting behaviour at the wall, which will require solving a transport

equation for the temperature variance θ ′2 and its dissipation εθ , rather than using a simple
algebraic relation such as (2.15). In particular, a model for εθ , asymptotically correct for
all types of thermal boundary conditions, is required. Therefore, a specific model has been
developed, which is presented in § 4.

One could legitimately point out that solving additional transport equations for θ ′2 and
εθ is particularly costly when it is simply a matter of sensitizing the model to thermal
boundary conditions. On the one hand, as noted above, only a non-dimensional parameter
constructed from these variables can define a sufficiently general model. On the other
hand, it is important to remember that, as mentioned in the introduction, one of the main
interests in developing a model valid in CHT is to be able to estimate thermal fatigue from
the temperature variance in the solid. It is therefore necessary to solve the equation of θ ′2,
but also of εθ , since, as will be shown in § 4, the asymptotic behaviour of εθ is complex

and has a strong influence on that of θ ′2.
A priori tests are carried out using recent DNS data of Flageul et al. (2015) of a

channel flow in the forced convection regime, for different boundary conditions: imposed
temperature, imposed heat flux and CHT. The flow is driven by a pressure gradient
in the streamwise direction. The temperature is considered as a passive scalar and the
flow is periodic in the streamwise and spanwise directions. The test case is defined by
two non-dimensional numbers, the friction Reynolds number Reτ = δuτ /ν = 149 and the
Prandtl number Pr = 0.71. When the solid part is resolved in the DNS computations, the
continuity of the heat flux is imposed at the fluid–solid interface. Note that the CHT case
considered herein is the case considered by Flageul et al. (2015), where the solid and the
fluid have the same thermal conductivity and diffusivity and thus the dissipation rate of
the temperature variance is continuous at the fluid–solid interface. Reproducing this case
is already a big challenge, and is sufficient to validate the new model for the turbulent heat
flux since its asymptotic behaviour is not affected by these physical properties.

The case of an imposed temperature at the wall is considered first. Figure 5 compares
with DNS data the sum of the molecular diffusion, the scrambling and the dissipation
terms obtained with Dehoux’s model and the new model. As mentioned above, these
terms are dominant in the near-wall budget and determine the asymptotic behaviour of the
turbulent heat flux components. It can be seen that the new model correctly reproduces the
balance of the three terms in the case of an imposed temperature at the wall. The results
given by the new model are slightly less accurate than those given by Dehoux’s model in
the buffer layer, but this is not a significant problem since, in this region, the budgets of
the turbulent heat flux components are dominated by the production terms, contrary to the
very near-wall balance (Flageul et al. 2015). The two models are asymptotically identical
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FIGURE 5. Sum of the molecular diffusion, the scrambling and the dissipation terms for an
imposed temperature. (a) Streamwise component; (b) wall-normal component.
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FIGURE 6. Sum of the molecular diffusion, the scrambling and the dissipation terms for an
imposed heat flux. (a) Streamwise component; (b) wall-normal component.

for this type of boundary conditions, but the coefficient β is modelled in a different way,
since (3.20) is used for the new model.

The same comparisons are performed in figures 6 and 7 for the cases with an imposed
heat flux and with CHT, respectively. Contrary to the previous case, a superior capacity
of the new model to estimate the streamwise component of the balance can be observed.
Indeed, with Dehoux’s model, this component goes to infinity in both cases. This problem
is mainly due to the near-wall model for εθ1 which goes to infinity at the wall as shown
in figure 2(a) for an imposed heat flux and in figure 3(a) for CHT. In the new model, this
term tends to a constant for both boundary conditions, which is the expected asymptotic
behaviour. Moreover, figure 4(a) shows that φθ1 is better estimated with the new model
(the same profiles hold for an imposed heat flux), since it tends to zero at the wall as
in the reference data. Note that although only the difference φθ i − εθ i appears in the
transport equation for turbulent heat flux, it is important to correctly model the two terms
individually, since the model for εθ i also appears in the model for P1

εθ
described in § 4.1.

Figures 6(b) and 7(b) show a better estimate of the balance with the new model for
the wall-normal component. Since figure 4(b) shows that the two models give virtually
identical results in the near-wall region for φθ2, the improvement is only due to the better
prediction of εθ2 as it can be observed in figures 2(b) and 3(b), respectively. Indeed, εθ2
tends to zero at the wall with the new model as DNS data does, whereas, with Dehoux’s
model, it goes to a constant. It is observed that the new model does not improve the results
in the buffer layer: this is an intrinsic limitation of the elliptic blending approach which
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FIGURE 7. Sum of the molecular diffusion, the scrambling and the dissipation terms for CHT.
(a) Streamwise component; (b) wall-normal component.

extends the validity of high-Reynolds-number models, i.e. valid only far from the wall,
to the near-wall region by satisfying the asymptotic behaviour observed in the viscous
sublayer without imposing any constraint in the buffer layer.

To conclude, unlike Dehoux’s model which is exclusively valid for an imposed
temperature at the wall, the a priori tests confirm that the new model satisfies the
asymptotic behaviour of the dominant terms of near-wall budget of the turbulent heat flux.
However, for this model to be complete and valid, the thermal-to-mechanical time scale
ratio R must have the correct asymptotic behaviour whatever the temperature boundary
condition. Modelling the dissipation rate of the temperature variance εθ is then needed.
The computation of εθ will also make it possible to better predict the temperature variance,
without the need for an algebraic formulation of R.

4. Modelling of the dissipation rate of the temperature variance

The dissipation rate εθ is a key element in order to compute the temperature variance
θ

′2 from (2.16), and significant modelling challenges have to be tackled as its asymptotic
behaviour strongly depends on the thermal boundary condition. In particular, predicting
θ

′2 and εθ is crucial to obtain an accurate thermal time scale and as a consequence an
accurate thermal-to-mechanical time scale ratio R, which is essential in the DFM presented
above, since it is involved in (2.10), (2.11) and (3.20).

The exact transport equation for the dissipation rate of the temperature variance εθ =
κ(∂θ ′/∂xk)(∂θ ′/∂xk) reads as

Dεθ
Dt

= P1
εθ

+ P2
εθ

+ P3
εθ

+ P4
εθ

+ Dt
εθ

+ Dκ
εθ

− Yεθ , (4.1)

where P1
εθ
,P2

εθ
,P3

εθ
and P4

εθ
denote the production terms by the mean temperature gradient,

the mean velocity gradient, the temperature Hessian and by turbulent interactions,
respectively; Dt

εθ
and Dκ

εθ
are the turbulent and the molecular diffusion terms and Yεθ is the

dissipation rate of εθ . The asymptotic behaviour of these terms depends on the temperature
boundary conditions as shown in table 4. As a consequence, the asymptotic behaviour

of εθ , and, in turn, θ ′2, also strongly depends on the temperature boundary condition as
illustrated by figure 8. Table 4 shows that P1

εθ
,P2

εθ
,P4

εθ
and Yεθ deserve careful attention in

the near-wall region, since they are dominant in the budget, at least for the CHT case. For
the two other cases, an imposed temperature and an imposed heat flux, only Yεθ balances
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P1
εθ

P2
εθ

P3
εθ

P4
εθ

Dt
εθ

Dκεθ Yεθ

Imposed temperature O( y) O( y) O( y) O( y) O( y) O(1) O(1)
Imposed heat flux O( y) O( y) O( y) O( y) O( y) O(1) O(1)
Conjugate heat transfer O(1) O(1) O( y) O(1) O( y) O(1) O(1)

TABLE 4. Asymptotic behaviour of the source terms appearing in the exact transport equation
for εθ .
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θ
′2 +

__
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FIGURE 8. The dissipation rate εθ (a) of the temperature variance θ ′2 (b) from DNS data of
Flageul et al. (2015, 2017) for different kinds of temperature boundary conditions.

the molecular diffusion at the leading order. Note that the molecular diffusion Dκ
εθ

naturally
does not need modelling.

New models are thus derived for the four terms P1
εθ
,P2

εθ
,P4

εθ
and Yεθ . The models found

in the literature for the remaining terms P3
εθ

and Dt
εθ

are satisfactory, therefore they are used
without modification. The production by temperature Hessian and the turbulent diffusion
are modelled following Nagano (2002) and the turbulent diffusion term is modelled
following Jones & Musonge (1988). The detailed equations are given in appendix C.

4.1. Production terms P1
εθ

and P2
εθ

The production term by the mean temperature gradient reads as

P1
εθ

= −2κ
∂θ̄

∂xj

∂u′
j

∂xk

∂θ ′

∂xk
. (4.2)

As this term is directly related to the dissipation tensor involved in the transport equation
for the turbulent heat flux, εθ j = (ν + κ)(∂u′

j/∂xk)(∂θ ′/∂xk), it is simply modelled as

P1
εθ

= − 2
1 + Pr

εθ j
∂θ̄

∂xj
, (4.3)

where εθ j = (1 − αθ)ε
w
θ j and εw

θ j is given by (2.11).
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FIGURE 9. A priori tests: (a) P1
εθ

and (b) P2
εθ

for CHT.

The production term by the mean velocity gradient reads as

P2
εθ

= −2κ
∂uj

∂xk

∂θ ′

∂xk

∂θ ′

∂xj
. (4.4)

The tensor εθij = 2κ(∂θ ′/∂xi)(∂θ ′/∂xj) is very similar to the dissipation tensor εij in the
Reynolds-stress tensor equation, and, in particular, is linked to the smallest scales of the
turbulent thermal field. Therefore, the same modelling strategy as for εij is adopted: it
is assumed that εθij is isotropic far from the wall and exhibits the same anisotropy as the
Reynolds-stress tensor in the near-wall region, such that it is formulated as

εθij = (1 − αθ)ε
θw
ij + αθε

θh
ij , (4.5)

where

εθh
ij = 2

3εθδij and εθw
ij = u′

iu
′
j

k
εθ . (4.6a,b)

Hence, the production by the mean velocity gradient is modelled as

P2
εθ

= −cεθ1ε
θ
jk
∂uj

∂xk
. (4.7)

For the sake of concision, the a priori estimates of the two production terms are
only shown for CHT in figure 9. Conclusions are similar for the two other boundary
conditions. For P1

εθ
, the near-wall behaviour of DNS is correctly recovered. A relatively

weak prediction in the buffer layer is observed (for all the boundary conditions) which
is due to an overestimated dissipation rate εθ2 in this region. For P2

εθ
, the predictions are

satisfactory far from the wall. The modelled production goes to zero at the wall whatever
the thermal boundary conditions, which is not the case according to DNS data for CHT.
However, in the latter case, the production by the mean velocity gradient tends towards a
small non-zero value at the wall which makes the model acceptable (figure 10).
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FIGURE 10. (a) The dynamic time scale ratio T and (b) the thermal time scale ratio Tθ
from the DNS data of Flageul et al. (2015, 2017) for different kinds of temperature boundary
conditions.

4.2. Difference between the turbulent production and the dissipation P4
εθ

− Yεθ
The difference between the turbulent production, P4

εθ
, and the dissipation rate of εθ ,Yεθ ,

reads as

P4
εθ

− Yεθ = −2κ
∂θ ′

∂xj

∂θ ′

∂xk

∂u′
j

∂xk
− 2κ2 ∂2θ ′

∂xj∂xk

∂2θ ′

∂xj∂xk
. (4.8)

Newman et al. (1981) showed that these two terms are dominant in the absence of
walls. In particular, for homogeneous turbulence without mean velocity and temperature
gradients, these two terms are the only non-zero terms and drive the time evolution of the
fluctuating thermal field. Since there is no theoretical case in which these two terms can
be distinguished, Jones & Musonge (1988) modelled these two terms as a whole,

P4
εθ

− Yεθ = ch1
εθ

εθ

k
Pk + ch2

εθ

ε

k
Pθ − cεθ3

εθ

Tθ
− cεθ4

εθ

T . (4.9)

In order to extend the validity of this model down to the wall, the elliptic bending
approach is used

P4
εθ

− Yεθ = (1 − αθ)(Pw
εθ

− Yw
εθ
)+ αθ(Ph

εθ
− Yh

εθ
). (4.10)

Jones & Musonge (1988) have introduced the term cεθ4εθ/T so that the thermal-to-mechanical
time scale ratio R is constant in the case of heated grid turbulence. It is preferable not to
introduce this term, so that in this case R is not constant but tends asymptotically towards
an equilibrium value, close to 0.5. The quasi-homogeneous model is therefore written as
follows:

Ph
εθ

− Yh
εθ

= ch1
εθ

εθ

k
Pk + ch2

εθ

ε

k
Pθ − cH

εθ

τθ
, (4.11)

where

τθ = max

(
Tθ ,CTθ

√
ν

ε

1
Pr

)
. (4.12)

As can be seen in figure 10, which shows the behaviour of the time scales, the bound
in (4.12) is necessary to avoid the last term of (4.11) to go to infinity at the wall in the
case of an imposed wall temperature. Regarding the near-wall models Pw

εθ
and Yw

εθ
, they
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FIGURE 11. The turbulent production P4
εθ

and the dissipation rate Yεθ (a) and the thermal
production Pθ divided by the mixed time scale

√
T Tθ (b) from the DNS data of Flageul et al.

(2015) and Flageul et al. (2017) for different kinds of temperature boundary conditions.

Pθ
√
T Tθ Pw

εθ

Imposed temperature O( y3) O( y2) O( y)

Imposed heat flux a1t0
∂T0

∂x
y + O( y2) O( y) O(1)

Conjugate heat transfer a1t0
∂T0

∂x
y + O( y2) O( y) O(1)

TABLE 5. Asymptotic behaviour of the thermal production Pθ , the mixed time scale
√
T Tθ and

the near-wall model Pw
εθ

for all types of temperature boundary conditions.

have to reproduce the asymptotic behaviour of P4
εθ

and Yεθ at the wall. The DNS data from
Flageul et al. (2015) and Flageul et al. (2017) show that the asymptotic behaviour of P4

εθ

is virtually unaffected by the thermal boundary condition, as shown in figure 11(a). The
near-wall part Pw

εθ
is modelled using the ratio of the thermal production Pθ and the mixed

time scale
√
T Tθ , which is barely affected by the thermal boundary condition, figure 11(b),

Pw
εθ

= cw1
εθ

[
1 − cw2

εθ
(1 − αθ)

Pk

ε

]
Pθ
εθ

εθ√
T Tθ

. (4.13)

The term in square brackets is introduced to improve the predictions in the buffer layer,
in a way similar to (2.10) and (2.11) in Dehoux’s model. Table 5 gives the asymptotic
behaviour of Pθ ,

√
T Tθ and P4

εθ
for the different thermal boundary conditions. The correct

asymptotic behaviour is obtained for Pw
εθ

and, consequently, for P4
εθ

, in the cases of an
imposed temperature and CHT. For an imposed heat flux, Pw

εθ
goes to a non-zero value at

the wall while P4
εθ

tends to zero, as shown in table 4. However, the a priori tests shown in
figure 12(b) indicate that the limiting value is very small and the model gives satisfactory
results when compared with the DNS. As a consequence, the model Pw

εθ
given by (4.13) is

also used in the case of an imposed heat flux. The a priori tests show that the present model
for P4

εθ
correctly reproduces the near and far-from-the-wall regions for all the thermal

boundary conditions, as illustrated by figures 12 and 13.
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FIGURE 12. A priori tests: P4
εθ

and Yεθ for an imposed temperature at the wall (a) and for an
imposed heat flux (b).
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FIGURE 13. A priori tests: P4
εθ

and Yεθ for CHT.

With regard to Yεθ , its asymptotic behaviour strongly depends on the thermal boundary
condition at the wall, as seen in figure 11. Indeed, Yεθ tends to radically different non-zero
values at the wall: for an imposed temperature, the value is very small; for an imposed
heat flux, Yw

εθ
reaches its maximum at the wall and exhibits a secondary peak in the buffer

layer; for CHT, an intermediate value is reached. Reproducing this particular behaviour is
crucial, since Yεθ is dominant in the budget of εθ , and is very challenging.

To this end, two key parameters are used to sensitize the model to the thermal boundary
condition, √

Pr
R

with R = T
Tθ

(4.14)

and

σθ

εθ
with σθ = κ

(
∂
√
θ

′2

∂y

)2

. (4.15)

The first parameter
√

Pr/
√

R, which was already introduced in the near-wall models φw
θ i

and εw
θ i presented in § 3, distinguishes an imposed wall temperature from the other two

cases, as illustrated by figure 14(a). However, in order to reproduce the particular behaviour
of Yεθ described above, a distinction must be made between the case of an imposed heat
flux case and the case of CHT, hence the introduction of the second parameter σθ/εθ .
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FIGURE 14. The two parameters
√

Pr/R (a) and σθ/εθ (b) used to distinguish between the
different kinds of temperature boundary condition, from the DNS data of Flageul et al. (2015,
2017).

This parameter proposed by Yang et al. (2019) goes to very different values at the wall in
the three cases, as shown in figure 14(b).

Combining these two key parameters, the following expression for the near-wall model
Yw
εθ

is proposed:

Yw
εθ

=
[(

1 −
√

Pr
R

)(
1 − cw(1 − αθ)

Pθ
εθ

)(
cN − σθ

εθ
cC

)
+ cD

√
Pr
R

]
εθ√
τεθ τθ

√
Tθ
τθ
,

(4.16)

where

τεθ = max

(
T ,CT

√
ν

ε

)
, (4.17)

is similar to Durbin’s mechanical time scale (2.5), but with the variable coefficient

CT =
(

1 −
√

Pr
R

)(
cTN + σθ

εθ
cTC

)
+ cTD

√
Pr
R
. (4.18)

As illustrated by figure 15, the purpose of this expression for CT is to impose different
values of the coefficient for the different thermal boundary conditions, and the constants
cTD, cTN and cTC , where D,N and C stand for Dirichlet, Neumann and Conjugate,
respectively, are calibrated in order to reproduce at best the behaviour of Yεθ in the
near-wall region. Indeed, since T goes to zero at the wall regardless of the thermal
boundary condition, the wall-limiting value of τεθ is given by the second term in (4.17),
and modifying the coefficient CT makes it possible to adjust the near-wall behaviour of
Yw
εθ

. The particular values reached at the wall by the two parameters
√

Pr/R and σθ/εθ
are such that the coefficients cTD, cTN and cTC are active for an imposed temperature, an
imposed heat flux and CHT, respectively.

At the wall, τεθ , τθ and εθ always tend to non-zero values. Therefore, the asymptotic
behaviour of Yw

εθ
is driven by

√
Tθ . As a consequence, the modelled Yw

εθ
correctly goes to

a non-zero value at the wall for an imposed heat flux and CHT, but not for an imposed
temperature, as summarized in table 6. However, since figure 11(a) shows that, for an
imposed temperature, the exact Yεθ goes to a very small non-zero value, the fact that the
modelled Yw

εθ
tends to zero is acceptable.
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FIGURE 15. The CT coefficient profile for different temperature boundary conditions from the
DNS data of Flageul et al. (2015) and Flageul et al. (2017).

Imposed temperature Imposed heat flux Conjugate heat transfer

Modelled Yw
εθ

O( y) O(1) O(1)
Exact Yεθ O(1) O(1) O(1)

TABLE 6. Asymptotic behaviour of the near-wall model for Yw
εθ

and the exact Yεθ .

A priori tests are shown in figures 12 and 13. These tests confirm that, in the case of an
imposed temperature, although the wall asymptotic behaviour in O(1) is not reproduced
by the model, the profile of Yεθ is correctly predicted. In the two other cases, the values at
the wall are underestimated, but it is to be noted that the coefficient CT is calibrated based
on the full computations shown in the next section, not on the a priori tests. One can
observe slope discontinuities for the modelled Yεθ that are due to the max functions used
in the time scales τθ and τεθ . Far from the wall, the model tends to the quasi-homogeneous
model, which is close to the DNS data for all the thermal boundary conditions. The full
set of equations and coefficients is available in appendix C.

5. Model validation based on full computations

Full computations are carried out with EDF in-house open-source finite volume
computational fluid dynamics solver Code_Saturne (www.code-saturne.org). Details
about the finite volume discretization scheme can be found in Archambeau, Méchitoua
& Sakiz (2004).

5.1. Governing equations
The channel flow configurations in the forced convection regime of Flageul et al. (2015)
are used for validation. The friction Reynolds number Reτ and the Prandtl number Pr are
equal to 149 and 0.71, respectively. The non-dimensional kinematic viscosity and thermal
diffusivity are then equal to 1/Reτ and 1/(ReτPr), respectively.
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In addition to standard mean velocity transport equations driven by a pressure gradient,
the following equation is solved for the mean temperature (Kasagi et al. 1992):

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
= 1

ReτPr
∂2θ̄

∂xj∂xj
− ∂u′

jθ
′

∂xj
+ ū1

ub
, (5.1)

where ub the bulk velocity. In order to impose periodicity in the streamwise direction,
the mean temperature is decomposed into a periodic and a linearly variable part. As
a consequence, the source term ū1/ub on the right-hand side of the mean temperature
equation (5.1).

Periodic boundary conditions are imposed in the streamwise (x) direction and
symmetries in the spanwise (z) direction and at the central plane (y = δ), for all the
variables. At the wall (y = 0), standard no-slip boundary conditions are imposed for the
mean velocity and the turbulent variables.

Three types of thermal wall boundary conditions are imposed: (i) an imposed wall
temperature with θ̄ = 0, θ ′2 = 0 and εθ = limy→0(κθ

′2/y2); (ii) an imposed heat flux,
which reads as ∂θ̄/∂y = −PrReτ , ∂θ ′2/∂y = 0 and ∂εθ/∂y = 0; and (iii) CHT for which
a solid part having a thickness equal to the channel half-width is added, and the heat flux
∂θ̄/∂y = −PrReτ is imposed at the outer boundary of the solid part.

In the latter case, the solid has the same properties as the fluid; in addition to the
mean temperature, its conductive flux and its variance, the dissipation of the variance
is continuous at the fluid–solid interface. The equations resolved in the solid part read as

∂θ̄

∂t
= ∂

∂xj

(
κs
∂θ̄

∂xj

)
, (5.2)

Dθ ′2

Dt
= ∂

∂xj

(
κs
∂θ

′2

∂xj

)
− 2εθ , (5.3)

∂εθ

∂t
= ∂

∂xj

(
κs
∂εθ

∂xj

)
− cεθs

εθ

Tθ
, (5.4)

where κs = 1/ReτPr stands for the non-dimensional thermal diffusivity of the solid. Here
εθ = κs(∂θ ′/∂xk)(∂θ ′/∂xk) is the dissipation of the variance. In (5.4), the dissipation
term is modelled in a similar way to the homogeneous model in the fluid domain, using
cεθs (εθ/Tθ ). The constant cεθs has been estimated a priori using the DNS data from Flageul
et al. (2015) and is taken equal to 3.

All the results are plotted in wall units. Since the mean velocity profile is not affected by
the thermal boundary condition, it is not shown here for conciseness. The interested reader
is invited to refer to Manceau (2015). Figure 16 shows the profiles of the non-dimensional
temperature θ̄+ = (θ̄ − θ̄w)/Tτ . As a consequence of the accurate prediction of the
wall-normal turbulent heat flux, as will be shown below, the temperature profile is
correctly reproduced with the new model. Dehoux’s model also gives correct results for
CHT, but the mean temperature predicted by this model is less accurate than with the new
model for an imposed heat flux.

5.2. The temperature variance θ ′2 and its dissipation rate εθ
Figures 17–19 compare the temperature variance (panel a) and its dissipation rate
(panel b) obtained with the new model to the DNS data from Flageul et al. (2015) and
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FIGURE 16. Predicted mean temperature with an imposed heat flux (a) and conjugate heat
transfer (b) at the wall.
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FIGURE 17. A posteriori temperature variance θ ′2 (a) and its dissipation εθ (b) for an imposed
temperature at the wall.
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FIGURE 18. A posteriori temperature variance θ ′2 (a) and its dissipation εθ (b) for an imposed
heat flux at the wall.

to the results obtained with Dehoux’s model. The prediction of these two quantities are
clearly improved with the new model even in the case of an imposed temperature, for which
Dehoux’s model is asymptotically correct. Dehoux’s model is virtually insensitive to the
thermal boundary condition, as εθ always goes to the same large value at the wall, such that
the temperature variance tends to zero in all the cases. In addition to sensitizing the model
to the thermal boundary condition, a favourable side effect of solving the εθ -equation is a
significant improvement of the predictions of εθ and θ ′2 far from the wall.
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FIGURE 19. A posteriori temperature variance θ ′2 (a) and its dissipation εθ (b) for the CHT
case.
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FIGURE 20. Temperature variance θ ′2 budgets (a) and the dissipation rate εθ budgets (b) for an
imposed temperature at the wall. The symbols stand for DNS data and the solid lines represent
the present model.

Figures 20–22 compare the budgets of θ ′2 and εθ with the DNS data of Flageul et al.
(2015) for an imposed temperature, an imposed heat flux and CHT, respectively. Although
the prediction of the different terms of the budget of εθ is not perfect, these figures
globally suggest that the satisfactory prediction of θ ′2 and εθ shown above is due to a
correct reproduction of all the physical mechanisms playing a role in the dynamics of
these variables. Panel (a) of these figures show an excellent prediction of the budget of
the temperature variance for all the thermal boundary conditions, which is due to the good
prediction of εθ using the new modelled equation, but also to the good prediction of the
turbulent heat flux that enters production, as will be shown in § 5.3.

In particular, these computations confirm that the new model for Yεθ is successful in
reproducing the dramatic modification of the near-wall behaviour of this quantity when
boundary conditions vary. This is the cornerstone of the present DFM, since this term is
always a leading-order term, as shown in table 4.

Finally, figure 23 shows the temperature variance and its dissipation rate in the solid part
in the case of CHT. Here, G = 1 and G2 = 1 are the fluid-to-solid ratios of the thermal
diffusivity and the thermal conductivity, respectively. A virtually perfect agreement with
the DNS is obtained for θ ′2 and εθ . Since these two quantities are continuous across the
interface, this good prediction is linked to the performance of the model on the fluid side.
Moreover, the choice of the constant cεθs in (5.4) appears adequate as it drives the decrease
with the distance to the interface of the dissipation in the solid, which in turn leads to the
decrease of the temperature variance.
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FIGURE 21. Temperature variance θ ′2 budgets (a) and the dissipation rate εθ budgets (b) for
an imposed heat flux. The symbols stand for DNS data and the solid lines represent the present
model.

Pθ εθ Dκ
θ Dt

θ

y+y+

P1
εθ

 + P2
εθ

P3
εθ

P4
εθ

Yεθ Dκεθ + Dt
εθ

–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4

100 101 102

–0.02

–0.01

0

0.01

0.02

100 101  102

(b)(a)

FIGURE 22. Temperature variance θ ′2 budgets (a) and the dissipation rate εθ budgets (b) for
CHT. The symbols stand for DNS data and the solid lines represent the present model.
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FIGURE 23. A posteriori temperature variance θ ′2 (a) and its dissipation rate εθ (b) in the solid
part for CHT.

5.3. Turbulent heat flux
In figure 24, in order to confirm the favourable results obtained by a priori tests in § 3.3, the
near-wall balance of transport equation for the turbulent heat flux, Dν+κ

θ i + φθ i − εθ i, i.e. the
sum of the molecular diffusion, the scrambling and the dissipation terms, is compared with
the DNS data of Flageul et al. (2015) for the CHT case. As expected from the asymptotic
analysis shown in § 3.2 and the a priori tests, the new model accurately reproduces the
near-wall behaviour of these terms, which remain dominant up to y+ � 5. These results
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FIGURE 24. The near-wall balance Dν+κθ i + φθ i − εθ i obtained in full computations for
CHT compared with DNS results from Flageul et al. (2015). (a) Streamwise component;
(b) wall-normal component.
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FIGURE 25. The dominant terms in the budgets of the streamwise heat flux component for a
CHT. Filled symbols stand for the model; empty symbols represent the DNS data. (a) New
model; (b) Dehoux’s model.

form a solid basis for the correct reproduction of the turbulent heat flux components in
the near-wall region. Surprisingly, Dehoux’s model also provides good predictions in
the near-wall region for CHT (the same result is observed in the case of an imposed
temperature, which is not shown here). These results are in apparent contradiction with
the asymptotic analysis and the a priori tests performed in § 3.3, since the streamwise
component of the sum of the three terms was shown to tend to infinity at the wall. However,
it is a perfect example of error compensation. Considering the different terms appearing in
this balance separately for the streamwise direction in the case of CHT (the same trend is
obtained with an imposed heat flux), figure 25 shows that, in contrast with the new model,
Dehoux’s model exhibits a wrong asymptotic behaviour for the dissipation term and this
is compensated by a strong overestimation of molecular diffusion in the near-wall region,
leading to compensation of errors.

Finally, figures 26–28 show the predicted turbulent heat flux obtained with the new
model and Dehoux’s model against the DNS data of Flageul et al. (2015), which
dictates the behaviour of the mean temperature. Both the wall-normal and the streamwise
components of the heat flux are correctly predicted by the new model for all the thermal
boundary conditions in the regions near the wall and far from the wall. In the buffer
layer, the peak of u′θ ′ is underestimated in all the cases: as mentioned above, the elliptic
blending strategy is designed to impose the correct behaviour in the viscous sublayer,
but is not sufficient to fully account for the complex evolution of the different terms in the
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FIGURE 26. Predicted turbulent heat flux with an imposed temperature at the wall.
(a) Tangential component; (b) wall-normal component.
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FIGURE 27. Predicted turbulent heat flux with an imposed heat flux at the wall. (a) Tangential
component; (b) wall-normal component.
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FIGURE 28. Predicted turbulent heat flux for CHT. (a) Tangential component; (b) wall-normal
component.

buffer layer. The aforementioned error compensation in Dehoux’s model makes it possible
to obtain acceptable results, although the discrepancies are significant for the streamwise
component in the case of an imposed heat flux, and, to a lesser extent, for CHT. This
appears as a minor issue in the present channel flow case, since the streamwise heat flux
u′θ ′ does not affect the mean temperature profile. However, the accurate prediction of this
component will gain importance in more complex flows.
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6. Conclusion

An extended version of the DFM of Dehoux et al. (2017) is proposed in order to account
for any type of thermal boundary condition at the wall. Indeed, the vanishing (imposed
wall temperature) or not (imposed heat flux or CHT) of the temperature fluctuations at the
wall leads to a completely different behaviour of the terms of the budget of the turbulent
heat flux. In order for the model to be able to adapt to the variety of boundary conditions,
the key point is the use of the variable Pr/R, i.e. the ratio of the Prandtl number to the
thermal-to-mechanical time scale ratio, which goes to unity at the wall for an imposed
wall temperature, and to zero otherwise. As a corollary, R cannot be computed from a
simple algebraic relation as in Dehoux’s model, but must rather be obtained from transport
equations for the temperature variance θ ′2 and its dissipation rate εθ , in such a way that the
near-wall behaviour of R is dependent on the boundary conditions for θ ′2 and εθ .

The extended DFM is then developed based on asymptotic arguments. The function
Pr/R is used to sensitize the scrambling term φθ i in the transport equation for the turbulent
heat flux to the thermal boundary condition, by analysing the Taylor series expansion
of the solutions of the equation. It is shown that the model for the heat flux requires
an asymptotically correct behaviour of the predicted thermal-to-mechanical time scale
ratio, which is highly dependent on the thermal boundary condition. It is interesting to
emphasize that, in the extended model, R is used for what it really is, a ratio of time scales,
the behaviour of which depends on the boundary conditions, and not as an artefact to avoid
solving the εθ equation.

In order to ensure the correct behaviour of R, a new model for the dissipation rate εθ is
proposed. The major term in this model is the dissipation rate Yεθ : its modelling is crucial
to deal with various thermal boundary conditions. To take up this challenge, in addition
to Pr/R, another key parameter is used, σθ/εθ , where σθ = κ(∂

√
θ

′2/∂y)2. Indeed, Pr/R
is not able to distinguish imposed heat flux and CHT conditions. Based on these two
parameters, the dissipation term Yεθ can be sensitized to the various thermal boundary
conditions. A priori tests show that εθ is correctly modelled, which, in turn, leads to correct

predictions of the temperature variance θ ′2 and the thermal-to-mechanical time scale
ratio R.

Full computations performed with the open-source solver Code_Saturne show very

satisfactory results for εθ and θ ′2 for all the thermal boundary conditions. As a
consequence, satisfactory predictions in coherence with a priori considerations are
obtained for the turbulent heat flux components and, in turn, the mean temperature in
all the cases.
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Appendix A. Model for the turbulent heat flux (EB-DFM)

Du′
iθ

′

Dt
= −u′

kθ
′ ∂ui

∂xk
− u′

iu
′
k
∂θ

∂xk
− βgiθ ′2

+ φ∗
θ i − εθ i + ∂

∂xk

(
Cθu

′
ku

′
lτ
∂u′

iθ
′

∂xl

)

+ ∂

∂xk

(
κ + ν

2
∂u′

iθ
′

∂xk
+ ninj

ν − κ

6

∂u′
jθ

′

∂xk

)
, (A 1)

εθ i = (1 − αθ)ε
w
θ i + αθε

h
θ i, (A 2)

εw
θ i = γ

1
T Cε

[
1 + Cε

wθ (1 − αθ)
Pk + Gk

ε

]
(u′

iθ
′ + u′

jθ
′ninj), (A 3)

γ =
√

Pr√
R
, (A 4)

εh
θ i = 0, (A 5)

φ∗
θ i = (1 − αθ)φ

w
θ i + αθφ

h
θ i, (A 6)

φh
θ i = −

√
Rh

√
RT

C1θu
′
iθ

′ + C2θu
′
jθ

′ ∂ui

∂xj
+ C3θβgiθ ′2, (A 7)

φw
θ i = −β 1

T

[
1 + Cφ

wθ (1 − αθ)
Pk + Gk

ε

]
u′

jθ
′ninj, (A 8)

β = 2
3

+ 1
3

1
Pr

+
√

Pr√
R

1
3

(
1 − 1

Pr

)
, (A 9)

τ = max

(
k
ε
,CT

(ν
ε

)1/2
)
, (A 10)

Pk = −u′
iu

′
j
∂ui

∂xj
; Gk = −βu′

iθ
′gi, (A 11a,b)

Cθ = 0.22; Cφ

wθ = 2; Cε
wθ = −0.3, (A 12a–c)

αθ − L2
θ∇2αθ = 1, (A 13)

Lθ = 2.5L; L = CLmax

(
k3/2

ε
,Cη

ν3/4

ε1/4

)
, (A 14a,b)

CL = 0.125; Cη = 80; CT = 6, (A 15a–c)

R = T
Tθ

; Tθ = θ ′2

2εθ
; (A 16a,b)

T = k
ε
; Cε = 1

2

(
1 + 1

Pr

)
; C1θ = 4.15; (A 17a–c)

C2θ = 0.3; C3θ = 0.5. (A 18a,b)
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Appendix B. Model for the temperature variance

Dθ ′2

Dt
= −2u′

kθ
′ ∂øθ̄
∂xk

− 2εθ + ∂

∂xk

(
ν

Pr
∂θ ′2

∂xk

)
+ ∂

∂xk

(
Cθθ u′

ku
′
lτ
∂θ ′2

∂xl

)
, (B 1)

Cθθ = 0.21. (B 2)

Appendix C. Model for the dissipation rate of the temperature variance

Dεθ
Dt

= − 2
1 + Pr

εθ j
∂θ̄
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− cεθ1ε

θ
jK
∂Uj

∂xk
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εθh
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3εθδij, εθw
ij = u′

iu
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k
εθ . (C 3a,b)

P4
εθ
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εθ
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εθ

εθ
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ε
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Pθ , (C 5)

Yh
εθ

= cH
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τθ
. (C 6)

cεθ1 ch1
εθ

ch2
εθ

cw1
εθ

cw2
εθ

Cp3 Cp4 fR cs

1.4 2.52 2.88 2 0.75 0.15 0.28 fR = 2R
0.5 + R

0.22

cN cC cD cw cH cTθ cTC cTD cTN

7.08 15.96 4.802 1.8 2.7 5.13 26.25 5.4 0.025
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Pw
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