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The Density Turán Problem
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Let H be a graph on n vertices and let the blow-up graph G[H] be defined as follows. We

replace each vertex vi of H by a cluster Ai and connect some pairs of vertices of Ai and Aj

if (vi, vj ) is an edge of the graph H . As usual, we define the edge density between Ai and

Aj as

d(Ai, Aj ) =
e(Ai, Aj )

|Ai||Aj |
.

We study the following problem. Given densities γij for each edge (i, j) ∈ E(H), one has to

decide whether there exists a blow-up graph G[H], with edge densities at least γij , such that

one cannot choose a vertex from each cluster, so that the obtained graph is isomorphic to

H , i.e., no H appears as a transversal in G[H]. We call dcrit(H) the maximal value for which

there exists a blow-up graph G[H] with edge densities d(Ai, Aj ) = dcrit(H) ((vi, vj ) ∈ E(H))

not containing H in the above sense. Our main goal is to determine the critical edge density

and to characterize the extremal graphs.

First, in the case of tree T we give an efficient algorithm to decide whether a given set

of edge densities ensures the existence of a transversal T in the blow-up graph. Then we

give general bounds on dcrit(H) in terms of the maximal degree. In connection with the

extremal structure, the so-called star decomposition is proved to give the best construction

for H-transversal-free blow-up graphs for several graph classes.

Our approach applies algebraic graph-theoretical, combinatorial and probabilistic tools.

AMS 2010 Mathematics subject classification: Primary 05C35; 05C42, 05C31

1. Introduction

Given a simple, connected graph H , we define a blow-up graph G[H] of H as follows.

Replace each vertex vi ∈ V (H) by a cluster Ai and connect vertices between the clusters Ai

† Partially supported by the Hungarian National Foundation for Scientific Research (OTKA), grants K67676

and K81310.
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and Aj (not necessarily all) if vi and vj are adjacent in H . As usual, we define the density

between Ai and Aj as

d(Ai, Aj) =
e(Ai, Aj)

|Ai||Aj |
,

where e(Ai, Aj) denotes the number of edges between the clusters Ai and Aj . We say that

the graph H is a transversal of G[H] if H is a subgraph of G[H] such that we have a

homomorphism ϕ : V (H) → V (G[H]) for which ϕ(vi) ∈ Ai for all vi ∈ V (H). We will also

use the terminology that H is a factor of G[H].

The density Turán problem seeks to determine the critical edge density dcrit which

ensures the existence of the subgraph H of G[H] as a transversal. What does this mean?

Assume that for all e = (vi, vj) ∈ E(H) we have d(Ai, Aj) > dcrit. Then, no matter what

the graph G[H] looks like, it induces the graph H as a transversal. On the other hand,

for any d < dcrit(H) there exists a blow-up graph G[H] such that d(Ai, Aj) > d for all

(vi, vj) ∈ E(H), and it does not contain H as a transversal. Clearly, the critical edge density

of the graph H is the largest of the critical edge densities of its components. Thus we will

assume throughout the paper that H is a connected graph.

The problem considered was studied in [12]. A very closely related variant of this

problem was mentioned in the book Extremal Graph Theory by Bollobás [2, p. 324].

There are many papers in which the density condition is replaced by the minimal degree

constraint [3, 4, 10, 16].

It will turn out that it is useful to consider the following more general problem. Assume

that a density γe is given for every edge e ∈ E(H). Now the problem is to decide whether

the densities {γe} ensure the existence of the subgraph H as a transversal or one can

construct a blow-up graph G[H] such that d(Ai, Aj) � γij , yet the graph H does not

appear in G[H] as a transversal. This more general approach allows us to use inductive

proofs. We refer to this general setting as the inhomogeneous condition on the edge

densities, while the above condition of having a common lower bound dcrit(H) for the

densities is called the homogeneous case.

Moreover, it will turn out that an even more general setting is worth considering,

namely, weighted blow-up graphs (see Section 2).

The paper is organized as follows. We end this Introduction by setting out the notation.

In Section 2 we introduce the most important concepts via an example, and we sketch

the main results of [12] and some useful lemmas. Section 3 is devoted to the case when

H is a tree. This case is covered in [12] in the homogeneous case, showing that

dcrit(T ) = 1 − 1

λ2
max(T )

,

where λmax(T ) denotes the maximal eigenvalue of the adjacency matrix of the tree. In

the inhomogeneous case a set of edge densities is given for a blow-up graph Tn, and we

have to decide whether the edge densities ensure the existence of a factor Tn. We give

an efficient algorithm to do this. The proof is based on the strong connection with the

multivariate matching polynomial. In Section 4, by the application of the Lovász local
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lemma and its extension, we show that

dcrit(H) < 1 − 1

4(Δ(H) − 1)
,

where Δ(H) is the maximal degree of H . The extremal structures are investigated in

Section 5. Here we give a recursive construction for blow-up graphs not containing the

corresponding transversal, and examine for which classes of graphs it gives the extremal

structure. These constructions also give lower bounds for the critical edge density in the

homogeneous case.

Throughout the paper, we use the following notation.

Notation 1.

• H = (V (H), E(H)) will be a connected graph on the labelled vertices {1, . . . , n}.
• G[H] denotes a blow-up graph of H on n clusters, where the cluster Ai corresponds

to the vertex i ∈ V (H). If all densities equal 1 in G[H], then we call it a complete

blow-up graph of H .

• Graphs Sn, Pn, Cn denote the star, the path and the cycle on n vertices, respectively.

As usual, Kn and Km,n denote the complete graph and complete bipartite graph,

respectively. Tn denotes an arbitrary tree on n vertices.

• dcrit(H) is the critical edge density assigned to H , while de is the edge density between

Ai and Aj if e = ij ∈ E(H).

• Δ(H) will denote the maximum degree in H , Di the degree of vertex i, while N(z) will

denote the neighbourhood of vertex z.

Now we define the weighted version of the well-known independence and matching

polynomials.

Notation 2. Let G be a graph and assume that a positive weight function w : V (G) → R
+

is given. Then let

I((G,w); t) =
∑
S∈I

(∏
u∈S

wu

)
(−t)|S |,

where the summation goes over the set I of all independent sets S of the graph G

including the empty set. When w = 1 we simply write I(G, t) instead of I((G, 1); t), and we

call I(G, t) the independence polynomial of G. Clearly,

I(G, t) =

n∑
k=1

ik(G)(−1)ktk,

where ik(G) denotes the number of independent sets of size k in the graph G.

Let G be a graph and assume that a positive weight function w : E(G) → R
+ is given.

Then let

M((G,w); t) =
∑
S∈M

(∏
e∈S

we

)
(−1)|S |tn−2|S |,
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(a) (b) (c)

Figure 1. Blow-up graphs of diamonds.

where the summation goes over the set M of all independent edge sets S of the graph G

including the empty set. In the case when w = 1, we call the polynomial

M(G, t) = M((G, 1); t) =

n/2∑
k=0

(−1)kmk(G)tn−2k

the matching polynomial of G, where mk(G) denotes the number of k independent edges

(i.e., the k-matchings) in the graph G.

A closely related variant of the weighted matching polynomial is the multivariate

matching polynomial defined as follows. Let xe be variables assigned to each edge of a

graph. The multivariate matching polynomial F is defined as follows:

F(xe, t) =
∑
M∈M

(∏
e∈M

xe

)
(−t)|M|,

where the summation goes over the matchings of the graph including the empty matching.

Clearly, if LG denotes the line graph of the graph G, we have

F(xe, t) = I((LG, xe); t),

or in other words

tnF

(
xe,

1

t2

)
= M((G, xe); t).

2. Preliminaries

In this section we motivate some key definitions via an example. The diamond is the

unique simple graph on 4 vertices and 5 edges, generally denoted by K−
4 .

Figure 1(a) contains the diamond as a transversal. Figure 1(b) does not contain the

diamond as a transversal, although the edge density is 3/4 between any two clusters. To

see this, we have given the complement of the blow-up graph with respect to the complete

blow-up graph. In what follows we will simply call this graph the complement graph and
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Figure 2. Weighted blow-up graph.

we will denote it by G[H]|H . In the ‘complement language’ the claim is as follows: if

we choose one vertex from each cluster then we cannot avoid choosing both ends of a

complementary edge. This is indeed true: whichever vertex we choose from the ‘right’ and

‘left’ clusters, we cannot choose the rightmost and leftmost vertices of the upmost and

downmost clusters; so we have to choose a vertex from the middle of these clusters, but

they are all connected by complementary edges.

We also see that this construction was somewhat redundant in the sense that each

vertex from the right and left clusters had the same role. This motivates the following

definition.

Definition. A weighted blow-up graph is a blow-up graph where a non-negative weight

w(u) is assigned to each vertex u such that the total weight of each cluster is 1. The density

between clusters Ai and Aj is

dij =
∑
(u,v)∈E

u∈Ai,v∈Aj

w(u)w(v).

This definition also has the advantage that we can now allow irrational weights too.

(But this does not change the problem, since we can approximate any irrational weight by

rational weights, and then we blow up the construction with the common denominator of

the weights.) The following result of the second author [12] also shows that the problem in

this framework is much more convenient. Note that this result is a simple generalization

of a statement by Bondy, Shen, Thomassé and Thomassen [5].

Theorem 2.1 ([12]). If there is a construction of a blow-up graph G[H] not containing H ,

then there is a construction of a weighted blow-up graph G′[H] not containing H , where

• each edge density is at least as large as in G[H],

• the cluster Vi contains at most as many vertices as the degree of the vertex vi in the

graph H .
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The importance of this theorem lies in the fact that if we are looking for the critical

edge density we only have to check those constructions where each cluster contains a

bounded number of vertices. So in fact, we have to check a finite number of configurations

and we only have to decide which configuration has a weighting providing the greatest

density. In general, the number of possible configurations is very large, yet it has some

notable consequences. For instance, there is a ‘best’ construction in the sense that if we

have a construction for γe − ε for every ε, then we have a construction with edge densities

γe. Indeed, we have a compact space (a finite number of configurations) and the edge

densities are continuous functions of the weights.

With a small extra idea one can prove the following important corollary of this theorem.

Theorem 2.2 ([12]). There is a weighted blow-up graph G[H] not containing H , where each

edge density is exactly the critical edge density.

From this theorem one can deduce the following results.

Proposition 2.3 ([12]). If H1 is a subgraph of H2, then for the critical edge densities we

have

dcrit(H1) � dcrit(H2).

If H2 is connected and H1 is a proper subgraph of H2, then the inequality is strict.

A general lower and upper bound was also proved in [12]. The lower bound is the

consequence of Proposition 2.3 and the fact that dcrit(Sn) = 1 − 1
n−1

.

Proposition 2.4.
(
1 − 1

Δ(H)

)
� dcrit(H) �

(
1 − 1

Δ2(H)

)
.

The upper bound will be strengthened in Section 4. It was known that

dcrit(H) < 1 − 1

4(Δ(H) − 1)

also holds for trees. It turned out that it is a general upper bound.

Finally, let us mention a theorem by Bondy, Shen, Thomassé and Thomassen. On

the one hand, it solves the inhomogeneous problem for H = K3. On the other hand, it

provides a base in some forthcoming proofs.

Lemma 2.5 ([5]). Let α, β, γ be the edge densities between the clusters of a blow-up graph

of the triangle. If

αβ + γ > 1, βγ + α > 1, γα + β > 1,

then the blow-up graph contains a triangle as a transversal. Otherwise there exists a weighted

blow-up graph with the prescribed edge densities without containing a triangle.

https://doi.org/10.1017/S0963548312000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000016


The Density Turán Problem 537

3. Inhomogeneous case: trees

In this section we study the case when the graph H is a tree.

Theorem 3.1. Let T be a tree, and let vn be a leaf of T . Assume that for each edge of

T a density γe = 1 − re is given. Let T ′ be a tree obtained from T by deleting the leaf vn
(together with the edge en−1,n = vn−1vn). Let the densities γ′

e be defined as follows:

γ′
e =

⎧⎨
⎩γe = 1 − re if e is not incident to vn−1,

1 − re
1−ren−1,n

if e is incident to vn−1.

Then the set of densities γe ensures the existence of the factor T if and only if all densities

γ′
e are between 0 and 1 and the set of densities γ′

e ensures the existence of the factor T ′.

Remark. Clearly, this theorem provides us with an efficient algorithm to decide whether

a given set of densities ensures the existence of a factor (see Algorithm 3.2).

Proof. First we prove that if all the γ′
e are indeed densities and they ensure the existence

of the factor T ′, then the original densities γe ensure the existence of a factor T .

Assume that G[T ] is a blow-up of T such that the density between Ai and Aj is at

least γij , where Ai is the blow-up of the vertex vi of T . We need to show that it contains

a factor T .

Let us define

R = {v ∈ An−1 | v is incident to some edge going between An−1 and An}.

First of all we show that the cardinality of R is large:

|R||An| � e(R,An) = γn−1,n|An−1||An|.

Thus |R| � γn−1,n|An−1|.
Next we show that many edges are incident to R. Let vk be adjacent to vn−1. Then we

can bound the number of edges between R and Ak as follows:

e(R,Ak) � e(An−1, Ak) − (|An−1| − |R|)|Ak|
= |R||Ak| + (γk,n−1 − 1)|Ak||An−1|

� |R||Ak| + (γk,n−1 − 1)
1

γn−1,n
|R||Ak|

=

(
1 − rk−1,n

1 − rn−1,n

)
|R||Ak| = γ′

k,n−1|R||Ak|.

Now delete the vertex set An and An−1\R from G[T ]. Then the obtained graph is a

blow-up of T ′ with edge densities ensuring the factor T ′. But this factor can be extended

to a factor T because of the definition of R.

Now we prove that if some γ′
k,n−1 < 0, then there exists a construction for a blow-up

of T having no factor of T . In fact γ′
k,n−1 < 0 means that γk,n + γn−1,n < 1 and so we

can conclude that some construction does not induce the path ukun−1un where ui ∈ Ai

(i ∈ {k, n − 1, n}).
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Now assume that all the γ′
e are proper densities, but there is a construction G′[T ′] with

edge densities at least γ′
e, but which does not induce a factor T ′. In this case we can easily

construct a blow-up G[T ] of the tree not inducing T by setting An−1 = R∗ ∪ A′
n−1 with

an appropriate weight of R∗ = {v∗
n−1}, and taking an An = {vn} which we connect to all

elements of A′
n−1 but do not connect to v∗

n−1.

Algorithm 3.2.

Step 0. Let there be given a tree T0 and edge densities γ0
e . Set T := T0 and re = 1 − γ0

e .

Step 1. Consider (T , re).

• If |V (T )| = 2 and 0 � re < 1 then STOP: the densities γ0
e ensure the existence

of the transversal T0.

• If |V (T )| � 2 and there exists an edge for which re � 1 then STOP: the densities

γ0
e do not ensure the existence of the transversal T0.

Step 2. If |V (T )| � 3 and 0 � re < 1 for all edges e ∈ E(T ) then do pick a vertex v of

degree 1, and let u be its unique neighbour. Let T ′ := T − v and

r′
e =

{
re if e is not incident to u,

re
1−r(u,v)

if e is incident to u.

Jump to Step 1 with (T , re) := (T ′, r′
e).

In what follows we analyse Algorithm 3.2. The following concept will be the key tool.

Let the xe be variables assigned to each edge of a graph. Recall that we define the

multivariate matching polynomial F as follows:

F(xe, t) =
∑
M∈M

(∏
e∈M

xe

)
(−t)|M|,

where the summation goes over the matchings of the graph including the empty matching.

The following lemma is a straightforward generalization of the well-known fact that for

trees the matching polynomial and the characteristic polynomial of the adjacency matrix

coincide.

Lemma 3.3. Let T be a tree on n vertices. Let us define the following matrix of size n × n.

The entry ai,j = 0 if the vertices vi and vj are not adjacent and ai,j =
√
xe if e = vivj ∈ E(T ).

Let φ(xe, t) be the characteristic polynomial of this matrix. Then

φ(xe, t) = tnF

(
xe,

1

t2

)
,

where F(xe, t) is the multivariate matching polynomial.

Proof. Indeed, when we expand the det(tI − A) we only get non-zero terms when the

cycle decomposition of the permutation consist of cycles of length at most 2; but these

terms correspond to the terms of the matching polynomial.
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Proposition 3.4. Let G be a tree and let tw(G) denote the largest real root of the polynomial

M((G,w); t). Let G1 be a subgraph of G. Then we have

tw(G1) � tw(G).

Proof. This is straightforward after applying Lemma 3.3.

Note that Proposition 3.4 holds for arbitrary graph G, but we do not use this stronger

version.

Corollary 3.5. Let T be a tree, and assume that for each edge e ∈ E(T ) a weight we > 0

is assigned. Furthermore, let T ′ be a subtree of T with the induced edge weights. Then the

polynomial FT (we, t) has a smaller positive root than the polynomial FT ′(we, t).

Lemma 3.6. Let T be a weighted tree with γe = 1 − tre weights. Assume that after running

Algorithm 3.2 we get the two-node tree with edge weight 0. Then t is the root of the

multivariate matching polynomial F(re, s) of the tree T .

Proof. We prove the statement by induction on the number of vertices of the tree. If

the tree consists of two vertices, then 0 = 1 − tre means exactly that t is the root of the

multivariate matching polynomial of the tree.

Now assume that the statement is true for trees on at most n − 1 vertices. Let T be

a tree on n vertices and assume that we execute the algorithm for the pendant edge

en−1,n = (vn−1, vn) in the first step, where the degree of the vertex vn is 1. Let T ′ = T − vn.

Now we continue executing the algorithm, obtaining the two-node tree with edge weight

0. By induction we get that FT ′(r′
e, t) = 0.

We can expand FT ′ according to whether a monomial contains xk,n−1 (ek,n−1 ∈ E(T ′))

or not. Each monomial can contain at most one of the variables xk,n−1 (vk ∈ N(vn−1)).

Thus

FT ′(xe, s) = Q0(xe, s) −
∑

vk∈N(vn−1)

sxk,n−1Qk(xe, s),

where Q0 consists of those terms which contain no xk,n−1 and −sxk,n−1Qk consists of those

terms which contain xk,n−1, i.e., these terms correspond to the matchings containing the

edge (vk, vn−1). Observe that

FT (xe, s) = (1 − sxn−1,n)Q0(xe, s) −
∑

vk∈N(vn−1)

sxk,n−1Qk(xe, s)

by the same argument.

Since

0 = FT ′(r′
e, t) = Q0(re, t) −

∑
vk∈N(vn−1)

rk,n−1

1 − trn−1,n
Qk(re, t)
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540 P. Csikvári and Z. L. Nagy

we have

0 = (1 − trn−1,n)FT ′(r′
e, t) = (1 − trn−1,n)Q0(re, t) −

∑
vk∈N(vn−1)

rk,n−1Qk(re, t) = FT (re, t).

Hence t is the root of FT (re, s).

Theorem 3.7. Let T be a tree and let γe = 1 − re be edge densities. Then the edge densities

ensure the existence of the tree T as a transversal if and only if, for the multivariate matching

polynomial, we have

F(re, t) > 0

for all t ∈ [0, 1].

Remark. We mention that the really hard part of this theorem is that if

F(re, t) > 0

for all t ∈ [0, 1] then the edge densities γe = 1 − re ensure the existence of the tree T as a

transversal. Later we will prove that this is true for every graph H: see Theorem 4.4.

Proof. We prove the theorem by induction on the number of vertices. We will use

Theorem 3.1. First we show that if the edge densities ensure the existence of the factor T ,

then

F(re, t) > 0

for all t ∈ [0, 1].

Clearly,

F(re, t) = F(ret, 1).

It is also trivial that if that the densities γe = 1 − re ensure the existence of a factor T ,

then the densities γe = 1 − tre (t ∈ [0, 1]) ensure the existence of a factor T . Hence we

only need to prove that if the densities γe = 1 − re ensure the existence of a factor T then

F(re, 1) > 0.

We will use the notation of Theorem 3.1. By induction and Theorem 3.1 we have

FT ′(r′
e, 1) > 0. Now we repeat the argument of Lemma 3.6.

As before, we can expand FT ′ according to whether a monomial contains xk,n−1

(ek,n−1 ∈ E(T ′)) or not. Each monomial can contain at most one of the variables xk,n−1

(vk ∈ N(vn−1)). Thus

FT ′(xe, t) = Q0(xe, t) −
∑

vk∈N(vn−1)

txk,n−1Qk(xe, t),

where Q0 consists of those terms which contain no xk,n−1 and −txk,n−1Qk consists of those

terms which contain xk,n−1, i.e., these terms correspond to the matchings containing the
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edge (vk, vn−1). We have

FT (xe, t) = (1 − txn−1,n)Q0(xe, t) −
∑

vk∈N(vn−1)

txk,n−1Qk(xe, t)

by the same argument.

Hence

0 < FT ′(r′
e, 1) = Q0(re, 1) −

∑
vk∈N(vn−1)

rk,n−1

1 − rn−1,n
Qk(re, 1).

So we get that

0 < (1 − rn−1,n)FT ′(r′
e, 1) = (1 − rn−1,n)Q0(re, 1) −

∑
vk∈N(vn−1)

rk,n−1Qk(re, 1) = FT (re, 1).

This completes one direction of the proof.

Now we assume that F(re, t) > 0 for all t ∈ [0, 1]. We prove by contradiction that the

edge densities γe ensure the existence of factor T . Assume that Algorithm 3.2 stops with

some re◦ � 1. We will call e◦ the violating edge. In the next step we show that for some

t ∈ [0, 1] we can ensure that the algorithm stops with re◦(t) = 1 when we start with the

edge densities γe = 1 − tre.

First of all, let us examine what happens if we decrease the re. If 0 < re � r∗
e and

0 < rf � r∗
f , then

re

1 − rf
� r∗

e

1 − r∗
f

.

Hence all the ri decrease under the algorithm if we decrease t.

If we set t = 0, then for the edge densities γe = 1 − tre the algorithm gives 1 for all

densities which show up. Since we are changing t continuously, all densities will change

continuously, and we can choose an appropriate t ∈ [0, 1] for which, by running our

algorithm with tre instead of re, we can assume that the algorithm stops with re◦(t) = 1.

Now consider those vertices and edges, together with the violating edges which were

deleted when executing the algorithm. These edges form a forest. Consider the components

of this forest which contains the violating edge. Let us call this subtree T1. According

to Lemma 3.6 our chosen t is the root of the matching polynomial of T1 (clearly, only

the deleted edges modified the weight of the violating edge). On the other hand, we

know from Corollary 3.5 that the matching polynomial of T has a smaller root than the

matching polynomial of T1. This means that the matching polynomial of T has a root in

the interval [0, 1], contradicting the condition of the theorem.

Corollary 3.8. Let T be a tree and assume that all edge densities γe satisfy γe > 1 − 1
λ(T )2

,

where λ(T ) is the largest eigenvalue of the adjacency matrix of T . Then the densities γe
ensure the existence of factor T . If all γ = 1 − 1

λ(T )2
, then there exists a weighted blow-up

of T not containing T as a transversal. In other words,

dcrit(T ) = 1 − 1

λ(T )2
.
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Figure 3. The complement of a special blow-up graph of a tree.

Proof. We can assume that all edge densities are equal to 1 − d > 1 − 1
λ2 . In this case

dt < 1
λ(T )2

for all t ∈ [0, 1], and so

0 < φT

(
1√
dt

)
= (dt)−n/2FT (dt, 1) = (dt)−n/2FT (d, t)

by Lemma 3.3. By Theorem 3.7 this implies that the set of edge densities {γe} ensures the

existence of factor T . Theorem 3.7 also implies that there exists a weighted blow-up with

weights γ = 1 − 1
λ(T )2

of T not containing T as a transversal.

Finally we recall a structure theorem concerning the critical edge density of trees.

Proposition 3.9 ([12]). Let T be a tree. Let us consider the following blow-up graph G[T ]

of T . Let the cluster Ai consist of the vertices vij where j ∈ N(i). If (i, j) ∈ E(T ) then we

connect all vertices of Ai and Aj except vij and vji. Then G[T ] does not contain T as a

transversal.

Proof. We have to prove that one cannot avoid choosing both end vertices of a

complementary edge (vij , vji) if one chooses one vertex from each cluster. This is indeed

true, since the set of all vertices of G[T ] can be decomposed to (n − 1) such pairs. Since

we have to choose n vertices we have to choose both vertices from such a pair.

We show that we can give weights to the vertices of G[T ] constructed above such that

the density will be 1 − 1
λ2 where λ = λ(T ). The following weighting was the idea of András

Gács [8].

Recall that there exists a non-negative eigenvector x belonging to the largest eigenvalue

λ of T . So, if the vi are the vertices of T , then we have

λxi =
∑
j∈N(i)

xj
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for all i. Now let us define the weight wij of the vertex vij of G[T ] as follows: wij =
xj
λxi

� 0.

Then we have

w(Ai) =
∑
j∈N(i)

wij =
∑
j∈N(i)

xj

λxi
= 1.

Furthermore,

d(Ai, Aj) = 1 − wijwji = 1 − xj

λxi

xi

λxj
= 1 − 1

λ2
.

4. General bounds

Our next aim is to prove good bounds on the critical edge density. Recall that (1 − 1
Δ(H)

) �
dcrit(H) � (1 − 1

Δ2(H)
) was known before: see Proposition 2.4. Our approach is probabilistic.

First we give a bound applying the Lovász local lemma. In fact, we can copy the argument

of [1].

Theorem 4.1 (Lovász local lemma, symmetric case [1]). Let A1, A2, . . . , An be events in an

arbitrary probability space. Suppose that each event Ai is mutually independent of all other

events, but at most Δ of them. Furthermore, assume that for each i,

P(Ai) � 1

e(Δ + 1)
,

where e is the base of the natural logarithm. Then

P(∩n
i=1Ai) > 0.

Theorem 4.2. Let Δ be the largest degree of the graph H and let dcrit(H) be the critical

edge density. Then

dcrit(H) � 1 − 1

e(2Δ − 1)
,

where e is the base of the natural logarithm.

Proof. We use proof by contradiction. Assume that there exists a blow-up graph G[H]

of the graph H with edge densities greater than 1 − 1
e(2Δ−1)

which does not induce H .

We can assume that all classes of the blow-up graph G[H] contain exactly N vertices.

Indeed, we can approximate each weight by a rational number so that every edge density

is still larger than 1 − 1
e(2Δ−1)

. Then we ‘blow up’ the construction by the common

denominator of all weights.

Let us choose a vertex from each class with equal probability 1/N, independently of

each other. Let f be an edge of the complement of the graph G[H] with respect to H . Let

Af be the event that we have chosen both end nodes of the edge f (clearly a bad event

we would like to avoid). Then P(Af) = 1/N2 and Af is independent from all events Af′ ,

where the edge f′ has end vertices in different classes. Thus Af is independent from all but
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at most (2Δ − 1)rN2 bad events where r = 1 − dcrit(H). Since r < 1
e(2Δ−1)

, the condition of

Lovász local lemma is satisfied, and gives that

P(∩
f∈E(G[H]|H)

Af) > 0.

which means that G[H] induces the graph H (with positive probability), contradicting the

assumption.

Next, we use a generalization of the Lovász local lemma to improve on the bound of

Theorem 4.2.

Theorem 4.3 (Scott and Sokal [13]). Assume that, given a graph G, there is an event Ai

assigned to each node i. Assume that Ai is mutually independent of the events {Ak | (i, k) ∈
E(G)}. Set P(Ai) = pi.

(a) Assume that I((G, p), t) > 0 for all t ∈ [0, 1]. Then we have

P(∩i∈V (G)Ai) � I((G, p), 1) > 0.

(b) Assume that I((G, p), t) = 0 for some t ∈ [0, 1]. Then there exists a probability space and

a family of events Bi with P(Bi) � pi and with dependency graph G such that

P(∩i∈V (G)Bi) = 0.

Theorem 4.4. Assume that for the graph H we have FH (re, t) > 0 for all t ∈ [0, 1] and some

weights re ∈ [0, 1] assigned to each edge. Then the densities γe = 1 − re ensure the existence

of H as a transversal.

Proof. As before, we choose a vertex from each cluster independently of each other.

We choose the vertex u from the cluster Vi of the graph G[H] with probability w(u). We

would like to show that we do not choose both end vertices of an edge of the complement

G[H]|H with positive probability. Let f = (u1, u2) be an edge of the G[H]|H . Let Af be

the event that we have chosen both end nodes of the edge f (clearly, a bad event we

would like to avoid). Then P(Af) = w(u1)w(u2) and Af is independent from all events Af′ ,

where the edge f′ has end vertices in different classes. Now let us consider the weighted

independence polynomial of the graph determined by the vertices Af in which we connect

Af and Af′ if there exists a cluster containing end vertices of both f and f′. In this graph,

the events Af , where f goes between the fixed clusters Vi, Vj , not only form a clique but it

is also true that they are connected to the same set of events. Hence we can replace them

by one vertex of weight ∑
(u1 ,u2)∈E(G[H](Vi∪Vj ))

w(u1)w(u2) = rij

without changing the weighted independence polynomial. But then the obtained weighted

independence polynomial is

I((LH, re), t) = FH (re, t) > 0

https://doi.org/10.1017/S0963548312000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000016


The Density Turán Problem 545

for t ∈ [0, 1]. Then, by the Scott–Sokal theorem we have

P(∩
f∈E(G[H]|H)

Af) � F((H, re), 1) > 0.

Corollary 4.5. Let Δ be the largest degree of the graph H and let t(H) be the largest root

of the matching polynomial. Then, for the critical edge density dcrit(H) we have

dcrit(H) � 1 − 1

t(H)2
.

In particular,

dcrit(H) < 1 − 1

4(Δ − 1)
.

Proof. Let γe = 1 − r for every edge e ∈ E(H), where r < 1
t(H)2

. Then

FH (r, t) =

n∑
k=0

(−1)kmk(H)rktk = (rt)n/2M(H,
1√
rt

) > (rt)n/2M(H, t(H)) = 0

for t ∈ [0, 1]. Hence the set of densities {γe} ensures the existence of the graph H . Thus

dcrit(H) � 1 − r for every r < 1
t(H)2

. Hence

dcrit(H) � 1 − 1

t(H)2
.

The second claim follows from the fact that t(H) < 2
√

Δ − 1: see [11].

5. Star decomposition

In this section we examine a large class of blow-up graphs that do not induce a given

graph as a transversal. Assume that H = H1 ∪ {vn} and we have a blow-up graph of H1

which does not induce H1 as a transversal. We can construct a blow-up graph of H not

inducing H as follows. Let An = {wn} be the blow-up of vn. Furthermore, assume that

NH (vn) = {v1, v2, . . . , vk} with the corresponding clusters A′
1, . . . , A

′
k in the blow-up of H1.

Then let Ai = A′
i ∪ {wi} if 1 � i � k, and we leave unchanged all other clusters. Let us

connect wn to each elements of A′
i (1 � k � n) and connect wi to every possible neighbour

except wn. All other pairs of vertices remain adjacent or non-adjacent as in the blow-up

of H1.

Now it is clear why we call this construction a star decomposition: the complement of

the construction with respect to G[H] consists of stars (see Figure 4).

This new blow-up graph will clearly not induce H as a transversal.

Although we gave a construction of a blow-up of the graph H not inducing H , this is

only one half of a full construction, since we can vary the weights of the vertices of the

blow-up graph. Of course, we would like to choose the weights optimally. But what does

this mean? Assume that we are given densities for all edges of H and we wish to make

a construction iteratively as described in the previous paragraph, and now we would like
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Figure 4. Star decomposition of the wheel, the complement of the construction.
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Figure 5. A monotone-path tree of the wheel on 5 vertices.

to choose the weights so that the edge densities are at least as large as the required edge

densities. To quantify this argument we need some definitions.

Definition. A proper labelling of the vertices of the graph H is a bijective function f

from {1, 2, . . . , n} to the set of vertices such that the vertex set {f(1), . . . , f(k)} induces a

connected subgraph of H for all 1 � k � n.

Definition. Let there be given a weighted graph H with a proper labelling f, where the

weights on the edges are between 0 and 1. The weighted monotone-path tree of H is defined

as follows. The vertices of this graph are the paths of the form f(i1)f(i2) · · · f(ik), where

1 = i1 < i2 < · · · < ik , and two such paths are connected if one is the extension of the

other with exactly one new vertex. The weight of the edge connecting f(i1)f(i2) · · · f(ik−1)

and f(i1)f(i2) · · · f(ik) is the weight of the edge f(ik−1)f(ik) in the graph H .

The monotone-path tree is the same without weights.

Theorem 5.1. Let H be a properly labelled graph with edge densities γe, and let Tf(H) be

its weighted monotone-path tree with weights γe. Assume that these densities do not ensure
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the existence of the factor Tf(H). Then there is a construction of a blow-up graph of H not

inducing H as a transversal and all densities between the clusters are at least as large as

the given densities.

Remark. So this theorem provides a necessary condition for the densities ensuring the

existence of factor H . In fact, this gives as many necessary conditions as there are proper

labellings of the graph H . The advantage of this theorem is that we already know the

case of trees substantially.

Proof. We prove the statement by induction on the number of vertices of H . For n = 1, 2

the claim is trivial since H = Tf(H). Now assume that we already know the statement for

n − 1, and we need to prove it for |V (H)| = n.

We know from Theorem 3.1 that the densities γe ensure the existence of factor T =

Tf(H) if the corresponding γ′
e ensure the existence of factor T ′. Let us apply this theorem

as follows. We delete all vertices (monotone paths) of Tf(H) which contain the vertex

f(n). The remaining tree will be a weighted path tree of H1 = H − {f(n)}, where the new

labelling is simply the restriction of f to the set {1, 2, . . . , n − 1}. (We will denote this

restriction by f too.) By induction there exists a blow-up graph of H1 not inducing H1 as

a transversal, and all densities between the clusters are at least γe(Tf(H1)), where we can

also assume that the total weight of each cluster is 1.

Now we can do the construction described at the beginning of this section. Let f(n) = u

and NH (u) = {u1, . . . , uk}. Let the weight of the new vertex wi ∈ Ai be (1 − γuui ) and the

weights of the other vertices of the cluster be γuui times the original one. Clearly, between

the clusters An and Ai (1 � i � k), the weight is just γuui as required. What about the

other densities? First of all let us examine the γ′
e. Let us consider the adjacent vertices

f(1) · · · f(i) and f(1) · · · f(i)f(j) of Tf(H1). If both f(i), f(j) ∈ NH (u), then we deleted the

vertices f(1) · · · f(i)f(n) and f(1) · · · f(i)f(j)f(n) from Tf(H), changing γe = 1 − re to

1 − re

γf(n)f(i)γf(n)f(j)
.

If only one of the vertices f(i) or f(j) was connected to f(n), then we can still easily follow

the change,

γ′
e = 1 − re

γf(n)f(i)
,

if f(i) was connected to f(n). If none of them was connected to f(n), then there is no

change. But in all cases we do exactly the inverse of this operation at the blow-up graphs,

ensuring that the new densities are at least γe.

Corollary 5.2. Let S(H) be the set of proper labellings of the graph H . The critical density

of the graph H is at least

max
f∈S (H)

{
1 − 1

λ(Tf(H))2

}
.
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Remark. If each edge density is equal to 1 − 1
λ(Tf (H))2

, then there is a straightforward

connection between the weights of the constructed blow-up graph and the eigenvector of

the tree Tf(H) belonging to the eigenvalue λ(Tf(H)). This connection is very similar to

the one given by András Gács.

5.1. The main conjecture and a counterexample

The following conjecture seems a natural one following the case for trees.

Conjecture 5.3 (General Star Decomposition Conjecture). Let H be a graph with edge

densities γe. Assume that for each proper labelling f, the weights as densities of the weighted

monotone-path tree ensure the existence of the graph Tf(H). Then the given densities ensure

the existence of the graph H .

The following conjecture states that the bound on the critical edge density coming from

Corollary 5.2 is sharp.

Conjecture 5.4 (Uniform Star Decomposition Conjecture). Let S(H) be the set of proper

labellings of the graph H . The critical density of the graph H satisfies

dcrit = max
f∈S (H)

{
1 − 1

λ(Tf(H))2

}
.

Remark. So the General Star Decomposition Conjecture asserts that for every graph and

every weighting (or edge densities), the best we can do is to choose a good order of the

vertices and construct the ‘stars’. The Uniform Star Decomposition Conjecture is clearly

a special case of this conjecture when all edge densities are the same for every edge.

The General Star Decomposition Conjecture is true for the triangle in the sense that, for

every weighting, the star decomposition of a suitable labelling gives the best construction

or shows that there is no suitable blow-up graph. This is a theorem of Bondy, Shen,

Thomassé and Thomassen: see Lemma 2.5 or [5]. As we have seen, this conjecture is also

true for trees. We show that it also holds for cycles.

Theorem 5.5. The General Star Decomposition Conjecture holds for Cn.

We only sketch the proof, since the inhomogeneous condition of edge densities of Cn

is needed here, which can be constructed in a similar way to the homogeneous case,

described in the 4th section of [12]. The details will be left to the reader.

Proof (Sketch). Notice that a key statement in the proof of d(Cn) = d(Pn+1) [12] was to

make a correspondence between the constructions for Cn and Pn+1. In our terminology,

this correspondence is exactly the one between the cycle and its monotone-path tree,

which is in fact a path on n + 1 vertices.
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Figure 6. Weighted bow-tie and its weighted blow-up graph of the complement.

Hence the proof can be constructed as follows. First, by applying Theorem 2.1 we

can assume that each cluster has size at most 2. Then it turns out that, just as in the

homogeneous case [12], there is only one candidate for the edge-construction to give the

best construction with appropriate weighting. In fact, this edge construction is exactly

Construction 4.1 in [12].

Then, slightly modifying Lemma 4.5 in [12], we can obtain that one may assume that

one of the clusters has cardinality 1, which provides the correspondence of the construction

of cycles and paths. In this case we have n different paths depending on the starting vertex,

and these are exactly the monotone-path trees of the cycle.

However, in the following we will show that the General Star Decomposition Conjecture

is in general false. Thus it seems very unlikely that the Uniform Star Decomposition

Conjecture is true. Still, it is a meaningful question to ask for which graphs one or

both conjectures hold. The authors strongly believe that the Uniform Star Decomposition

Conjecture is true for complete graphs and complete bipartite graphs.

Our counterexample for the General Star Decomposition Conjecture is a weighted

bow-tie given by Figure 6. It is not a star decomposition in the sense we constructed it,

while it is indeed a good construction: whatever we choose from the middle cluster, we

cannot choose its neighbours (since it is the complement), but then we have to choose the

other vertices from the corresponding clusters, but they are connected in the complement.

We will show that the given construction of the blow-up graph is best possible in the

following sense. If for some blow-up graph the edge densities are at least as large as the

required densities and one of them is strictly greater, then it induces the bow-tie as a

transversal. We will also show that no star decomposition can attain the same densities.

Before we prove it we need some preparation. We prove a lemma which can be

considered as a generalization of Theorem 3.1.

Lemma 5.6. Let H1, H2 be two graphs and let u1 ∈ V (H1) and u2 ∈ V (H2). Let us denote by

H1 : H2 the graph obtained by identifying the vertices u1, u2 in H1 ∪ H2. Let 0 < m1, m2 < 1

such that m1 + m2 � 1. Furthermore, assume that an edge density γe = 1 − re is assigned to
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every edge. If the edge densities

γ′
e =

{
γe = 1 − re if e ∈ E(H1) is not incident to u1,

1 − re
m1

if e ∈ E(H1) is incident to u1

ensure the existence of a transversal H1, and the edge densities

γ′
e =

{
γe = 1 − re if e ∈ E(H2) is not incident to u2,

1 − re
m2

if e ∈ E(H2) is incident to u2

ensure the existence of a transversal H2, then the edge densities {γe} ensure the existence of

a transversal H1 : H2.

Proof. Let G[H1 : H2] be a weighted blow-up graph of H1 : H2 with edge density {γe}.
Let

R1 = {v ∈ Au1=u2
| v can be extended to a transversal H1 ⊂ G[H1]}

and

R2 = {v ∈ Au1=u2
| v can be extended to a transversal H2 ⊂ G[H2]}.

We show that ∑
v∈R1

w(v) > 1 − m1 and
∑
v∈R2

w(v) > 1 − m2.

But then, since m1 + m2 � 1 there would be some v ∈ R1 ∩ R2, which we could extend

to a transversal of H1 and H2 as well, and thus we could find a transversal H1 : H2.

Naturally, it is enough to prove that
∑

v∈R1
w(v) > 1 − m1, because of the symmetry.

We prove it by contradiction. Assume that
∑

v∈R1
w(v) = 1 − t � 1 − m1. Let us erase all

vertices belonging to R1 from Au1=u2
, and let us give the weight w(u)

t
to the remaining

vertices u ∈ Au1=u2
− R1. Then we obtain a weighted blow-up graph G′[H1] in which every

edge density is at least γ′
e (e ∈ E(H1)). But then the assumption of the lemma ensures the

existence of a transversal H1, which contradicts the construction of G′[H1].

Now we are ready to prove that the construction given above is best possible.

Counterexample 5.7. For graph H , let

V (H) = {v1, v2, v3, v4, v5}, and

E(H) = {v1v2, v1v3, v1v4, v1v5, v2v3, v4v5}.

Furthermore, assume that the edge densities of the blow-up graph G[H] satisfy the inequal-

ities γ12, γ13, γ14, γ15 � 0.85, γ23, γ45 � 0.51, and at least one of the inequalities is strict. Then

G[H] contains H as a transversal.

Proof. We can assume by symmetry that at least one of the strict inequalities γ12 > 0.85

or γ23 > 0.51 holds. Let us apply Lemma 5.6 with H1 = H(v1, v2, v3) and H2 = H(v1, v4, v5),
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Figure 7. Star decompositions of bow-ties.

u1 = u2 = v1, densities γij and m1 = 1/2 − ε, m2 = 1/2 + ε, where ε is a very small positive

number chosen later. Then

γ′
ijγ

′
jk + γik − 1 = 1 − r′

12 − r′
13 − r′

23 + r′
ijr

′
jk > 0

for any permutation i, j, k of {1, 2, 3}. Indeed, since 0.3 = 0.15
0.5

, we have

1 − 0.3 − 0.3 − 0.49 + 0.3 · 0.49 > 1 − 0.3 − 0.3 − 0.49 + 0.3 · 0.3 = 0,

and one of the rij is strictly smaller than 0.3 or 0.49, and so for small enough ε,

the expression 1 − r′
12 − r′

13 − r′
23 + r′

ijr
′
jk is positive. Hence by Lemma 2.5 it ensures the

existence of a triangle transversal. For the other triangle, r′
14 = r14

1/2+ε
< 0.3 and similarly,

r′
15 < 0.3 and r45 � 0.49. Again by Lemma 2.5 it ensures the existence of a triangle

transversal. By Lemma 5.6 we obtain that there exists a transversal H in G[H].

Proposition 5.8. There is no weighted blow-up graph of the bow-tie arising from the star

decomposition that is at least as good as the weighted blow-up graph in Figure 7.

Proof. Because of the symmetry, and since we only need to consider the star decompos-

itions where the labelling is proper, we only have to consider two star decompositions.

Because of Counterexample 5.7, all edge densities must be exactly the required one. This

makes the whole computation routine.

5.2. The complete bipartite graph case

Let dcrit(Kn,m) = d(n, m) be the critical edge density of the complete bipartite graph Kn,m.

Let ds(n, m) be the best edge density coming from the star decomposition (s stands for

star in ds).

If one starts to do the star decomposition to Kn,m, then we have the recursion

ds(n, m) =
1

2 − ds(n, m − 1)
or

1

2 − ds(n − 1, m)
,
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Figure 8. Two constructions for G = K2,3 attaining ds(2, 3).

according to which class contains the vertex f(n + m). Although we have two possibilities,

the recursion has only one solution, namely

ds(n, m) = 1 − 1

n + m − 1

since d(1, 1) = ds(1, 1) = 0. From this we gain an interesting fact.

Theorem 5.9. For any proper labelling f of the graph Kn,m, the tree Tf(Kn,m) has spectral

radius
√
n + m − 1.

Remark. In this case a proper labelling simply means that f(1) and f(2) are elements of

different classes in the bipartite graph.

For different proper labellings these trees can look very different, but as the theorem

shows, their spectral radii are the same. In fact, it turns out that not only their spectral

radius but all their eigenvalues too are of the form ±
√
n, where n is a non-negative integer.

These are the same trees defined in the paper [6].

Conjecture 5.10. dcrit(Kn,m) = ds(n, m) = 1 − 1
n+m−1

.

Remark. Conjecture 5.4 clearly implies Conjecture 5.10, but the authors have the feeling

that Conjecture 5.10 is true while Conjecture 5.4 may not hold.

If Conjecture 5.10 holds it would have an interesting consequence. In the case of trees

and cycles the extremal construction is unique, and so it is conjectured for the complete

graphs. However, this would not stand in the case of complete bipartite graphs: there

would be several different types of constructions depending on the proper labelling (see

Figure 8).
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