
Macroeconomic Dynamics, 11, 2007, 272–289. Printed in the United States of America.
DOI: 10.1017.S1365100506060068

NOTES

A NOTE ON THE CONSEQUENCES
OF AN ENDOGENOUS
DISCOUNTING DEPENDING ON
THE ENVIRONMENTAL QUALITY

ALAIN AYONG LE KAMA
MEDEE
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Our intention is to study, in the framework of a very simple optimal growth model, the
consequences on the optimal paths followed by consumption and the environmental
quality of an endogenous discounting. Consumption directly comes from the use of
environmental services and so is a direct cause of environmental degradation. The
environment is valued both as a source of consumption and as an amenity. For a
sustainability concern, we introduce an endogenous discount rate growing with the
environmental quality, and compare the optimal growth paths with the ones obtained in
the usual case of exogenous and constant discounting. We show that the convergence of
the environmental quality toward a steady state occurs only for a very special
configuration of the parameters in the exogenous discounting case, whereas it occurs
generically in the endogenous discounting one. This happens for a utility discount rate
becoming sufficiently high when the environmental quality is high and sufficiently low
when the environmental quality is poor. In this case, then, endogenous discounting with a
positive marginal discount rate allows us to avoid the depletion of the environment.
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1. INTRODUCTION

Optimal growth models usually make the assumption of a constant and strictly
positive utility social discount rate. This practice has long been questioned, but is
still widely used, maybe because of the lack of a convincing alternative.

The first doubt goes back at least to the well-known criticisms by Ramsey and
Harrod of a strictly positive utility social discount rate [Ramsey (1928), Harrod
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(1948)], and has led to the so-called undiscounted utilitarianism. But Koopmans
(1960) has stressed the drawbacks of this approach: it usually leads to unrealisti-
cally high optimal saving rates for the present and near-future generations, and so
to a sacrifice of the present and of the near future instead of the supposed sacrifice
of the far future implied by a positive discount rate. Nevertheless, the temptation
of a zero rate of discount is still very present as far as the environment is concerned
because of the very long horizon often involved in environmental matters1 [see,
for a comprehensive view of discounting and the environment, the contributions
collected in the book edited by Portney and Weyant (1999)].

The usual approach has been challenged by authors arguing that the utility dis-
count rate should be neither constant and positive nor zero but should be decreasing
in the course of time. They claim that empirical evidence supports that decrease.
Harvey (1994), Heal (1998), Loewenstein and Prelec (1992), Laibson (1996,
1997), and Barro (1999) propose formulas of decreasing discounting justified by
considerations of individual psychology. But the choice of a utility discount rate
in normative models is an ethical one, as stressed by Heal (1998) and Ayong Le
Kama (2001), and it is less than obvious that a social planner should only reflect in
this choice the representative consumer’s psychology. Gollier (2002a, 2002b) and
Weitzman (1998) justify decreasing discounting in a partial equilibrium setup by
the uncertainty on the future growth rate of the economy or on the future interest
rate. Li and Löfgren (2000) study an economy with heterogeneous agents differing
by their utility discount rate (constant and exogenous) but identical in all other
respects. They show that this economy behaves as if there was a unique represen-
tative agent with a decreasing discount rate, tending in the long run toward the rate
of the more patient agent. Here, the decreasing discount rate is not an assumption
but a consequence of the heterogeneity.

Another strand of literature, disconnected from environmental concerns, studies
the question of habit formation, and introduces a utility discount factor depending
on present and past consumption levels [Epstein (1987), Becker, Boyd, and Sung
(1989), Obstfeld (1990), Das (2003)]. Obstfeld (1990) gives a formal treatment of
the simple optimal growth model with this utility discount factor, and concludes
that most of the time this assumption does not qualitatively change the optimal
growth paths, in comparison with the case of an exogenous constant discount rate.

We want here to extend Obstfeld’s approach to a growth model in which envi-
ronment matters [Pittel (2002) has the same objective in a different framework].
We consider two ways by which the environmental quality could affect the social
intertemporal welfare: the usual direct effect of the current level of environmental
quality on instantaneous utility (amenity effect), and a less usual indirect effect
of current and past levels of environmental quality on the utility discount factor.
This discount factor now depends on the path of environmental quality through
time. Utility is no longer time-separable, tastes are intertemporally dependent.
The discount rate depends on the current state of the environment. In addition, we
make the assumption of a positive marginal impatience: the discount rate increases
with the level of the environmental quality.
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It is possible to rationalize this ethical choice of an endogenous utility discount
rate depending on the environmental quality and increasing with it by a sustainable
development motive. Society could express in this way a form of intergenerational
altruism, consisting in deciding to discount the future at a rate all the lower because
the environmental quality is low. That could be a way of introducing sustainability
concerns in optimal growth models.2

We then try to elucidate the consequences of such an ethical choice. These
consequences are very hard to assess in complex growth models with capital accu-
mulation. Thus, we use a simple framework in which consumption directly comes
from the use of environmental services, and so directly causes environmental
degradation.3

We first study the evolution of the economy and the environment with an
exogenous and constant discount rate (Section 2), as a benchmark for the study
of the endogenous utility discount case. We present and discuss in Section 3 the
assumptions made about the endogenous discount factor and their consequences,
and then characterize all the types of optimal paths that the economy can follow
under these assumptions. We show that the convergence of the environmental
quality toward a steady state occurs only for a very special configuration of the
parameters in the exogenous discounting case, whereas it occurs generically in the
endogenous discounting one. This happens for a utility discount rate becoming
sufficiently high when the environmental quality is high and sufficiently low when
the environmental quality is poor. Section 4 concludes.

2. THE ECONOMY WITH A CONSTANT DISCOUNT RATE

2.1. The Model

We introduce an optimal growth model with an environmental asset. This asset
can be seen as natural capital or as the environmental quality. It is valued both as
a source of consumption of environmental services and as a stock of amenities.
The stock of environmental asset S is depleted by consumption C, but regenerates
itself at a rate m > 0 taken as constant for simplification. Its dynamics is then
described by:

Ṡt = mSt − Ct . (1)

The objective of the social planner is to maximize the present value of the
life-time utility of the representative consumer over an infinite horizon. The rep-
resentative consumer derives felicity4 u(.) not only from consumption but also
from environmental quality. The future felicities are discounted at the constant
rate ρ > 0. Let C = [Ct ]∞0 and S = [St ]∞0 represent some consumption and envi-
ronmental quality paths respectively. The social planner seeks to maximize:

max U(C, S) =
∫ +∞

0
e−ρtu(Ct , St ) dt, (2)
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subject to: ⎧⎨⎩ Ṡt = mSt − Ct,

Ct ≥ 0, St ≥ 0,

S0 given.
(3)

Assumption 1. The felicity function u (.) is continuous, twice differentiable,
and possesses the following properties:5 ∀C, S > 0, uC > 0, uS > 0, uCC ≤ 0. It is
also concave with respect to its two arguments: uCCuSS − (uCS)

2 ≥ 0.

The constant-value Hamiltonian of the previous problem is:

H = u(C, S)e−ρt + λ̃(mS − C),

where λ̃ ≥ 0 is the co-state variable associated with the environmental quality.
The first order necessary conditions then give us:

λ = uC, (4a)

λ̇

λ
= ρ − m − φ(C, S)

C

S
, (4b)

where λ = λ̃eρt , and the transversality condition writes:

lim
t→∞ e−ρtλtSt = 0. (4c)

φ(C, S) ≡ SuS/CuC > 0 by assumption 1 is the ratio of the values of environ-
mental quality and consumption, both evaluated at their marginal felicity. φ (.)

then reflects the “relative preference for the environment” of the representative
agent.

Differentiation of equation (4a) with respect to time leads to the following
result: λ̇/λ= η1(Ċ/C) + η2(Ṡ/S), where η1 = CuCC/uC < 0 is the elasticity of
the marginal felicity of consumption with respect to the level of consumption and
η2 = SuCS/uC � 0 is the elasticity of the marginal felicity with respect to the
level of environmental quality. Substituting this relationship into (4b) yields:

η1
Ċ

C
+ η2

Ṡ

S
= ρ − m − φ (C, S)

C

S
. (5)

2.2. The Balanced Growth Path (BGP)

2.2.1. Existence of a BGP. Given the equation of motion of the environmental
quality (1), if the growth rate of the environmental quality is constant along the
optimal path, then the ratio C/S is also constant, which indicates that C and S grow
at the same rate. Let g be this common rate. We have C/S = m − g. Substituting
g into (5) leads to:

g = ρ − [1 + φ(C, S)]m

η1 + η2 − φ(C, S)
.
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Therefore, the feasibility of the BGP, that is the constancy of g, requires:

Assumption 2. (i) The elasticities of the marginal felicity of consumption with
respect to consumption, η1, and environmental quality, η2, are constant; (ii) the
relative preference for the environment is constant, that is, φ(C, S) = φ, ∀(C, S).6

These restrictions7 give rise to a nonseparable felicity function of the CRRA-
type:

u(C, S) = (CSφ)1−1/σ

1 − 1/σ
, (6)

where σ = −1/η1 > 0 is the intertemporal elasticity of substitution of consump-
tion.

Assumption 3. σ < 1.

This assumption is sufficient to ensure the concavity of the felicity function.8

It implies that the marginal felicity of consumption decreases with the level of
environmental quality: uCS < 0. Furthermore, with σ < 1, the felicity function
(6) is negative and thus bounded from above.

It is easy to show that, with the specification of the felicity function (6), the
growth rate along the BGP is:

g = σ

(
m − ρ

1 + φ

)
, (7)

which may be positive or negative, depending on the parameters.9 We also can
notice that the optimal growth rate is bounded from above: g ≤ σm = limρ→0 g.

σm therefore reflects the highest growth rate that society can expect; it depends
on the regenerative capacities of the environment.

In addition, as S is evolving along the BGP at the rate g and λ at the rate
ρ − m − φ(m − g), the transversality condition (4c) is fulfilled if and only if
(g −m)(1+φ) < 0, that is, g < m. Given that we have assumed σ < 1, the upper
bound of g is strictly lower than m: g ≤ σm < m. The transversality condition is
always satisfied.

2.2.2. Properties of the BGP. Introducing the stationary variable x = C/S,

we easily show, using the equation of motion of the environmental quality (1) and
equation (5), that the dynamic system characterizing the evolution of the economy
and the environment reduces to a single equation in x,

ẋ

x
= (1 + φ)(x − x̃), (8)

where x̃ > 0 is the stationary ratio of consumption to environmental quality along
the BGP. By (1) and (7), we have:

x̃ = m − g = (1 − σ)m + σρ

1 + φ
. (9)
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Equation (8) is unstable. If the x ratio is higher than x̃, the environmental quality
will be consumed completely, and if on the contrary it is lower, the environmental
quality will grow without bounds and consumption will be driven to zero. The x

ratio then takes from the initial time its stationary value x̃, and initial consumption
is C0 = x̃S0 = [(1 − σ)m + σρ/(1 + φ)]S0.

3. THE ECONOMY WITH AN ENDOGENOUS DISCOUNT RATE

3.1. The Model

We now introduce an economy in which the social planner uses a discount factor
based on the historical path of the environmental quality. In all other respects,
the economy is the same as in the previous section. The intertemporal discounted
utility function, with variable discount rate, of a representative consumer is now
given by:

U(C, S) =
∫ +∞

0
e−�t u(Ct , St ) dt, (10)

where the felicity function u(.) satisfies assumptions 1, 2 and 3. The future felicities
are discounted at time t with a discount factor equal to e−�t , where �t ≥ 0 is
assumed to depend on the past and current levels of the environmental quality, as
described by the following equation:

�t =
∫ t

0
θ(Sτ ) dτ. (11)

θ(St ) = −d ln(e−�t )/dt ≥ 0, ∀St , is the utility discount rate at time t .10

In the case of an endogenous discounting depending on the past and current lev-
els of consumption, there is considerable disagreement over whether the marginal
discount rate should be positive or negative [see Obstfeld (1990)]. Loosely speak-
ing, a positive marginal rate means that rich people are more impatient than poor
ones. This assumption is frequently made in the literature related to the question
of habit formation, but never satisfactorily justified [see Epstein (1987)]. Obstfeld
(1990) justifies his adoption of this assumption by the fact that it is necessary for
the convergence of his model. Das (2003) shows that this is not a general property
of models with habit formation, which can, under some additional assumptions,
be stable even with a negative marginal discount rate. Whatever the psychological
explanations that underline each approach, our view is that the final choice is
normative. Moreover, we think that the fact that impatience should be increasing
or decreasing with the consumption of private goods doesn’t imply anything about
how impatience should evolve with the public natural capital.11 We require the
following.

Assumption 4. θ ′(S) > 0 and θ ′′(S) < 0, ∀S > 0.

Our choice of a discount rate increasing with the environmental quality is justi-
fied by the outcomes of the current debate about discounting and the environment
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[see Portney and Weyant (1999) for a comprehensive view of this debate]. The
main point is to find how to take into account the welfare of the far future gen-
erations properly, that the traditional exogenous exponential discounting makes
quite irrelevant, without sacrificing the welfare of the present ones; or, as has been
stressed by Chichilnisky (1996), how to avoid any dictatorship of the present and
of the future. One possible way is to use hyperbolic (decreasing) discounting, but
it leads to time-inconsistent choices. Our approach allows us to avoid this. In this
context, the positive marginal discount rate reflects the sustainability motive that
here underlies endogenous discounting: concerned by intergenerational equity, the
society chooses to discount at a rate all the smaller since the environmental quality
is low, because in this case environmental questions become pressing. The idea is
that an endogenous discounting with a positive marginal discount rate depending
on the level of the environmental quality should help to prevent or to limit further
deteriorations of the environment.

Following Obstfeld (1990), we consider �t as a second state variable that
accounts for accumulated impatience.12 Differentiating (11) with respect to time
yields

�̇t = θ(St ). (12)

The social planner’s program is therefore to maximize (10) subjects to (1)
and (12) together with the initial conditions (S0 and �0 given) and nonnegativity
constraints (Ct ≥ 0, St ≥ 0).

The constant-value Hamiltonian of the social planner’s problem is:

H(C, S,�, λ̃, µ̃) = u(C, S)e−� + λ̃(mS − C) − µ̃θ(S), (13)

where λ̃ ≥ 0 is the co-state variable associated with environmental quality, and
µ̃ is the co-state variable associated with the “stock of accumulated impatience”
[Obstfeld (1990)].

Applying Pontryagin’s maximum principle, we get the following first-order
necessary conditions for optimality:

uC = λ, (14a)

λ̇

λ
= θ(S) − m − φ

C

S
+ µ

λ
θ ′(S), (14b)

.
µ

µ
= θ(S) − u(C, S)

µ
, (14c)

where λ = λ̃e� and µ = µ̃e� [thus λ̇ − θ(S)λ =
.

λ̃e�], together with the
transversality condition:13

lim
t→∞H (t) = 0. (15)

Note that, as Obstfeld (1990) points out, when µ converges to a definite long
term value, as will be the case later, the third equation (14c) of this system can be
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integrated into:

µt =
∫ ∞

t

u(Cs, Ss)e
− ∫ s

t
θ(Sτ ) dτ ds = e�t

∫ ∞

t

e−�s u(Cs, Ss) ds, (16)

which means that µt corresponds to the discounted present value of the future flow
of felicities from the standpoint of time t . Given that we have assumed a negative
felicity function, we also have µt ≤ 0.

We prove in the Appendix that assumptions 3 and 4 ensure the strict concavity
of the maximized Hamiltonian H∗(S,�, λ̃, µ̃) = maxC H(C, S,�, λ̃, µ̃) with
respect to S and �. So the necessary conditions are also sufficient for an optimum
[Seierstad and Sydsaeter (1987)].

We now reduce the system (14a)–(14c) into a more tractable one. Following
Palivos, Wang, and Zhang (1997), recall that, along the optimal path, dH

/
dt =

∂H
/

∂t. Because the social planner’s program considered here is autonomous,
∂H

/
∂t = 0, thus, the Hamiltonian is independent of time along the optimal path.

This and the transversality condition (15) imply that H (t) = 0 ∀t along the
optimal path. We can therefore deduce:

µ = 1

θ(S)
[u(C, S) + λ(mS − C)] . (17)

The system (14a)–(14b) then writes

λ = uC, (18a)

λ̇

λ
= θ(S) − m − φ

C

S
+ θ ′(S)

θ(S)

u(C, S) − (C − mS)uC

uC

. (18b)

3.2. The Optimal Paths

Given assumptions 1 and 2, the differentiation of the first-order condition (18a)
with respect to time yields:

λ̇

λ
= − 1

σ

Ċ

C
+ φ

(
1 − 1

σ

)
Ṡ

S
.

Substituting the dynamics of the environmental quality (1) and the first-order
condition (18b) into this equation, we show that the dynamics of consumption
along the optimal path is:

Ċ

C
= φ

C

S
− σθ(S) + [σ − φ(1 − σ)]m + σε(S)

(
1

1 − σ

C

S
− m

)
, (19)

where ε(S) = Sθ ′(S)/θ(S) is the elasticity of the utility discount rate θ (.) with
respect to the environmental quality. ε(S) is positive under assumption 4. If we
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reintroduce the variable x = C/S, the dynamic system characterizing the evo-
lution of this economy is given by the motion of the ratio of consumption to
environmental quality along the optimal path:

.
x

x
=

[
1 + φ + σ

1 − σ
ε(S)

]
[x − (1 − σ)m] − σθ(S), (20)

together with the one of the environmental quality (1).
Let us assume that the utility discount rate is bounded:

Assumption 5. (i) limS→∞ θ(S) = θ is finite, and (ii) limS→0 θ(S) = θ ≥ 0.

The first part of this assumption seems reasonable: it means that when the
environmental quality becomes very high the discount rate remains bounded. θ

can be interpreted as the utility discount rate that the social planner would choose if
economic activity did not harm environmental quality, which could remain always
high. The second part of this assumption just introduces the notation used for the
lower bound of the utility discount rate, eventually equal to zero.14

Now we can study all the types of optimal scenarios that can occur with en-
dogenous discounting, given the parameters of the economy.

3.2.1. The stationary state. Let us first look at the existence of a stationary
state of the dynamic system (1) and (20).

A stationary solution (x∗, S∗) of this dynamic system is characterized by
.
x =

Ṡ = 0. Thus, equation (1) implies x∗ = m. Substituting this into (20), we easily
see that stationary solutions are values S∗ satisfying the following equation:

θ(S) = m

[
1 + φ + σ

1 − σ
ε(S)

]
. (21)

Assumption 6. ε′(S) ≤ 0, ∀S.

This assumption demands that the elasticity of the utility discount rate is de-
creasing in S. It seems reasonable, and in addition it is necessary to ensure the
stability of the stationary solution (see later).

PROPOSITION 1. Under assumptions 1–6, there exists a unique stationary
equilibrium (x∗, S∗) characterized by:{

x∗ = m,

θ(S∗) = m
[
1 + φ + σ

1 − σ
ε(S∗)

]
,

(22)

if and only if θ ≥ m(1 + φ) and θ ≤ m[1 + φ + (σ/(1 − σ))ε(0)] that is, if and
only if the upper bound of the utility discount rate is high enough vis-à-vis the
relative preference for the environment and the natural regeneration rate and the
lower bound low enough.15
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Proof. Let us consider the function f (S) = m[1 + φ + (σ/(1 − σ))ε(S)] > 0,
which corresponds to the RHS of (21). A solution S∗ of (21) will be such that
θ(S∗)= f (S∗). We know, by assumptions 4 and 5, that θ(S) is strictly increasing
from its lower bound θ (eventually equal to zero) to its upper bound θ. In addition,
f (S) is positive, and we have f ′(S) = m(σ/(1 − σ))ε′(S) ≤ 0 under assump-
tion 6. Palivos et al. (1997) show (Lemma 1, p. 212) that under assumption 5(i)
we have limS→∞ Sθ ′(S)= 0, that is, limS→∞ ε(S)= 0. Then f (S) decreases
monotically for S = 0 to +∞ from f (0)= m[1 + φ + (σ/(1 − σ))ε(0)] to
m(1 + φ). There exists, therefore, a unique value S∗ such that θ(S∗) = f (S∗)
if and only if [θ, θ ] ∩ [m(1 +φ), f (0)] 
= ∅, which reduces to θ ≥ m(1 +φ) and
θ ≤ f (0).

PROPOSITION 2. Under assumptions 1–6, the unique stationary equilibrium
(x∗, S∗) is a saddlepoint.

Proof. We can show that the Jacobian matrix of the dynamic system (1) and
(20) is:

J =
(

0 −S∗

σm
(

σ
1 − σ

mε′(S∗) − θ ′(S∗)
)

θ(S∗)

)
.

We then have trJ = θ(S∗) > 0 and:

det J = σmS∗
[

σ

1 − σ
mε′(S∗) − θ ′(S∗)

]
< 0,

because ε′(S∗) ≤ 0 by assumption 6 and θ ′(S∗) > 0 by assumption 4.

Propositions 1 and 2 state that endogenous discounting associated with a high
upper bound of the utility discount rate and a small lower bound of this rate
leads to the convergence of the economy toward a locally stable stationary state.
In the exogenous discounting case, there is a unique configuration of the pa-
rameters ensuring g = 0: the discount rate must satisfy ρ = (1 + φ)m, whereas
the existence of a stationary state is generic in the endogenous discounting case.
In addition, the steady state is unstable in the exogenous case, whereas it is
saddlepath stable in the endogenous one. This result means that endogenous
discounting with a utility discount rate becoming sufficiently high when the en-
vironmental quality is high and sufficiently low when the environment is very
depleted allows society to stabilize the environmental quality, which would ei-
ther collapse or grow infinitely with exogenous discounting. See Figure 1, in
which the ẋ = 0 curve is growing, and admits x = (1 − σ)m + σθ/(1 + φ) as an
asymptote.16

More technically, this result shows that the endogenous discounting allows
a stabilization of the environmental quality when the bounds of the discount
function are such that the range of feasible values of the ratio of consumption to
environmental quality includes the regenerative capacity of the environment, m.
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S

x

m

x

S∗

Ṡ = 0

ẋ = 0

x

FIGURE 1. The convergence toward a stationary state. Case θ > m(1 + φ), that is, x > m

and θ ≤ f (0), that is, x ≤ m.

That is: for θ(S) ∈ [θ, θ [, S ∈ [0,+∞[, a necessary condition for the existence
of a stationary solution is m ∈ [x, x[.

Let us now characterize the optimal paths when no stationary solution exists.

3.2.2. The asymptotically balanced growth path. Adapting Palivos et al.
(1997), we say that a solution of the system (1) and (20) is an asymptotically
balanced growth path if limt→∞ Ṡ/S exists and is finite (the path is nondegenerate
if this limit is strictly positive) and if limt→∞ ẋ

x
= 0. Palivos et al. (1997) show

that necessary conditions for the existence of an asymptotically balanced growth
solution of this type of problem is an asymptotically constant discount rate and an
asymptotically constant elasticity of marginal felicity. These two conditions are
by assumption fulfilled here. We then obtain the following:

PROPOSITION 3. Under assumptions 1–6, there exists a unique nondegener-
ate asymptotically balanced growth path characterized by:{

g = σ
(
m − θ

1 +φ

)
,

x = (1 − σ)m + σθ
1 +φ

,
(23)

if and only if θ < m(1 + φ), that is, the upper bound of the utility discount rate is
low enough vis-à-vis the relative preference for the environment and the natural
regeneration rate. If θ = m(1 + φ), we have a degenerate asymptotically balanced
growth path with g = 0.
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Proof. Let us suppose that there exists a constant and strictly positive growth
rate g such that limt→∞ Ṡ/S = limt→∞ Ċ

C
= g. We then have limt→∞ ẋ/x = 0.

Because g > 0, we have limt→∞ S = +∞ and assumption 5(i) can be used. As
shown by Palivos et al. (1997) (Lemma 1, p. 212), we then have limS→∞ ε(S) = 0.

The long term of the system (1) and (20) is then given by:{
g = m − x,

0 = (1 + φ)(x − (1 − σ)m) − σθ,

from which we deduce (23). By construction, this solution is valid if and only if
g > 0, that is, θ < m(1 + φ). The case θ = m(1 + φ) is straightforward.

We may notice that the asymptotic growth rate g is exactly the same as the
balanced growth rate g of the problem with exogenous discounting, provided
that θ = ρ [see equation (7)]. Then if the upper bound of the utility discount
rate is exactly the rate that would be chosen by the social planner in the case of
exogenous discounting, the endogenous discounting economy follows in the long
run the same path as the exogenous one, provided that this rate is low enough.

The system (1) and (20) is a dynamic system involving two variables: the
environmental quality S, which grows asymptotically at a constant rate, and the
ratio of consumption to environmental quality x, which is stationary in the long
run. Moreover, equation (20) makes the growth rate of x depend on the level of S,

and so S cannot be easily eliminated to obtain a system involving two variables
stationary in the long run. Nevertheless, we obtain the following results.

PROPOSITION 4. Under assumption 1–6, if the upper bound of the utility
discount rate is low enough (i.e., if θ ≤ m(1 + φ)), then along the asymptotically
balanced growth path: (i) x is lower than its long run value, that is, xt < x ∀t;
(ii) the growth rate of the environmental quality is higher than its long run value,
that is, Ṡt /St > g ∀t.

Proof. It is easy to show that equation (20) can be rewritten as:

.
x

x
=

[
1 + φ + σ

1 − σ
ε(S)

]
(x − x) + σ [θ − θ(S)] + σ 2θε(S)

(1 − σ) (1 + φ)
.

This equation shows that for any given value of x such that x ≥ x, ẋ/x > 0
and x diverges, which is impossible. We therefore deduce that x < x ∀t (this
shows the first part of the proposition). We then have Ṡ/S = m − x = g + x −
x > g.

Propositions 3 and 4 indicate that endogenous discounting associated with an
upper bound of the utility discount rate relatively low leads to an asymptotically
balanced growth path, and that in the short run the environmental quality grows
faster than in the long run at the expense of lower consumption. Society is less
impatient to consume in the short run than in the long run, as long as the environ-
mental quality is not high enough. See Figure 2.
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FIGURE 2. The asymptotically balanced growth path. Case θ ≤ m(1 + φ), that is, x ≤ m.

3.2.3. The asymptotical depletion of the environmental quality. We now con-
sider the last feasible case. This case involves a high lower bound of the utility
discount rate, such that θ > f (0).

PROPOSITION 5. Under assumptions 1–6, if θ > m[1+φ+(σ/(1 − σ))ε(0)]
(i.e., if the lower bound of the utility discount rate is high enough vis-à-vis the
preference for the environment and the natural regeneration rate), an asymptotical
depletion of the environmental quality occurs, with:⎧⎨⎩g = σ

(
m − θ

1 + φ + σ
1 − σ

ε(0)

)
< 0,

x = (1 − σ)m + σθ

1 +φ + σ
1 − σ

ε(0)
.

(24)

Proof. When the environmental quality decreases toward 0, the long term of
the system (1) and (20) is given by:{

g = m − x,

0 = (1 + φ + σ
1 − σ

ε(0))(x − (1 − σ)m) − σθ,

from which we deduce (24). By construction, this solution is valid if and only if
g < 0, that is, θ > m[1 + φ + (σ/(1 − σ))ε(0)] = f (0).

PROPOSITION 6. Under assumptions 1–6, if θ > m[1+φ+(σ/(1 − σ))ε(0)],
then along the path of asymptotical depletion of the environmental quality: (i) x

is higher than its long run value, that is, xt > x ∀t; (ii) the environmental quality
decreases more quickly than in the long run, that is, Ṡt /St < g ∀t.
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FIGURE 3. The asymptotical depletion of the environmental quality. Case θ > f (0), that
is, x > m.

Proof. It is easy to show that equation (20) can be rewritten as:
.
x

x
=

[
1+φ + σ

1 − σ
ε(S)

]
(x −x)+σ [θ −θ(S)]+ σ 2θ[ε(S) − ε(0)]

(1 − σ)
[
1 + φ + σ

1 − σ
ε(0)

] .

This equation shows that if x ≤ x, ẋ/x < 0 and x converges toward zero, which
is impossible given the properties of the felicity function. We therefore deduce
that x > x, ∀t (this shows the first part of the proposition). We then have Ṡ/S =
m − x = g + x − x < g.

Propositions 5 and 6 indicate that when the discount rate is bounded from below
at a high value, the optimal solution is an asymptotical depletion of the environ-
mental quality, because the society’s impatience remains high whatever the level
of the natural capital. Furthermore, impatience is higher in the short run than in
the long run, because the environmental quality is higher and impatience increases
with it. This implies that in the short run environmental quality decreases faster,
which allows the society to consume more. See Figure 3. In this case, the ratio
of consumption to environmental quality is always higher than the regenerative
capacity of the environment m.

4. CONCLUDING REMARKS

This paper has introduced an endogenous utility discount rate depending on the
state of the environmental quality. Even if there is a disagreement over whether the
marginal discount rate should be positive or negative, in the context of the habit
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FIGURE 4. The growth rate as a function of ρ (exogenous discounting) and θ (endogenous
discounting).

formation literature in which the discount rate depends on consumption for a
private motive, we make the assumption of a positive marginal discount rate de-
pending on the state of the environment to reflect the social motive of sustainability.
In the context of the long-lasting debate about discounting and the environment,
this expresses the fact that if the society is concerned by intergenerational equity, it
will choose to discount at a rate all the smaller, because the environmental quality
is low.

We show within this framework that under both exogenous and endogenous dis-
counting three qualitatively different scenarios can occur: growth of consumption
and the environmental quality to infinity, decrease to zero, and convergence toward
a positive steady state (see Figure 4). This last scenario occurs with endogenous
discounting when the discount rate is allowed to vary between bounds θ and
θ, with θ large enough and θ small enough, whereas in the exogenous case it
occurs only for a discount rate exactly equal to (1 + φ)m, a razor-edge case. So a
stabilization of the environmental quality is more likely to occur with endogenous
discounting.

This methodology can be used in applied cost-benefit analysis. Although im-
plying a utility discount rate decreasing in the course of time if environmental
conditions worsen, it avoids the problem of time inconsistency and gives a new
justification to this decrease.
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NOTES

1. Obviously, the time horizon is especially long for problems such as global warming or nuclear
waste disposal.

2. It could be interesting to study the market economy, where private agents, unaware of sustainabil-
ity concerns or considering the environmental quality as an externaliy, would discount exponentially,
and to look at the way the optimal solutions with endogenous discounting could be implemented.

3. It is in some sense the worst possible case: there exists neither technical progress enhancing
the transformation of environmental services into consumption, nor substitution possibilities between
environmental services and manmade capital. There is no means of improving the environmental
quality except by natural regeneration. In such a framework, consumption and environmental quality
necessarily evolve together in the long run: both increase, or both decrease, or both converge toward a
stationary state.

4. We follow the convention of Arrow and Kurz (1970) in referring to the subutility functions as
felicities. In contrast, the term utility always refers to the planner’s intertemporal objective.

5. uC and uS are the first partial derivatives of the function u(.) with respect to its arguments C

and S. uCC is likewise the second partial derivative, using obvious notation.
6. Smulders and Gradus (1996) show that (ii) is a necessary condition for the existence of a balanced

growth path when the stock of environmental resource is a source of felicity.
7. Despite the lack of generality that these restrictions imply, they allow us to study the effect of

endogenous discounting in a framework where the benchmark—the case with constant and exogenous
discounting—consists in a balanced growth path.

8. We see easily that the necessary and sufficient condition for concavity is σ ≤ 1 + φ
φ

. σ < 1 is
then sufficient, and we restrict ourselves to this case for technical reasons (see later).

9. The growth rate of consumption and environmental quality along the BGP will be positive if the
natural regeneration and the preference for the environment are sufficiently high, and if the discount
rate is low enough.

10. The preference structure, as specified in (10), is recursive in the sense that � is allowed to
depend on the past and current levels of the environmental quality, as described by equation (11). Thus,
a change in the present level of environmental quality will not only have an effect on the current level
of felicity but also on the entire future felicity stream.

11. This is the reason why our model does not reduce to the familiar AK framework of the
endogenous growth theory, even if it seems formally identical: the AK model deals with manmade
capital, which is a private good, while we want to study endogenous discounting depending on the
natural capital, which is a public or at least a merit good.

12. Because of the nonconstant discount rate, Pontryagin’s maximum principle cannot be applied
directly. We need this state variable to solve the problem within the standard optimal control approach.

13. On the transversality conditions in infinite horizon problems, see Michel (1982).
14. An example of discount rate statisfying assumptions 4 and 5, with θ = 0, is:

θ(S) = θ(1 − e−αS), α > 0.

15. If θ = 0, the second part of this condition is always fulfilled.
16. We show easily that the locus ẋ = 0 is a curve x(S) increasing in S from x(0) = x =

(1 − σ)m + σθ/[1 + φ + (σ/(1 − σ))ε(0)] to limS→∞ x(S) = (1 − σ)m + σθ/[1 +φ +
(σ/(1 − σ) limS→∞ ε(S)]. It will be shown later that limS→∞ ε(S) = 0. So limS→∞ x(S) =
(1 − σ)m + σθ/(1 +φ) = x. In addition, it is straightforward to show that the locus ẋ = 0 is concave.
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APPENDIX

PROOF OF THE STRICT CONCAVITY OF THE MAXIMIZED HAMILTONIAN WITH
RESPECT TO S AND ∆

The constant value Hamiltonian is given by equation (13) and the first-order condition for
optimality with respect to C is given by equation (14a) and writes uC = e�λ̃. With our
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specification of the felicity function (6), this equation gives us the following expression for
the optimal consumption:

C∗(S,�, λ̃) =
(

e−�Sφ(1− 1
σ )

λ̃

)σ

.

We have H∗(S,�, λ̃, µ̃) = maxC H(C, S, �, λ̃, µ̃) = H(C∗, S,�, λ̃, µ̃) :

H∗(S,�, λ̃, µ̃) = u(C∗, S)e−� + λ̃(mS − C∗) − µ̃θ(S)

= λ̃mS − µ̃θ(S) − 1

1 − σ
e−σ�

(
Sφ

λ̃

)σ−1

.

So:

H∗
S = λ̃m − µ̃θ ′(S) + φe−σ� Sφ(σ−1)−1

λ̃σ−1

H∗
� = σ

1 − σ
e−σ�

(
Sφ

λ̃

)σ−1

,

and:

H∗
SS = −µ̃θ ′′(S) + φ(φ(σ − 1) − 1)e−σ� Sφ(σ−1)−2

λ̃σ−1

H∗
�� = − σ 2

1 − σ
e−σ�

(
Sφ

λ̃

)σ−1

H∗
S� = −σφe−σ� Sφ(σ−1)−1

λ̃σ−1
,

from which we easily deduce:

H∗
SSH∗

�� − (H∗
S�)2 = σ 2φ

1 − σ
e−2σ� S2φ(σ−1)−2

λ̃2(σ−1)
+ σ 2

1 − σ
e−σ� Sφ(σ−1)

λ̃σ−1
µ̃θ ′′(S).

Given that by equation (16) we have µ̃ = µe−� ≤ 0, assumptions 3 and 4 ensure that
H∗

SSH∗
�� − (H∗

S�)2 > 0.
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