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Densities in certain three-way prime
number races
Jiawei Lin and Greg Martin
Abstract. Let a1 , a2 , and a3 be distinct reduced residues modulo q satisfying the congruences a2

1 ≡

a2
2 ≡ a2

3 (mod q). We conditionally derive an asymptotic formula, with an error term that has a
power savings in q, for the logarithmic density of the set of real numbers x for which π(x; q, a1) >

π(x; q, a2) > π(x; q, a3). The relationship among the a i allows us to normalize the error terms for
the π(x; q, a i) in an atypical way that creates mutual independence among their distributions, and
also allows for a proof technique that uses only elementary tools from probability.

1 Introduction

A major topic in comparative prime number theory is the study of the prime num-
ber races among distinct reduced residues a1 , . . . , ar (mod q). More precisely, one
studies the set of positive real numbers x for which the inequalities π(x; q, a1) > ⋯ >
π(x; q, ar) hold, where as usual π(x; q, a) denotes the number of primes up to x that
are congruent to a modulo q. It was shown by Rubinstein and Sarnak [11] that the
logarithmic density of this set,

δq;a1 , . . . ,ar = lim
x→∞

1
log x ∫

2≤t≤x
π(t;q ,a1)>⋯>π(t;q ,ar)

dt
t

,(1.1)

exists and is strictly between 0 and 1, under two assumptions:
• GRH: the generalized Riemann hypothesis, asserting that all nontrivial zeros ρ =

β + iγ of Dirichlet L-functions L(s, χ) satisfy β = 1
2 ;

• LI: a linear independence hypothesis, asserting that the multiset {γ ≥ 0∶there exists
χ (mod q) such that L( 1

2 + iγ, χ) = 0} is linearly independent over the rational
numbers.

For a fixed number of contestants r, the logarithmic densities δq;a1 ,⋯,ar approach 1
r!

uniformly as q → ∞. Several authors (the articles [3, 5, 8, 9] are most closely related
to the present work) have given asymptotic formulas for the difference for various
numbers of contestants (including results when the number of contestants can grow
with q), and others have provided generalizations to number fields, function fields, and
elliptic curves, as well as to the counting functions of integers with a fixed number of
prime factors in arithmetic progressions.

Received by the editors August 28, 2019; revised August 24, 2020.
Published online on Cambridge Core October 12, 2020.
AMS subject classification: 11N13, 11M26, 11K99, 60F05, 20E07.
Keywords: Analytic number theory, prime number races.

https://doi.org/10.4153/S0008414X20000747 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X20000747
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X20000747&domain=pdf
https://doi.org/10.4153/S0008414X20000747


Densities in certain three-way prime number races 233

In this paper, we investigate a special class of three-way prime number races, where
the residues involved satisfy the congruence

a2
1 ≡ a2

2 ≡ a2
3 (mod q).(1.2)

We use elementary ideas from probability, and an approach involving an unusual
normalization, to establish an asymptotic formula for the corresponding density
δq;a1 ,a2 ,a3 with a very good error term. To state our theorem, we must first define some
notation.

Definition 1.1 For any Dirichlet character χ (mod q), define

b+(χ) = ∑
γ>0

L(1/2+iγ , χ)=0

1
1
4 + γ2 and b(χ) = ∑

γ∈R
L(1/2+iγ , χ)=0

1
1
4 + γ2 .

Notice that b(χ) = b+(χ) + b+(χ) by the functional equation for Dirichlet L-
functions, assuming that L( 1

2 , χ) ≠ 0 (which is a consequence of LI). Notice also that
if χ is induced by another character χ∗ then b+(χ) = b+(χ∗) and similarly for b(χ).

Definition 1.2 Define the following sets of characters (mod q):

H0 = {χ (mod q)∶ χ(a1) = χ(a2) = χ(a3)},
H1 = {χ (mod q)∶ χ(a2) = χ(a3) = −χ(a1)},
H2 = {χ (mod q)∶ χ(a1) = χ(a3) = −χ(a2)},
H3 = {χ (mod q)∶ χ(a1) = χ(a2) = −χ(a3)}.

Remark 1.3 All these sets have the property that χ ∈ H i if and only if χ ∈ H i . It is easy
to verify that H0 is a subgroup of the group of Dirichlet characters (mod q) and that
H1, H2, and H3, if nonempty, are cosets of that subgroup.

Furthermore, under the assumption (1.2), we show in Lemma 3.3 below that H0 is
an index-4 subgroup of the group of characters (mod q) and that H1, H2, and H3 are
all its cosets, so that every character (mod q) is in exactly one of H0, H1, H2, or H3.

Definition 1.4 With b+(χ) as in Definition 1.1, for i ∈ {0, 1, 2, 3} define

V(q) = 2 ∑
χ (mod q)

χ≠χ0

b+(χ), Vi = 32 ∑
χ∈H i

b+(χ), and η i = Vi

4V(q) − 1.

With this notation in place, we may now state the main theorem of this paper.

Theorem 1.5 Assume GRH and LI. If a1, a2, and a3 are distinct reduced residues
modulo q satisfying a2

1 ≡ a2
2 ≡ a2

3 (mod q), then

δq;a1 ,a2 ,a3 = 1
2π

arctan
√

V1V2 + V1V3 + V2V3

V2
+ Oε(q−1/2+ε).

Moreover, if a1, a2, and a3 are all quadratic residues, or all quadratic nonresidues (mod
q), then the error term can be improved to O(1/ϕ(q) log q).
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234 J. Lin and G. Martin

As it happens, most of this paper is concerned with proving the second assertion (with
the additional hypothesis on the quadratic nature of a1, a2, and a3), after which we
derive the first assertion (with its weaker error term) from it.

Note that if V1, V2, and V3 are all quite close to one another (as we shall show is
the case), then the argument of arctan in Theorem 1.5 is approximately

√
3, so that the

main term is approximately 1
6 as expected. Stating the theorem with this main term of

a perhaps unforeseen shape allows the error term to remain quite small. However, we
can derive a simpler asymptotic formula from this theorem if we are less concerned
with the quality of the error term:

Corollary 1.6 Assume GRH and LI. If a1, a2, and a3 are distinct reduced residues
modulo q satisfying a2

1 ≡ a2
2 ≡ a2

3 (mod q), then

δq;a1 ,a2 ,a3 = 1
6

+ η1 + η3

8π
√

3
− η2

4π
√

3
+ O( (log log q)2

(log q)2 ).

This version of the result recovers a special case of a theorem of Lamzouri [9], with
a somewhat simpler proof; see the end of Section 8 for the details of the comparison.

We have four motivations for presenting Theorem 1.5 and its proof. First, the
theorem has a better error term than has been recorded in the literature for any prime
number race with three or more competitors; indeed, for such races, it is rare to see
a savings of a power of q at all. Second, our proof of Theorem 1.5 involves an unusual
normalization (see Definition 3.5 below) of the error terms for the π(x; q, a i ), one
that allows us to treat the three error terms connected to this race as random variables
that are in fact independent, which we hope might inspire similar constructions in
other settings. Third, much of the recent progress on prime number races has invoked
powerful machinery from probability; we wanted to give an application in this subject
where more elementary methods suffice. Finally, we were motivated by generalizing
the discussion of the second author from [10], which essentially treats the two smallest
cases q = 8 and q = 12 of Theorem 1.5 numerically, but with a heuristic analysis that
anticipates the methods herein.

That being said, the methods from the current literature in comparative prime
number theory are capable of treating much more general circumstances, and also,
if viewed from a suitable perspective, of providing formulas with error terms nearly as
strong as that of Theorem 1.5. See Section 9 (and also the end of Section 3) for further
discussion about this wider context.

The rest of the paper is organized as follows. We quote results from the literature in
Section 2 concerning the limiting logarithmic distributions of error terms for prime
counting functions and the random variables that model them. It is in Section 3
that we define the atypical normalization of these error terms that allows us to treat
them independently, and calculate their variances. Using known facts about Bessel
functions, we exhibit in Section 4, the characteristic function of our random variables
and derive some power series representations of them. In Sections 5 and 6, we estab-
lish pointwise bounds between these characteristic functions and the characteristic
function of normal variables with the same mean and variance, as well as between
the second derivatives of these characteristic functions. This information allows us to
compare the density functions and eventually the probabilities themselves of these
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two types of random variables in Section 7, at which point we prove Theorem 1.5
and Corollary 1.6 in Section 8. We conclude with some discussion of the relationship
between our results and existing results, and espouse a viewpoint on how such results
should be conceived, in Section 9.

2 Background information

The foundation of the method we use has appeared many times, certainly stimulated
in this generation by [11]. It will be most convenient for us to quote several definitions
and results from the work by Fiorilli and the second author [3], starting with the
traditional normalization of the error term for prime counting functions in arithmetic
progressions.

Definition 2.1 For any reduced residue a (mod q), define

E(x; q, a) = ϕ(q)π(x; q, a) − π(x)√
x/ log x

,

where π(x) = π(x; 1, 1) as usual.

The following explicit formula for E(x; q, a) is [11, Lemma 2.1], simplified slightly
by the assumption of GRH.

Lemma 2.2 Assume GRH. For any reduced residue a (mod q)

E(x; q, a) = −cq(a) + ∑
χ (mod q)

χ≠χ0

χ(a)E(x , χ) + o(1)

as x → ∞; here

cq(a) = −1 + #{b (mod q)∶ b2 ≡ a (mod q)}(2.1)

and, for any Dirichlet character χ,

E(x , χ) = ∑
γ∈R

L(1/2+iγ , χ)=0

x iγ

1/2 + iγ

(which converges conditionally when interpreted as the limit of ∑∣γ∣<T as T tends to
infinity).

It is convenient to be able to interpret the distribution of values of E(x; q, a) in
terms of certain random variables.

Definition 2.3 For any Dirichlet character χ (mod q), define the random variable

Zχ = ∑
γ>0

L(1/2+iγ , χ)=0

Zγ√
1
4 + γ2

,

where Zγ are independently uniformly distributed on the unit circle in C. We also
use the notation Xγ = RZγ and Xχ = RZχ , so that the Xγ also form an independent
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236 J. Lin and G. Martin

collection of random variables, as do the Xχ , assuming that L(s, χ) have no zeros in
common (which is a consequence of LI).

It is known that vector-valued relatives of E(x; q, a) have limiting logarithmic
distributions that can be expressed in terms of these random variables; the following
proposition is [3, Proposition 2.3].

Proposition 2.4 Assume LI. Let {cχ ∶ χ (mod q)} be a collection of Cr-vectors, indexed
by the Dirichlet characters (mod q), satisfying cχ = cχ . The limiting logarithmic distri-
bution of any Rr-valued function of the form

∑
χ (mod q)

cχE(x , χ) + o(1)

is the same as the distribution of the random variable

2R ∑
χ (mod q)

cχ Zχ .

3 Special three-way races and error terms with atypical
normalizations

In this section, we set out some notation that will be used throughout the main part of
this paper (from this point through Section 8). In particular, the assumptions on a1, a2,
and a3 in the first definition will be in force in these sections without explicit mention,
as our main result is concerned only with these special three-way prime number races.

Definition 3.1 Let a1, a2, and a3 denote distinct reduced residues (mod q) such that

a2
1 ≡ a2

2 ≡ a2
3 (mod q).

We assume, through the middle of Section 8, that a1, a2, and a3 are either all quadratic
residues or all quadratic nonresidues (mod q). (Later in Section 8 we will discuss how
this assumption can be removed to establish Theorem 1.5 in its entirety.)

We will often use i , j, k as indices that denote a generic permutation (i , j, k) of
(1, 2, 3). For example, we define

a0 ≡ a i a j a−1
k (mod q),

which is independent of the permutation (i , j, k).

Remark 3.2 It is easy to show that most integers, q, possess three distinct reduced
residues a1, a2, and a3 such that the congruences a2

1 ≡ a2
2 ≡ a2

3 (mod q) are satisfied—
indeed, the integers that do not are precisely the integers with primitive roots. It is also
straightforward to show that one almost always can choose these reduced residues so
that a1, a2, and a3 are all quadratic nonresidues; for example, such a choice is possible
whenever q has at least three distinct odd prime factors.

In the special situation described in Definition 3.1, the sets H i from Definition 1.2
have a tidy relationship with one another.

Lemma 3.3 The sets H0, H1, H2, and H3 partition the group of Dirichlet characters
(mod q) into four subsets each of cardinality 1

4 ϕ(q).
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Proof The assumption a2
1 ≡ a2

2 ≡ a2
3 (mod q) implies that χ(a2

1 ) = χ(a2
2) = χ(a2

3),
or equivalently χ2(a1) = χ2(a2) = χ2(a3), for every Dirichlet character χ (mod q).
Therefore, if a2

1 ≡ a2
2 ≡ a2

3 (mod q), then for every χ (mod q) each of χ(a1), χ(a2),
and χ(a3) must be a square root of the common value χ2(a i ). Since there are only
two such square roots, at least two of the character values must be equal, and the
third value (if not equal to the other two) is the negative of the others. In particular,
the sets H0, H1, H2, and H3 partition the group of characters (mod q). The fact
that they have equal cardinalities, which must necessarily be 1

4 ϕ(q), now follows
from the observation made in Remark 1.3 that H1, H2, and H3 are all cosets of the
subgroup H0. ∎

We are also able to simplify certain combinations of character values in this special
situation.

Lemma 3.4 For any permutation (i , j, k) of (1, 2, 3),

χ(a i ) + χ(a0) − χ(a j) − χ(ak) =
⎧⎪⎪⎨⎪⎪⎩

4χ(a i ), if χ ∈ H i ,
0, otherwise,

where Hi is the set of characters from Definition 1.2.

Proof It is immediate from Definitions 1.2 and 3.1 that χ(a0) = χ(a i ) if χ ∈ H0 ∪ H i
and that χ(a0) = −χ(a i ) if χ ∈ H j ∪ Hk , and then that

χ(a i ) + χ(a0) − χ(a j) − χ(ak)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

χ(a i ) + χ(a i ) − χ(a i ) − χ(a i ) = 0, if χ ∈ H0 ,
χ(a i ) + χ(a i ) + χ(a i ) + χ(a i ) = 4χ(a i ), if χ ∈ H i ,
χ(a i ) − χ(a i ) + χ(a i ) − χ(a i ) = 0, if χ ∈ H j ,
χ(a i ) − χ(a i ) − χ(a i ) + χ(a i ) = 0, if χ ∈ Hk . ∎

At this point, we introduce an unusual normalization, tailored to this special
situation, of the error terms E(x; q, a) from Definition 2.1.

Definition 3.5 For any permutation (i , j, k) of (1, 2, 3), define

E∗(x; q, a i ) = α + E(x; q, a i ) + E(x; q, a0) − E(x; q, a j) − E(x; q, ak),

where α = cq(a0) − cq(a i ) (which, by assumption, is independent of i ∈ {1, 2, 3}).
Note that

E(x; q, a i ) − 1
2 E∗(x; q, a i ) = 1

2 (E(x; q, a i ) + E(x; q, a j) + E(x; q, ak) − E(x; q, a0) − α)

is independent of the permutation (i , j, k), so that the ordering of the E∗ terms
is always the same as the ordering of the E terms. In particular, E∗(x; q, a i ) >
E∗(x; q, a j) > E∗(x; q, ak) if and only if π(x; q, a i ) > π(x; q, a j) > π(x; q, ak), so that
equation (1.1) becomes

δq;a1 ,a2 ,a3 = lim
x→∞

1
log x ∫

2≤t≤x
E∗(t;q ,a1)>E∗(t;q ,a2)>E∗(t;q ,a3)

dt
t

.(3.1)
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We can immediately start to see the benefit of this atypical normalization, in that
the explicit formulas for the E(x; q, a i ) involve disjoint sets of Dirichlet characters.

Lemma 3.6 Assume GRH. For i ∈ {1, 2, 3}, we have E∗(x; q, a i ) =
4 ∑χ∈H i

χ(a i )E(x , χ) + o(1).

Proof By Lemma 2.2,

E∗(x; q, a i ) = (α + E(x; q, a0)) + E(x; q, a i ) − E(x; q, a j) − E(x; q, ak)
= −cq(a i ) − cq(a i ) + cq(a j) + cq(ak)(3.2)

+ ∑
χ (mod q)

χ≠χ0

(χ(a i ) + χ(a0) − χ(a j) − χ(ak))E(x , χ) + o(1).

The assumption that a1, a2, and a3 are either all quadratic residues or all quadratic
nonresidues (mod q) means that the four quantities on line (3.2) are all equal and thus
cancel one another. The lemma now follows from Lemma 3.4. ∎

We remark that Lemma 3.6 is the only place in our argument where we use the
standing assumption that a1, a2, and a3 are either all quadratic residues or all quadratic
nonresidues (mod q); in particular, we use this assumption to ensure that E∗(x; q, a i )
have no constant term, so that their limiting logarithmic distributions will have mean
0. In Section 8, we show how we can derive the general form of Theorem 1.5 from the
version that requires this assumption.

At this point, we are ready to introduce certain random variables that model, in
their distributions, the normalized error terms E∗(x; q, a i ).

Definition 3.7 For i ∈ {1, 2, 3}, define the random variable

X i = 8 ∑
χ∈H i

Xχ ,

where Xχ is as in Definition 2.3; note that the disjointness of H1, H2, and H3 and the
independence of the Xχ imply that X1, X2, and X3 are mutually independent. Fur-
thermore, for any permutation (i , j, k) of (1, 2, 3), define the vector-valued random
variable

X i , j,k = (X i , X j , Xk).

Lemma 3.8 For i ∈ {1, 2, 3}, the variance of X i is the quantity Vi from Definition 1.4.

Proof By Definitions 3.7 and 2.3,

σ 2(X i ) = σ 2(8 ∑
χ∈H i

Xχ) = 64σ 2⎛
⎝ ∑

χ∈H i

∑
γ>0

L(1/2+iγ , χ)=0

Xγ√
1
4 + γ2

⎞
⎠

.
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Since Xγ are independent by assumption,

σ 2(X i ) = 64 ∑
χ∈H i

∑
γ>0

L(1/2+iγ , χ)=0

σ 2(Xγ)
1
4 + γ2

= 32 ∑
χ∈H i

∑
γ>0

L(1/2+iγ , χ)=0

1
1
4 + γ2 = 32 ∑

χ∈H i

b+(χ) = Vi

as claimed. ∎
Our final proposition of the section records the fact that these random variables

truly are substitute objects of study for the normalized prime-counting error terms.
Recall the logarithmic density δq;a i ,a j ,ak from Definition 3.1.

Proposition 3.9 Assume GRH and LI. For any permutation (i , j, k) of
(1, 2, 3), the limiting logarithmic distribution of the vector-valued function
(E∗(x; q, a i ), E∗(x; q, a j), E∗(x; q, ak)) is the same as the distribution of the
random variable X i , j,k ; in particular,

δq;a1 ,a2 ,a3 = Pr(X1 > X2 > X3).

Proof By Lemma 3.6,

(E∗(x; q, a i ), E∗(x; q, a j), E∗(x; q, ak))

= 4( ∑
χ∈H i

(χ(a i ), 0, 0)E(x , χ) + ∑
χ∈H j

(0, χ(a j), 0)E(x , χ)

+ ∑
χ∈Hk

(0, 0, χ(ak))E(x , χ)) + o(1),

whose limiting logarithmic distribution, by Proposition 2.4, is the same as the distri-
bution of

2R(4( ∑
χ∈H i

(χ(a i ), 0, 0)Zχ + ∑
χ∈H j

(0, χ(a j), 0)Zχ + ∑
χ∈Hk

(0, 0, χ(ak))Zχ)).

Since Zχ is uniformly distributed on the unit circle in C, and χ(a i ) is a point on
the unit circle, we have simply χ(a i )Zχ = Zχ , and similarly with i replaced by j or
k. Therefore,

2R(4( ∑
χ∈H i

(χ(a i ), 0, 0)Zχ + ∑
χ∈H j

(0, χ(a j), 0)Zχ + ∑
χ∈Hk

(0, 0, χ(ak))Zχ))

= 8R( ∑
χ∈H i

(Zχ , 0, 0) + ∑
χ∈H j

(0, Zχ , 0) + ∑
χ∈Hk

(0, 0, Zχ))

= 8R( ∑
χ∈H i

Zχ , ∑
χ∈H j

Zχ , ∑
χ∈Hk

Zχ) = (X i , X j , Xk)
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as claimed. The final assertion follows from equation (3.1) and the definition of a
limiting logarithmic distribution. ∎
Remark 3.10 From Definition 3.7, we note that we only need to assume GRH and
LI for Dirichlet L-functions corresponding to the subset H1 ∪ H2 ∪ H3 of Dirichlet
characters (mod q).

We have shown that the standing assumptions from Definition 3.1 imply that
atypical normalizations of the error terms for prime counting functions can be made
independent of one another. Our proof used the fact that the sets from Definition 1.2
comprised all Dirichlet characters (mod q); said another way, every χ (mod q) takes
at most two distinct values on a1, a2, and a3. It turns out that a property of this type is
more fundamental to our method than the original congruence assumption, an idea
which we now take a slight detour to explore.

Definition 3.11 Given distinct reduced residues a1 , . . . , ar (mod q), we call a Dirich-
let character χ (mod q) almost unanimous on {a1 , . . . , ar} if there exists an index
1 ≤ kχ ≤ r and a complex number ωχ such that χ(a1) = ⋯ = χ(ak χ−1) = χ(ak χ+1) =
⋯ = χ(ar) = ωχ .

Note that this definition includes the possibility that χ(ak χ ) is also equal to ωχ (in
which case kχ can take any value in {1, . . . , r}); for example, the principal character
χ0 is always almost unanimous on any set of reduced residues. Note also that if χ is
almost unanimous on {a1 , . . . , ar}, then so is χ, and kχ = kχ and ωχ = ωχ .

Furthermore, we call the set {a1 , . . . , ar} itself almost unanimous if every Dirichlet
character (mod q) is almost unanimous on {a1 , . . . , ar}.

If a set {a1 , . . . , ar} of distinct reduced residues is almost unanimous, then one
can create an atypical normalization by subtracting the quantity ∑χ (mod q) ωχE(x , χ)
from each error term E(x; q, a). Note that this quantity is real-valued since ωχ = ωχ ,
and, therefore, subtracting it from every E(x; q, a) is order-preserving. The resulting
differences have the form

E(x; q, a j) − ∑
χ (mod q)

ωχE(x , χ) = −cq(a j) + ∑
χ (mod q)

k χ= j

(χ(a) − ωχ)E(x , χ);

in particular, the sets of characters appearing in the sums for different values of j
are disjoint. As a result, assuming GRH and LI, the random variables modeling this
atypically normalized error term will be mutually independent.

An examination of Definition 3.5 reveals that the quantities E∗(x; q, a i ), up to con-
stant factors, are precisely the result of applying this construction (the supplemental
residue a0, while making the definition concise, is not crucial to the construction). In
principle, then, this process of atypically normalizing the error terms for any almost
unanimous set of residues would result in independent error terms.

The unfortunate news, however, is that there are no almost unanimous sets of r ≥ 3
residues other than the ones described in Definition 3.1. (All sets of 1 or 2 residue
classes are trivially almost unanimous, and there are many ways to normalize two
of these error terms to create independent functions—including simply replacing
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E(x; q, a) and E(x; q, b) with E(x; q, a) − E(x; q, b) and 0, which is common prac-
tice.) The following two lemmas justify this anticlimactic assertion.

Lemma 3.12 If r ≥ 4, then there does not exist an almost unanimous set a1 , . . . , ar of
distinct reduced residues (mod q).

Proof Suppose, for the sake of contradiction, that a1 , . . . , ar is almost unanimous.
Since a1 /≡ a2 (mod q), there exists a character χ1 such that χ1(a1) ≠ χ1(a2). By
assumption, χ1 is almost unanimous on {a1 , . . . , ar}; without loss of generality,
χ1(a2) = ⋯ = χ1(ar). Similarly, there exists a character χ2 such that χ1(ar−1) ≠ χ1(ar),
and without loss of generality, χ2(a1) = ⋯ = χ2(ar−1). (It is in this second “without
loss of generality” step that we use the assumption r ≥ 4, so that there is no overlap
between {a1 , a2} and {ar−1 , ar}.)

Now set χ3 = χ1 χ2. We see immediately that χ3(a2) = ⋯ = χ3(ar−1). How-
ever, the known facts χ1(a1) ≠ χ1(a2) and χ2(a1) = χ2(a2) imply that χ3(a1) ≠
χ3(a2); similarly, χ1(ar−1) = χ1(ar) and χ2(ar−1) ≠ χ2(ar) imply that χ3(ar−1) ≠
χ3(ar). It follows that χ3 is not almost unanimous on {a1 , . . . , ar}, contrary to
assumption. ∎

Lemma 3.13 Let a1 , a2 , a3 be distinct reduced residue classes (mod q). Then,
{a1 , a2 , a3} is almost unanimous (mod q) if and only if a2

1 ≡ a2
2 ≡ a2

3 (mod q).

Proof The proof of Lemma 3.3 shows that if a2
1 ≡ a2

2 ≡ a2
3 (mod q) then {a1 , a2 , a3}

is almost unanimous (mod q).
Conversely, suppose that {a1 , a2 , a3} is almost unanimous (mod q). Define

G1 = {χ (mod q)∶ χ(a2) = χ(a3)}
G2 = {χ (mod q)∶ χ(a1) = χ(a3)}
G3 = {χ (mod q)∶ χ(a1) = χ(a2)},

and note that G1 ∩ G2 ∩ G3 = H0 as in Definition 1.2; moreover, by the definition of
almost unanimous, G = G1 ∪ G2 ∪ G3. It is obvious that each G i is a subgroup of the
group G of Dirichlet characters (mod q). Furthermore, for any pair of distinct residues
(mod q), there is always a Dirichlet character (mod q) that takes different values on
the two residues; in particular, the G i are proper subgroups.

Scorza (see [14]) proved that a group G is the union of three proper subgroups
G1, G2, and G3 if and only if it has a quotient isomorphic to the Klein 4-group K (a
result that has been rediscovered more than once—see [4] for example), in which case
G1, G2, and G3 are the inverse images of the three two-element subgroups of K. In
particular, the square of every element of G is in G1 ∩ G2 ∩ G3 = H0. In our situation,
we deduce that χ2(a1) = χ2(a2) = χ2(a3) for every χ (mod q), which implies that
χ(a2

1 ) = χ(a2
2) = χ(a2

3) for every χ (mod q); this situation is possible only if a2
1 ≡ a2

2 ≡
a2

3 (mod q). ∎

While there seems to be no direct generalization of our construction, we hope that
the ideas described herein might inspire other beneficial atypical normalizations in
the future.
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Figure 1 The Bessel function and its relatives

4 Bessel functions and bounds for characteristic functions

In this section, we exhibit exact formulas for the characteristic function of the random
variables X i introduced in the previous section, as well as various estimates and series
representations of those characteristic functions that will be needed in our analysis.

Definition 4.1 Let J0(z) be the standard Bessel function of order 0. Let λn be the
coefficients in the power series expansion

log J0(z) =
∞

∑
n=0

λnzn ,

which is valid for ∣z∣ ≤ 12
5 since J0 has no zeros in this disk: this assertion can be verified

computationally for real z—see the graph of J0(x) in Figure 1—while Hurwitz [7]
proved that J0(z) has no nonreal zeros (see also [6]).

The following lemma is [3, Lemma 2.8]:

Lemma 4.2 With λn as in Definition 4.1:
(a) λn ≪ ( 5

12 )n uniformly for n ≥ 0;
(b) λ0 = 0 and λ2m−1 = 0 for every m ≥ 1;
(c) λ2m < 0 for every m ≥ 1.

It would be advantageous if this Bessel function were decreasing for x ≥ 0, say,
so that we could bound the tail of the function ∣J0(x)∣ simply by ∣J0(κ)∣ for any
fixed 0 ≤ κ ≤ x. Inconveniently, J0(x) and its derivatives have oscillations in sign; it
is the case, however, that their values are contained in a gradually decaying envelope.
Consequently, their values near x = 0 are indeed their largest, an observation we codify
in the following lemma.
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Definition 4.3 Define K(x) = −J′0(x)/x, with the value K(0) = 1
2 chosen for conti-

nuity. Moreover, define D(x) = −J′0(x)/J0(x) = xK(x)/J0(x).

Lemma 4.4 If 0 ≤ κ ≤ 1
2 , then J0(κ), K(κ), −J′′(κ), and D(κ) are all positive; and

for all real numbers x with ∣x∣ ≥ κ we have J0(κ) ≥ ∣J0(x)∣ and K(κ) ≥ ∣K(x)∣ and
∣J′′0 (κ)∣ ≥ ∣J′′0 (x)∣. In particular,

∣K(x)∣ ≤ 1
2

and ∣J′′0 (x)∣ ≤ 1
2

for all x ∈ R.(4.1)

Proof These assertions are clear from the graphs of the functions are Figure 1 (since
the first three functions are even, we may restrict attention to x ≥ 0); a rigorous proof
is unenlightening, and we omit most of the details. Derivatives of Bessel functions are
related to Bessel functions of higher order, and in particular

K(x) = J1(x)
x

and − J′′0 (x) = J0(x) − J1(x)
x

= J0(x) − J2(x)
2

.

Serviceable bounds for these functions can be easily derived from [13, Section VII.3,
equation (1)] and the prior equations, showing that the lemma is true for x ≥ 6, say.
The computations establishing the lemma for the remaining range can be done to any
desired accuracy by computer. The smallest value of the three functions forκ ∈ [0, 1

2 ] is
−J′′0 ( 1

2 ) > 0.45, while the closest any of these functions come to violating the asserted
inequality is the local minimum of −J′′0 (x) near x = 3.5, at which −J′′0 (x) > −0.42. ∎

The following convergent infinite products of Bessel functions is central in the
subject of prime number races.

Definition 4.5 For any Dirichlet character χ, define

F(z, χ) = ∏
γ>0

L( 1
2+iγ , χ)=0

J0
⎛
⎝

2z√
1
4 + γ2

⎞
⎠

.

Then define, for any permutation (i , j, k) of (1, 2, 3),

Φ i (z) = ∏
χ (mod q)

F(∣χ(a i ) + χ(a0) − χ(a j) − χ(ak)∣z, χ) = ∏
χ∈H i

F(4z, χ),

where the last equality holds by Lemma 3.4. The products defining F(z, χ) and Φ i (z)
converge uniformly on bounded subsets of the complex plane (a fact that will follow
from the upper bounds we establish below for these functions).

We can immediately see the relevance of this function to the characteristic func-
tions X̂ i (z) of the random variables X i from Definition 3.7.

Proposition 4.6 For i ∈ {1, 2, 3}, we have X̂ i (z) = Φ i (z), where Φ i (z) is as in
Definition 4.5.

Proof An extremely similar computation is carried out in [3, Proposition 2.13] as
well as in other sources; the key observations are that the Xγ are independent (so
that the characteristic function of the double sum defining X i is the product of the
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individual characteristic functions) and that the characteristic function of cXγ equals
J0(cz) for any constant c ∈ R. ∎

We proceed as in [3, Propositions 2.10–2.12], writing the power series of the
logarithms of these infinite products in terms of the following quantities.

Definition 4.7 For i ∈ {1, 2, 3} and any positive integer m, define

Wi (m) = 82m ∣λ2m ∣
Vi

∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

1
( 1

4 + γ2)m ,

with λn as in Definition 4.1.

Lemma 4.8 We have Wi (1) = 1
2 and Wi (m) ≪ ( 20

3 )2m for all m ≥ 2.

Proof We compute directly from Definition 4.1 that λ2 = − 1
4 , and thus

Wi (1) = 82∣λ2∣
Vi

⋅ ∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

1
1
4 + γ2 = 16

Vi
⋅ Vi

32
= 1

2

by Definition 1.4. On the other hand, since 1
4 + γ2 ≥ 1

4 , by Lemma 4.2, we have

Wi (m) = 82m ∣λ2m ∣
Vi

∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

1
( 1

4 + γ2)m

≪ 82m

Vi
( 5

12
)

2m

∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

4m−1

1
4 + γ2

= 1
Vi

( 10
3

)
2m

4m−1 ⋅ Vi

32
= 1

128
( 20

3
)

2m

. ∎

The next lemma codifies the standard fact that power series can be estimated by
their first terms in compact subsets inside their open disks of convergence.

Lemma 4.9 Let i ∈ {1, 2, 3}. For any integers k ≥ 0 and d ≥ −2k and any polynomial
P(x),

∞

∑
m=k

P(m)Wi (m)z2m+d ≪P ,k ∣z∣2k+d uniformly for ∣z∣ ≤ 1
10 ,

exp (−Vi
∞

∑
m=k

P(m)Wi (m)z2m+d ) = 1 + OP ,k(Vi ∣z∣2k+d ) uniformly for ∣z∣ ≤ V−1/(2k+d)
i .

Proof By Lemma 4.8, we know that P(m)Wi (m) ≪ ∣P(m)∣( 20
3 )2m ≪P 7m . Thus,

when ∣z∣ ≤ 1
10 , we obtain

∞

∑
m=k

P(m)Wi (m)z2m+d ≪P
∞

∑
m=k

7m( 1
10

)
2(m−k)

∣z∣2k+d = 100
93

7k ∣z∣2k+d ,
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which suffices for the first bound. The second bound follows from the first because
ew = 1 + OP ,k(∣w∣) uniformly for ∣w∣ ≪P ,k 1. ∎

The final result of this section is the connection between the characteristic func-
tions Φ i (z) and the quantities Wi (m).

Proposition 4.10 For ∣z∣ < 3
20 and i ∈ {1, 2, 3}, we have Φ i (z) =

exp (−Vi ∑∞m=1 Wi (m)z2m).

Proof From Definition 4.5,

log Φ i (z) = log ( ∏
χ∈H i

F(4z, χ)) = ∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

log J0( 8z√
1
4 + γ2

).

For ∣z∣ < 3
20 , the argument of J0 is less than 8 ⋅ 3

20 / 1
2 = 12

5 , and so the power series
expansion of log J0 converges absolutely by Lemma 4.2(a), giving

log Φ i (z) = ∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

∞

∑
n=0

λn( 8z√
1
4 + γ2

)
n

.

By Lemma 4.2(b)–(c), the n = 0 term and the terms with n odd vanish, and we may
change λn for n even to −∣λ2m ∣. Since the sum over γ converges absolutely for n ≥ 2,
we may rearrange terms to obtain

log Φ i (z) = −
∞

∑
m=1

∣λ2m ∣(8z)2m ∑
χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

1
( 1

4 + γ2)m

= −Vi
∞

∑
m=1

z2m ∣λ2m ∣ 82m

Vi
∑

χ∈H i

∑
γ>0

L( 1
2+iγ , χ)=0

1
( 1

4 + γ2)m = −Vi
∞

∑
m=1

z2mWi (m)

by Definition 4.7. ∎

5 Comparison of characteristic functions

The goal of this section is to obtain pointwise bounds for the difference between the
characteristic function Φ i (x) and the characteristic function e−Vi x2/2 of a normal
random variable with mean 0 and variance Vi . We begin by establishing the asymptotic
sizes of these variances.

Lemma 5.1 Assume GRH. If q ≥ 3, then b(χ) = log qχ∗ + O(log log q), where qχ∗ is
the conductor of χ.

Proof According to [3, Lemma 3.5 and the proof of Proposition 3.6], on GRH we
have

b(χ) = log qχ∗ + 2R
L′(1, χ∗)
L(1, χ∗) + O(1)

= log qχ∗ + O(log log qχ∗) + O(1) = log qχ∗ + O(log log q)
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for qχ∗ > 1. Since b(χ) = O(1) when qχ∗ = 1, we conclude that b(χ) = log qχ∗ +
O(log log q) for all characters χ (mod q). ∎

We can now establish the sizes of the quantities from Definition 1.4.

Proposition 5.2 Assume GRH. We have V(q) = ϕ(q) log q + O(ϕ(q) log log q) and
Vi = 4ϕ(q) log q + O(ϕ(q) log log q). In particular, η i ≪ (log log q)/log q.

Proof It suffices to prove the two asymptotic formulas, as then the estimate for η i
follows directly from Definition 1.4.

If S is any set of characters (mod q) such that χ ∈ S if and only if χ ∈ S, then

2 ∑
χ∈S

b+(χ) = ∑
χ∈S

b+(χ) + ∑
χ∈S

b+(χ) = ∑
χ∈S

b+(χ) + ∑
χ∈S

b+(χ) = ∑
χ∈S

b(χ)

as noted in Definition 1.1. Then, by Lemma 5.1,

2 ∑
χ∈S

b+(χ) = ∑
χ∈S

( log qχ∗ + O(log log q))

= ∑
χ∈S

log q − ∑
χ∈S

(log q − log qχ∗) + O(#S log log q)

= #S log q + O( ∑
χ∈S

(log q − log qχ∗)) + O(ϕ(q) log log q).(5.1)

However, [3, Proposition 3.3 and the proof of Proposition 3.6] implies that

∑
χ (mod q)

(log q − log qχ∗) = ϕ(q) ∑
p∣q

log p
p − 1

≪ ϕ(q) log log q,

and so (since log q − log qχ∗ is nonnegative) the first error term can be absorbed into
the second.

In particular, combining Definition 1.4 with equation (5.1) yields

V(q) = 2 ∑
χ (mod q)

χ≠χ0

b+(χ) = (ϕ(q) − 1) log q + O(ϕ(q) log log q)

Vi = 32 ∑
χ∈H i

b+(χ) = 16( 1
4 ϕ(q) log q + O(ϕ(q) log log q)),

since #H i = 1
4 ϕ(q) by Remark 1.3. ∎

In our proofs, we will need q to be sufficiently large for some of our inequalities to
hold; the following quantity q0 will be used through the end of Section 8.

Definition 5.3 We define a positive real number q0 as follows. By Proposition 5.2, we
know that Vi ≫ ϕ(q) log q uniformly for all choices of a i , a j , ak from Definition 3.1.
Therefore, we can choose q0 > 0 so that Vi ≥ max{220 , ϕ(q)} for all q > q0. We will
often use (without comment) the specific consequence that V−1/4

i ≤ 1
32 for q > q0.

We proceed now to establish several estimates for Φi (x) valid for various ranges of
x. The first such formula, for arguments close to 0, is similar to [3, Proposition 2.12].
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Proposition 5.4 Assume GRH. For i ∈ {1, 2, 3} and q > q0, we have Φ i (z) =
e−Vi z2/2(1 + O(Vi ∣z∣4)) for all complex numbers z with ∣z∣ ≤ V−1/4

i .

Proof Since

Φ i (z) = exp (−Vi
∞

∑
m=1

Wi (m)z2m) = e−Vi Wi(1)z2
exp (−Vi

∞

∑
m=2

Wi (m)z2m)

by Proposition 4.10, and Wi (1) = 1
2 by Lemma 4.8, the estimate Φ i (z) =

e−Vi z2/2 exp(O(Vi ∣z∣4)) (which implies the asserted statement) follows immediately
from Lemma 4.9. ∎
Lemma 5.5 Assume GRH. For i ∈ {1, 2, 3} and q > q0, we have ∣Φ i (x)∣ ≪ e−V 1/2

i /2 for
all real numbers x with ∣x∣ ≥ V−1/4

i .

Proof From Definition 4.5,

Φ i (x) = ∏
χ∈H i

∏
γ>0

L( 1
2+iγ , χ)=0

J0( 8x√
1
4 + γ2

).

In each factor, set κ = 8V−1/4
i /

√
1
4 + γ2. We have 0 ≤ κ ≤ 8V−1/4

i / 1
2 ≤ 16 ⋅ 1

32 = 1
2 since

q > q0, and therefore Lemma 4.4 applies to each factor, yielding

∣Φ i (x)∣ = ∏
χ∈H i

∏
γ>0

L( 1
2+iγ , χ)=0

∣J0( 8x√
1
4 + γ2

)∣

≤ ∏
χ∈H i

∏
γ>0

L( 1
2+iγ , χ)=0

J0( 8V−1/4
i√

1
4 + γ2

) = Φ i (V−1/4
i )

for ∣x∣ ≥ V−1/4
i . The lemma now follows from the estimate Φ i (V−1/4

i ) ≪ e−V 1/2
i /2,

which is a special case of Proposition 5.4. ∎
The following lemma could be proved directly (derived from [3, Lemma 2.16], for

example); however, we will need a more general result later, so it is more efficient to
derive this proposition from that later result.

Lemma 5.6 Assume GRH. For i ∈ {1, 2, 3}, we have ∣Φ i (x)∣ < e−ϕ(q)∣x ∣/8 for all real
numbers x with ∣x∣ ≥ 50.

Proof The lemma follows immediately from equation (6.6) and Lemma 6.8 with
A = ∅. ∎

Ultimately, we will want to compare the characteristic function Φ i (x) to the
characteristic function e−Vi x2/2 of a normal random variable with mean 0 and variance
Vi . The following proposition summarizes the results of this section in that light.
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Proposition 5.7 Assume GRH. For i ∈ {1, 2, 3} and q > q0, and for any real number x,

Φ i (x) − e−Vi x2/2 ≪
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Vi x4e−Vi x2/2 , if ∣x∣ ≤ V−1/4
i ,

e−V 1/2
i /2 , if V−1/4

i ≤ ∣x∣ ≤ 50,
e−ϕ(q)∣x ∣/8 , if ∣x∣ ≥ 50.

Proof The first assertion is immediate from Proposition 5.4. For the second and
third assertions, we use ∣Φ i (x) − e−Vi x2/2∣ ≤ ∣Φ i (x)∣ + e−Vi x2/2, and note that the
term e−Vi x2/2 is insignificant compared with the asserted estimates (due to the range
of x in the second case and the definition of q0 in the third case). Therefore, the
second assertion follows from Lemma 5.5 while the third assertion follows from
Lemma 5.6. ∎

6 Comparison of second derivatives of characteristic functions

We continue to use the methods of the previous section, now with the goal of providing
analogous bounds for Φ′′i (x) for various ranges of x, with an eye toward an eventual
comparison with the second derivative of e−Vi x2/2. We are fortunate to have access to
several different representations of Φ′′i (x), as no one of them will be entirely sufficient
for our needs. We begin with the following power series representation.

Lemma 6.1 For i ∈ {1, 2, 3} and ∣z∣ < 3
20 ,

Φ′′(z) = Φ i (z){(Vi
∞

∑
m=1

2mWi (m)z2m−1)
2

− Vi
∞

∑
m=1

2m(2m − 1)Wi (m)z2m−2}.

Proof We know that (eh(z))′′ = eh(z)(h′(z)2 + h′′(z)) for any smooth function
h(z). The proposition follows from applying this identity with h(z) equal to the power
series in the exponent of the formula for Φ i (z) given in Proposition 4.10, which can
be differentiated term-by-term on any open set on which it converges. ∎
Lemma 6.2 For i ∈ {1, 2, 3} and q > q0, we have

Φ′′(z) = e−Vi z2/2(V 2
i z2 − Vi + O(Vi ∣z∣2 + V 3

i ∣z∣6))

for ∣z∣ ≤ V−1/4
i .

Proof Using Proposition 5.4 followed by Lemma 4.9 twice, we see that for ∣z∣ ≤
V−1/4

i ,

Φ i (z) = e−Vi z2/2(1 + O(Vi ∣z∣4))
∞

∑
m=1

2mWi (m)z2m−1 = z + O(∣z∣3)

∞

∑
m=1

2m(2m − 1)Wi (m)z2m−2 = 1 + O(∣z∣2)
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since Wi (1) = 1
2 . (The second and third formulas require ∣z∣ ≤ 1

10 , which is implied by
∣z∣ ≤ V−1/4

i since q > q0.) Therefore, by Lemma 6.1, for ∣z∣ ≤ V−1/4
i we have

Φ i (z)(Vi
∞

∑
m=1

2mWi (m)z2m−1)
2

= e−Vi z2/2(1 + O(Vi ∣z∣4))(Vi (z + O(∣z∣3)))2

= e−Vi z2/2(V 2
i z2 + O(V 2

i ∣z∣4 + V 3
i ∣z∣6))(6.1)

and ultimately

Φ′′(z) = e−Vi z2/2(1 + O(Vi ∣z∣4)){(Vi (z + O(∣z∣3)))2 − (Vi (1 + O(∣z∣2))}

= e−Vi z2/2(1 + O(Vi ∣z∣4))(V 2
i z2 − Vi + O(Vi ∣z∣2 + V 2

i ∣z∣4))

= e−Vi z2/2(V 2
i z2 − Vi + O(Vi ∣z∣2 + V 2

i ∣z∣4 + V 3
i ∣z∣6)),

which implies the statement of the proposition since V 2
i ∣z∣4 is always dominated by

one of the other two error terms. ∎
In the proof of Lemma 5.5, we used the fact that Φ(x) was a simple product

of terms all of which were positive, and took their largest values, near the origin.
The corresponding expression for Φ′′i (x) is more complicated, however, and involves
functions whose values near the origin have both signs. We, therefore, establish a
particular decomposition of Φ′′i (x) into two pieces, each of which has the unanimity
of sign necessary for us to infer from Lemma 4.4 that its largest values are near the
origin.

It will be convenient to define the set of ordinates

U i = ⋃
χ∈H i

{γ > 0∶ L(1/2 + iγ, χ) = 0}(6.2)

that indexes the infinite product that defines Φ i (z).

Lemma 6.3 For i ∈ {1, 2, 3} and z ∈ C we may write

Φ′′i (z) = z2Ψi (z) + Θ i (z),(6.3)

where

Ψi (z) = ∑
γ1 ,γ2∈U i

γ1≠γ2

64
1
4 + γ2

1
K( 8z√

1
4 + γ2

1

) 64
1
4 + γ2

2
K( 8z√

1
4 + γ2

2

) ∏
γ∈U i/{γ1 ,γ2}

J0( 8z√
1
4 + γ2

)

(6.4)

Θ i (z) = ∑
γ1∈U i

64
1
4 + γ2

1
J′′0 ( 8z√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8z√
1
4 + γ2

).(6.5)

Proof By Definition 4.5,

Φ i (z) = ∏
χ∈H i

∏
γ>0

L(1/2+iγ , χ)=0

J0( 8z√
1
4 + γ2

) = ∏
γ∈U i

J0( 8z√
1
4 + γ2

).(6.6)

https://doi.org/10.4153/S0008414X20000747 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000747


250 J. Lin and G. Martin

This infinite product of analytic functions converges uniformly in any bounded
subset of C (since J0(z) = 1 + O(z2) near z = 0 and the series ∑γ∈U i

1/γ2 converges).
Therefore, we may differentiate the infinite product by applying the product rule twice:

Φ′′(z) = ∑
γ1∈U i

d2

dz2 J0( 8z√
1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8z√
1
4 + γ2

)

+ ∑
γ1 ,γ2∈U i

γ1≠γ2

d
dz

J0( 8z√
1
4 + γ2

1

) d
dz

J0( 8z√
1
4 + γ2

2

) ∏
γ∈U i/{γ1 ,γ2}

J0( 8z√
1
4 + γ2

)

= ∑
γ1∈U i

64
1
4 + γ2

1
J′′0 ( 8z√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8z√
1
4 + γ2

)

+ ∑
γ1 ,γ2∈U i

γ1≠γ2

8√
1
4 + γ2

1

J′0( 8z√
1
4 + γ2

1

) 8√
1
4 + γ2

2

J′0( 8z√
1
4 + γ2

2

)

× ∏
γ∈U i/{γ1 ,γ2}

J0( 8z√
1
4 + γ2

).

Consulting Definition 4.3 reveals that this last expression is the same as equation (6.3)
(the negative signs in the definition of K(t) come in pairs). ∎

To efficiently bound, for small ∣z∣, the first component z2Ψi (z) in the above
decomposition of Φ′′(z), we need to first write it in a different form. Recall the
function D(x) from Definition 4.3.

Lemma 6.4 For i ∈ {1, 2, 3} and complex numbers z satisfying ∣z∣ ≤ 3
20 ,

z2Ψi (z) = Φ i (z){( ∑
γ∈U i

8√
1
4 + γ2

D( 8z√
1
4 + γ2

))
2

− ∑
γ∈U i

64
1
4 + γ2 D( 8z√

1
4 + γ2

)
2

}.

(6.7)

In particular, for real numbers x satisfying ∣x∣ ≤ 1
32 ,

x2Ψi (x) ≤ Φ i (x){( ∑
γ∈U i

8√
1
4 + γ2

D( 8x√
1
4 + γ2

))
2

.(6.8)

Proof Again we use (eh(z))′′ = eh(z)(h′(z)2 + h′′(z)), this time with h(z) equal to
the infinite series in the identity

Φ i (z) = exp ( ∑
γ∈U i

log J0( 8z√
1
4 + γ2

)),
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valid for ∣z∣ ≤ 3
20 since the argument of J0 does not vanish there; we obtain

Φ′′i (z) = Φ i (z)( ∑
γ∈U i

8√
1
4 + γ2

J′0(8z/
√

1
4 + γ2)

J0(8z/
√

1
4 + γ2)

)
2

+ Φ i (z) ∑
γ∈U i

64
1
4 + γ2

J0(8z/
√

1
4 + γ2)J′′0 (8z/

√
1
4 + γ2) − J′0(8z/

√
1
4 + γ2)2

J0(8z/
√

1
4 + γ2)2

= Φ i (z){( ∑
γ∈U i

8√
1
4 + γ2

D( 8z√
1
4 + γ2

))
2

− ∑
γ∈U i

64
1
4 + γ2 D( 8z√

1
4 + γ2

)
2

}

+ Φ i (z) ∑
γ∈U i

64
1
4 + γ2 (

J′′0 (8z/
√

1
4 + γ2)

J0(8z/
√

1
4 + γ2)

)(6.9)

by Definition 4.3 (the negative signs all occur in pairs). However, using equation (6.6)
yields

Φ i (z) ∑
γ∈U i

64
1
4 + γ2 (

J′′0 (8z/
√

1
4 + γ2)

J0(8z/
√

1
4 + γ2)

)

= ∏
γ∈U i

J0( 8z√
1
4 + γ2

) ∑
γ1∈U i

64
1
4 + γ2

1
J0( 8z√

1
4 + γ2

1

)
−1

J′′0 ( 8z√
1
4 + γ2

1

) = Θ i (z)

by equation (6.5); thus by the identity (6.3), we conclude that the expression on line
(6.9) must equal z2Ψi (z), establishing the first assertion of the lemma.

As for the second assertion, when z = x is a real number satisfying ∣x∣ ≤ 1
32 , all of

the summands in the two series in equation (6.9) are positive by Lemma 4.4, since the
argument of D is at most 16∣x∣ ≤ 1

2 in absolute value. Notice that the second sum in
equation (6.9) consists precisely of the squares of the summands from the first sum;
in particular, both sums are positive and the second sum is no larger than the square
of the first sum. We may, therefore, ignore the second sum when finding an upper
bound, which establishes the second assertion of the lemma. ∎

Lemma 6.5 For i ∈ {1, 2, 3} and q > q0, we have Ψi (x) ≪ e−V 1/2
i /2V 3/2

i for ∣x∣ ≥
V−1/4

i .

Proof In each factor in equation (6.4), set κ = 8V−1/4
i /

√
1
4 + γ2. We have 0 ≤ κ ≤

8V−1/4
i / 1

2 ≤ 16 ⋅ 1
32 = 1

2 since q > q0, and therefore Lemma 4.4 applies to each factor,
yielding

∣Ψi (x)∣ = ∑
γ1 ,γ2∈U i

γ1≠γ2

64
1
4 + γ2

1
K( 8x√

1
4 + γ2

1

) 64
1
4 + γ2

2
K( 8x√

1
4 + γ2

2

) ∏
γ∈U i/{γ1 ,γ2}

J0( 8x√
1
4 + γ2

)
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≤ ∑
γ1 ,γ2∈U i

γ1≠γ2

64
1
4 + γ2

1
K( 8V−1/4

i√
1
4 + γ2

1

) 64
1
4 + γ2

2
K( 8V−1/4

i√
1
4 + γ2

2

) ∏
γ∈U i/{γ1 ,γ2}

J0( 8V−1/4
i√

1
4 + γ2

)

= Ψi (V−1/4
i )

for ∣x∣ ≥ V−1/4
i . Since V−1/4

i ≤ 1
32 when q > q0, we may apply the upper bound (6.8) to

obtain

Ψi (V−1/4
i ) ≤ Φ i (V−1/4

i )( ∑
γ∈U i

8√
1
4 + γ2

D( 8V−1/4
i√

1
4 + γ2

))
2

.

It follows from Definitions 4.1 and 4.3 that

D(t) = − J′0(t)
J0(t) = − d

dt
log J0(t) =

∞

∑
m=1

∣λ2m ∣2mt2m−1

for ∣t∣ ≤ 12
5 , and so

Ψi (V−1/4
i ) ≤ Φ i (V−1/4

i )( ∑
γ∈U i

8√
1
4 + γ2

∞

∑
m=1

∣λ2m ∣2m( 8V−1/4
i√

1
4 + γ2

)
2m−1

)
2

= Φ i (V−1/4
i )(

∞

∑
m=1

∣λ2m ∣2m ⋅ 82mV−(2m−1)/4
i ∑

γ∈U i

1
( 1

4 + γ2)m )
2

= Φ i (V−1/4
i )(Vi

∞

∑
m=1

2mWi (m)V−(2m−1)/4
i )

2

≪ Φ i (V−1/4
i )(Vi ⋅ V−1/4

i )2

by Lemma 4.9. The statement of the proposition now follows from
Proposition 5.4. ∎

The estimates we have derived for Φ′′i (x) and Ψi (x) for small ∣x∣ imply a similar
estimate for Θ i (x) for small ∣x∣; thanks to Lemma 4.4, we can deduce an estimate
for Θ i (x) for large ∣x∣, which we can subsequently use to estimate Φ′′i (x) itself for
larger ∣x∣.

Lemma 6.6 For i ∈ {1, 2, 3} and q > q0, we have Θ i (x) ≪ e−V 1/2
i /2V 3/2

i for ∣x∣ ≥
V−1/4

i .

Proof In each factor in equation (6.5), set κ = 8V−1/4
i /

√
1
4 + γ2. We have 0 ≤ κ ≤

8V−1/4
i / 1

2 ≤ 16 ⋅ 1
32 = 1

2 since q > q0, and therefore Lemma 4.4 applies to each factor,
yielding

∣Θ i (x)∣ = ∑
γ1∈U i

64
1
4 + γ2

1
J′′0 ( 8x√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8x√
1
4 + γ2

)

≤ ∑
γ1∈U i

64
1
4 + γ2

1
J′′0 ( 8x√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8x√
1
4 + γ2

) = Θ i (V−1/4
i )
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for ∣x∣ ≥ V−1/4
i . On the other hand, by the identity (6.3) and Lemmas 6.2 and 6.5, we

have

Θ i (V−1/4
i ) = Φ′′i (V−1/4

i ) − (V−1/4
i )2Ψi (V−1/4

i )

≪ e−V 1/2
i /2V 3/2

i + V−1/2
i e−V 1/2

i /2V 3/2
i ≪ e−V 1/2

i /2V 3/2
i

as desired. ∎
Lemma 6.7 For i ∈ {1, 2, 3} and q > q0, we have Φ′′i (x) ≪ e−V 1/2

i /2V 3/2
i for V−1/4

i ≤
∣x∣ ≤ 50.

Proof The lemma follows immediately from the identity (6.3) and Lemmas 6.5 and
6.6, since x ≪ 1 by assumption. ∎

Lastly, we use a standard method to estimate Φ′′i (x) for the largest values of ∣x∣.
The proof is complicated only slightly by the fact that the relevant infinite products
of Bessel functions are missing a small number of terms after the differentiations;
the following lemma provides a serviceable bound that uniformly takes such omitted
terms into account.

Lemma 6.8 Fix i ∈ {1, 2, 3}. If A is any finite subset of U i , then for ∣x∣ ≥ 50,

∏
γ∈U i/A

J0( 8x√
1
4 + γ2

) < 2#Ae−ϕ(q)∣x ∣/8 .

Proof Since both sides are even functions of x, we may assume that x ≥ 50. Let
N(T , χ) denote the number of nontrivial zeros of L(s, χ) having imaginary part
between −T and T. By [2, Proposition 2.5], for T ≥ 150,

N(T , χ) ≥ ( T
π

− 0.399) log
qχ∗T
2πe

− 5.338 ≥ ( T
π

− 0.399) log T
2πe

− 5.338 > T
2

(6.10)

where qχ∗ ≥ 1 is the conductor of χ. From the classical inequality (see [12,
Theorem 7.31.2])

∣J0(x)∣ ≤ min {1,
√

2
π∣x∣ },

we see that

∣ ∏
γ∈U i/A

J0( 8x√
1
4 + γ2

)∣ ≤ ∏
γ<3x

γ∈U i/A

∣J0( 8x√
1
4 + γ2

)∣ ≤ ∏
γ<3x

γ∈U i/A

( 1
4 + γ2)1/4

2
√

πx
.

One can easily check that when ∣x∣ ≥ 50 and ∣γ∣ < 3x, the factor ( 1
4 + γ2)1/4/2

√
πx is

always less than 1
2 .

If we define N+(T , χ) to be the number of nontrivial zeros of L(s, χ) having imag-
inary part between 0 and T, then N(T , χ) = N+(T , χ) + N+(T , χ) by the functional
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equation. Since χ ∈ H i if and only if χ ∈ H i , the number of factors in the product is

∑
χ∈H i

N+(3x , χ) − #{A ∪ (−3x , 3x)}

= 1
2

( ∑
χ∈H i

N+(3x , χ) + ∑
χ∈H i

N+(3x , χ)) − #{A ∪ (−3x , 3x)}

= 1
2 ∑

χ∈H i

N(3x , χ) − #{A ∪ (−3x , 3x)} ≥ ϕ(q)
8

3x
2

− #A.

So

∏
γ<3x

γ∈U i/A

( 1
4 + γ2)1/4

2
√

π∣x∣
≤ 2−(3ϕ(q)x/16−#A) < 2#Ae−ϕ(q)x/8 ,

since #H i = ϕ(q)/4 by Remark 1.3. ∎
Lemma 6.9 For i ∈ {1, 2, 3}, we have Φ′′i (x) ≪ V 2

i x2e−ϕ(q)∣x ∣/8 for ∣x∣ ≥ 50.

Proof From equations (6.4) and (6.5),

Ψi (x) = ∑
γ1 ,γ2∈U i

γ1≠γ2

64
1
4 + γ2

1
K( 8x√

1
4 + γ2

1

) 64
1
4 + γ2

2
K( 8x√

1
4 + γ2

2

) ∏
γ∈U i/{γ1 ,γ2}

J0( 8x√
1
4 + γ2

),

Θ i (x) = ∑
γ1∈U i

64
1
4 + γ2

1
J′′0 ( 8x√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8x√
1
4 + γ2

).

We apply equation (4.1) and Lemma 6.8 to obtain, for ∣x∣ ≥ 50,

Ψi (x) ≪ ∑
γ1 ,γ2∈U i

γ1≠γ2

32
1
4 + γ2

1

32
1
4 + γ2

2
e−ϕ(q)∣x ∣/8 ≤ ( ∑

γ1∈U i

32
1
4 + γ2

1
)

2

e−ϕ(q)∣x ∣/8 = V 2
i e−ϕ(q)∣x ∣/8 ,

Θ i (x) ≪ ∑
γ1∈U i

32
1
4 + γ2

1
e−ϕ(q)∣x ∣/8 = Vi e−ϕ(q)∣x ∣/8 .

So by equation (6.3),

Φ′′i (x) = x2Ψi (x) + Θ i (x) ≪ (V 2
i x2 + Vi )e−ϕ(q)∣x ∣/8 ,

which implies the statement of the lemma since Vi ≪ V 2
i x2 in this range. ∎

Remark 6.10 The method of proof of Proposition 6.3 gives the expression

Φ′i (z) = z ∑
γ1∈U i

64
1
4 + γ2

1
K( 8z√

1
4 + γ2

1

) ∏
γ∈U i/{γ1}

J0( 8z√
1
4 + γ2

)

for the first derivative of Φ(z), from which the estimate Φ′i (x) ≪ Vi ∣x∣e−ϕ(q)∣x ∣/8 for
∣x∣ ≥ 50 follows from the method of proof of Lemma 6.9; in particular, Φ′i (x) tends to
0 as ∣x∣ → ∞, a fact we will need later.
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We may now assemble the various bounds for Φ′′i (x) derived in this section
to compare that function to (V 2

i z2 − Vi )e−Vi z2/2, which is the second derivative of
the characteristic function e−Vi z2/2 of a normal random variable with mean 0 and
variance Vi .

Proposition 6.11 For i ∈ {1, 2, 3} and q > q0, and for any real number x,

Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2 ≪

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Vi x2e−Vi x2/2 , if ∣x∣ ≤ V−1/2
i ,

V 3
i x6e−Vi x2/2 , if V−1/2

i ≤ ∣x∣ ≤ V−1/4
i ,

V 3/2
i e−V 1/2

i /2 , if V−1/4
i ≤ ∣x∣ ≤ 50,

V 2
i x2e−ϕ(q)∣x ∣/8 , if ∣x∣ ≥ 50.

Proof The first two assertions are immediate from Lemma 6.2. For the third and
fourth assertions, we use

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ ≤ ∣Φ′′i (x)∣ + (V 2

i x2 − Vi )e−Vi x2/2

≤ ∣Φ′′i (x)∣ + V 2
i x2e−Vi x2/2 ,

and note that the term V 2
i x2e−Vi x2/2 is insignificant compared to the asserted esti-

mates (due to the range of x in the third case and the definition of q0 in the fourth
case). Therefore, the third assertion follows from Lemma 6.7 while the fourth assertion
follows from Lemma 6.9. ∎

7 Comparison of probabilities

We are now able to estimate the difference between probabilities involving the random
variables X i from Definition 3.7 and normal random variables of the same mean and
variance. Using the results of the previous sections, we will bound the integrals of
their characteristic functions and the second derivatives thereof over R; subsequently
we will be able to bound the difference between their density functions themselves.
We begin with a quick and standard lemma giving the order of magnitude of even
moments of a normal distribution.

Lemma 7.1 For any positive constant C and any nonnegative integer m,

∞

∫
−∞

x2m e−Cx2
dx ≪m

1
Cm+1/2 .

Proof When m = 0, the formula ∫
∞
−∞ e−Cx2

dx =
√

2π/C is well known. For m ≥ 1,
we integrate by parts to obtain

∞

∫
−∞

x2m e−Cx2/2 dx =
∞

∫
−∞

x2m−1 ⋅ xe−Cx2/2 dx =
∞

∫
−∞

(2m − 1)x2m−2 ⋅ 2
C

e−Cx2/2 dx ,

from which the lemma follows by induction on m. ∎
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Lemma 7.2 Assume GRH. For i ∈ {1, 2, 3} and q > q0, we have
∞

∫
−∞

∣Φ i (x) − e−Vi x2/2∣ dx ≪ V−3/2
i

∞

∫
−∞

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx ≪ V−1/2

i .

Proof We write
∞

∫
−∞

∣Φ i (x) − e−Vi x2/2∣ dx = ∫
∣x ∣≤V−1/4

i

∣Φ i (x) − e−Vi x2/2∣ dx

+ ∫
V−1/4

i ≤∣x ∣≤50

∣Φ i (x) − e−Vi x2/2∣ dx + ∫
∣x ∣≥50

∣Φ i (x) − e−Vi x2/2∣ dx .

Using the bounds in Proposition 5.7,
∞

∫
−∞

∣Φ i (x) − e−Vi x2/2∣ dx ≪ ∫
∣x ∣≤V−1/4

i

Vi x4e−Vi x2/2 dx

+ ∫
V−1/4

i ≤∣x ∣≤50

e−V 1/2
i /2 dx + ∫

∣x ∣≥50

e−ϕ(q)∣x ∣/8 dx

≤ Vi

∞

∫
−∞

x4e−Vi x2/2 dx + 100e−V 1/2
i /2 + 2

∞

∫
50

e−ϕ(q)x/8 dx

≪ Vi ⋅ 1
V 5/2

i

+ e−V 1/2
i /2 + 1

ϕ(q) e−ϕ(q)50/8 ≪ V−3/2
i

by Lemma 7.1, where the final simplification uses Proposition 5.2.
Similarly, we write

∞

∫
−∞

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx

= ∫
∣x ∣≤V−1/2

i

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx

+ ∫
V−1/2

i ≤∣x ∣≤V−1/4
i

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx

+ ∫
V−1/4

i ≤∣x ∣≤50

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx

+ ∫
∣x ∣≥50

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx .
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Using the bounds in Proposition 6.11,

∞

∫
−∞

∣Φ′′i (x) − e−Vi x2/2∣ dx

≪ ∫
∣x ∣≤V−1/2

i

Vi x2e−Vi x2/2 dx + ∫
V−1/2

i ≤∣x ∣≤V−1/4
i

V 3
i x6e−Vi x2/2 dx

+ ∫
V−1/4

i ≤∣x ∣≤50

V 3/2
i e−V 1/2

i /2 dx + ∫
∣x ∣≥50

V 2
i x2e−ϕ(q)∣x ∣/8 dx

≤ Vi

∞

∫
−∞

x2e−Vi x2/2 dx + V 3
i

∞

∫
−∞

x6e−Vi x2/2 dx

+ 100V 3/2
i e−V 1/2

i /2 + 2V 2
i

∞

∫
50

x2e−ϕ(q)x/8 dx

≪ Vi ⋅ 1
V 3/2

i

+ V 3
i ⋅ 1

V 7/2
i

+ e−V 1/2
i /2 + 1

ϕ(q) e−ϕ(q)50/8 ≪ V−1/2
i

again by Lemma 7.1 and Proposition 5.2 (and a routine calculation to evaluate the final
integral exactly). ∎

Let f i (t) denote the density function of the random variable X i from Definition
3.7, and let g i (t) = (2πVi )−1/2e−t2/2Vi be the density function of a normal random
variable with mean 0 and variance Vi . We can bound the difference between these
two functions by writing them in terms of their characteristic functions.

Lemma 7.3 Assume GRH. For i ∈ {1, 2, 3} and q > q0, we have

f i (t) − g i (t) ≪ min {V−3/2
i , V−1/2

i t−2}.

Proof We begin with the inverse Fourier transform formula

f i (t) − g i (t) = 1
2π

∞

∫
−∞

e−ix t(Φ i (x) − e−Vi x2/2) dx .

On the one hand, this integral can be estimated trivially using the first estimate in
Lemma 7.2:

f i (t) − g i (t) ≪
∞

∫
−∞

∣Φ i (x) − e−Vi x2/2∣ dx ≪ V−3/2
i .

On the other hand, we can also integrate by parts twice before estimating, since both
Φ i (x) and e−Vi x2/2 and their first derivatives tend to 0 as ∣x∣ → ∞ (see Remark 6.10):

f i (t) − g i (t) = 1
2π

∞

∫
−∞

e−ix t(Φ i (x) − e−Vi x2/2) dx
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= − 1
2πt2

∞

∫
−∞

e−ix t(Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2) dx

≪ 1
t2

∞

∫
−∞

∣Φ′′i (x) − (V 2
i x2 − Vi )e−Vi x2/2∣ dx ≪ V−1/2

i
t2

by the second estimate in Lemma 7.2. ∎
Lemma 7.4 Assume GRH. For i ∈ {1, 2, 3} and q > q0, we have

∞

∫
−∞

∣ f i (t) − g i (t)∣ dt ≪ V−1
i .

Proof By Lemma 7.3,
∞

∫
−∞

∣ f i (t) − g i (t)∣ dt = ∫
∣t∣≤V 1/2

i

∣ f i (t) − g i (t)∣ dt + ∫
∣t∣≥V 1/2

i

∣ f i (t) − g i (t)∣ dt

≪ ∫
∣t∣≤V 1/2

i

V−3/2
i dt + ∫

∣t∣≥V 1/2
i

V−1/2
i
t2 dt

≪ V−3/2
i ⋅ V 1/2

i + V−1/2
i

V 1/2
i

≪ V−1
i . ∎

We are now ready to compare the probability that the random variables X i from
Definition 3.7, which are relevant to prime number races, come in a particular order
to the probability that normal random variables of the same mean and variance come
in a particular order.

Definition 7.5 For i ∈ {1, 2, 3}, let Yi denote a normal variable with mean 0 and
variance Vi , with the convention that Y1, Y2, and Y3 are mutually independent. Note
that the density function of Yi equals g i (t) as defined before Lemma 7.3.

Theorem 7.6 Assume GRH. For any permutation (i , j, k) of (1, 2, 3) and any q > q0,

Pr(X i > X j > Xk) = Pr (Yi > Yj > Yk) + O( 1
ϕ(q) log q

).

Proof Given the formulas

Pr(X i > X j > Xk) = ∭
x>y>z

f i (x) f j(y) fk(z) dx d y dz

Pr(Yi > Yj > Yk) = ∭
x>y>z

g i (x)g j(y)gk(z) dx d y dz,

we have

∣ Pr(X i > X j > Xk) − Pr(Yi > Yj > Yk)∣
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= ∣ ∭
x>y>z

( f i (x) f j(y) fk(z) − g i (x)g j(y)gk(z)) dx d y dz∣

= ∣ ∭
x>y>z

( f i (x) − g i (x)) f j(y) fk(z) dx d y dz

+ ∭
x>y>z

g i (x)( f j(y) − g j(y)) fk(z) dx d y dz

+ ∭
x>y>z

g i (x)g j(y)( fk(z) − gk(z)) dx d y dz∣

≤ ∭
R3

∣ f i (x) − g i (x)∣ f j(y) fk(z) dx d y dz

+ ∭
R3

g i (x)∣ f j(y) − g j(y)∣ fk(z) dx d y dz

+ ∭
R3

g i (x)g j(y)∣ fk(z) − gk(z)∣ dx d y dz

= ∫
R

∣ f i (x) − g i (x)∣ dx + ∫
R

∣ f j(y) − g j(y)∣ d y + ∫
R

∣ fk(z) − gk(z)∣ dz,

since each integral of a probability density function over R equals 1. It follows from
Lemma 7.4 and Proposition 5.2 that

Pr(X i > X j > Xk) = Pr(Yi > Yj > Yk) + O(V−1
i + V−1

j + V−1
k )

= Pr(Yi > Yj > Yk) + O( 1
ϕ(q) log q

)

as desired. ∎

8 Proof of the main theorem

By this point, we have essentially reduced the problem of asymptotically evaluating the
prime-race density δq;a1 ,a2 ,a3 (still under the assumptions from Definition 3.1) purely
to a problem in probability. In this section, we complete the proof of Theorem 1.5
(including showing how to derive the first assertion from the second) and Corollary
1.6, with very little input needed from number theory. We begin with a classical
(but perhaps not well known) formula for the probability that three normal variables
assume a prescribed ordering.

Lemma 8.1 Let Na , Nb , and Nc denote mutually independent normal random vari-
ables with mean 0 and variances a, b, and c, respectively. Then

Pr(Na > Nb > Nc) = 1
2π

arctan
√

ab + bc + ac
b

.
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Proof If Z1 and Z2 are normal random variables with mean 0 and correlation
coefficient ρ, there is a classical formula (see [1, equation (4)] for example) for the
“orthant probability” that both random variables are positive:

Pr(Z1 > 0 and Z2 > 0) = 1
4

+ 1
2π

arcsin ρ.

We apply this formula with Z1 = Na − Nb and Z2 = Nb − Nc , which are indeed normal
random variables with mean 0 and correlation coefficient

ρ = E((Na − Nb)(Nb − Nc))√
E((Na − Nb)2) ⋅ E((Nb − Nc)2)

(8.1)

= −σ 2(Nb)√
(σ 2(Na) + σ 2(Nb))(σ 2(Nb) + σ 2(Nc))

= −b√
ab + ac + bc + b2

,

so that

Pr(Na > Nb > Nc) = Pr(Na − Nb > 0 and Nb − Nc > 0)

= 1
4

− 1
2π

arcsin ( b√
ab + ac + bc + b2

).

The lemma now follows from the identities (valid for 0 ≤ x ≤ y)

arcsin ( x
y

) = arctan ( x√
y2 − x2

) = π
2

− arctan (
√

y2 − x2

x
). ∎

At this point, we can complete the proof of an important special case of our main
theorem, assuming the restriction from Definition 3.1 that has been in force since that
point. Recall the quantity δq;a1 ,a2 ,a3 from Definition 3.1.

Proof of Theorem 1.5 under the assumption that a1, a2, and a3 are either all quadratic
residues or all quadratic nonresidues (mod q) We may assume that q > q0 from
Definition 5.3, since the asymptotic formula is trivially valid for any bounded range of
q. We simply combine the three equalities in Proposition 3.9, Theorem 7.6 (using the
notation of Definition 7.5), and Lemma 8.1, obtaining

δq;a1 ,a2 ,a3 = Pr(X1 > X2 > X3) = Pr (Y1 > Y2 > Y3) + O( 1
ϕ(q) log q

)

= 1
2π

arctan
√

V1V2 + V2V3 + V1V3

V2
+ O( 1

ϕ(q) log q
)

as claimed. ∎
It is not difficult to remove the assumption that a1, a2, and a3 are either all quadratic

residues or all quadratic nonresidues (mod q), at least if we allow ourselves the larger
error term asserted in Theorem 1.5. Again, all we require is a quick lemma from
probability.
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Lemma 8.2 Let Z1, Z2, and Z3 be random variables, and let μ1, μ2, and μ3 be real
numbers. The event

exactly one of (Z1 > Z2 > Z3) and (Z1 + μ1 > Z2 + μ2 > Z3 + μ3) is true(8.2)

is contained in the event

(∣Z1 − Z2∣ ≤ ∣μ1 − μ2∣) or (∣Z2 − Z3∣ ≤ ∣μ2 − μ3∣).(8.3)

Proof First observe that
• if ∣Z1 − Z2∣ > ∣μ1 − μ2∣, then the two inequalities, Z1 > Z2 and Z1 + μ1 > Z2 + μ2 , are

either both true or both false;
• if ∣Z2 − Z3∣ > ∣μ2 − μ3∣, then the two inequalities, Z2 > Z3 and Z2 + μ2 > Z3 + μ3 ,

are either both true or both false.
It follows that if both (∣Z1 − Z2∣ > ∣μ1 − μ2∣) and (∣Z2 − Z3∣ > ∣μ2 − μ3∣) are true, then
(Z1 > Z2 > Z3) and (Z1 + μ1 > Z2 + μ2 > Z3 + μ3) are either both true or both false;
this implication is the contrapositive of the proposition. ∎

At this point, we no longer assume that a1, a2, and a3 have the same quadratic
nature (mod q), although the congruences (1.2) are still in force.

Proof of Theorem 1.5 in the general case When we do not assume that a1, a2,
and a3 are either all quadratic residues or all quadratic nonresidues (mod q), we
may still use the random variables X i and Yi from Definitions 3.7 and 7.5. How-
ever, we cannot rely on full cancellation of the constants in Lemma 3.6, and so
Proposition 3.9 must be modified: the distribution of the vector-valued function
(E∗(x; q, a1), E∗(x; q, a2), E∗(x; q, a3)) is the same as the distribution of the random
variable (μ1 , μ2 , μ3) + X1,2,3, where (μ1 , μ2 , μ3) is defined to be the vector

(cq(a2) + cq(a3) − 2cq(a1), cq(a1) + cq(a3) − 2cq(a2), cq(a1) + cq(a2) − 2cq(a3)).

Consequently, the density we want to evaluate now takes the form

δq;a1 ,a2 ,a3 = Pr(X1 + μ1 > X2 + μ2 > X3 + μ3)

= Pr(Y1 + μ1 > Y2 + μ2 > Y3 + μ3) + O( 1
ϕ(q) log q

)

by the proof of Theorem 7.6. We deduce from Lemma 8.2 that

∣ Pr(Y1 + μ1 > Y2 + μ2 > Y3 + μ3) − Pr(Y1 > Y2 > Y3)∣
≤ Pr (∣Y1 − Y2∣ ≤ ∣μ1 − μ2∣) + Pr (∣Y2 − Y3∣ ≤ ∣μ2 − μ3∣).

Since Yi are mutually independent, Y1 − Y2 is a normal random variable with vari-
ance V1 + V2, and hence its density function is bounded pointwise by the constant
1/

√
2π(V1 + V2); the analogous bound applies to the density function of Y2 − Y3. In

particular,

∣ Pr(Y1 + μ1 > Y2 + μ2 > Y3 + μ3) − Pr(Y1 > Y2 > Y3)∣

≤ 2∣μ1 − μ2∣√
2π(V1 + V2)

+ 2∣μ2 − μ3∣√
2π(V2 + V3)

.
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However, it is a standard fact that cq(a) ≪ε qε (see [3, Definitions 1.2 and 2.4]). Since
each Vi ≫ 1/

√
ϕ(q) log q by Proposition 5.2, we deduce that

∣ Pr(Y1 + μ1 > Y2 + μ2 > Y3 + μ3) − Pr(Y1 > Y2 > Y3)∣ ≪ε
qε

√
ϕ(q) log q

≪ε q−1/2+ε .

In conclusion,

δq;a1 ,a2 ,a3 = Pr(Y1 + μ1 > Y2 + μ2 > Y3 + μ3) + O( 1
ϕ(q) log q

)

= Pr(Y1 > Y2 > Y3) + Oε(q−1/2+ε + 1
ϕ(q) log q

)

= 1
2π

arctan
√

V1V2 + V1V3 + V2V3

V2
+ Oε(q−1/2+ε)

by Lemma 8.1, as claimed. ∎
Proof Since Vi = 4V(q)(1 + η i ) by Definition 1.4, we may restate Theorem 1.5 as

Pr(X1 > X2 > X3)

= 1
2π

arctan
√

(1 + η1)(1 + η2) + (1 + η1)(1 + η3) + (1 + η2)(1 + η3)
(1 + η2) + Oε(q−1/2+ε).

It is an easy calculus exercise to compute the linear approximation at the origin to the
twice-differentiable function above, obtaining

Pr(X1 > X2 > X3) = 1
6

+ η1

8π
√

3
− η2

4π
√

3
+ η3

8π
√

3
+ O(η2

1 + η2
2 + η2

3) + Oε(q−1/2+ε).

The corollary now follows from the estimate η i ≪ (log log q)/log q given in
Proposition 5.2. ∎

It turns out that while it is possible for the η i to be as large as Ω((log log q)/ log q),
they are usually rather smaller; in such a situation, the error term given in Corollary 1.6
can be reduced considerably. Indeed, an asymptotic formula for δq;a1 ,a2 ,a3 was given
by Lamzouri in a form where the secondary main terms and error terms had a more
explicit dependence on arithmetic quantities like the Vi , including the one we define
now.

Definition 8.3 For any reduced residue classes a and b modulo q, define

Bq(a, b) = ∑
χ (mod q)

χ≠χ0

(χ(ab−1) + χ(ba−1))b+(χ).

(Note, for example, that Bq(a, a) = V(q) from Definition 1.4.)

The following result, which is [9, Corollary 2.3] translated into our notation, applies
to any distinct reduced residues a1, a2, and a3 (mod q).
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Theorem 8.4 (Lamzouri) We have

δq;a1 ,a2 ,a3 = 1
6

+ 1
4

√
π

cq(a3) − cq(a1)√
V(q)

+ 1
4π

√
3

Bq(a1 , a2) + Bq(a2 , a3) − 2Bq(a1 , a3)
V(q)

+ O(
cq(1)2

V(q) +
max1≤i< j≤3 ∣Bq(a i , a j)∣2

V(q)2 ).(8.4)

One motivation for stating this result is to calculate the secondary main terms in
our special case a2

1 ≡ a2
2 ≡ a2

3 (mod q) and cq(a1) = cq(a2) = cq(a3) in the notation
of equation (2.1). Under these assumptions,

Bq(a i , a j) = 2( ∑
χ (mod q)

χ(a i)=χ(a j)

b+(χ) − ∑
χ (mod q)

χ(a i)=−χ(a j)

b+(χ) − b+(χ0))

=
V0 + Vk − Vi − Vj

16
− 2b+(χ0)

in the notation of Definition 1.4 (and thus, from Proposition 5.2, we have
Bq(a i , a j)2/V(q)2 ≪ (log log q)2/(log q)2). In particular,

Bq(a1 , a2) + Bq(a2 , a3) − 2Bq(a1 , a3) = V1 − 2V2 + V3

8
.

Using this identity in equation (8.4), and making the change of variables Vi =
4V(q)(η i + 1) from Definition 1.4, reveals that the secondary main terms in (8.4) are
exactly equal to those in Corollary 1.6. (As we see, Lamzouri’s result gives yet another
secondary main term in the case where cq(a1) ≠ cq(a3), while our method simply
gives an error term of that order of magnitude.)

9 Discussion

We have already discussed, at the end of Section 3, the algebraic aspects of our special
three-way races and the prospects for generalizing our method in that regard. In this
final section, we make some additional remarks about the analytic aspects of this
paper, under the continuing assumptions of GRH and LI.

The moral we hope to emphasize is that, to give asymptotic formulas for prime
number race densities δq;a1 , . . . ,ar from Definition 1.1 whose error terms are small, one
should always utilize a main term that is an “ordering probability” for a multivariate
normal distribution. If Z = (Z1 , . . . , Zr) is a normal random variable in R

r whose
covariance matrix is identical to the matrix of covariances Bq(a i , a j) (from Definition
8.3) corresponding to our prime number race, then the difference between δq;a1 , . . . ,ar

and Pr(Z1 > ⋯ > Zr) will decay like a negative power of q, as in Theorem 1.5. There-
fore, it is best, we claim, to primarily evaluate δq;a1 , . . . ,ar as an ordering probability of
this type; further asymptotic evaluations can then be made for the ordering probability
itself, an object that is purely probabilistic.
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This idea is certainly well established in this topic on a heuristic level, being
motivated, for example, by the central limit results established by Rubinstein and
Sarnak [11]. Using an ordering probability as the main term is implicit in the work
of Lamzouri [8, 9] (though the comparisons there were carried out mainly on the
characteristic function side) and more explicitly in the work of Harper and Lamzouri
[5, Section 4.1].

While we wanted to describe the construction of our atypical normalizations
E∗(x; q, a) of the error terms in prime counting functions for arithmetic progressions,
and how they resulted in independent random variables that allowed for a much
more elementary analysis, that independence is not necessary to our moral, as it
happens. The multivariate normal random variable Z alluded to above is permitted
to have correlations among the coordinates, and even to have nonzero means in each
coordinate (arising, in our case, from Chebyshev’s bias against quadratic residues).
Because the matrix of covariances Bq(a i , a j) turns out to be close to the identity
matrix times V(q) (the quantity from Definition 1.4), and the vector of means turns
out to be small compared to

√
V(q), it is possible to produce asymptotics for these

ordering probabilities in terms of the means and covariances, as was done in [9].
Moreover, in the case where the residues a j are all quadratic residues or all

quadratic nonresidues (so that the means of the individual limiting distributions are
all equal), these ordering probabilities can actually be evaluated in closed form for
r ≤ 4, because they are equivalent (by the method of proof of Lemma 8.1) to orthant
probabilities in at most three dimensions. (The cases r ≤ 2 are trivial because zero-
and one-dimensional orthant probabilities are trivial under the assumption of equal
means.) Recalling Definitions 1.1, 1.4, and 8.3, we define the further notation

ρ12 =
−V(q) + Bq(a1 , a2) − Bq(a1 , a3) + Bq(a2 , a3)
2

√
(V(q) − Bq(a1 , a2))(V(q) − Bq(a2 , a3))

ρ13 =
Bq(a1 , a3) − Bq(a2 , a3) − Bq(a1 , a4) + Bq(a2 , a4)

2
√

(V(q) − Bq(a1 , a2))(V(q) − Bq(a3 , a4))

ρ23 =
−V(q) + Bq(a2 , a3) − Bq(a2 , a4) + Bq(a3 , a4)
2

√
(V(q) − Bq(a2 , a3))(V(q) − Bq(a3 , a4))

Then, for any distinct reduced residues a1, a2, a3, and a4 (mod q), known formulas
for orthant probabilities [1, equations (4) and (5)] imply that the asymptotic formulas

δq;a1 ,a2 ,a3 ∼ 1
4

+ 1
2π

arcsin ρ12

δq;a1 ,a2 ,a3 ,a4 ∼ 1
8

+ 1
4π

( arcsin ρ12 + arcsin ρ13 + arcsin ρ23)

hold up to a negative power of q. As a reality check, if we exploit the fact that the
Bq(a i , a j) are negligible in size compared to V(q), then ρ12 ∼ ρ23 ∼ − 1

2 and ρ13 =
o(1), which leads to the evaluations δq;a1 ,a2 ,a3 ∼ 1

6 and δq;a1 ,a2 ,a3 ,a4 ∼ 1
24 as expected

from the central limit theorems of [11].
In this paradigm, we have approximated our number-theoretic limiting logarith-

mic distributions by normal distributions with the same mean and variance. Of
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course, the higher (even central) moments of the two distributions will not match
in general, which is a source of error when passing from one measure to the other.
It is worth mentioning that for two-way races, asymptotic formulas for the densities
exist [3, Theorem 1.1] that incorporate the contribution from higher moments and,
correspondingly, have error terms that can be made as small as an arbitrary power
of q. It would be an interesting project to attempt to produce analogous formulas for
prime number races with three or more contestants.

Nevertheless, we hope the viewpoint that prime race densities are best approxi-
mated explicitly by ordering probabilities for multivariate normal random variables
has some illuminating benefit to practitioners of comparative prime number theory.
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