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A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard

Zermelo–Fraenkel set theory. Aczel’s Anti-Foundation Axiom is replaced by a variant

definition of function that admits non-well-founded constructions. Variant ordered pairs and

tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel’s

solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The

approach is less general than Aczel’s, but the treatment of non-well-founded objects is

simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.

Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are

considered, as well as final coalgebras defined with respect to parameters. The disjoint sum

construction is replaced by a smoother treatment of urelements that simplifies many of the

derivations.

The theory facilitates machine implementation of recursive definitions by letting both

inductive and coinductive definitions be represented as fixedpoints. It has already been

applied to the theorem prover Isabelle (Paulson, 1994).

1. Introduction

A recurring issue in theoretical computer science is the treatment of infinite computa-

tions. One important approach is based upon the final coalgebra. This category-theoretic

notion is related to the methods of bisimulation and coinduction, which are heavily used

in concurrency theory (Milner, 1989), functional programming (Abramsky, 1990) and

operational semantics (Milner and Tofte, 1991).

Aczel and Mendler (1989) and Barr (1993) have proved that final coalgebras exist in set

theory for large classes of naturally occurring functors. This might be supposed to satisfy

most people’s requirements, but Aczel (1988) has argued the case for a non-standard set

theory in which infinite computations, and other non-well-founded phenomena, can be

modelled directly. He proposes to replace set theory’s Foundation Axiom (FA) by an
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Anti-Foundation Axiom (AFA) that guarantees the existence of solutions to x = {x} and,

more generally, of all systems of equations of the form xi = {xi, xj , . . . }. His general final

coalgebra theorem serves as a model construction to justify AFA.

Under AFA, a suitable functor F does not merely have a final coalgebra: that final

coalgebra equals F ’s greatest fixedpoint. This is the natural dual of the theorem that a

functor’s initial algebra is its least fixedpoint. These fixedpoints are exact, not just up to

isomorphism.

The elements of the final coalgebra are easily visualized. For instance, the functor A×−
(the functor F such that F(Z) = A× Z on objects) yields the set of streams over A. The

final coalgebra is also the greatest solution of S = A× S . If s ∈ S , then

s = 〈a1, s1〉, s1 = 〈a2, s2〉, s2 = 〈a3, s3〉, . . . ;

thus s is the infinite stream 〈a1, 〈a2, 〈a3, . . . 〉〉〉.
In standard set theory, FA outlaws infinite descents under the membership relation.

Under the standard definition of ordered pair, we have b ∈ {a, b} ∈ 〈a, b〉. Infinitely nested

pairs such as s above would create infinite ∈-descents, and therefore do not exist: the

greatest fixedpoint of A×− is the empty set. This is not the final coalgebra (which does

exist).

The approach proposed in this paper is not to change the axiom system but to adopt new

definitions of ordered pairs, functions, and derived concepts such as Cartesian products.

Under the new definitions, the stream functor’s final coalgebra is indeed its (exact) greatest

fixedpoint and each stream is an infinite nest of pairs. Recursion equations are solved up

to equality.

The approach handles non-well-founded tuples, and more generally ordered structures,

but it does not model true non-well-founded sets, such as solutions of x = {x}. It does not

work for the powerset functor, even with cardinality restrictions. Ironically, the approach

requires FA.

Outline

The strategy is to construct a final coalgebra U, which plays the same role as the universe

(V ) under AFA. Then we can replay the categorical proofs of Rutten and Turi (1993),

generalizing them along the way. Section 2 presents basic motivation – Quine’s ordered

pairs and their generalization to functions – and proves some lemmas about the cumulative

hierarchy, Vα. Section 3 defines the functor Q and its greatest fixedpoint U, and proves

that U is a final Q-coalgebra. Section 4 proves the solution and substitution lemmas for

set equations and the special final coalgebra theorem. Section 5 considers final coalgebra

definitions that take parameters. Section 6 discusses applications of the theory to machine

proof. Section 7 presents conclusions.

2. An alternative definition of pairs and functions

We begin with an informal motivation based on the work of Quine. The following section

will make formal definitions.
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2.1. Quine’s ordered pairs

In ZF set theory, the ordered pair 〈a, b〉 is usually defined to be {{a}, {a, b}}. The rank of

〈a, b〉 is therefore two levels above those of a and b; there are no solutions to b = 〈a, b〉.
Quine (1966) has proposed a definition of ordered pair that need not entail an increase

of rank. Quine’s definition is complicated because (amongst other things) it avoids using

standard ordered pairs. Retaining standard pairs lets us define Quine-like ordered pairs

easily.

Let 〈a, b〉 denote the standard ordered pair of a and b. Let tuples of any length consist

of ordered pairs nested to the right; thus 〈a1, . . . , an〉 abbreviates 〈a1, . . . , 〈an−1, an〉〉 for

n > 2. Let A× B denote the standard Cartesian product {〈a, b〉 | a ∈ A ∧ b ∈ B}.
Define the variant ordered pair, 〈a; b〉 by

〈a; b〉 ≡ ({0} × a) ∪ ({1} × b).
Note that 〈a; b〉 is just a + b, the disjoint sum of a and b (in set theory, everything is a

set). The new pairing operator is obviously injective, which is a key requirement. Also, it

admits non-well-founded constructions: we have 〈0; 0〉 = 0 for a start. (As usual in set

theory, the number zero is the empty set.)

The set equation 〈A; z〉 = z has a unique solution z, consisting of every (standard!)

tuple of the form 〈1, . . . , 1, 0, x〉 for x ∈ A. The infinite stream

〈A0;A1; . . . ;An; . . . 〉
is the set of all standard tuples of the form

〈1, . . . , 1︸ ︷︷ ︸
n

, 0, x〉

for n < ω and x ∈ An. Now 〈a; b〉 is continuous in a and b, in the sense that it preserves

arbitrary unions; thus fixedpoint methods can solve recursion equations involving variant

tupling.

Variant pairs can be generalized to a variant notion of function:

λ̃x∈Abx ≡
⋃
x∈A
{x} × bx.

Note that λ̃x∈Abx is just Σx∈Abx, that is, the disjoint sum of a family of sets. Also note

that 〈b0; b1〉 is the special case λ̃i∈2bi, since 2 = {0, 1}. Replacing 2 by larger ordinals such

as ω gives us a means of representing infinite sequences. More generally, non-standard

functions can represent infinite collections that have non-well-founded elements.

Variant functions are not graphs. Merely replacing 〈x, bx〉 by 〈x; bx〉 in the usual

definition of function, obtaining {〈x; bx〉 | x ∈ A}, would not suffice. It still yields only

well-founded constructions because the rank of such a set exceeds the rank of every bx.

For example, if b = {〈0; b〉}, then {1} × b ∈ b, violating FA; thus b = {〈0; b〉} has no

solution.

Application of variant functions is expressed using the image operator “. It is easy to

check that (λ̃x∈Abx) “ {a} = ba if a ∈ A. Also, if R is a relation with domain A, then
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R = λ̃x∈A R “ {x}. Every standard relation is a variant function, and vice versa. The set

{f ⊆ A×⋃B | ∀x∈A f “ {x} ∈ B}
consists of all variant functions from A to B and will serve as our definition of variant

function space, A →̃ B.

Since λ̃x∈Abx is not the function’s graph, it does not determine the function’s domain.

For instance, λ̃x∈A0 = A × 0 = 0. Clearly, λ̃x∈A0 = λ̃x∈B0 for all A and B. If 0 ∈ B, then

A →̃ B will contain both total and partial functions: applying a variant function to an

argument outside its domain yields 0.

2.2. Basic definitions

Once we have defined the variant pairs and functions, we can substitute them in the

standard definitions of Cartesian product, disjoint sum and function space. The resulting

variant operators are decorated by a tilde: ×̃, +̃, →̃, etc. Having both standard and

variant operators is the simplest way of developing the theory. The standard operators

relate the new concepts to standard set theory, and remain useful for defining well-founded

constructions. But the duplication of operators may seem inelegant, and it introduces the

risk of using the wrong one.

Definition 2.1. The variant ordered pair 〈a; b〉 is defined by

〈a; b〉 ≡ ({0} × a) ∪ ({1} × b).
If {bx}x∈A is an A-indexed family of sets, then the variant function λ̃x∈Abx is defined by

λ̃x∈Abx ≡
⋃
x∈A
{x} × bx.

The variant Cartesian product, disjoint sum and partial function space between two sets A

and B are defined by

A ×̃ B ≡ {〈x; y〉 | x ∈ A ∧ y ∈ B}
A +̃ B ≡ ({1} ×̃ A) ∪ ({〈1; 1〉} ×̃ B)

A →̃ B ≡ {f ⊆ A×⋃B | ∀x∈A f “ {x} ∈ B}.
The operators ×̃ and →̃ can be generalized to a family of sets as usual.

Definition 2.2. If {Bx}x∈A is an A-indexed family of sets, their variant sum and product

are defined by ∑̃
x∈A

Bx ≡ {〈x; y〉 | x ∈ A ∧ y ∈ Bx}∏̃
x∈A

Bx ≡ {f ⊆ A× (
⋃
x∈A

⋃
Bx) | ∀x∈A f “ {x} ∈ Bx}.
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2.3. The role of atoms

A first attempt at exploiting these definitions is to fix an index set I and solve the equation

U = I →̃ U. There is at least one solution, namely U = {0}, since λ̃i∈I 0 = 0. But we

cannot build up variant tuples starting from 0, as we can construct the distinct sets {0},
{0, {0}}, . . . . A variant tuple whose components are all the empty set is itself the empty

set.

Since I →̃ 0 = 0 if I 6= 0, one possible solution to U = I →̃ U is U = 0. Also

I →̃ {0} = {0}. As it happens, U = {0} is the greatest solution.

Proposition 2.3. If U = I →̃U, then U = 0 or U = {0}.
Proof. Suppose, for contradiction, that this is not the case. Then U contains a non-

empty element; there exist y0 and x0 with y0 ∈ x0 ∈ U. By the definition of →̃, it follows

that y0 = 〈i, y1〉 where i ∈ I and y1 ∈ x1 ∈ U for some x1. Repeating this argument yields

the infinite ∈-descent y0 = 〈i, y1〉, y1 = 〈i, y2〉, y2 = 〈i, y3〉, . . . , contradicting FA.

If tuples are to get built up, we must start with some atoms. To keep the atoms distinct

from the variant tuples, each atom should contain some element that is not a (standard)

pair. My earlier work Paulson (1995a) regarded one atom as sufficient, choosing 1 since

1 = {0} and the empty set is not a pair. It presented a final coalgebra theorem based upon

the greatest solution of U = {1} ∪ (I →̃U). The subsequent development closely followed

Rutten and Turi (1993).

Aczel relies on urelements, as do other researchers (Moss and Danner, 1997), to

formulate key results such as the solution lemma. He justifies this ‘expanded universe’ by

a disjoint sum construction (Aczel, 1988, page 16), which Rutten and Turi (1993) neatly

express as the greatest solution of VX = P(X + VX). However, they take this as the

definition of VX , replacing the expanded universe by its disjoint sum model. Abandoning

urelements has many drawbacks. Desirable properties such as V ⊆ VX and VX×VX ⊆ VX
fail, requiring the frequent use of embeddings.

A more streamlined approach is to incorporate an arbitrary set X of atoms into the

construction. The final coalgebra UX is the greatest solution of UX = Atoms(X) ∪ {1} ∪
(I→̃UX), where Atoms(X) is a suitable injection. These atoms are analogous to urelements,

just as UX is analogous to VX , but we always work in standard ZF. The solution and

substitution lemmas can be generalized to allow more than one set of indeterminates: we

often work with UX and UY , where possibly Y = 0, and write U0 as U.

2.4. Basic properties of the cumulative hierarchy

The following results are needed to prove closure and uniqueness properties in Section 3.

Let α, β range over ordinals and λ, µ over limit ordinals. The cumulative hierarchy of

sets is traditionally defined by cases: V0 = 0, Vα+1 = P(Vα), and if µ is a limit ordinal,

Vµ =
⋃
α<µ Vα. More convenient is the equivalent definition

Vα ≡
⋃
β<α

P(Vβ).
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Kunen (1980, Chapter III) is useful background reading; he writes R(α) for Vα. Here are

some well-known facts.

Lemma 2.4. If α is an ordinal and µ is a limit ordinal, then

α ⊆ Vα
Vα × Vα ⊆ Vα+2

Vµ × Vµ ⊆ Vµ
Vµ + Vµ ⊆ Vµ.

The set Vµ is closed under the formation of variant tuples and functions.

Lemma 2.5. If A ⊆ Vµ and bx ⊆ Vµ for all x ∈ A, then λ̃x∈Abx ⊆ Vµ.
Proof. This follows by the definition of λ̃, monotonicity and the facts noted above:

λ̃x∈Abx =
⋃
x∈A
{x} × bx ⊆

⋃
x∈Vµ
{x} × Vµ ⊆ Vµ × Vµ ⊆ Vµ.

Thus Vµ+1 has closure properties for variant products and sums analogous to those of

Vµ for standard products and sums. It is even closed under variant function space.

Lemma 2.6. Let µ be a limit ordinal.

(a) If A ⊆ Vµ then A →̃ Vµ+1 ⊆ Vµ+1.

(b) Vµ+1 ×̃ Vµ+1 ⊆ Vµ+1.

(c) Vµ+1 +̃ Vµ+1 ⊆ Vµ+1.

Proof. The results are obvious by the definitions and the previous lemma.

These results will allow application of the Knaster–Tarski fixedpoint theorem to con-

struct a final coalgebra. The next group of results will be used in the uniqueness proof.

Lemma 2.7. If A ∩ Vα ⊆ B for every ordinal α, then A ⊆ B.

Proof. By the Foundation Axiom, V =
⋃
α Vα, where V is the universal class. Thus

A =
⋃
α(A ∩ Vα). If A ∩ Vα ⊆ B for all α, then

⋃
α(A ∩ Vα) ⊆ B and the result follows.

Using this lemma requires some facts about intersection with Vα.

Definition 2.8. A set A is transitive if A ⊆ P(A).

Lemma 2.9. Vα is transitive for every ordinal α.

Proof. See Kunen (1980, page 95).

Now we can go down the cumulative hierarchy as well as up.

Lemma 2.10. If 〈a, b〉 ∈ Vα+1, then a ∈ Vα and b ∈ Vα.
Proof. Suppose 〈a, b〉 ∈ Vα+1; this is equivalent to {{a}, {a, b}} ∈ P(Vα). Thus {a, b} ∈ Vα

and, since Vα is transitive, {a, b} ⊆ Vα.
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Lemma 2.11. If {bx}x∈A is an A-indexed family of sets, then

(a) (λ̃x∈Abx) ∩ Vα+1 ⊆ λ̃x∈A(bx ∩ Vα)
(b) (λ̃x∈Abx) ∩ Vα ⊆ ⋃β<α λ̃x∈A(bx ∩ Vβ)

Proof. For (a) we have, by the previous lemma,

(λ̃x∈Abx) ∩ Vα+1 = {〈x, y〉 | x ∈ A ∧ y ∈ bx} ∩ Vα+1

⊆ {〈x, y〉 | x ∈ A ∧ y ∈ bx ∧ y ∈ Vα}
= λ̃x∈A(bx ∩ Vα).

For (b) we have, by the definition of Vα and properties of unions,

(λ̃x∈Abx) ∩ Vα = (λ̃x∈Abx) ∩
⋃
β<α

P(Vβ)

=
⋃
β<α

(λ̃x∈Abx) ∩ Vβ+1

⊆ ⋃
β<α

λ̃x∈A(bx ∩ Vβ).

The last step is by (a) above.

3. A final coalgebra

Rutten and Turi (1993), an excellent survey of final semantics, includes a categorical

presentation of Aczel’s main results. Working in the superlarge category of classes and

maps between classes, they note that FA is equivalent to ‘V is an initial P-algebra’, while

AFA is equivalent to ‘V is a final P-coalgebra’. Put in this way, AFA certainly looks more

attractive than the other anti-foundation axioms.

The present treatment of final semantics takes theirs as a starting point. Instead of

assuming that V is a final P-coalgebra, we can define a functor QI , where I is an arbitrary

index set, and construct a final QI -coalgebra, called UI , and obtain generalized forms

of the solution and substitution lemmas. We finally arrive at the special final coalgebra

theorem.

We shall not work in the category of classes but in the usual category Set of sets, which

has standard functions as maps. While the former category allows certain statements to

be expressed succinctly, it also requires numerous technical lemmas concerning set-based

maps, etc. From the standpoint of mechanized proof, one must also bear in mind that

classes have no formal existence under the ZF axioms, and class maps are two removes

from existence.

3.1. The bifunctor Q and the set UX

Let I be an index set, which will remain fixed throughout the paper. A typical choice for I

would be some limit ordinal such as ω. Note that ω →̃ A contains all ω-sequences over A;

we shall find that Uω contains all ω-sequences over itself. Moreover, finite sequences
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can be represented by ω-sequences containing infinitely many 0s, because 0 ∈ UI (see

Remark 3.7 below).

Incorporating atoms (urelements) requires an injection whose range is disjoint from all

I-sequences. It suffices to include an element that is not a (standard) pair in its result,

since every variant function is a standard relation.

Definition 3.1. The operators atm and Atoms are given by

atm(x) ≡ {2} ∪ ({0} × x)

Atoms(X) ≡ {atm(x) | x ∈ X}.
Much is arbitrary in the definition of atm, but it is clearly injective, and atm(x) is never

a standard relation. Moreover, atm(x) 6= 1. The next step is to define the bifunctor QIX(Y ),

where I is fixed and X and Y are sets. The intuition is that QIX(Y ) includes a copy of X

(the atoms) and also includes I-sequences over Y . It also includes the element 1 to start

things off, in case X = 0 (recall Proposition 2.3). Its effect on a pair of maps is to apply

one to the atoms and the other to the sequence elements.

Definition 3.2. The bifunctor QIX : Set× Set→ Set is defined on objects by

QIX(Y ) ≡ Atoms(X) ∪ {1} ∪ (I →̃ Y )

and on maps as follows. If f : X → X ′ and g : Y → Y ′, then QIf(g) : QIX(Y ) → QIX ′ (Y ′)
satisfies

QIf(g)(atm(x)) ≡ atm(f(x)) for x ∈ X
QIf(g)(1) ≡ 1

QIf(g)(λ̃i∈I yi) ≡ λ̃i∈I g(yi).

Also, QX(g) abbreviates QidX (g).

It is easy to check that the functor preserves the identity map and composition. The

next step is to define a set UI
X to be the greatest solution of UI

X = QIX(UI
X) and prove that

UI
X is a final QIX-coalgebra. Since UI

X = Atoms(X) ∪ {1} ∪ (I →̃ UI
X), we may regard the

elements of UI
X as nested I-indexed tuples built up from 1, with further atoms from X.

To solve UI
X = QIX(UI

X), we may apply the Knaster–Tarski fixedpoint theorem. This

gives an explicit definition.

Definition 3.3. Let µ be a limit ordinal such that I ⊆ Vµ and X ⊆ Vµ+1. Then

UI
X ≡

⋃{Z | Z ⊆ QIX(Z) ∧ Z ⊆ Vµ+1}.
Henceforth let us regard I as fixed and drop the superscripts. The next two results indicate

that UX really is a fixedpoint of QX , in fact the greatest post-fixedpoint. This justifies proof

by coinduction on UX . The second result also confirms that the choice of the ordinal µ

does not matter, provided it is at least the minimum specified.

For the remainder of this section, assume X ⊆ Vµ+1.

Lemma 3.4. Atoms(X) ⊆ Vµ+1.
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Proof. If x ∈ X, then x ⊆ Vµ, and {2}∪ ({0}×x) ⊆ Vµ by Lemma 2.4. So atm(x) ∈ Vµ+1.

Proposition 3.5. UX = QX(UX).

Proof. Lemmas 2.6 and 3.4 imply that QX(Vµ+1) ⊆ Vµ+1. So QX is an operator over

the powerset of Vµ, and it is clearly monotone. The result follows by the Knaster–Tarski

theorem.

Proposition 3.6. If Z ⊆ QX(Z), then Z ⊆ UX .

Proof. The result follows by the definition of UX if we can establish Z ⊆ Vµ+1. By

Lemma 2.7 it suffices to prove ∀z∈Z z ∩Vα ⊆ Vµ for all α. Proceed by transfinite induction

on the ordinal α.

Let z ∈ Z . Then z ∈ QX(Z) = Atoms(X) ∪ {1} ∪ (I →̃ Z). The case z = 1 is trivial,

and if z ∈ Atoms(X), then z ⊆ Vµ by Lemma 3.4. So we may assume z = λ̃i∈I zi, with

zi ∈ Z for all i ∈ I . In this case we have

(λ̃i∈I zi) ∩ Vα ⊆
⋃
β<α

λ̃i∈I (zi ∩ Vβ)

⊆ ⋃
β<α

λ̃i∈I Vµ

⊆ Vµ
by Lemma 2.11, the induction hypothesis for zi and Lemma 2.5. Since z ∩ Vα ⊆ Vµ for

all α, we have z ⊆ Vµ for all z ∈ Z . This establishes Z ⊆ Vµ+1.

Remark 3.7. Using this result, we can check that UX is nontrivial. Clearly 0 ∈ UX because

{0} = I →̃ {0} ⊆ QX({0}). We also have inclusions such as {0, 1} ∪ (I →̃ {0, 1}) ⊆ UX .

3.2. UX is a final QX-coalgebra

Proving thatUX is a final QX-coalgebra requires showing that for every map f : A→ QX(A)

there is a unique map π : A→ UX such that π = QX(π) ◦ f:

A
π - UX

QX(A)

f

?

QX(π)
- QX(UX)

wwwwwwwwww
For the remainder of this section, let the set A and the map f : A→ QX(A) be fixed.

Lemma 3.8. There exists π : A→ UX such that π(a) = QX(π)(f(a)) for all a ∈ A.

Proof. The function π is defined by π(a) ≡ ⋃n<ω πn(a), where {πn}n<ω is a monotonically
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increasing series of functions:

π0(a) ≡ 0

πn+1(a) ≡ QX(πn)(f(a)).

Suppose a ∈ A, and consider π(a) = QX(π)(f(a)) by cases. If f(a) = 1 or f(a) ∈
Atoms(X), then the equation reduces to f(a) = f(a). If f(a) = λ̃i∈I ai, then simple

continuity reasoning establishes the equation:

π(a) =
⋃
n<ω

πn(a) =
⋃
n<ω

πn+1(a)

=
⋃
n<ω

QX(πn)(f(a)) =
⋃
n<ω

λ̃i∈I πn(ai) = λ̃i∈I
⋃
n<ω

πn(ai)

= λ̃i∈I π(ai) = QX(π)(λ̃i∈I ai) = QX(π)(f(a)).

To show π : A → UX , use coinduction (Proposition 3.6). Let Z = {π(a) | a ∈ A}
and prove Z ⊆ QX(Z). If z ∈ Z , then z = π(a) = QX(π)(f(a)) for some a ∈ A. If

f(a) = 1 or f(a) ∈ Atoms(X), then f(a) ∈ QX(Z) and z = f(a). If f(a) = λ̃i∈I ai, then

z = λ̃i∈I π(ai) ∈ QX(Z).

Since UX is the greatest post-fixedpoint of QX , this establishes Z ⊆ UX . And since Z

is the range of π, this establishes π : A→ UX .

Lemma 3.9. If π = QX(π) ◦ f and π′ = QX(π′) ◦ f, then π = π′.

Proof. Again, using Lemma 2.7, apply transfinite induction on the ordinal ξ to prove

∀a∈A π(a) ∩ Vξ ⊆ π′(a).
Let a ∈ A. If f(a) = 1 or f(a) ∈ Atoms(X), then π(a) = π′(a) = f(a). If f(a) = λ̃i∈I ai,

then

π(a) ∩ Vξ = (λ̃i∈I π(ai)) ∩ Vξ ⊆
⋃
η<ξ

λ̃i∈I (π(ai) ∩ Vη) ⊆
⋃
η<ξ

λ̃i∈I π′(ai) = π′(a)

using the hypothesis, Lemma 2.11, the induction hypothesis for η < ξ and monotonicity

of λ̃.

Since π(a) ∩ Vξ ⊆ π′(a) for every ordinal ξ, we have π(a) ⊆ π′(a). By symmetry, we

have π′(a) ⊆ π(a), and therefore π(a) = π′(a) for all a ∈ A.

Theorem 1. UX is a final QX-coalgebra.

Proof. The result is immediate by the previous two lemmas.

Proposition 3.10. If f : X → Y , then there is a unique map h : UX → UY such that

h = Qf(h). Calling this map Uf makes the operation U− a functor.

Proof. The map exists by the universal property of UY . Routine calculations show that

it preserves identities and composition.

When X = 0 we may omit the subscript, writing U = Q(U) instead of U0 = Q0(U0). It

is easy to see that U− is monotone, and, in particular, that U ⊆ UX .
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Lemma 3.11. Let 0[X] be the unique map from the empty set into X. Then U0[X] : U →
UX equals the inclusion map ιU,UX

.

Proof. Abbreviate ιU,UX
by ι. We find that ι(v) = Q0[X](ι)(v) for v ∈ U, for if v = 1, then

ι(1) = 1 = Q0[X](ι)(1), and if v = λ̃i∈I vi, then

ι(λ̃i∈I vi) = λ̃i∈I vi = λ̃i∈I ι(vi) = Q0[X](ι)(λ̃i∈I vi).

The result follows by the uniqueness part of Proposition 3.10.

4. Solutions of equations

In his development of set theory with AFA, Aczel (1988) defines systems of set-equations

and proves the solution lemma: each system has a unique solution. Aczel introduces a

class X of variables and a class VX of sets built up from variables (but not themselves

variables). His substitution lemma says that any assignment f : X → V of sets to variables

can be extended to a substitution function f̂ : Vx → V . Aczel uses these lemmas to exhibit

a unique morphism for his special final coalgebra theorem.

Aczel proves the solution and substitution lemmas using concrete set theory, but in

Rutten and Turi’s categorical presentation the proofs are much shorter. A key fact in

their development is that V is (assuming AFA) a final P-coalgebra. My presentation is

similar, replacing V by U, VX by UX , P by Q and AFA by Theorem 1. One improvement

over Rutten and Turi (1993) is that U is simply U0 rather than a separate construction.

(Section 2.3 discusses the advantages at length.) In this setup, the solution and substitution

lemmas nicely generalize to relate two sets of variables. Equations in X and Y can be

solved with respect to X, and substitutions can be iterated. Also – a matter of taste – I

replace the category of classes by the category of sets.

Note that VX does not include atoms amongst its elements – they are only allowed in

sets – while UX includes Atoms(X). This deviation from Aczel will affect many definitions

below. The set Q(UX) makes a better analogy with VX: it does not include a copy of the

atoms.

4.1. Expressing maps on QX(Y )

Since QX(Y ) = Atoms(X) ∪ {1} ∪ (I →̃ Y ) and Q abbreviates Q0, we can write the set

QX(Y ) as the union of the disjoint sets Atoms(X) and Q(Y ). Some notation will simplify

later calculations.

Definition 4.1. If A and B are sets with B disjoint from Atoms(A), then

A ] B ≡ Atoms(A) ∪ B.
If, moreover, f : A → C and g : B → C are functions, then [[f, g]] : A ] B → C is the

unique function such that

[[f, g]](atm x) = f(x) (x ∈ A)

[[f, g]](y) = g(y) (y ∈ B).
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Typically, f : X → UY and g : Q(UX) → Q(UY ). Strictly speaking, the two maps

should have the same codomain. Abusing the notation, we can omit the inclusion map

ι : Q(UY ) → UY , abbreviating [[f, ι ◦ g]] by [[f, g]]. Note that [[f, g]] : UX → UY , because

X ] Q(UX) = UX . Making ι explicit, a typical calculation is

[[j, k]] ◦ [[atm, ι ◦ g]] = [[[[j, k]] ◦ atm, [[j, k]] ◦ ι ◦ g]] = [[j, k ◦ g]].

The map Qf(g) can be written as [[atm ◦f,Qg]], which is clearer sometimes.

4.2. Solution and substitution lemmas

Let f : X → UY be a function. Then the substitution function f̂ : UX → UY recursively

traverses its argument. Given an element of X ] UX , it applies f or f̂ as appropriate,

replacing everything of the form atm(x) by f(x). We have the case analysis

f̂(atm(x)) = f(x)

f̂(1) = 1

f̂(λ̃i∈I zi) = λ̃i∈I f̂(zi),

which may be put more succinctly as f̂ = [[f,Qf̂]].

Remark 4.2. In situations where the hat is too short, such as f̂◦g, the notation f◦g may

be used instead.

If X is a set of variables, a function ν : X → UY ]Q(UX) defines a system of equations

of the form x = ν(x) for x ∈ X. Each left-hand side is a variable drawn from X. Each

right-hand side is either an expression involving variables from Y or a guarded expression

involving variables from X. By guarded, I mean that the expression must consist of more

than just a variable; this restriction excludes degenerate systems of equations such as

{x = x}x∈X , whose solutions are not unique.

A system of equations has a unique solution f : X → UY that preserves the right-

hand sides involving Y while solving for the variables in X. In other words, we require

f(x) = ν(x) if ν(x) ∈ Atoms(UY ), and f(x) = Q(f̂)(ν(x)) otherwise. More concisely, a

solution satisfies f = [[idUY
,Qf̂]] ◦ ν.

Lemma 4.3 (Solution). Let ν : X → UY ] Q(UX) be a function. There exist unique

functions f : X → UY and f̂ : UX → UY such that f = [[idUY
,Qf̂]] ◦ ν and f̂ = [[f,Qf̂]].

Proof. Let ι : Q(UX)→ UY ] Q(UX) be an inclusion, and let m be the map

UY ] Q(UX) == QY (UY ) ] Q(X ] Q(UX))

QY (UY ] Q(UX)).

[[QY (atm), Q([[ν, ι]])]]

?
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Now consider the diagram

X
ν - UY ] Q(UX)

π - UY

QY (UY ] Q(UX))

m

?

QY (π)
- QY (UY )

wwwwwwwwww
Since (UY ]Q(UX), m) is a QY -coalgebra, finality yields a unique coalgebra morphism π

into UY . The diagram commutes, and we calculate

π = QY (π) ◦ m = [[QY (π) ◦ QY (atm), QY (π) ◦ Q([[ν, π ◦ ι]])]]
= [[QY (π ◦ atm), Q([[π ◦ ν, π ◦ ι]])]].

So π ◦ atm = QY (π ◦ atm) : UY → UY , and the uniqueness part of Proposition 3.10

yields π ◦ atm = UidY = idUY
. Furthermore, π ◦ ι = Q([[π ◦ ν, π ◦ ι]]).

Now put f̂ = [[π ◦ ν, π ◦ ι]] and f = π ◦ ν. Then f and f̂ satisfy the claimed properties

because π = [[idUY
,Qf̂]]. In particular,

f̂ = [[f, [[idUY
,Qf̂]] ◦ ι]] = [[f, Qf̂]].

As for uniqueness, suppose there are functions g : X → UY and ĝ : UX → UY such

that g = [[idUY
,Qĝ]] ◦ ν and ĝ = [[g,Qĝ]]. Let π′ = [[idUY

,Qĝ]]. Then g = π′ ◦ ν, and π′ also

makes the diagram commute:

QY (π′) ◦ m = [[QY (π′ ◦ atm), Q([[π′ ◦ ν, π′ ◦ ι]])]]
= [[QY (idUY

), Q([[g,Qĝ]])]]

= [[idUY
, Qĝ]]

= π′.

Uniqueness of the final map yields π′ = π, and therefore g = f and ĝ = f̂.

The following lemma justifies the f̂ notation for substitution by f. The idea is to convert

f : X → UY into a trivial system of equations and then to solve them.

Lemma 4.4 (Substitution). Let f : X → UY be a function. There exists a unique func-

tion f̂ : UX → UY such that f̂ = [[f,Qf̂]].

Proof. Let ν : X → UY ] Q(UX) be the map atm ◦f. The solution lemma yields unique

maps g : X → UY and ĝ : UX → UY such that g = [[idUY
,Qĝ]] ◦ ν and ĝ = [[g,Qĝ]].

Putting f̂ = ĝ gives f̂ = [[f,Qf̂]], because

g = [[idUY
,Qĝ]] ◦ atm ◦f = idUY

◦ f = f.

As for uniqueness, if ĥ = [[f,Qĥ]], then ĥ = [[g,Qĥ]] so ĥ = ĝ = f̂ by the uniqueness of

solutions.

Lemma 4.5 (Commutativity). If f : X → UY and g : Y → UZ , then ̂̂g◦f = ĝ ◦ f̂.
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Proof. By uniqueness of substitution, if h = [[ĝ◦f,Qh]], then h = ̂̂g◦f. The result follows

because

ĝ ◦ f̂ = ĝ ◦ [[f,Qf̂]] = [[ĝ ◦ f, [[g,Qĝ]] ◦ Qf̂]] = [[ĝ ◦ f, Q(ĝ ◦ f̂)]].

Lemma 4.6. If f : X → Y and g : Y → UZ , then ĝ◦f = ĝ ◦Uf .

Proof. By uniqueness of substitution, if h = [[g◦f,Qh]], then h = ĝ◦f. The result follows

because

ĝ ◦Uf = ĝ ◦ Qf(Uf) = ĝ ◦ [[atm ◦f,Q(Uf)]]

= [[ĝ ◦ atm ◦f, [[g,Qĝ]] ◦ Q(Uf)]] = [[g ◦ f, Q(ĝ ◦Uf)]].

In earlier work (Paulson, 19995a), following previous authors, I defined substitution

for a map f : X → U, with no indeterminates in the codomain. The ability to deal with

different sets of variables turns out to be useful. We can recover the original solution

and substitution lemmas by applying them with Y = 0. The embedding σX : U → UX

becomes the inclusion U0[X] in the present framework.

Lemma 4.7. 0[UX] = U0[X].

Proof. The result follows by the uniqueness aspect of Proposition 3.10, since

0[UX] = [[0[UX], Q(0[UX])]] = Q0[UX ](0[UX]).

Lemma 4.8 (Inclusion). If f : X → UY , then f̂ ◦ U0[X] = U0[Y ], and thus f̂(v) = v for

v ∈ U.

Proof. By the previous lemmas, f̂ ◦ U0[X] = f ◦ 0[X] = 0[UY ] = U0[Y ]. If v ∈ U, then

f̂(v) = f̂(U0[X](v)) = U0[Y ](v) = v by Lemma 3.11.

4.3. Special final coalgebra theorem

We shall no longer work in the category Set of sets but rather in the full subcategory SetU
whose objects are the subsets of U. Recall that U, in turn, depends upon the choice of

index set I; we can make U as large as necessary.

For a suitable functor, our goal is to show that its final coalgebra coincides with its

greatest fixed point. Let us only consider functors that preserve inclusion maps. This is

a natural restriction since all functors preserve identity maps, and inclusion maps are

identity maps when regarded as sets. All such functors have a greatest fixedpoint.

Lemma 4.9. If the functor F : SetU → SetU preserves inclusions then there exists an

object J[F] : SetU such that J[F] is the greatest fixedpoint and greatest post-fixedpoint

of F .
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Proof. Apply the Knaster–Tarski fixedpoint theorem to the lattice of subsets of U.

The functor F is necessarily monotone because it preserves inclusions: if A ⊆ B, then

F(ιA,B) = ιFA,FB , giving FA ⊆ FB.

Definition 4.10. A functor F : SetU → SetU is uniform on maps if it preserves inclusions

and for all A such that A ⊆ U there exists a mapping φA : FA → Q(UA) satisfying

Fh(w) = (Qĥ ◦ φA)(w) for all h : A → U and w ∈ FA. The mapping φA is called the UA

translation.

Remark 4.11. The condition above can be abbreviated as ιF(U),U ◦ Fh = Qĥ ◦ φA, where

ιF(U),U is the inclusion map from F(U) into U. And since the domain of ĥ includes that

of Qĥ, we have

ĥ(φA(w)) = [[h,Qĥ]](φA(w)) = Qĥ(φA(w)) = Fh(w).

The main theorem applies to functors that are uniform on maps. This notion is due to

Aczel (1988), but the presentation owes much to Rutten and Turi (1993).

Theorem 2 (Special final coalgebra). If the functor F : SetU → SetU is uniform on maps,

then J[F] is a final F-coalgebra.

Proof. Let (A, f) be an F-coalgebra. We must exhibit a unique map h : A→ J[F] such

that h = Fh ◦ f:

A
h - J[F]

FA

f

?

Fh
- F(J[F])

wwwwwwwwww
Since F is uniform on maps, there is a UA-translation φA : FA → Q(UA). Let

ι : Q(UA)→ U]Q(UA) be an embedding and apply the solution lemma with ν = ι◦φA ◦f.

We obtain a unique map h : A→ U such that h = [[idU, Qĥ]] ◦ ι ◦φA ◦ f = Qĥ ◦φA ◦ f. So

h(a) = (Qĥ ◦ φA)(f(a)) = Fh(f(a)) for a ∈ A.

Regarding the maps as set-theoretic functions, a standard coinduction argument

proves h ∈ A→ J[F]. Writing h “ A for the image of A under h, we have

h “ A = (Fh ◦ f) “ A = Fh “ (f “ A) ⊆ Fh “ FA ⊆ F(h “ A),

since h ∈ A→ h “ A and Fh ∈ FA→ F(h “ A).

The range of h is thus a post-fixedpoint of F and is included in the greatest post-

fixedpoint, namely J[F].

4.4. Existence of functors uniform on maps

If F is uniform on maps, its effect upon a map h : A → U can be expressed as the

substitution of h over a pattern derived from the argument; if w ∈ FA, then Fh(w) =
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Qĥ(φA(w)). Most natural functors are uniform on maps, with the exception of the identity

functor. Proofs covering product and sum constructions may be found in my previous

work (Paulson, 1995a).

This section considers functor composition. It seems obvious that F ◦ G should be

uniform on maps if F and G are. However, the proof seems to require iterated substitution

(Lemma 4.4), which was introduced in this paper.

Proposition 4.12. If F , G : SetU → SetU are uniform on maps, so is the functor F ◦ G :

SetU → SetU .

Proof. Let A ⊆ U. Since F and G are uniform on maps, there exist UA and UGA

translations

ψA : GA→ Q(UA) such that ιGU,U ◦ Gh = Qĥ ◦ ψA and

φGA : FGA→ Q(UGA) such that ιFU,U ◦ Fj = Qĵ ◦ φGA
for h : A→ U and j : GA→ U.

Let ι : Q(UA)→ UA be an inclusion map and put θA = Q(ι ◦ ψA) ◦ φGA. If h : A→ U

and u ∈ FGA, then

F(Gh)(u) = F(Qĥ ◦ ψA)(u)

= F(ĥ ◦ ι ◦ ψA)(u)

= (Q(ĥ ◦ ι ◦ ψA) ◦ φGA)(u)

= (Q(ĥ ◦ ι ◦ ψA) ◦ φGA)(u)

= (Qĥ ◦ Q(ι ◦ ψA) ◦ φGA)(u)

= (Qĥ ◦ θA)(u)

by commutativity of substitution (Lemma 4.5). The first equality, in which Gh is replaced

by Qĥ ◦ ψA, holds because F preserves inclusions.

5. Final coalgebras with parameters

Section 1 discussed the set S of streams over A, which satisfies S = A × S . But ‘streams

over A’ should be a construction taking A as a parameter. Can we define it as a functor

that can itself be used in further constructions?

Suppose F is a bifunctor. If A is an object, then F(−, A) is a functor, which we abbreviate

to FA. If FA has a final coalgebra J[FA] for every A, then the map A 7→ J[FA] determines

a functor. The idea is to show that this functor is uniform on maps and to express other

functors in terms of it. For example, the functor of streams over A, stream(A), is uniform

on maps. It can express the functor of ω-branching trees as the final coalgebra of the

bifunctor F(A′, A) = A× stream(A′), etc.

Our existing machinery already suffices to handle mutually recursive coinductive defi-

nitions, finding greatest fixedpoints in the product category SetU × SetU . The idea is to

generalize the special final coalgebra theorem, applying the solution lemma to a set of

indeterminates of the form A1 +̃A2. But it is more general to handle definitions that have
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parameters. This topic appears to be little discussed in the final coalgebra literature, but

see Hensel and Jacobs (1997), who work in total categories of fibrations. The approach

outlined below is simple and applies (making the obvious changes) to approaches based

on AFA.

Definition 5.1. A bifunctor F : SetU × SetU → SetU is uniform on maps if it preserves

inclusions and for all subsets A, B of U there exists a mapping φA,B : F(A,B) → UA+̃B

such that F(f, g)(w) = ([f, g] ◦ φA+̃B)(w) for all f : A→ U, g : B → U and w ∈ F(A,B).

In this section, A and B range over subsets of U. If the bifunctor F is uniform on maps,

then so are the functors F(−, B) and F(A,−) for objects A and B. To prove this, we need

a few more results.

Lemma 5.2. For every map φ : B → Q(UA+̃B) there exists a unique map Outl[φ] : UA+̃B →
UA such that

Outl[φ] = [atm,Q(Outl[φ]) ◦ φ].

Proof. Let m be the map

UA+̃B ===== (A +̃ B) ] Q(UA+̃B)

A ] Q(UA+̃B)

[[[atm, φ], Q(idUA+̃B
)]]

?

Now consider the diagram

UA+̃B

π - UA

QA(UA+̃B)

m

?

QA(π)
- QA(UA)

wwwwwwwwww
Since (UA+̃B, m) is a QA-coalgebra, there is a unique map π into the final coalgebra UA

making the diagram commute. Now

π = QA(π) ◦ m
= [[QA(π) ◦ [atm, φ], QA(π) ◦ Q(idUA+̃B

)]]

= [[[atm,Qπ ◦ φ], Qπ]].

By the substitution Lemma (4.4), the desired map Outl[φ] is π. (Note: QA(π) becomes

Qπ after composition with the implicit inclusion map for Q(UA+̃B) ⊆ A ] Q(UA+̃B) =

QA(UA+̃B).)

Lemma 5.3. For every map φ : A → Q(UA+̃B) there exists a unique map Outr[φ] :

UA+̃B → UB such that

Outr[φ] = [Q(Outr[φ]) ◦ φ, atm].
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Proof. The proof is as above, by symmetry.

Lemma 5.4. If f : A→ U, then f̂ ◦Outl[ιB,Q(UA+̃B )] = [f, ιB,U].

Proof. Abbreviate ιB,Q(UA+̃B ) by ι. Since B ⊆ U = QU ⊆ Q(UA+̃B), we have ι =

Q(U0[A+̃B]) ◦ ιB,U . Lemmas 5.2 and 4.8 give

Outl[ι] ◦U0[A+̃B] = [atm,Q(Outl[ι]) ◦ ι] ◦U0[A+̃B] = U0[A]. (1)

Apply (1) and Lemma 4.8 in a preliminary derivation:

f̂ ◦ [atm,Q(Outl[ι]) ◦ ι] = [f̂ ◦ atm, f̂ ◦ Q(Outl[ι]) ◦ Q(U0[A+̃B]) ◦ ιB,U]

= [f, [[f,Qf̂]] ◦ Q(Outl[ι] ◦U0[A+̃B]) ◦ ιB,U]

= [f, Q(f̂ ◦U0[A]) ◦ ιB,U]

= [f, Q(idU) ◦ ιB,U]

= [f, ιB,U].

And so, applying Lemmas 4.4 and 4.5, we obtain

f̂ ◦Outl[ι] = f̂ ◦ [atm,Q(Outl[ι]) ◦ ι]
= f̂ ◦ [atm,Q(Outl[ι]) ◦ ι]
= [f, ιB,U].

Lemma 5.5. If g : B → U then ĝ ◦Outr[ιA,Q(UA+̃B )] = [ιA,U, g].

Proof. Th proof is by symmetry in the previous proof.

Proposition 5.6. If the bifunctor F : SetU × SetU → SetU is uniform on maps, then so are

the functors F(−, B) and F(A,−) for A, B : SetU .

Proof. Since F is uniform on maps, it has a UA+̃B translation φA,B : F(A,B)→ Q(UA+̃B).

Let B ⊆ U be fixed and consider the functor F(−, B). Then, for A ⊆ U, we shall

see that the UA translation for F(−, B) is Q(Outl[ιB,Q(UA+̃B )]) ◦ φA,B . For h : A → U and

w ∈ F(A,B), we have by Lemma 5.4

(Qĥ ◦ Q(Outl[ιB,Q(UA+̃B )]) ◦ φA,B)(w)

= (Q(ĥ ◦Outl[ιB,Q(UA+̃B )]) ◦ φA,B)(w)

= (Q([h, ιB,U]) ◦ φA,B)(w)

= F(h, ιB,U)(w)

= (F(idU, ιB,U) ◦ F(h, idB))(w)

= F(h, idB)(w),

since F preserves inclusions.

If A ⊆ U is fixed, the UA translation for F(A,−) is Q(Outr[ιA,Q(UA+̃B )]) ◦ φA,B , by

symmetry.
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I do not know whether the converse of this proposition holds. This question might be

considered in future research.

Theorem 3. Let F : SetU × SetU → SetU be a bifunctor that is uniform on maps. For

A : SetU , let FA abbreviate the functor F(−, A). Then J[FA] is a final FA-coalgebra, and

the map A 7→ J[FA] determines a functor that is uniform on maps.

Proof. If A ⊆ U, then the functor FA is uniform on maps by Proposition 5.6. By the

special final coalgebra theorem, J[FA] is a final FA-coalgebra. The fixedpoint property

yields J[FA] = F(J[FA], A).

As is well known, the map A 7→ J[FA] determines a functor. Given h : A→ B, finality

of J[FB] yields a unique map J[Fh] such that J[Fh] = F(J[Fh], h). By uniqueness, it is easy

to check that J[idA] = idJ[FA] and J[f ◦ g] = J[f] ◦ J[g].

The functor also preserves inclusions. If A ⊆ B, then J[FA] ⊆ J[FB] by monotonicity

of the greatest fixedpoint operator. Since F preserves inclusions, F(ιJ[FA],J[FB ], ιA,B) =

ιJ[FA],J[FB ]. By uniqueness, J[FιA,B ] = ιJ[FA],J[FB ].

Let A ⊆ U be given. To show that the functor J[F−] is uniform on maps, it remains

to exhibit a UA translation θA such that Qĥ ◦ θA = ιFU,U ◦ Fh for h : A → U. Abbreviate

J[FA] by J . Let φJ+̃A : F(J, A) → Q(UJ+̃A) be the translation for the bifunctor F; since

J = F(J, A), we have φJ+̃A : J → Q(UJ+̃A).

The required translation is θA = Q(Outr[φJ+̃A]) ◦ φJ+̃A. If h : A → U, then by

Lemmas 5.3 and 4.5,

Qĥ ◦ θA = Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A

= Q(ĥ ◦ [Q(Outr[φJ+̃A]) ◦ φJ+̃A, atm]) ◦ φJ+̃A

= Q(ĥ ◦ [Q(Outr[φJ+̃A]) ◦ φJ+̃A, atm]) ◦ φJ+̃A

= Q([Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A, h]) ◦ φJ+̃A

= ιF(U,U),U ◦ F(Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A, h)

= ιF(U,U),U ◦ F(Qĥ ◦ θA, h)
because F is uniform on maps.

It remains to eliminate the inclusion map. Considering Qĥ ◦ θA as a set theoretic

function, its range R satisfies R = F(R,U), but the greatest solution to that equation is

J[FU]. So Qĥ ◦ θA = ιJ[FU ],U ◦ j for some j : J → J[FU]. Since F preserves inclusions, we

find

ιJ[FU ],U ◦ j = Qĥ ◦ θA = ιF(U,U),U ◦ F(ιJ[FU ],U ◦ j, h) = ιJ[FU ],U ◦ F(j, h),

so j = F(j, h). By uniqueness, j = J[Fh]. Summarizing, we have

Qĥ ◦ θA = Qĥ ◦ θA = ιJ[FU ],U ◦ J[Fh],

and θA is the required UA translation.
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6. Applications to machine proof

The context for this work is my mechanization of ZF set theory, using the theorem

prover Isabelle (Paulson, 1993). Proof tools should allow users to define sets inductively.

Adding induction principles to the formalism is popular (Paulin-Mohring, 1993), but is

not suitable for ZF set theory, where strong induction principles can be derived from

the axioms. I have put much effort into supporting inductive definitions in Isabelle/ZF,

basing the representation on least fixedpoints (Paulson, 1995b).

Coinductive definitions should also be supported. The simplest approach is to base the

representation on greatest fixedpoints. If the bulk of the implementation works for any

fixedpoint, admitting coinductive definitions will cost almost nothing.

AFA could be the basis for a greatest fixedpoint approach in Isabelle/ZF. It would

be straightforward to separate FA from the other ZF axioms and to move most of the

formalization into the resulting theory of ZF−. Isabelle can support parallel developments

in ZF and ZF− + AFA. However, implementation of AFA would require much further

work. The axiom and its consequences, such as the solution lemma, would have to be

mechanized in a form suitable for constructing particular coalgebras (as opposed to

developing metatheory).

My approach to final coalgebras is easy to mechanize. Most of the facts required of

greatest fixed points are obtained by dualizing facts already proved about least fixed points.

The definitions of variant pairs, products, sums, etc., are elementary. Their properties are

easily established; many proofs can be adapted from those for the standard operators.

A set (analogous to U) closed under the most important constructors can be defined in

terms of Vω , whose theory is already needed for the inductive case.

This fixedpoint approach has been implemented as an Isabelle package (Paulson, 1994).

In order to admit both inductive and coinductive definitions, the package takes the

relevant notions of products, sums, etc., as parameters. The package does not prove that

particular coinductively defined sets are final coalgebras, but the script needed to generate

such a proof is fairly short. It was by developing this script that I obtained the ideas

underlying Lemma 3.9.

Frost (1995) has used the package to mechanize a substantial example taken from a

tutorial on coinduction (Milner and Tofte, 1991). The semantics of a simple functional

programming language is defined in an unusual way: recursive functions are modelled

as non-well-founded expressions. The theorem relates the dynamic and static semantics –

values and types – via a correspondence relation that is defined coinductively. The chief

difficulty in the mechanization is to justify the basic definitions, which involve mutual

recursion and variant functions; fortunately, the package does most of the work. The

proofs themselves are routine. The full development takes just over a minute to run.

Recall that the identity functor is not uniform on maps. The corresponding declaration

in Isabelle/ZF turns out to have the wrong properties: the greatest fixedpoint is U when

it should be a singleton.

7. Conclusions

Researchers in semantics seldom worry about how an object is constructed, provided it

has the right abstract properties. From this point of view, the general theorems of Aczel
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and Mendler (1989) and Barr (1993) yield final coalgebras for a great many functors,

using techniques such as inverse limits and quotienting.

But there is an undoubted interest in the special final coalgebra theorem of Aczel

(1988), proved using AFA. This theorem is weaker but concrete. The set of streams over A

is simply the greatest fixedpoint of the functor A × −, which is also that functor’s final

coalgebra. Its elements are easily visualized objects of the form 〈a0, a1, a2, . . . 〉.
The original motivation for my work was to treat streams and other infinite data

structures. I wished to use the standard ZF axiom system as it was automated using

Isabelle. Thomas Forster suggested that Quine’s treatment of ordered pairs might help.

Generalizing this treatment led to the new definition of functions (and thus infinite

streams), in order to compare the approach with AFA. This part of the work closely

follows Aczel (1988) and Rutten and Turi (1993), from the substitution lemma onwards.

As Aczel has pointed out to me, this reuse of the development suggests general conditions

under which a category possessing final coalgebras analogous to U and UX satisfies a

special final coalgebra theorem.

Compared with my early paper (Paulson, 1995a), the present development is more

streamlined and goes further. Its treatment of urelements eliminates most embeddings,

simplifying the derivations. New laws govern iterated substitution and maps of the

form Uf . Final coalgebras may be defined with respect to parameters. Much of the new

material is relevant to systems based upon AFA.

My version of the theorem is less general than the version using AFA, especially for

modelling concurrency. Here is a typical example. Let Pf be the finite powerset operator,

which returns the set of all finite subsets of its argument. Let A be a set of actions, and

consider the set P of processes defined as the final coalgebra of Pf(A × −). With AFA,

the final coalgebra is the greatest solution of P = Pf(A× P ), and if p ∈ P , then

p = {〈a1, p1〉, . . . , 〈an, pn〉}
with n < ω, a1, . . . , an ∈ A and p1, . . . , pn ∈ P . Here p represents a process that can

execute action ai and become process pi, with no restriction that a1, . . . , an are distinct.

In this way, Aczel (1988) modelled the transition systems of SCCS, and other process

algebras require at least as much generality.

My approach does not handle general set constructions, only variant tuples and func-

tions; I do not know how to model Pf respecting set equalities such as {x, y} = {y, x} =

{x, y, x}. However, it is not entirely useless for modelling concurrency. In the UNITY

formalism (Chandy and Misra, 1988), nondeterminism lies only in the choice of action,

the actions themselves being deterministic. We could model UNITY by the set of the non-

well-founded A-branching trees, but not by the greatest solution of P = A →̃ P , which is

trivial (Proposition 2.3). Instead we should use the greatest solution of P = {1}∪ (A →̃P ),

which is of course UA, taking A as the index set.

The approach works best in its original application, infinite data structures. We can

model the main constructions in Uω . Since Uω ⊆ Vω+1, each infinite data structure is a

subset of Vω and thus is a set of hereditarily finite sets†. Section 2.1 discussed infinite

† An hereditarily finite set is one built in finitely many stages from the empty set. There are countably many

of them.
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streams. The set S of streams over A is the greatest solution of S = A ×̃ S , and is the

final coalgebra of the functor A ×̃ −. The construction is parametric in A, yielding the

functor stream(A) that can be used in further definitions. Another possible application is

the modelling of object-oriented languages (Hensel et al., 1998).

Thus we have an account of non-well-founded phenomena that is concrete enough to

be understood directly, and simple enough to use in machine proof. One can argue about

the constructive validity of the cumulative hierarchy, but Vω is uncontroversial even from

an intuitionistic viewpoint. An infinite data structure is represented by a countable set of

elementary objects.

Aczel has shown that by adopting AFA we can obtain final coalgebras as greatest

fixedpoints, dualizing a standard result about initial algebras. My approach is another

way of doing the same thing, though for fewer functors. Whether or not one chooses to

adopt AFA hinges on a number of issues: philosophical, theoretical, practical. Variant

tuples and functions are a simple alternative.
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