
Robotica (2012) volume 30, pp. 229–244. © Cambridge University Press 2011
doi:10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots
using range finders
Lei Zhang∗, René Zapata and Pascal Lépinay
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Université Montpellier II 161
rue Ada, 34392 Montpellier Cedex 5, France
E-mails: {rene.zapata,pascal.lepinay}@lirmm.fr

(Received in Final Form: May 11, 2011; accepted May 6, 2011. First published online: June 14, 2011)

SUMMARY
In order to achieve the autonomy of mobile robots, effective
localization is a necessary prerequisite. In this paper, we
propose an improved Monte Carlo localization algorithm
using self-adaptive samples (abbreviated as SAMCL). By
employing a pre-caching technique to reduce the online
computational burden, SAMCL is more efficient than the
regular MCL. Further, we define the concept of similar
energy region (SER), which is a set of poses (grid cells)
having similar energy with the robot in the robot space. By
distributing global samples in SER instead of distributing
randomly in the map, SAMCL obtains a better performance
in localization. Position tracking, global localization and the
kidnapped robot problem are the three sub-problems of the
localization problem. Most localization approaches focus on
solving one of these sub-problems. However, SAMCL solves
all the three sub-problems together, thanks to self-adaptive
samples that can automatically separate themselves into a
global sample set and a local sample set according to needs.
The validity and the efficiency of the SAMCL algorithm are
demonstrated by both simulations and experiments carried
out with different intentions. Extensive experimental results
and comparisons are also given in this paper.

KEYWORDS: Localization; Probabilistic approach; Self-
adaptive; Monte Carlo; Mobile robot; Kidnapping.

1. Introduction
Effective localization is a fundamental prerequisite for
achieving autonomous mobile robot navigation. Localization
is defined as the problem of determining the pose (or position)
of a robot given a map of the environment and sensors data.1–4

Usually, the mobile robot pose comprises its x–y coordinates
and its orientation.

According to the type of knowledge that is available
initially and at run-time and the difficulty of finding a
solution, localization problem can be divided into three
sub-problems: position tracking, global localization and the
kidnapped robot problem.1, 2, 5–7

Position tracking assumes that the robot knows its initial
pose.2, 8, 9 During its motions, the robot can keep track of
its movement to maintain a precise estimate of its pose

* Corresponding author. E-mail: lei.zhang@lirmm.fr

by accommodating the relatively small noise in a known
environment.

More challenging is the global localization problem.2, 6, 7, 10

In this case, the robot does not know its initial pose, thus it
has to determine its pose in the following process only with
control data and sensors data. Once the robot determines its
global position, the process continues as a position tracking
problem. To solve the initial localization problem, Jaulin
et al.11 propose a guaranteed outlier minimal number
estimator (OMNE) which is based on set inversion via
interval analysis. They apply this algorithm to the initial
localization of an actual robot in a partially known two-
dimensional (2D) environment.

The kidnapped robot problem appears when a well-
localized robot is teleported to some other place without
being told.1, 3, 12, 13 Robot kidnapping can be caused by
many factors. In general, we summarize the kidnapped
robot problem into two categories – real kidnapping and
localization failures:

1. Real kidnapping occurs when the robot is really
kidnapped. For example, someone takes the robot to other
place, or an accident causes the robot to drastically drift.

2. Localization failures can make the robot think itself to
be kidnapped. For example, when the robot moves into a
incomplete part of the map, unmodelled objects can cause
the robot to think that it is kidnapped. It can also bring
about kidnapping when the crowd passes next to the robot.
There are many other reasons that can lead to localization
failures, such as mechanical failures, sensor faults and
wheel slip.14, 15

In practice, real kidnapping is rare; however, kidnapping is
often used to test the ability of a localization algorithm to
recover from global localization failures. This problem is the
hardest of the three localization sub-problems. Difficulties
come from two sources: one is how to determine the
occurrence of kidnapping, the other is how to recover from
kidnapping. To some extent, to recover from kidnapping can
be considered as estimating globally the robot’s pose once
again if the robot finds the occurrence of kidnapping.

Among the existing position tracking algorithms, the
extended Kalman filter (EKF) is one of the most popular
approaches.1, 16–18 The EKF assumes that the state transition
and the measurements are Markov processes represented by
non-linear functions. The first step consists in linearizing

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

230 Self-adaptive Monte Carlo localization for mobile robots using range finders

these functions by Taylor expansion and the second step
consists in a fusion of sensors and odometry data with
Kalman filter. However, plain EKF is inapplicable to
the global localization problem, because of the restrictive
nature of the unimodal belief representation. To overcome
this limitation, the multi-hypothesis Kalman filter is
proposed.5, 19–21 It represents beliefs using the mixture of
Gaussian distributions, thus it can proceed with multiple
and distinct hypotheses. However, this approach inherits
the Gaussian noise assumption from Kalman filters. This
assumption makes all practical implementations extract low-
dimensional features from the sensor data, thereby ignoring
much of the information acquired by the robot’s sensors.12

Grid localization and Monte Carlo localization (MCL) are
the two most common approaches to deal with the global
localization problem. Grid localization approximates the
posterior using a histogram filter over a grid decomposition
of the pose space.1, 22 MCL is based on a particle filter
that represents the posterior belief by a set of weighted
samples (also called particles) distributed according to this
posterior.1, 3, 23–27 The crucial disadvantage of these two
approaches is that they bear heavy online computational
burden. For grid localization, the resolution of the grid is a
key variable. The precision and efficiency of implementation
depend on it. The finer grained can get a more accurate
result, but at the expense of increased computational costs.
The implementation of MCL is more efficient than Grid
localization, because it only calculates the posteriors of
particles. However, to obtain a reliable localization result,
a certain number of particles will be needed. The larger
the environment is, the more particles are needed. Actually,
each particle can be seen as a pseudo-robot, which perceives
the environment using a probabilistic measurement model.
At each iteration, the virtual measurement takes large
computational costs if there are hundreds of particles.
Furthermore, the fact that MCL cannot recover from robot
kidnapping is its another disadvantage. When the position
of the robot is well determined, samples only survive
near a single pose. If this pose happens to be incorrect,
MCL is unable to recover from this global localization
failure.

Thrun et al.1 propose the augmented MCL algorithm
to solve the kidnapped robot problem by adding random
samples. However, adding random samples can cause the
extension of the particle set if the algorithm cannot recover
quickly from kidnapping. This algorithm draws particles
either according to a uniform distribution over the pose
space or according to the measurement distribution. The
former is inefficient and the latter can only fit the landmark
detection model (feature-based localization). Moreover, by
augmenting the sample set through uniformly distributed
samples is mathematically questionable. Thus, Thrun
et al.1, 12, 28 propose the mixture MCL algorithm. This
algorithm employs a mixture proposal distribution that
combines regular MCL sampling with an inversed MCL’s
sampling process. They think that the key disadvantage of
mixture MCL is a requirement for a sensor model that permits
fast sampling of poses. To overcome this difficulty, they
use sufficient statistics and density trees to learn a sampling
model from data.

In this paper, we propose the self-adaptive Monte Carlo
localization (SAMCL) algorithm to solve the localization
problem. This algorithm is derived from the MCL algorithm;
however, it is improved in three aspects. First, it employs
a pre-caching technique to reduce the online computational
burden of MCL. Thrun et al.1 use this technique to reduce
costs of computing for beam-based models in the ray casting
operation. Our pre-caching technique decomposes the state
space into two types of grids. The first one is a three-
dimensional (3D) grid denoted as G3D that includes the
planar coordinates and the orientation of the robot. It is used
to reduce the online computational burden of MCL. The other
grid is a 2D ‘energy’ grid, denoted as GE . We define energy
as the special information extracted from measurements. The
energy grid is used to calculate the similar energy region
(SER) that is a subset of GE .29 Its elements are these grid
cells whose energy is similar to robot’s energy. SER provides
potential information of robot’s position, thus sampling in
SER is more efficient than sampling randomly in the whole
map. That is the second contribution. Finally, SAMCL can
solve position tracking, global localization and the kidnapped
robot problem together, thanks to self-adaptive samples.
Self-adaptive samples in this paper are different from the
Kullback–Leibler Divergence (KLD)-sampling algorithm
proposed in.1, 30 The KLD-sampling algorithm employs the
sample set that has an adaptive size to increase the efficiency
of particle filters. Our self-adaptive sample set has a fixed
size, thus it does not lead to the extension of the particle set.
In order to solve the kidnapping problem, a number of global
samples are necessary. ‘When to generate global samples?’
and ‘where to distribute global samples?’ are two main
problems. The self-adaptive sample set can automatically
divide itself into a global sample set and a local sample set
according to different situations. Local samples are used to
track the robot’s pose, whereas global samples are distributed
in SER and used to recover from kidnapping.

The rest of this paper is organized as follows. In
Sections 2 and 3, we briefly review Bayes filters and MCL. In
Section 4, we introduce the SAMCL algorithm. Simulation
and experiment results are presented in Sections 5 and 6.
Finally, some conclusions are given in Section 7.

2. Bayes Filter
MCL is a Bayes-based Markov localization algorithm. The
Bayes filter technique provides a powerful statistical tool
to understand and solve robot localization problems.5, 31–37

It calculates recursively the belief distribution bel(∗) from
measurement data and control data.1 The Bayes filter makes
a Markov assumption, that is, the past and future data are
independent if one knows the current state.

Let bel(st) denote the robot’s subjective belief of being at
position st at time t . Here, st is a 3D variable st = (xt , yt , θt)T,
comprising its x–y coordinates in the Cartesian coordinate
system and its orientation θ . The belief distribution is the
posterior probability over the state st at time t , conditioned
on all past measurements Zt and all past controls Ut :

bel(st) = p(st |Zt, Ut). (1)

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 231

We define measurements Zt and controls Ut as follows:

Zt = {zt , zt−1, . . . , z0} ,

Ut = {ut , ut−1, . . . , u1} ,
(2)

where measurements Zt are counted from z0 because the
robot is assumed to start measuring at its initial position
and controls Ut are often obtained from measurements of
proprioceptive sensors such as odometry.

To derive a recursive equation, the target posterior
(Eq. (1)) can be transformed by Bayes rule to

p(st |Zt, Ut)
Bayes rule= p(zt |st , Zt−1, Ut)p(st |Zt−1, Ut)

p(zt |Zt−1, Ut)

= ηp(zt |st , Zt−1, Ut)p(st |Zt−1, Ut), (3)

where η is a normalization constant that ensures the final
result to be normalized to one.

As we have known, Bayes filters rest on the Markov
assumption. Thus, the measurement zt is conditionally
independent of past measurements Zt−1 or controls Ut if
we could know the current state st . Mathematically, this is
expressed as follows:

p (zt |st , Zt−1, Ut) = p(zt |st). (4)

Now, the target expression Eq. (3) can be simplified to

p(st |Zt, Ut) = ηp(zt |st)p (st |Zt−1, Ut) . (5)

Next, the term p (st |Zt−1, Ut) is expanded by the law
of total probability, and then it is simplified by exploiting
Markov assumption again:

p (st |Zt−1, Ut)

T otal prob.=
∫

p (st |st−1, Zt−1, Ut) p (st−1 |Zt−1, Ut) dst−1

Markov assum.=
∫

p (st |st−1, ut) p (st−1 |Zt−1, Ut−1) dst−1,

(6)

where the control variable ut is removed from p (st |Zt−1, Ut)
because the future control ut cannot provide any information
for calculating the conditional probability of passed state
st−1. We note that the term p (st−1 |Zt−1, Ut−1) represents
exactly the belief bel(st−1).

Finally, we get the recursive localization formula as
follows:

bel(st)

= p(st |Zt, Ut)

= ηp (zt |st)
∫

p (st |st−1, ut) p (st−1 |Zt−1, Ut−1) dst−1

= ηp (zt |st)
∫

p (st |st−1, ut)bel(st−1) dst−1, (7)

where the probability p (st |st−1, ut) is called the prediction
model or the motion model, which denotes the transition of

robot state. The probability p (zt |st) is the correction model
or the sensor model, which incorporates sensor information
to update robot state.

In practice, the implementation of Eq. (7) is divided into
two stages – prediction and correction:

1. Prediction. In this stage, a posterior, before incorporating
the latest measurement zt and just after executing the
control ut , is calculated. Such a posterior is denoted as
follows:

bel(st) = p(st |Zt−1, Ut)

=
∫

p (st |st−1, ut)bel(st−1) dst−1. (8)

2. Correction. In this stage, the latest measurement zt is
incorporated to calculate bel(st) from bel(st):

bel(st) = ηp (zt |st) bel(st)

= ηp (zt |st)
∫

p (st |st−1, ut)bel(st−1) dst−1.

(9)

3. Monte Carlo Localization
MCL is based on a particle filter, which represents the
posterior belief bel(st) by a set St of N weighted samples
distributed according to this posterior. As a consequence, the
more intensive the region is populated by samples, the more
likely the robot locates there:

St = {〈
s[n]
t , ω[n]

t

〉}
n=1,...,N

. (10)

Each particle s
[n]
t with 1 ≤ n ≤ N denotes a concrete

instantiation of the robot’s pose at time t . The number of
particles N may be a fixed value or changing with some
quantities related to the belief bel(st).30, 35, 38 The ω

[n]
t is the

non-negative numerical factor called importance factor. We
interpret ω

[n]
t as the weight of a particle.

The basic MCL algorithm is depicted in Algorithm 1,
which calculates the particle set St recursively from the set

Algorithm 1. Basic MCL algorithm, adapted from ref. [1].
1: Input: St−1, ut , zt , m

2: S̄t = St = ∅
3: for n = 1 to N do
4: generate a particle s

[n]
t ∼ p

(
st

∣∣s[n]
t−1, ut , m

)
5: calculate an importance factor ω

[n]
t = p

(
zt

∣∣s[n]
t , m

)
6: add

〈
s

[n]
t , ω

[n]
t

〉
to S̄t

7: end for
8: normalize ωt

9: for n = 1 to N do
10: draw s

[n]
t with importance factors ω

[n]
t

11: add s
[n]
t to St

12: end for
13: Output: St

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

232 Self-adaptive Monte Carlo localization for mobile robots using range finders

St−1. It accepts as input a particle set St−1 along with the
latest control ut , measurement zt and the map m. It outputs
the particle set St at time t . S̄t is a temporary particle set,
which represents the belief bel(st). Before each iteration, we
empty the temporary particle set S̄t and the particle set St .
This recursive algorithm is realized in three steps:

1. Line 4 generates a sample s
[n]
t based on the sample s

[n]
t−1, the

control ut and the map m. Obviously, the pair (s[n]
t , s

[n]
t−1)

is distributed according to the product distribution:

p
(
s[n]
t

∣∣s[n]
t−1, ut , m

) × bel
(
s

[n]
t−1

)
. (11)

In accordance with the literature on the sampling import-
ance resampling (SIR) algorithm,39, 40 this distribution is
called the proposal distribution. It corresponds to Eq. (8)
of Bayes filters except for the absence of the integral sign.

2. Line 5 calculates the importance factor ω
[n]
t for each

particle s
[n]
t . The important factor is used to correct

the mismatch between the proposal distribution and the
desired target distribution specified in Eq. (9). It is restated
here for the MCL algorithm:

ηp
(
zt

∣∣s[n]
t

)
p
(
s[n]
t

∣∣s[n]
t−1, ut , m

)
bel(s[n]

t−1). (12)

Thus, the importance factor ω
[n]
t is the probability of the

measurement zt under the a hypothetical state s
[n]
t , which

incorporates the measurement zt into the particle set:

ω[n]
t = target distribution

proposal distribution

= ηp
(
zt

∣∣s[n]
t

)
p
(
s

[n]
t

∣∣s[n]
t−1, ut , m

)
bel(s[n]

t−1)

p
(
s

[n]
t

∣∣s[n]
t−1, ut , m

)
bel(s[n]

t−1)

= ηp
(
zt

∣∣s[n]
t

)
, (13)

where the normalization η is a constant, which plays no
role in the computation because the resampling takes
place with probabilities proportional to the importance
weights.1

The process of calculating the importance factor is the
measurement update. The importance factor ω

[n]
t can be

seen as the weight of a particle s
[n]
t . Thus, the weighted

particle set S̄t can represent approximately the posterior
belief bel(st), but it does not distribute with this posterior
yet.

3. To make the weighted particle set S̄t distribute according
to the posterior belief bel(st), this algorithm involves
resampling (or importance sampling).1 It is implemented
in lines 9–12. Resampling re-draws N particles according
to the posterior belief bel(st) to replace the temporary
particle set S̄t . It transforms the temporary particle set S̄t

into a new particle set of the same size. Before resampling,
the particle set is distributed according to bel(st). After
resampling, the particle set is distributed according to
bel(st).

Fig. 1. The process of the SAMCL algorithm.

4. The SAMCL Algorithm
The SAMCL algorithm is implemented in three steps,41, 42 as
illustrated in Fig. 1:

1. Pre-caching the map. The first step accepts the map m

as input. It outputs a 3D grid G3D and a 2D energy grid
GE . The grid G3D stores measurement data of the whole
map and the grid GE stores energy information. This step
is executed offline to reduce the online computational
burden.

2. Calculating SER. The inputs of the second step are the
energy grid GE obtained offline in the pre-caching phase
and the measurement data zt of the robot at time t . The
output is SER. This step is run online.

3. Localization. The last step accepts as input the particle set
St−1, control data ut , measurement data zt , the 3D grid
G3D and SER. It outputs the particle set St . This step is
also run online.

4.1. Pre-caching the map
In the localization problem, the map is supposed to be pre-
known by the robot and be static. Hence, a natural idea is
to decompose the given map into grid and to pre-compute
measurements for each grid cell. Our pre-caching technique
decomposes the state space into two types of grids:

1. Three-dimensional grid (G3D). The map is decomposed
into a 3D grid that includes planar coordinates and the
orientation. Each grid cell is seen as a pseudo-robot that
perceives the environment at different poses and stores
these measurements. When SAMCL is implemented,
instead of computing measurements of the map for each
particle online, the particle is matched with the nearest
grid cell and then simulated perceptions stored in this cell
are assigned to the particle. Measurements are pre-cached
offline, hence the pre-caching technique can reduce the
online computational burden. Obviously, the precision of
the map describing depends on the resolution of the grid.

2. Two-dimensional energy grid (GE). Each grid cell of the
energy grid pre-computes and stores its energy. Energy
is the special information extracted from measurements.
For range sensors, the measurement data are distances,
denoted as d for an individual measurement. We define
ith sensor’s energy as

ai = 1 − di/dmax. (14)

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 233

Fig. 2. (Colour online) A robot with non-uniformly distributed
sensors measuring in a long and narrow room at different
orientations. Energy of case (a) and case (b) is different, even if
the robot is at the same location.

where, di is the measurement of ith sensor and dmax is
the maximum distance that sensors are able to ‘see’. Then
we define energy of a robot (or a grid cell) as the sum of
energy of all the sensors:

E =
I∑

i=1

ai. (15)

The advantage of using total energy of all the sensors is
no need to consider the orientation of the robot, thus we
can reduce one-dimensional (1D) calculation. These grid
cells nearby obstacles will have larger energy than those
in the free space.

Please note that we can calculate the sum of energy to
reduce 1D calculation based on an assumption that the robot’s
sensors are distributed uniformly or quasi-uniformly around
its circumference. The reason is simple. If a robot has non-
uniformly distributed sensors, it will obtain different energy
at the same location but different orientations. Figure 2 shows
an example. A robot with non-uniformly distributed sensors
measures in a long and narrow room at different orientations.
Energy of case (a) can be computed as follows:

Ea =
(

1 − d1

dmax

)
+

(
1 − d2

dmax

)
+

(
1 − d3

dmax

)
. (16)

Energy of case (a) can be computed as follows:

Eb =
(

1 − e1

dmax

)
+

(
1 − e2

dmax

)
+

(
1 − e3

dmax

)
. (17)

Obviously, we have

Ea > Eb. (18)

If such robots are used, we provide two simple solutions:

1. Let the robot turn 360◦ at each position and take the
measurements simultaneously. Like this, the robot can
obtain the same measurement results as the robot equipped
with the sensors that are distributed uniformly around its
circumference.

2. Using orientation sensors, such as the compass.

Algorithm 2. Calculating energy for each grid cell.
1: Input: m

2: for all the grid cell k ∈ {1, · · · , K} do
3: for all the range sensors i ∈ {1, · · · , I }, each

measurement d̃
[k]
i < dmax do

4: ã
[k]
i = 1 − d̃

[k]
i /dmax

5: end for

6: Ẽ(k) =
I∑

i=1
ã

[k]
i

7: normalize Ẽ(k) = 1
I
Ẽ(k)

8: end for
9: Output: GE

The process of calculating energy for grid cells is shown in
Algorithm 2. It inputs the map m and outputs the 2D energy
grid GE . In line 3, each sensor of one grid cell measures
the map using ray casting and gives the distance d

[k]
i . Line

4 computes energy ã
[k]
i of the ith sensor of the kth grid

cell. Line 6 computes total energy Ẽ(k) of the I sensors of
the kth grid cell. In line 7, we normalize total energy Ẽ(k).
Hence, energy ã

[k]
i and total energy Ẽ(k) has the same value

interval [0, 1] as probability density. This energy grid is used
to calculate SER and will be presented in Section 4.2.

4.2. Calculating SER
SER is defined as a subset of GE . Grid cells in SER have
similar energy with the robot. SER may be seen as the
candidate region for sampling, in which particles have higher
probability. Information provided by SER is used to match
the position of the robot, such as the robot is in the corridor or
in the corner, is nearby obstacles or in the free space. Figure 3

Fig. 3. (Colour online) SER when the robot is (a) in the corridor
and (b) in the corner.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

234 Self-adaptive Monte Carlo localization for mobile robots using range finders

Algorithm 3. Calculating SER algorithm.
1: Input: GE, dt

2: for all the range sensors of the real robot i ∈ {1, · · · , I },
each measurementdi < dmax do

3: ai = 1 − di/dmax

4: end for

5: E =
I∑

i=1
ai

6: normalize E = 1
I
E

7: for all the grid cell k ∈ {1, · · · , K} do
8: if

∣∣E − Ẽ(k)
∣∣ < δ then

9: defining the grid cell k as a SER cell
10: end if

11: end for
12: Output: SER

shows SER when the real robot is located in a corridor (a) and
in a corner (b). To distribute global samples, SER provides an
a priori choice. Sampling in SER solves the problem of where
to distribute global samples. Obviously, sampling in SER is
more efficient than sampling stochastically in the entire map.
Especially, if the robot is in a distinct region such as Fig. 3(b),
the advantage of sampling in SER is more significant.

An algorithm to calculate SER is shown in Algorithm 3.
It accepts as input the energy grid GE obtained offline in the
pre-caching phase and the range measurements dt of the robot
at time t . It outputs SER. Lines 2–6 compute total energy of
the I sensors for the real robot. Lines 7–11 compares total
sensors energy of the real robot with total sensors energy
of each grid cell. If the difference is smaller than a given
threshold δ, we define this grid cell as a SER cell.

4.3. Localization
The SAMCL algorithm uses self-adaptive samples to
solve the position tracking, global localization and the
kidnapped robot problems together. Self-adaptive samples
can automatically divide themselves into a local sample
set and a global sample set and transform between them
according to different situations. SAMCL maintains local
samples by regular MCL and distributes global samples in
SER.

When the robot is well localized, SAMCL only maintains
local samples around the robot. Once the robot is kidnapped,
part of samples migrate from local samples to global
samples. After the robot relocalizes itself, global samples
are converted as one part of local samples. Global samples
are able to help the robot recover from kidnapping. But
they may also induce a wrong reaction, for instance, in
symmetrical environments, all the particles in symmetrical
regions may have high probability and the pose of robot
could be ambiguous. Hence, the idea is that global samples
only appear when the robot is ‘really’ kidnapped. The main
question is to know when the robot is kidnapped. We value
whether the robot is kidnapped by measuring the probabilities
of particles. If the maximum of probabilities of particles is

Algorithm 4. SAMCL algorithm.
1: Input: St−1, ut , dt , G3D , SER

Sampling total particles
1: for n = 1 to NT do
2: generate a particle s

[n]
t ∼ p

(
st

∣∣s[n]
t−1, ut

)
3: calculate importance factor ω

[n]
t = p

(
zt

∣∣s[n]
t , G3D

)
4: end for

Determining the size of global sample set and local sample
set

1: if ωmax
t < ξ then

2: NL = α · NT

3: else
4: NL = NT

5: end if
6: NG = NT − NL

Resampling local samples
1: normalize ωt

2: for n = 1 to NL do
3: draw s

[n],L
t with distribution ω

[n]
t

4: add s
[n],L
t to SL

t

5: end for
Drawing global samples

1: for n = 1 to NG do
2: draw s

[n],G
t with the uniform distribution in SER

3: add s
[n],G
t to SG

t

4: end for
Combining two particle sets

1: St = SL
t ∪ SG

t

2: Output: St

less than a given threshold, the robot will deduce that it has
been kidnapped.

The SAMCL algorithm is summarized in Algorithm 4. It
inputs the particle set St−1 at time t − 1, motion control ut ,
measurements dt of the range sensors, the 3D grid G3D and
SER. It outputs the particle set St . Here, NT denotes the total
number of particles used in this algorithm, NG is the number
of global samples distributed in SER, and NL denotes the
number of local samples used for tracking the robot. We
explain this algorithm in five parts.

Part 1: sampling total particles. Line 2 generates a particle
s

[n]
t for time t based on the particle s

[n]
t−1 and the control ut .

Line 3 determines the importance weight of that particle.
Particularly, measurements of the particle are searched in
G3D.

Part 2: determining the size of global sample set and
local sample set. This part distributes the number of global
samples and local samples according to the maximum of
importance factors ωt . If ωmax

t is less than the threshold ξ ,
we assume the robot is kidnapped, part of particles NG are
divided as global samples. If not, all the particles are local
samples. The parameter α determines the ratio of global

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 235

samples and local samples. Here, the problem of when to
generate global samples is solved. The reason why we do
not use all the particles as global samples is that the robot
may mistakenly believe that it is kidnapped. This more often
occurs in incomplete maps. Keeping part of local samples
can reduce this mistake. ξ is a sensitive coefficient, which
determines the sensitivity of SAMCL. The greater ξ may
make robot more sensitive to kidnapping, but, on the other
hand, the robot mistakes more frequently.

Part 3: resampling local samples. The operation to
resample local samples is identical to regular MCL. At
the beginning, importance factors ωt are normalized. Local
samples are drawn by incorporating the importance weights.

Part 4: drawing global samples. A real trick of the SAMCL
algorithm is in part 4, global samples are distributed in SER
with a uniform distribution. The advantage of sampling in
SER is more efficient. This part is only executed when the
robot considers itself to be kidnapped.

Part 5: combining two particles sets. At last, local sample
set SL

t and global sample set SG
t are combined. The new

sample set St will be used in the next iteration.

5. Simulation Results
The SAMCL algorithm inherits all the advantages of MCL,
hence it has the ability to solve the position tracking problem
and the global localization problem. Moreover, it improves
in several aspects compared with the regular MCL:

1. It is more efficient than the plain MCL algorithm because
it employs an offline pre-caching technique.

2. SER provides potential information of the robot’s pose.
Hence, sampling in SER is more efficient than sampling
randomly in the entire environment.

3. It can settle the kidnapped robot problem by using self-
adaptive samples.

Thus, simulations focus on comparing SAMCL with MCL
in computational efficiency and evaluating the performance
of the SAMCL algorithm to solve position tracking, global
localization and the kidnapped robot problem.

The simulated error is drawn from a normal distribution
with mean zero and standard deviation σ (N (0, σ 2)). In order
to reflect the noise level (or error level), we define a scalar
value 	, which represent the noise by a percentage form:

Noise level () = standard deviation (σ)

maximum range
× 100%. (19)

The SAMCL algorithm is tested for all the three
localization problems: position tracking, global localization
and kidnapping, respectively. In position tracking, the
performance of SAMCL is compared with EKF and MCL. As
EKF is unsuitable for global localization, we only compare
SAMCL with MCL in this problem. The regular MCL
algorithm is incapable of recovering from kidnapping due
to its natural character. As discussed in refs. [1, 12, 43]:
‘As the position is acquired, particles at places other than
the most likely pose gradually disappear. At some point,
particles only “survive” near single pose, and the algorithm
is unable to recover if this pose happens to be incorrect.’

Fig. 4. (Colour online) Position tracking using SAMCL in a quasi-
symmetrical corridor. The trajectories of robot, odometry and
SAMCL are displayed by the black solid line (line A), the green
dash-dot line (line C) and the red dotted line (line B), respectively.

In kidnapping, three scenarios are designed for evaluating
the performance of the SAMCL algorithm. In this paper, we
do not compare SAMCL with grid localization because the
regular grid localization algorithm is not efficient enough
to be executed in real time.1, 43 For example, the quasi-
symmetrical corridor map as shown in Fig. 4 has a dimension
of 25 m × 10 m. Using the MCL algorithm, the localization
can be achieved by using only 300 particles. However,
even if grid localization employs a coarse resolution of
0.5 m × 0.5 m (the localization errors of MCL are less than
0.5 m) to decompose this map, it will produce 1000 grid cells
that are much more than the number of particles. Moreover,
if a 3D grid (included x, y and θ) is used, the motion
update requires a convolution, which is a 6D operation.1

The measurement update of a full scan is a costly operation,
too. The computational burden is so huge that regular grid
localization almost cannot be executed in real time.

5.1. Position tracking
The purpose of this simulation is to evaluate the ability of the
SAMCL algorithm to track the robot’s position. Firstly, we
show a localization paradigm in a quasi-symmetrical corridor
map by using 300 particles. 6% perception noise and 8.82%
motion noise are added in the sensor model and the motion
model, respectively. Figures 4 and 5 depict localization
results in different ways. The former shows the trajectories
of robot, odometry and SAMCL and the latter presents the

Fig. 5. (Colour online) Localization errors of position tracking
using SAMCL in a quasi-symmetrical corridor. SAMCL errors and
odometry errors are plotted by the red solid line and the green
dash-dot line, respectively.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

236 Self-adaptive Monte Carlo localization for mobile robots using range finders

Fig. 6. (Colour online) The predetermined trajectory.

localization error curves of SAMCL and odometry. From the
two figures, it is easy to observe that SAMCL performs very
well in position tracking.

Next, we compare SAMCL with EKF and MCL for
position tracking in the quasi-symmetrical corridor map. To
be fair, the trajectory is predetermined for the three methods
(as shown in Fig. 6). The robot will follow the pre-established
trajectory and be localized by using EKF, MCL and SAMCL,
respectively. For each method, the trial is repeated 20 times,
and then we compute the average localization errors and the
average time-consuming.

Figure 7 depicts average localization errors of EKF, MCL
and SAMCL in position tracking. On the whole, average
localization errors of the three methods are at the same level.
They are smaller than 0.2 m in most of the time. In addition, it
takes EKF 92.1s, MCL 93.2 s and SAMCL 96.2 s on average
in the experiment. Here, the MCL algorithm has employed
the pre-caching technique. The comparison of SAMCL and
MCL without the pre-caching technique will discussed in
Section 5.3. As can be seen from statistical results, SAMCL
performs as well as EKF and MCL in position tracking.

5.2. Global localization
This simulation aims at testing the global localization ability
of the SAMCL algorithm. The quasi-symmetrical corridor
map and 300 particles are used. In order to test the robustness
of SAMCL, we add 6% perception noise and 8.82% motion
noise to each wheel. Figure 8 shows the trajectories of robot,
odometry and SAMCL and Fig. 9 shows the localization error
curves of SAMCL and odometry. As particles are initialized
by a random distribution in the global localization problem,
the localization errors are bigger at the beginning. But errors
decrease with particles converging. Simulation results show
that SAMCL has a good performance in global localization.

Fig. 7. (Colour online) Comparison of average localization errors
for position tracking. Lin A (red), line B (green) and line C (blue)
represent EKF errors, MCL errors ans SAMCL errors, respectively.

Fig. 8. (Colour online) Global localization using SAMCL in a
quasi-symmetrical corridor. The trajectories of robot, odometry and
SAMCL are displayed by the black solid line (line A), the green
dash-dot line (line C) and the red dotted line (line B), respectively.

SAMCL is compared with MCL in global localization.
The robot should follow the predetermined trajectory (see
Fig. 6) and the trial is repeated 20 times for each method.
Figure 10 represents average localization errors of both two
approaches. No surprise, the performance of SAMCL is as
satisfactory as MCL in global localization. In the aspect of
consuming time, SAMCL (95.6 s on average) is the same as
MCL with the pre-caching technique (93.2 s on average).

5.3. Comparison of computational efficiency
As discussed thus far, SAMCL is more efficient than regular
MCL due to employing the offline pre-caching technique.
Figure 11 plots execution time curves of MCL without the
pre-caching technique and SAMCL as a function of the
number of particles. The execution time is the robot online
implementation time of the first 20 steps. As to be expected,
the execution time increases with the number of particles,
both for regular MCL (red dotted line) and for SAMCL (black
solid line). However, the augmentation of the execution time
of regular MCL is enormous. Particles from 1 to 1000, the
execution time of regular MCL increases about 395 s, but for
SAMCL, the execution time only increases about 4 s.

5.4. Kidnapping
Kidnapping is the most difficult problem in three sub-
problems of localization. Thus, we design three trials to
evaluate the ability of SAMCL to recover from kidnapping.

Fig. 9. (Colour online) Localization errors of global localization
using SAMCL in a quasi-symmetrical corridor. SAMCL errors and
odometry errors are plotted by the red solid line and the green
dash-dot line, respectively.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 237

Fig. 10. (Colour online) Comparison of average localization errors
for global localization. Lin A (green) and line B (blue) represent
MCL errors ans SAMCL errors, respectively.

These trials are based on global localization. particles are
initialized to distribute randomly in the map with uniform
probabilities.

5.4.1. Kidnapping in different environments with known
heading direction. In the first simulation, the robot is
kidnapped from the corridor to the room located in the middle
of the map. To reduce the difficulty, the heading direction of
the robot is supposed to be known after kidnapping. We add
6% noise to sensors and 8.82% noise to each wheel. About
300 particles are used to estimate the robot’s pose.

The regular MCL algorithm can solve the global
localization problem but cannot recover from robot
kidnapping. As all particles survive only near the most likely
pose once the robot’s pose is determined, there will be no
particle near the new pose. In other words, the plain MCL
algorithm does not have ability to redistribute global samples.
That is quite obvious from the results in Fig. 12. The robot is
kidnapped from the corridor (position 1) to the room (position
2) after particles converging. Both particles and odometry fail
to track the robot.

The same simulation is executed by the SAMCL algorithm.
As shown in Fig. 13, the robot’s trajectory (line A) shows
that the robot is kidnapped from the corridor (position 1)
to the room (position 2). The odometry’s trajectory (line C)
shows that odometry has totally lost. However, the trajectory

Fig. 11. (Colour online) Execution time of regular MCL and the
SAMCL algorithm as a function of the number of particles.

Fig. 12. (Colour online) MCL for robot kidnapping. The robot
is kidnapped from the corridor to the room with known heading
direction. The trajectories of robot, odometry and MCL are
displayed by the black solid line (line A), the green dash-dot line
(line C) and the red dotted line (line B), respectively.

Fig. 13. (Colour online) SAMCL for robot kidnapping. The robot
is kidnapped from the corridor to the room with known heading
direction. The trajectories of robot, odometry and SAMCL are
displayed by the black solid line (line A), the green dash-dot line
(line C) and the red dotted line (line B), respectively.

of SAMCL (line B) re-tracks the robot’s trajectory (line A)
with only little delay.

In order to depict kidnapping more clearly, trajectories are
decomposed into X-axis and Y-axis as shown in Fig. 14. It
can be found easily that kidnapping happens both in the X-
axis direction and the Y-axis direction at t = 8.5s. Actually,

Fig. 14. (Colour online) Trajectories are decomposed to (a) X-axis
and (b) Y-axis. Line A, line B and line C depict the trajectories of
robot, SAMCL and odometry, respectively.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

238 Self-adaptive Monte Carlo localization for mobile robots using range finders

Fig. 15. (Colour online) Localization errors of SAMCL and
odometry. The robot is kidnapped from the corridor to the room with
known heading direction. SAMCL errors and odometry errors are
plotted by the red solid line and the green dash-dot line, respectively.

the robot is kidnapped from the coordinate (3.94, 0.28) to
the coordinate (−5.80, 5.52). In this trial, SAMCL finds and
recovers from kidnapping very soon because the robot is
kidnapped between two different environments (from the
corridor to the room).

Figure 15 plots the localization error curves of SAMCL
and odometry. Both SAMCL errors and odometry errors
increase suddenly when the robot is kidnapped; however,
SAMCL recovers in a flash.

5.4.2. Kidnapping in the same environment with known
heading direction. The second trial is more challenging
because the robot is kidnapped in the same corridor. The
SAMCL algorithm cannot find kidnapping until the robot
moves to the lower right corner. The parameter settings and
the map used here are the same as the first one. The heading
direction of the robot is also supposed to be known after
kidnapping.

Figure 16 depicts the trajectories of robot, odometry and
SAMCL. The robot is kidnapped from position 1 to position
2 in the same corridor. After kidnapping happens, odometry
still naively believes that the robot is on the track. However,
SAMCL can find and recover from kidnapping. In practice,
SAMCL does not perceive kidnapping immediately since
kidnapping occur in the same corridor (no environment
changes). This is clearly depicted in Fig. 17.

Fig. 16. (Colour online) SAMCL for robot kidnapping. The robot
is kidnapped in the same corridor with known heading direction.
The trajectories of robot, odometry and SAMCL are displayed by
the black solid line (line A), the green dash-dot line (line C) and
the red dotted line (line B), respectively.

Fig. 17. (Colour online) Trajectories are decomposed to (a) X-axis
and (b) Y-axis. Line A, line B and line C depict the trajectories of
robot, SAMCL and odometry, respectively.

In the Fig. 17, trajectories of robot, SAMCL and odometry
are decomposed into X-axis and Y-axis, respectively. From
Fig. 17(a), we can find that the robot is kidnapped about
at t = 3.7 s and it is abducted about 3.8 m far away in
the X-axis direction. The SAMCL’s trajectory shows that
SAMCL does not realize kidnapping immediately until the
environment changes. Thus, to recover from this global
localization failure, SAMCL uses about 4.5 s. In the Y-
axis direction, there is no visibly kidnapping occurred (see
Fig. 17(b)).

The localization error curves of SAMCL and odometry are
shown in Fig. 18. Sudden changes of error curves denote that
kidnapping has happened. The SAMCL algorithm recovers
from kidnapping with some delay but odometry loses itself
totally.

5.4.3. Kidnapping in different environments with unknown
heading direction. The most difficult one for the robot
is the third trial. In the previous two simulations, the
heading direction of the robot is supposed to be known
after kidnapping. However, there is no knowledge about the
heading direction of the robot in this simulation. That means
neither the x–y coordinates nor the orientation are known
after the robot is kidnapped. The robot is completely lost.
To recover from kidnapping, we have to use more particles.

Fig. 18. (Colour online) Localization errors of SAMCL and
odometry. Kidnapping occurs in the same corridor with known
heading direction. SAMCL errors and odometry errors are plotted
by the red solid line and the green dash-dot line, respectively.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 239

Fig. 19. (Colour online) SAMCL for robot kidnapping. The robot
is kidnapped from the corridor to the room with unknown heading
direction. The trajectories of robot, odometry and SAMCL are
displayed by the black solid line (line A), the green dash-dot line
(line C) and the red dotted line (line B), respectively.

Three times more than the previous two simulations (900
particles) are employed in this simulation.

Figure 19 illustrates the trajectories of robot, odometry and
SAMCL. Line A shows that the robot is kidnapped from the
corridor (position 1) to the room (position 2). Line B depicts
that SAMCL can find kidnapping quickly but it does not
recover immediately. As the lack of the heading direction,
SAMCL needs some time to converge its particles. Line C
shows that odometry is not aware of kidnapping.

After trajectories are decomposed into X-axis and Y-
axis (as shown in Fig. 20), we can find that the robot
is kidnapped from the coordinate (6.24, −0.02) to the
coordinate (−4.85, 4.84) at t = 14 s. SAMCL finds and
recovers from kidnapping within 1 s.

Figure 21 plots the localization error curves of SAMCL
and odometry. The same as previous two trials, SAMCL can
recover from kidnapping quickly and then localize the robot
accurately.

5.4.4. Kidnapping in the same environment with unknown
heading direction. The case of kidnapping occurred in
the same environment with unknown heading direction is

Fig. 20. (Colour online) Trajectories are decomposed to (a) X-axis
and (b) Y-axis. Line A, line B and line C depict the trajectories of
robot, SAMCL and odometry, respectively.

Fig. 21. (Colour online) Localization errors of SAMCL and
odometry. The robot is kidnapped from the corridor to the room
with unknown heading direction. SAMCL errors and odometry
errors are plotted by the red solid line and the green dash-dot line,
respectively.

similar to the previous simulations. However, there are more
SERs when the robot lies in the corridor than it lies in
a distinct region (as shown in Fig. 3). Hence, to recover
from kidnapping, the algorithm needs more samples (even
more than kidnapping in Section 5.4.3). This leads to an
augmentation of computation and it is difficult to implement
the algorithm in real time.

5.5. The success rate of recovering from kidnapping
We have presented that sampling in SER is more efficient
and more effective than sampling randomly (e.g. an uniform
distribution) in the whole map from the theoretical view
because sampling in SER can provide the greater sample
density in the valid regions. This is another advantage of the
SAMCL algorithm compared with regular MCL. Here, this
conclusion was demonstrated by simulations and statistical
results. Figure 22 shows the success rate of recovering from
kidnapping as a function of the number of particles. The
success rate is defined as

Success rate = the number of successful recoveries

the total number of tests
. (20)

The success rate increases with the number of particles,
both for sampling in SER and for sampling randomly.
However, with the same-size particle set, the success rate

Fig. 22. (Colour online) The success rate of recovering from
kidnapping as a function of the number of particles.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

240 Self-adaptive Monte Carlo localization for mobile robots using range finders

Fig. 23. (Colour online) Pioneer robot moving in the corridor.

of sampling in SER is much higher than sampling randomly.
For example, when using 300 particles, the success rate of
sampling in SER may achieve to 33%, whereas this rate of
sampling randomly is only 11%. To reach the same success
rate, sampling randomly has to use 900 particles, whereas
using 900 particles, the success rate of sampling in SER has
achieved to 91%.

6. Experiments
The SAMCL algorithm described in this paper has been
tested with a Pioneer 3-DX mobile robot in a real office
environment (see Fig. 23).

The Pioneer robot is a wheeled mobile robot with two
driving wheels and a caster wheel. It is equipped with sixteen
ultrasonic range finders distributed around its circumference:
two on each side, six forward at 15◦ intervals and six rear at
15◦ intervals (see Fig. 24). In the experiments, only ultrasonic
range finders (no additional sensors) are used. The maximum
ranges of sensors are limited to 5 m. The maximum speed of
the Pioneer robot is limited to 0.367 m/s. The Pioneer robot
is equipped with an onboard laptop with 1.06 GHz Intel Core
2 Solo U2100 CPU and 1024 M of RAM, and the SAMCL
algorithm is implemented in MATLAB.

Fig. 24. Sonar locations on the Pioneer 3-DX robot, adapted from
ref. [44].

Fig. 25. (Colour online) The ground plan including the expected
trajectory. Pictures show the real environment (with unmodelled
obstacles).

The experimental environment is the first floor of our
laboratory. Its size is about 25 m × 10 m. Figure 25 shows
the ground plan and the expected trajectory. The robot
should follow this trajectory and go around in the corridor.
The real environment of this corridor is shown in pictures
of Fig. 25. There are several unmodelled obstacles in the
corridor, such as cabinets and tables (see pictures A and B).
We use this incomplete map to test the robustness of our
algorithm. The SAMCL algorithm inherits the advantages of
the MCL algorithm and it employs the mixture perception
model,1 so it can treat these unmodelled obstacles as sensors
noise. Because our map is quasi-symmetrical, to recover from
kidnapping in such maps is more difficult. The resolution of
the 3D grid G3D is 0.2 m × 0.2 m × π/32 and the resolution
of the energy grid GE is 0.2 m × 0.2 m in the experiments.

Three experiments were performed, each of them
examining the SAMCL algorithm in different situations. The
first one aims at testing the ability of global localization
by using wheel encoder reading of the Pioneer robot as
odometry. The second one focuses on testing the robustness
of our method by adding artificial errors to wheel encoder
reading. The last one tests the ability of recovering from
kidnapping. In order to get reliable statistical results, each
experiment is repeated 20 times. As we did not employ any
additional means to track the real robot, the final pose of the
real robot is measured by hands at each experiment.

6.1. Global localization
The first experiment is designed to test the global localization
ability of the SAMCL algorithm. Odometry was obtained
from wheel encoder reading of the Pioneer robot. The initial
pose of the robot was set differently to the initialization of
odometry (a pose (0, 0, 0)T). The initial orientation of the
robot was given about θ ≈ π/4 and its initial position was
about 1 m far from the origin of coordinates. The Pioneer

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 241

Table I. Average errors of the final poses in global localization.

x y θ

Localization 0.157m 0.092m 6.5◦
Odometry 0.739m 0.215m 33.7◦

Table II. Average errors of the final poses in global localization
with artificial errors.

x y θ

Localization 0.469m 0.031m 17.1◦
Odometry 6.353m 7.301m 72.5◦

robot moved around in the corridor and localized itself.
Because of testing the ability of localization, the sensitive
coefficient ξ was given a low sensitive value.

Figure 26 shows localization results. As usual, the
localization result is represented by the expected value (or
called the weighed mean) of particles at each iteration. Line
A denotes the SAMCL’s trajectory and line B denotes the
trajectory given by odometry. The SAMCL’s trajectory is
drawn after particles converging. Obviously, it is more similar
to the expected trajectory (see Fig. 25) than the odometry’s
trajectory. The trajectory given by odometry has a about π/4
slope because of the initial orientation error.

Table I shows average errors of the final poses given by
the SAMCL algorithm and odometry. As shown in Table I,
Pioneer has a relatively precise odometry but the SAMCL
algorithm provides more accurate localization results.

6.2. Global localization with artificial errors
The second experiment further tests the robustness of the
SAMCL algorithm. In this experiment, the Pioneer robot
would localize itself with unfaithful odometry. In practice,
these enormous errors of odometry are often caused by
wheels sliding on the smooth ground or by the robot
passing the concave–convex road. In order to simulate coarse
odometry, we added about 27% artificial errors to each wheel.

Fig. 26. (Colour online) Global localization using SAMCL. Line
A and line B denote the trajectories of SAMCL and odometry,
respectively.

Fig. 27. (Colour online) Global localization using SAMCL with
artificial errors. Line A and line B present the trajectories of
SAMCL and odometry, respectively.

In this experiment, ξ was given a low sensitive value as the
first experiment.

The localization results are illustrated in Fig. 27, line A and
line B represent the trajectories of SAMCL and odometry,
respectively. As we can see, odometry has totally lost because
of gradually accumulated errors. On the contrary, SAMCL
still gives good localization results.

Average errors of the final poses of the SAMCL algorithm
and odometry are shown in Table II. Odomery’s errors are
huge as a result of adding artificial errors, however the
SAMCL algorithm still presents elegant localization results.

6.3. Kidnapping
The third experiment demonstrates the ability of the SAMCL
algorithm to recover from kidnapping, which is the most
difficult issue. We kidnapped the Pioneer robot at the
beginning of the trajectory after particles converging. Put
differently, after the robot was well localized, we took it
about 7 m far away in its moving direction. Moreover, we
added about 27% artificial errors to each wheel. In order to
make the robot find kidnapping more quickly, the sensitive
coefficient ξ was given a medium sensitive value.

Figure 28 illustrates the distribution of the self-adaptive
sample set during the process of recovering from kidnapping.
In the beginning, the robot is well localized as shown in
Fig. 28(a). Then the robot is kidnapped from position A to
position B (position B is about 7 m far away from position A
in the robot’s moving direction). Next, kidnapping brings on
probabilities of particles reducing. When the maximum of
probabilities is less than ξ , global samples are divided from
the sample set and distributed in SER, as shown in Fig. 28(b).
The robot moves forward and perceives the environment.
Because of the quasi-symmetry of environment, SAMCL
generates three probable poses of the robot after resampling,
depicted in Fig. 28(c). The robot continues to move and
perceive, SAMCL finally discards two probable poses and
confirms the correct pose of robot, shown in Fig. 28(d).

In this experiment, the final pose of the Pioneer robot
is measured, that is x = 0.79, y = 0.02 in the Cartesian

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

242 Self-adaptive Monte Carlo localization for mobile robots using range finders

Fig. 28. (Colour online) Distribution of the self-adaptive sample set during the process of recovering from kidnapping.

Table III. Average errors of the final poses in kidnapping.

x (m) y (m) θ (degree)

Localization 0.605 0.076 13.2
Odometry 5.6728 5.017 45.3

coordinate. For the convenience of analysis, trajectories given
by the SAMCL algorithm (line A) and odometry (line B) are
decomposed to X-axis and Y-axis. As shown in Fig. 29, the
final pose of localization is x = 0.43, y = 0.09, but the final
pose of odometry is x = −2.96, y = −4.35. Obviously, the
localization results are much better than odometry. From the
figure, we can also find that the robot perceives kidnapping
at the 3rd second and recovers at the 6th second. In the later
process, it mistakes once, but it relocalizes in less than 2 s
interval. Average errors of the final poses of the SAMCL
algorithm and odometry are shown in Table III.

7. Conclusions
In this paper, we proposed an improved SAMCL to solve
the localization problem. Comparisons of SAMCL and
other three plain Markov localization algorithms (EKF, grid
localization and MCL) are summarized in Table IV:1, 43

1. The SAMCL algorithm inherits all the advantages of
MCL, moreover it improves in several aspects. SAMCL
employs an offline pre-caching technique to reduce the
expensive online computational costs of regular MCL.

We defined SER, which provides potential information of
the robot’s pose. Hence sampling in SER is more efficient
than sampling randomly in the entire environment. By
using self-adaptive samples, SAMCL can deal with the
kidnapped robot problem as well as position tracking and
global localization.

2. We tested respectively the abilities of SAMCL to solve
position tracking, global localization and the kidnapped
robot problem by simulations. Position tracking and global
localization were tested by using the same simulation
settings as MCL. Results show that SAMCL performs
as well as MCL both in position tracking and global
localization.

3. We compared SAMCL with regular MCL in
computational efficiency. Due to employing the pre-
caching technique, SAMCL is much more efficient than
regular MCL without the pre-caching technique.

4. Kidnapping was tested by three simulations with different
difficulties. In the first one, the robot is kidnapped from
the corridor to the room and its heading direction after
kidnapping is supposed to be known. In the second one,
the robot is kidnapped in the same corridor. It is more
difficult because SAMCL cannot feel kidnapping in the
same environment. Kidnapping is recovered until the robot
moves into a different terrain. In this simulation, the robot
also knows its heading direction after kidnapping. The
third one is the most challenging because there are no
knowledge about the heading direction of the robot after
it is kidnapped from the corridor to the room. SAMCL
performed well in all the three simulations.

Table IV. Comparison of SAMCL, EKF, grid localization and MCL.

EKF Grid localization MCL SAMCL

Posterior representation Gaussian (μt ,�t) Histogram Particles Particles
Position tracking Yes Yes Yes Yes
Global localization No Yes Yes Yes
Kidnapping No Yes No Yes
Efficiency Fast Slow Medium Fast

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

Self-adaptive Monte Carlo localization for mobile robots using range finders 243

Fig. 29. SAMCL for robot kidnapping. Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line A and line B depict the trajectories
of SAMCL and odometry, respectively.

The future work would address to the issue of applying
the SAMCL algorithm in the multi-robot localization
problem.

References
1. S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics (The

MIT Press, Cambridge, MA, September 2005).
2. A. R. Vahdat, N. NourAshrafoddin and S. S. Ghidary, “Mobile

Robot Global Localization Using Differential Evolution and
Particle Swarm Optimization,’ IEEE Congress on Evolutionary
Computation (CEC 07), Singapore (2007) pp. 1527–
1534.

3. T. Hester and P. Stone, “Negative Information and Line
Observations for Monte Carlo Localization,’ Proceedings of
IEEE International Conference on Robotics and Automation
ICRA 2008, Pasadena, CA (2008) pp. 2764–2769.

4. M. M. Ullah, A. Pronobis, B. Caputo, J. Luo, P. Jensfelt and
H. I. Christensen, “Towards Robust Place Recognition for
Robot Localization,’ Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA08), Pasadena,
CA (2008) pp. 530–537.

5. S. I. Roumeliotis and G. A. Bekey, “Bayesian Estimation and
Kalman Filtering: A Unified Framework for Mobile Robot
Localization,’ Proceedings of IEEE International Conference
on Robotics and Automation (ICRA ’00), San Francisco, CA
(2000) vol. 3, pp. 2985–2992.

6. S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers,
F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte
and D. Schulz, “Probabilistic algorithms and the interactive
museum tour-guide robot minerva,” Int. J. Robot. Res. 19, 972–
999 (2000).

7. L. Marchetti, G. Grisetti and L. Iocchi, “A Comparative
Analysis of Particle Filter Based Localization Methods,”
RoboCup, Bremen, Germany (2006), pp. 442–449.

8. G. Weiss, C. Wetzler and E. von Puttkamer, “Keeping
Track of Position and Orientation of Moving Indoor Systems
by Correlation of Range-Finder Scans,” Proceedings of the
International Conference on Intelligent Robots and Systems,
Munich, Germany (1994) vol. 1, pp. 595–601.

9. P. Lamon, 3D-Position Tracking and Control for All-Terrain
Robots (Springer Tracts in Advanced Robotics, Berlin,
Germany, 2008).

10. A. Milstein, J. N. Sánchez and E. T. Williamson, “Robust
Global Localization Using Clustered Particle Filtering,’ AAAI-
02, Palo Alto, CA (2002) pp. 581–586.

11. L. Jaulin, M. Kieffer, E. Walter and D. Meizel, “Guaranteed
robust nonlinear estimation with application to robot
localization,” IEEE Trans. Syst. Man Cybern. C: Appl.
Rev. 32(4), 374–381 (2002).

12. S. Thrun, D. Fox, W. Burgard and F. Dellaert, “Robust Monte
Carlo localization for mobile robots,” Artif. Intell. 128(1-2),
99–141 (2001).

13. H. Andreasson, A. Treptow and T. Duckett, “Localization for
Mobile Robots Using Panoramic Vision, Local Features and
Particle Filter,’ Proceedings of IEEE International Conference
on Robotics and Automation (ICRA 05), Barcelona, Spain
(2005) pp. 3348–3353.

14. J. Stéphant, A. Charara and D. Meizel, “Virtual sensor,
application to vehicle sideslip angle and transversal forces,”
IEEE Trans. Ind. Electron. 51(2), 278–289 (2004).

15. J. Stéphant, A. Charara and D. Meizel, “Evaluation of a
sliding mode observer for vehicle sideslip angle,” Control Eng.
Pract. 15, 803–812 (2007).

16. M. Choi, R. Sakthivel and W. K. Chung, “Neural network-aided
extended kalman filter for slam problem,” Proceedings of IEEE
International Conference on Robotics and Automation, Roma,
Italy (2007) pp. 1686–1690.

17. Y. Morales, E. Takeuchi and T. Tsubouchi, “Vehicle
localization in outdoor woodland environments with sensor
fault detection,” Proceedings of IEEE International
Conference on Robotics and Automation ICRA 2008, Pasadena,
CA (2008) pp. 449–454.

18. G. P. Huang, A. I. Mourikis and S. I. Roumeliotis, “Analysis
and improvement of the consistency of extended kalman filter
based slam,’ Proceedings of IEEE International Conference
on Robotics and Automation ICRA 2008, Pasadena, CA (2008)
pp. 473–479.

19. I. J. Cox and J. J. Leonard, “Modeling a dynamic
environment using a bayesian multiple hypothesis approach,”
Artif. Intell. 66(2), 311–344 (1994).

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

244 Self-adaptive Monte Carlo localization for mobile robots using range finders

20. J. Reuter, “Mobile Robot Self-Localization Using Pdab,”
Proceedings of IEEE International Conference on Robotics
and Automation ICRA ’00, San Francisco, CA (2000), vol. 4,
pp. 3512–3518.

21. P. Jensfelt and S. Kristensen, “Active global localization for a
mobile robot using multiple hypothesis tracking,” IEEE Trans.
Robot. Autom. 17(5), 748–760, 2001.

22. J. S. Gutmann and D. Fox, “An Experimental Compar-
ison of Localization Methods Continued,’Proceedings of
IEEE/RSJ International Conference on Intelligent Robots
and System, EPFL, Switzerland (2002), vol. 1, pp. 454–
459.

23. D. Fox, W. Burgard, H. Kruppa and S. Thrun, “Efficient
multi-robot localization based on Monte Carlo approximation,”
In Robotics Research: the Ninth International Symposium
(J. Hollerbach and D. Koditschek, eds.) (Springer-Verlag,
London, 2000).

24. C. Kwok, D. Fox and M. Meila, “Real-Time Particle Filters,”
Proceedings of the IEEE, vol. 92, no. 3, pp. 469–484,
2004.

25. P. Pfaff, W. Burgard and D. Fox, “Robust Monte-Carlo
Localization Using Adaptive Likelihood Models,” European
Robotics Symposium, Palermo, Italy (SpringerVerlag, 2006)
pp. 181–194.

26. C. Siagian and L. Itti, “Biologically-Inspired Robotics Vision
Monte-Carlo Localization in the Outdoor Environment,”
Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS 2007, San Diego, CA,
(2007) pp. 1723–1730.

27. E. Prestes, M. Ritt and G. Fuhr, “Improving Monte Carlo
Localization in Sparse Environments Using Structural Envir-
onment Information,” Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems IROS 2008,
Nice, France (2008) pp. 3465–3470.

28. S. Thrun, D. Fox and W. Burgard, “Monte Carlo Localization
with Mixture Proposal Distribution,” Proceedings of the AAAI
National Conference on Artificial Intelligence, Austin, TX
(2000) pp. 859–865.

29. L. Zhang and R. Zapata, “Probabilistic Localization Methods
of a Mobile Robot Using Ultrasonic Perception System,”
Proceedings of IEEE International Conference on Information
and Automation (ICIA 2009), Zhuhai, China (2009) pp. 1062–
1067.

30. D. Fox, “Adapting the sample size in particle filters
through kld-sampling,” Int. J. Robot. Res. 22(12), 985–1003
(2003).

31. A. Doucet, N. De freitas and N. Gordon, Eds., Sequential
Monte Carlo Methods in Practice, (Springer-Verlag, New
York, 2001).

32. M. S. Arulampalam, S. Maskell and N. Gordon, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian
tracking,” IEEE Trans. Signal Process. 50, 174–188 (2002).

33. V. Fox, J. Hightower, L. Liao, D. Schulz and G. Borriello,
“Bayesian filtering for location estimation,” IEEE Pervasive
Comput. 2(3), 24–33 (2003).

34. A. Bekkali and M. Matsumoto, “Bayesian Sensor Model
for Indoor Localization in Ubiquitous Sensor Network,”
Proceedings of First ITU-T Kaleidoscope Academic
Conference Innovations in NGN: Future Network and Services
K-INGN 2008, Geneva, Switzerland (2008) pp. 285–292.

35. J. L. Blanco, J. Gonzalez and J. A. Fernandez-Madrigal, “An
optimal filtering algorithm for non-parametric observation
models in robot localization,’ Proceedings of IEEE
International Conference on Robotics and Automation ICRA
2008, Pasadena, CA (2008) pp. 461–466.

36. J.-l. Blanco, J.-A. Fernández-madrigal and J. Gonzalez,
“Towards a unified bayesian approach to hybrid metric-
topological slam,” IEEE Trans. Robot. 24, 259–270 (2008).

37. J. Ko and D. Fox, “Gp-bayesfilters: Bayesian Filtering
Using Gaussian Process Prediction and Observation Models,”
Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems IROS 2008, Nice, France (2008)
pp. 3471–3476.

38. D. Fox, “Kld-sampling: Adaptive Particle Filters,” In:
Advances in Neural Information Processing Systems 14 (T.
G. Dietterich, S. Becker and Z. Ghahramani, eds.) (MIT Press,
Cambridge, MA, 2001) pp. 713–720.

39. A. F. M. Smith and A. E. Gelfand, “Bayesian statistics without
tears: A sampling-resampling perspective,” Am. Stat. 46(2),
84–88 (1992).

40. A. Doucet, S. Godsill and C. Andrieu, “On sequential
monte carlo sampling methods for bayesian filtering,” Stat.
Comput. 10(3), 197–208 (2000).

41. L. Zhang, R. Zapata and P. Lépinay, “Self-adaptive Monte
Carlo Localization for Mobile Robots Using Range Sensors,”
Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2009), St. Louis, MO
(2009) pp. 1541–1546.

42. L. Zhang and R. Zapata, “A Three-Step Localization Method
for Mobile Robots,” Proceedings of International Conference
on Automation, Robotics and Control Systems (ARCS 2009),
Orlando, FL (2009) pp. 50–56.

43. L. Zhang, Self-Adaptive Markov Localization for Signal-
Robot and Multi-Robot systems Ph.D. dissertation (Montpel-
lier, France: University of Montpellier 2, 2010).

44. Cyberbotics Ltd, Webots User Guide (release 6.3.4),
Available at http://www.cyberbotics.com/cdrom/common/doc/
webots/guide/ section7.4.html, Accessed 30 November 2009.

https://doi.org/10.1017/S0263574711000567 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000567

