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RUIN PROBLEMS: SIMULATION OR CALCULATION?
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ABSTRACT

In this paper we use a case study of a non-life insurance portfolio to demonstrate how recent
research in ruin theory can be applied to solvency problems. By approximating the aggregate claims
distribution for the portfolio by a translated gamma distribution, we estimate ruin probabilities through
a recursive procedure when the insurer earns investment income on its surplus. We also show the
results of applying simulation techniques to this problem, and discuss some advantages and
disadvantages of simulation as a means of assessing ruin probabilities. Finally, we discuss the
calculation of the probability of ruin at the end of a specified time period.
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1. INTRODUCTION

This paper is concerned with ruin theory and, in particular, the
calculation/estimation of the probability of ruin. It is based on a case study of the
solvency of a non-life insurance portfolio using data from a Danish insurance
company. This paper has two purposes:
(1) to demonstrate how some recent research in ruin theory can be applied in a

useful way; and
(2) to discuss some advantages/disadvantages of simulation as a methodology for

assessing the probability of ruin.

Ruin theory has been an area of study for actuaries (and mathematicians) for
many decades. A glance at the contents pages of actuarial research journals, for
example the ASTIN Bulletin, shows that interest in this area remains as strong as
ever. However, while the literature on ruin theory continues to grow and while
the mathematics becomes ever more elegant, ruin theory does attract some
negative comments. These range from the relatively lighthearted:

".... ruin theory, a topic about which it has been said that never have so many people written
so much about such a small probability." Sundt (1993, plO4)

to the more serious:

"While ... (ruin) theory is well developed and well known, there are a number of respects in
which it lacks realism to a point which militates against its practical use without substantial
modification." Taylor & Buchanan (1988, p64)

"Another serious shortcoming is that ... (Lundberg's upper bound for the probability of ruin in
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infinite time) provides non-zero survival probabilities only if the solvency margin tends to
infinity." Daykin et al. (1993, p373)

To paraphrase Taylor & Buchanan's remark, (classical) ruin theory could be
criticised for sacrificing realism for the sake of mathematical development. Some
critics of ruin theory would advocate simulation as a more appropriate
methodology for assessing solvency/probability of ruin. For example, Chapter 12
of Daykin et al. (1993), in which the assessment of the solvency of a general
insurance operation is discussed, contains almost no mathematical development
whatsoever, but uses simulation extensively.

Simulation is undoubtedly a powerful tool. Results can be obtained for
extremely complex models, for example involving dynamic algorithms for
management decisions, although the interpretation of these results is not always
so easy! However, it is our view that, other things being equal, a result obtained
by 'analytic' methods is to be preferred to one obtained by simulation. This
accords with the views of Beard et al. (1983, p250):

"Anyway, if direct analytic treatment is applicable it generally is more expedient, and the role
of simulation is above all to deal with those cases where other techniques are impracticable."

Our views do not imply that we refuse to accept that simulation may be useful
even in situations where analytic methods could be applied. However, we regard
such situations as exceptions rather than the rule.

In Section 2 we give details of the problem that we are going to discuss. This
is based on a study by Ramlau-Hansen (1988a & b) of non-life insurance data
from a Danish insurance company, and concerns the solvency of a non-life
insurance company/portfolio. In Section 3 we discuss the solution of our problem
using only simulation. In Section 4 we present a method for solving our problem
using analytic/numerical methods (and also, to a limited extent, simulation). In
Section 5 we compare the two methods and draw some conclusions. Finally, in
Section 6, we consider briefly a related problem.

2. THE PROBLEM

Ramlau-Hansen (1988a & b) published the results of a study of data from the
years 1977-1981 from a Danish insurance company. The data related to policies
covering single-family houses and dwellings against the risks of glass damage
(i.e. damage to windows or sanitary fittings), fire damage and windstorm damage.
In Part 1 of his study, Ramlau-Hansen fitted distributions to the claim numbers
and claim amounts for each of these lines of insurance, and in Part 2 he used
these results to discuss solvency requirements for portfolios of differing sizes and
relative compositions.

For our purposes, we will consider a portfolio (without reinsurance) for which
the expected claims outgo in one year has total 200 (in some suitable monetary
units), of which 25% arises from glass claims and 75% from fire claims. For this
portfolio, the standard deviation of the aggregate claims in one year is 20 and the
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coefficient of skewness is 1.05 (see Ramlau-Hansen, 1988b, Table 2). Moreover,
the aggregate claim amount in one year for this portfolio has a compound Poisson
distribution, with the individual claim amount distribution being a weighted
average of lognormal (for glass) and loggamma (for fire) distributions. (This is a
slight simplification, since the claim number distribution for glass claims has a
Poisson distribution with a parameter which can vary from year to year.
However, the effect of this extra variability is small.)

Ramlau-Hansen (1988b) studied the problem of determining the initial surplus
required so that the probability of ruin at the end of t years (where t = 1, 2 and
5) is kept to some predetermined (and small) level. He did this for portfolios as
described above, with the inclusion of factors such as business growth, claims
inflation and investment income. We will consider a related, but different,
problem. We will discuss the estimation of the probability of ruin at the end of
any one of the next 10 years for a portfolio as described above, with the inclusion
of stochastic investment income. In the language of ruin theory, our problem is
the estimation of a finite and discrete time probability of ruin, where the time
horizon is 10 years and the discrete time interval is 1 year. This is clearly a more
challenging problem than the estimation of the probability of ruin at the end of a
fixed time interval, and it could be argued that it is more relevant in practice.

Our problem is stated more precisely as follows. Let Xx, X2,..., XlQ be a
sequence of independent and identically distributed random variables representing
the aggregate claims from a portfolio in successive years. We assume that each
X, has the same distribution as K + Y(a,(3), where Y(a,P) has a gamma
distribution with mean oc/p and variance a/f$2. The parameters a, |3 and K are
chosen so that X, has mean 200, standard deviation 20 and coefficient of
skewness 1.05.

Let U denote the insurer's capital at the start of the 10-year period under
consideration, and let P be the (assumed constant) annual premium income. We
assume P > 200 and we will write P = 200(1 + 9), so that 0 is the premium
loading factor.
Let i,, i2, ..., i10 be a sequence of random variables representing the rates of
interest earned by the insurer in successive years. These interest rates have
distributions specified by the annual returns in successive years on United
Kingdom equities (ignoring tax), as given by the investment model formulated by
Wilkie (1986).

The insurer's capital at the end of year t, t = 1, 2, ..., 10, is a random variable
U(t), where:

U(t-l)x(l+i,)+P-Xl (2.1)

and U(0) = U. Our problem is to estimate the probability of ruin \y(U,10),
defined by:

V|/((/, 10) = P(U(t) < 0 for some t, t = 1, 2, ..., 10).
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Comments on the assumptions
(1) Our model assumes aggregate claims in different years are independent of

each other. This agrees with Ramlau-Hansen's model.
(2) Our model assumes a degree of stationarity — aggregate claims in different

years are identically distributed and the premium income is unchanged from
year to year. These assumptions have been made to simplify the presentation.
However, our analysis in the following sections could quite easily be
extended to some situations where the claim number distribution and/or the
premium income changed either deterministically or stochastically from year
to year.

(3) In common with most classical risk theory models, our model assumes
claims are paid without delay. However, this is not too unreasonable for the
portfolio we are considering, since Ramlau-Hansen (1988a, pp8-9 and 1986,
Table 4) shows that the vast majority of glass and fire claims are reported in
the calendar year of occurrence.

(4) It can be seen from our recurrence relation for U(t) that, in each year, we
assume interest is earned on the capital at the start of the year, but not on the
premium income for the year (or the claims outgo). There would be no extra
difficulties in the following sections if we were to assume that premiums
were paid at the start of the year (and so earned a whole year's interest) or
that claims and/or premiums were paid in the middle of the year, for
instance.

(5) We have used Wilkie's model for the rates of return i, for two reasons.
Firstly, it is commonly used in the literature. Secondly, it is difficult to
handle analytically and most applications in which it is used are based solely
on simulation. Although the i(s are modelled as the rates of return on
equities, we do not suggest equities would necessarily be a suitable type of
investment for the portfolio we are considering! One advantage (for our
purposes) of using this particular model is that the means and standard
deviations of the i,s are relatively large. (This point will be relevant in
Section 5.) We have used Wilkie's Reduced Standard Basis for his model
and î  is the annual rate of return ten years after starting the model from
neutral starting values. See Wilkie (1986) for details. This means that, for
example, on the basis of 1,000 simulations:

E[it] =13.8% StDevtij] =30.2%
E[ilo]=14.1% StDev[ilo]=29.5%.

Note that the i,s are neither independent nor identically distributed.
(6) An important point to note is that our model uses a translated gamma

distribution, fitted by moments, to approximate a compound Poisson
distribution for the aggregate claims in one year. Recent research (Dickson &
Waters, 1993 and 1994) has shown that this type of approximation can give
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values for the probability of ruin (in both finite and infinite time) which are
very close to the exact values.

3. A SIMULATION APPROACH TO THE PROBLEM

Simulation is an approach that has often been applied in the past to ruin
problems. This is not surprising, as the simulation approach to estimating the
probability of ruin is a simple one. To estimate the probability of ruin for the
process described in the previous section, we will follow the procedure described
by Seal (1969). All we have to do is to simulate a large number of realisations,
say n, of the process, and count the number which result in ruin according to our
definition. If this latter number is /, then our estimate of the probability of ruin is
lln.

Formally, let n denote the number of realisations of the surplus process that we
simulate, and let L denote the number which result in ruin. Then L ~ B(n, \j/),
where \|/ = y(U, 10) is the true (unknown) probability of ruin for this risk
process. Our estimate of V|/ is \jf = Lln. Assuming that n is large, the distribution
of L is approximately normal, and hence the distribution of vj/ is approximately

It is particularly easy to simulate realisations of our risk process. In formula
(2.1) we must input values of i, whose simulation requires values of standard
normal variables, and values of X, whose simulation requires values from a
gamma distribution. Values from each of these distributions are produced by
standard computer libraries such as IMSL or NAG. Successive values of the
surplus process can then be calculated from formula (2.1), and hence we can
determine whether or not ruin occurs for each simulated realisation of the
process.

Table 1 shows estimates of \\f(U, 10) for U = 0, 10, 20,..., 100 with premium
loading factors 9 = 0, 0.05, 0.1,..., 0.25 when n = 1,000. Also shown are
estimates of the standard error of \j/ when \jr is non-zero. The estimated standard
error is calculated as (vj/(l - vf/)/l,000)1/2.

Two obvious questions we can ask about simulation as a means of estimating
are:
(1) How many realisations of the surplus process should we simulate?
(2) How reliable are our estimates?

We chose to simulate 1,000 realisations of the surplus process, as we
considered this number to be sufficiently large to give estimates of the correct
magnitude. However, it is clear from the standard errors that there is considerable
uncertainty about our estimates. For example, when U = 0 and 8 = 20%, our
estimate of V|/ is 0.054 with a standard error of 0.007, so that an approximate 95%
confidence interval for \j/ is (0.040, 0.068). This uncertainty over the value of \|/
is the price that must be paid for selecting 1,000 as the number of simulations.
The standard error of our estimate clearly reduces as the value of n increases.
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If we wish our estimate to be more precise, we could specify a criterion which
would dictate the value of n. For example, if we state that out estimate should be
within 5% of the true ruin probability with probability 0.95, then we find that the
minimum value of n is 1,537(1 - \|/)A)/. If we replace \(/ by \f/ and consider the
previous combination of U = 0 and 0 = 20%, then the minimum value of n is
26,926. Thus, an increase in confidence in our estimate is achieved at the expense
of considerably greater computer run time. As our aim is to compare methods of
calculating \)/, we will not produce estimates using larger values of n. We have,
however, shown in Table 1 the minimum number of simulations, denoted N,
required if the estimate of \j/ is to be within 5% of the true value with probability
0.95. As a final comment on simulation, we note that simulation has produced a
number of estimates which are zero. Whilst these estimates may be close to the
true values, we should be cautious in interpreting them. For example, if the true
value of \|/ is 0.002, then the probability of 1,000 realisations of the process
resulting in non-ruin is 0.135. Thus, when the ruin probability is small, and when
the number of simulations is relatively small, there can be a significant
probability of no realisations resulting in ruin.

4. AN ANALYTIC (/SIMULATION) APPROACH TO THE PROBLEM

In the previous section our problem was 'solved' using only simulation. The
solution was relatively straightforward, but somewhat imprecise and/or time
consuming. In this section we present an alternative method of solution. This
method will still involve an element of simulation — avoiding simulation entirely
while working with Wilkie's investment model is not easy! However, it will also
make use of analytic/numerical methods which have recently been investigated in
the actuarial literature.

Let ij(-(ilj, i2j,—, hoj))- be the jth simulation out of a total of n simulations
of the sequence of interest rates i,, i2,..., i10. Let \|/(£/, 101 / •) denote the
probability of ruin as defined in Section 2, given the (deterministic) sequence of
interest rates r,;-, i2j,—, 'io,-, in other words, given that i, = z,;- for t = 1, 2,..., 10.
Provided we can calculate \j/(£/,10|i;), we can estimate \|/(£/,10) using the sample
mean of the n values of \|/(f/, 10| | ;) , and we can estimate the standard error of
this estimate from the sample standard error. If n is large — we will take
n = 1,000 in our examples — our estimate will have approximately a normal
distribution. To summarise, an estimate of \|/(£/,10) is vj/, where:

¥ ¥ ( |
n M

and, approximately,

10), c2/n)
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where a2 is the sample variance of {\|/(f/, 10|i ;)}"=1. The only remaining problem
is the calculation of \|/(£/,10|/y).

Table 1. Estimates of \j/(i/, 10) from simulation

u
0

10

20

30

40

50

60

70

80

90

100

¥
s.e. (ij/)

JV

¥
s.e. (ij/)

N

¥
s.e. (ij/)

N

¥
s.e. (ij/)

N

¥ _
s.e. (ij/)

N

¥
s.e. (ij/)

N

¥ _
s.e. (ij/)

N

¥ _
s.e. (ij/)

N

v_
s.e. (y)

N

¥ _
s.e. (ij/)

N

¥
s.e. (ij/)

N

6=0%
0.741
0.014

538
0.595
0.016
1,047
0.474
0.016
1,706
0.360
0.015
2,733
0.289
0.014
3,782
0.218
0.013
5,514

0.166
0.012
7,723
0.119
0.010

11,379
0.099
0.009

13,989
0.071
0.008

20,111
0.055
0.007

26,409

6=5%
0.420
0.016
2,123
0.280
0.014
3,953
0.199
0.013
6,187
0.124
0.010

10,859
0.087
0.009

16,130
0.060
0.008

24,080
0.032
0.006

46,495
0.022
0.005

68,327
0.017
0.004

88,875
0.007
0.003

218,035
0.005
0.002

305,864

6=10%
0.212
0.013
5,714
0.117
0.010

11,600
0.069
0.008

20,739
0.036
0.006

41,158
0.022
0.005

68,327
0.011
0.003

138,191
0.006
0.002

254,630
0.006
0.002

254,630
0.001
0.001

1,535,463
0

0

6=15%
0.098
0.009

14,147
0.056
0.007

25,910
0.025
0.005

59,943
0.016
0.004

94,526
0.006
0.002

254,630
0.003
0.002

510,797
0.002
0.001

766,963
0

0

0

0

6=20%
0.054
0.007

26,926
0.027
0.005

55,389
0.014
0.004

108,249

0.007
0.003

218,035
0.002
0.001

766,963
0

0

0

0

0

0

9=259?
0.029
0.005

51,464
0.012
0.003

126,547
0.006
0.002

254,630
0.002
0.001

766,963
0

0

0

0

0

0

0

In principle, \|/(£/, 10|i ;) can be calculated recursively as follows. Define
\|/(£/,m|iy) to be the probability of ruin at any of the time points 11 - m,
12 - m,..., 10 starting from surplus U at time 10 - m and given the set of interest
rates iy, i.e. M/{U,m\i]) = Pr(U(t) < 0 for some t, t = 11 - m, 12 - m,...,
\0\U(10 - m) = U, ij).

Then:
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and, for m = 1, 2,..., 9:

il0_mJ) + P-x,m\ij)dx

where F(x) and fix) are the distribution function and density function,
respectively, of the random variable X, .

The rationale behind these formulae is as follows. For ruin to occur at time 10
starting from surplus U at time 9, the aggregate claims in the 10th year must
exceed C/(l+i10;) + P. This explains the formula for y(U, l|iy-). The formula for
i|/([/, m + l\ij) can be explained by considering the aggregate claim amount in
the (10 - m)th year. If this exceeds 1/(1+ ilo-m,j) + *̂> t n e n r u m occurs at time
(10 - m). This gives the term 1 - F(U{1 + i]0.mJ) + P). Otherwise, ruin must
occur starting from surplus £/(l+ i]0_mj) + P — x at time 10 - m, where x is the
aggregate claim amount in the (10 - m)th year — giving the integral term.

The model we are using is almost identical to that used by Beard et al. (1983,
p.230, formula (6.7.7)) — the only differences being that their model used
deterministic interest and a (deterministically) variable premium rate (which we
could easily incorporate). The recursive formulae for V|/(C/, m + l | / ;) above
correspond (with minor modifications) to Beard et al.'s formula (6.7.9). However,
Beard et al. are sceptical about the possibility of obtaining good numerical results
from such formulae:

"... even if feasible ... this method may be laborious. If some approximation is to be used for
F, e.g. the N(ormal) P(ower) or T formula, then the accumulation of inaccuracy as well as the
normal rounding-off errors under the rather long sequence of computations may be difficult to
control." Beard et al. (1983, p.231)

It is our contention that:

(a) this method need not be laborious; and
(b) there is evidence in the actuarial literature that it could produce very good

numerical answers.

The remainder of this section is devoted to presenting the evidence to support
these two points.

Let us first consider how laborious the calculations need to be using the above
formulae. The amount of numerical work involved in using these formulae can be
reduced, possibly considerably, using an intuitively appealing and simple
procedure originally proposed by De Vylder & Goovaerts (1988). In outline, this
procedure is as follows: for very large values of x, F(x) will be very close to 1
and y(x, m \ ij) will be very close to 0. If, for suitably large values of x, we set
F(x) = 1, fix) = 0 and \\f(x,m\ij) = 0, then the upper limit of the range of
integration in the above formula for Vj/(t/,m + l[ij) may be reduced and the
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lower limit may be increased. This procedure can be formalised as follows:
Let e, 0 < e < 1, be some suitably small number and let v0 be a number such

that:

F(x) > 1 - e for x > v0.

Now define:
FE(JC) = F(x) for x < v0

= 1 for x > v0

ft(x) = fix) for x < v0

= 0 for x > v0

v, = (v0 - J

Note that, in all practical cases, v, will be greater than 0, since PT(X, < P) will
not be close to 1, and also that i|/e(£/, 11 ij) will be equal to 0 whenever U is
greater than v t.

Now define recursively for m = 1, 2,..., 9:

provided the right hand side of this expression is greater than e. Define vm+1 to
be the value of U for which the right hand side of this expression equals e. The
definition of V|/E(f/, m + 1 \ij) is completed by setting it equal to 0 for U > vm+1.

Calculating i|/e(f/, m + 1 \ij) rather than y(U, m + 1 |f •), and using the former
as an approximation to the latter, has the important computational advantage that
the integrand in the expression for the former is zero outside the range
max(K, U(\ + ilQ_mJ) + P - vm) to min(f/(l + iw_mJ) + P, v0). Not only does this
save (a possibly considerable amount of) computational time, but it does this in
a controlled way, as the following result shows.

Result: Form = 1, 2,..., 10:

0 < V|/(£/, m\ij) - \|/E(f/, m\ij) < 3/ne.

Proof: The proof of this result follows precisely the proof given by De Vylder &
Goovaerts (1988, Section 5), although the setting is somewhat different in their
case.
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Now let us turn to the accuracy of numerical results obtained using the above
formulae for \|/£(£/,/w|/;). De Vylder & Goovaerts (1988) originally proposed a
method similar to the above for calculating the probability of ruin in finite and
continuous time. Their method, as sharpened somewhat by Dickson & Waters
(1991, Section 2), had the extra complication that, being a discrete time
approximation to a continuous time process, the interval between 'checks' on the
surplus process, which is 1 year in our model, had to be very short to obtain good
approximations to the continuous time process. This, in turn, meant that, for any
sensible time horizon, the number of steps in the recursive calculation of the
probability of ruin could be very large, possibly several thousands, rather than the
10 steps in our calculation of \|/E(£/,10|/y). Despite the inevitable consequences
for the accuracy of the calculations of a large number of recursive calculations,
the results obtained, using this method for calculating the probability of finite and
continuous time ruin are very good. See Dickson & Waters (1991, Table 1). It
would be expected that, using the method with a smaller number of recursions,
i.e. 10, as in the calculation of \|/E(£/, m\ij), would give even more accurate
results.

Table 2 shows results corresponding to those in Table 1, but calculated using
the methods described in this section. In all cases the number of simulations used
is 1,000, and the 'truncation control' parameter e has been set equal to
(3 x 106)~\ so that, using the result above, the maximum numerical error
resulting from the truncation procedure is 10"5. The integral in the expression for
ij/E([/, 101 ij) has been calculated using the repeated trapezium rule with an integer
step size. The value of N, the minimum number of simulations required to
achieve the specified degree of accuracy, has been calculated in Table 2 as it was
in Table 1, i.e. assuming the number of simulations is sufficiently large for the
estimate \f» to have approximately a normal distribution. For U = 0, the
values of N in Table 2 are sufficiently small to make this assumption doubtful.
However, these values do indicate that very few simulations are needed to
achieve the required degree of accuracy.

5. SOME COMMENTS ON SECTIONS 3 AND 4

The most startling conclusion from a comparison of Tables 1 and 2 is the
difference in the numbers of simulations required to achieve a given level of
accuracy for each of the two methods presented above. For example, to estimate
VJ/(50, 10) for 6 = 0.1 to within 5% of the correct value with probability 0.95
requires about 138,000 simulations using pure simulation, as in Section 3, but
less than 1,000 using simulation/calculation, as in Section 4. For this combination
of U and 0, the ratio of the numbers of simulations required by the two methods
to achieve any given level of accuracy is about 155. The absolute difference in
the numbers of simulations required for the two methods becomes more extreme
if we require a higher level of accuracy. For example, changing 5% and 0.95 to
1% and 0.99 in this case increases the numbers of simulations required to about
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6 million and 38,000, respectively! (Such comparisons are slightly biased in favour
of the latter method, since we are ignoring the, probably very small, error resulting
from the numerical integration needed to calculate v|/E(£/, 10|/y-).)

u
0
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100

¥
s.e. (\j>)

N

¥
s.e. (<j>)

N

¥
s.e. (\j/)

N

¥
s.e. (V)

N

¥
s.e. (\j»

N

¥
s.e. (\j>)

N

¥
s.e. (y)

N

V

s.e. (Vj/)

N

¥
s.e. (xj>)

N

¥
s.e. (\j>)

N

¥
s.e. (\j>)

N

Table
e=o%

0.73989

0.00125
5

0.59635
0.00210

20

0.46522
0.00291

61

0.35528
0.00333

136

0.26758
0.00340

249

0.19974
0.00324

404

0.14830
0.00294

604
0.10979

0.00259
854

0.08120
0.00223

1,162

0.06006
0.00190

1,537

0.04447
0.00160

1,990

2. Estimates of \\i(U,
6 = 5%

0.40535
0.00094
9

0.26565
0.00131

38

0.17090
0.00150

118

0.10947
0.00140

253

0.07029
0.00119

441

0.04540
0.00096

686

0.02955
0.00075

995
0.01938

0.00058
1,378

0.01283
0.00045

1,850

0.00856
0.00034

2,428

0.00576
0.00026

3,135

6=10%

0.19981
0.00042
7

0.11284
0.00061

45

0.06332
0.00064

157

0.03575
0.00053

339

0.02041
0.00040

584

0.01181
0.00029

892

0.00693
0.00020

1,268
0.00412

0.00014
1,722

0.00248

0.00010
2,268

0.00151
0.00007

2,927

0.00093
0.00005

3,723

10) from calculation
9 = 15% 9 = 2 0 % 9 = 2 5 %

0.09762 0.04768 0.02319

0.00016 0.00006 0.00002

5 3 2

0.05021 0.02310 0.01078

0.00029 0.00014 0.00007

51 56 62

0.02592 0.01133 0.00511

0.00029 0.00013 0.00006

189 215 237

0.01356 0.00566 0.00248
0.00022 0.00010 0.00005

409 465 509

0.00721 0.00288 0.00123

0.00015 0.00007 0.00003

699 791 862

0.00390 0.00150 0.00062

0.00010 0.00004 0.00002

1,055 1,185 1,284

0.00214 0.00079 0.00032

0.00007 0.00003 0.00001

1,475 1,641 1,770

0.00119 0.00042 0.00017

0.00004 0.00002 0.00001

1,964 2,160 2,318

0.00067 0.00023 0.00009

0.00003 0.00001 0.00000

2,529 2,738 2,859

0.00038 0.00013 0.00005

0.00002 0.00001 0.00000

3,184 3,330 3,292

0.00022 0.00007 0.00003

0.00001 0.00000 0.00000

3,891 3,856 3,524
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A point to note here is that we have deliberately chosen a stochastic investment
model with relatively high variability. (See comment (5) in Section 2.) Intuitively,
the higher the variability resulting from the interest rate model, the more
attractive the pure simulation approach of Section 3 should be. The reason for
this is that the variability in V|/e([/, 10 liy) is due solely to the interest rate model,
whereas the estimates in Section 3 have this same variability and, in addition,
variability resulting from the aggregate claim amounts.

A feature of Table 2 is the very small numbers of simulations required to
achieve the given level of accuracy for U = 0, although, as explained at the end
of Section 4, the precise values for N shown in Table 2 should be treated with
caution in cases where N is very small. The explanation for this feature is that
from U = 0, ruin, if it occurs at all, is likely to occur very quickly, i.e. at the end
of the first year. However, because we have assumed interest is not earned or
paid on premiums and claims within the year they are paid, the interest rate
model has no effect on the surplus at the end of the first year when U = 0.

Finally, since the main thrust of this paper has been to extol the virtues of
calculation as opposed to simulation, a comment in favour of simulation is in
order! We have already commented, in Section 1, that simulation can deal with
very complex models, and this point is easily illustrated by considering a simple
extension of the model we have used in this paper. Suppose the premium charged
for the year t to t +- 1 depends on the surplus at time t - 1, i.e. on U(t - 1).
Intuitively, this may be quite reasonable, since premiums may well be revised to
take account of the solvency level of the insurer, and there will inevitably be a
time delay before any premium changes can be introduced. The simulation
approach of Section 3 would have no difficulty in coping with this extra
complication. In contrast, the approach of Section 4 could not so easily be
adapted. The reason for this is that the recursive algorithm for calculating
ye(U, 101 ij) works backwards from time 9, giving l|/£(£/, 11 ij), through time
10 - m, giving \\ie(U,m\ij), to time 0, giving vj/E([/, 10|/ ;). Hence, at time
10 - m it would be difficult to take into account in the calculation of \j/E(£/, m \ ij)
the level of surplus at any earlier time. However, since the set of interest rates ij
is fixed for the calculation of i|/E(£/, 10|iy-) it would be possible to use the
approach of Section 4 (and also of Section 3) for a model where the premium in
any year depended on the interest rates in previous years.

6. RUIN AT THE END OF A SPECIFIED PERIOD

In this section we consider, very briefly, the estimation of the probability of
ruin for our portfolio at the end of a specified number of years. We denote this
probability §(U, m), so that §(U, m) is the probability that the surplus at the end
of m years, U(m) in the notation of Section 2, is negative. Two reasons why this
probability is of some interest are:
(1) It corresponds to the approach taken by Ramlau-Hansen (1988b, Sections 3

and 4) when he considers ruin over periods longer than one year.
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(2) It is tempting to regard §(U, m) as an approximation to \\f(U, m). In relation
to a similar, but not identical, model, Taylor & Buchanan (1988, H3.2.2.8)
say that §{U, m) is a "simple, and often adequate, approximation" to \\r(U, m)
for small values of m. With this comment in mind, it is of some interest to
check the accuracy of this approximation for the particular model we are
considering in this paper.

Let §(U,m\ij) denote the probability that U(m) is negative, given i, = i,; for
t = 1, 2, ..., 10. Note that §(U,m) and $(U, m\ij) must necessarily be less than or
equal to V|/(f/,/n) and \j/(C/,/n|i;), respectively.

Given the sequence of interest rates | ; , we can write down the following
formula for U(m):

m m

(=U=(+l

where Yl'k=m+\^ + ^,j) ' s taken to be equal to 1. Knowing the (first three)
moments of Xn it is elementary to calculate the (first three) moments of
X™ i %t nr=(+i 0-+ '*,;)' anc* nence> approximating the distribution of this random

variable by a translated gamma distribution, to calculate approximately
§(U,m\ij). By simulating a large number of sequences of interest rates ij we can
calculate an estimate of §(U, m), denoted §(U, m), together with an approximate
standard error of the estimate exactly as we did in Section 4 for V|/({/, m).

Table 3 shows, for 0 = 5%, estimated values of §{U, m), and the corresponding
estimated values of \f{U, m), for U = 0, 50, 100 and m = 2, 5, 10, together with
the standard errors of these estimates. Table 4 gives the corresponding
information for 0 = 15%. The values of §(U,m) have been calculated as described
above, using the same set of 1,000 sequences of interest rates /;-, as were used in
Sections 3 and 4. The values vj/(t/, m) have been calculated as described in
Section 4. (The values of \j/(£/, 10) have been taken directly from Table 2.)

Tables 3 and 4 are not very extensive, but they do show quite clearly, for the
model we have been considering, that §(U, m) cannot be considered a reliable
approximation to V|/(C/, m).

https://doi.org/10.1017/S1357321700003536 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700003536


740 Ruin Problems: Simulation or Calculation?

Table 3. Estimates of \\f(U, m) and §(U, m) when 8 = 5%

l/ = 0
s.e.

U = 50
s.e.

(/= 100
s.e.

1/ = 0
s.e.

U = 50
s.e.

{/= 100
s.e.

0.22024
0.00004

0.01603
0.00038

0.00118
0.00006

0.33252
0.00049

0.02132
0.00052

0.00147
0.00008

Table 4: Estimates of

ftl/,2)
0.03348
0.00004

0.00153
0.00004

0.00009
0.00001

<jf({/,2)

0.09374
0.00013

0.00347
0.00009

0.00017
0.00001

0.13937
0.00015

0.01677
0.00035

0.00207
0.00010

\\f(U, m) and

$(l/,5)

0.00333
0.00003

0.00019
0.00001

0.00002
0.00000

0.39013
0.00084

0.03926
0.00082

0.00422
0.00019

<])(£/, m) when

W/,5)
0.09767
0.00016

0.00401
0.00010

0.00023
0.00001

0.07702
0.00027

0.01047
0.00021

0.00158
0.00007

9 = 15%

$(£/,10)

0.00018
0.00001

0.00001
0.00000

0.00000
0.00000

0.40535
0.00094

0.04540
0.00096

0.00576
0.00026

<Sf(U,W)

0.09762
0.00016

0.00390
0.00010

0.00022
0.00001
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