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Computational study on the internal layer
in a diffuser
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(Received 18 November 2004 and in revised form 22 August 2005)

We report an internal layer found in the turbulent flow through an asymmetric
planar diffuser using large-eddy simulation; we discuss five issues relevant to the
internal layer: definition and identification, conditions for occurrence, connection
with its outer flow, similarity with other equilibrium flows, and growth. The present
internal layer exists in a region with stabilized positive skin friction downstream of
a sharp reduction. The streamwise pressure gradient changes suddenly from slightly
favourable to strongly adverse at the diffuser throat, and relaxes in a prolonged
mildly adverse region corresponding to the skin friction plateau. Development of
the internal layer into the outer region is slow, in contrast to the internal layers
previously identified from certain external boundary-layer flows where the sudden
change in streamwise pressure gradient is from strongly adverse to mildly favourable.
Signatures of the internal layer include an inflectional point in the wall-normal
profiles of streamwise turbulence intensity, and a well-defined logarithmic slope in
the mean streamwise velocity underneath a linear distribution extending to the core
region of the diffuser. Some of these characteristics bear a certain resemblance to
those existing in the C-type of Couette–Poiseuille turbulent flows. Frequency spectrum
results indicate that application of strong adverse pressure gradient at the diffuser
throat enhances the low-frequency content of streamwise turbulent fluctuations. Inside
the internal layer, the frequency energy spectra at different streamwise locations, but
with the same wall-normal coordinate, nearly collapse. Two-point correlations with
streamwise, wall-normal and temporal separations were used to examine connections
between fluctuations inside the internal layer and those in the core region of the
diffuser where the mean streamwise velocity varies linearly with distance from the
wall. Galilean decomposition of instantaneous velocity vectors reveals a string of
well-defined spanwise vortices outside the internal layer. The internal layer discovered
from this study provides qualified support for a conjecture advanced by Azad &
Kassab some years ago (Phys. Fluids A, vol. 1, 1989, p. 564).

1. Introduction
Identifying regions of self-preservation in representative non-equilibrium flows is

useful for basic fluid mechanics as well as engineering computation. Townsend (1965,
1976) discussed the process that sudden changes in external conditions in boundary
layers may result in an internal boundary layer that spreads from the section of
change, and the layer outside the internal layer develops in almost the same way as
in the original flow. Experimental evidence in support of this postulation includes
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Figure 1. Cross-section of the asymmetric planar diffuser, the exit is at x = 100.

the boundary layer over a curved hill (Baskaran, Smits & Joubert 1987) and the
boundary layer over a bump (Webster, DeGraaff & Eaton 1996). In Baskaran et al.
(1987), the streamwise pressure gradient changes rapidly from adverse to favourable
at the leading edge, and separation occurs downstream of the summit. An internal
layer was found downstream of the leading edge. The flow of Webster et al. (1996)
remains attached, its streamwise pressure gradient changes suddenly from adverse to
favourable at both the leading and trailing edges and internal layers were identified
downstream of these two locations. They considered signatures of internal layers as
knee points in the wall-normal profiles of streamwise turbulence intensity. In these two
studies, knee points emerge when the outer peak of streamwise turbulence intensity
associated with upstream adverse pressure gradient decays rapidly under favourable
pressure gradient and an inner peak is established as a result of the internal layer.
Obviously, this process of knee-point formation is specific to the hill or bump type
of flows in which the upstream strong adverse pressure gradient changes suddenly to
favourable at the leading/trailing edges.

This paper describes an internal layer identified from an incompressible turbulent
diffuser flow, as opposed to the internal layers previously identified from external
boundary-layer flows. The present internal layer emerges in the relaxation zone
downstream of a sharp variation in streamwise pressure gradient: from mildly
favourable to strongly adverse, then weakly adverse. Unlike those in Baskaran et al.
(1987) and Webster et al. (1996), the present internal layer does not display significant
spreading into the central region of the flow. The flow in the region where the internal
layer forms, exhibits certain characteristics similar to those observed in the C-type of
Couette–Poiseuille turbulent flows.

Two laboratory incompressible diffuser flows have emerged in a number of funda-
mental and modelling studies on spatially developing complex internal turbulent flows,
namely, the Azad diffuser (Azad 1996) and the Obi diffuser (Obi, Aoki & Masuda
1993). The Azad diffuser is an axisymmetric conical geometry with a total divergence
angle of 8◦ and with fully developed pipe flow at the inlet. The inlet Reynolds number
based on friction velocity and pipe diameter is 12 400. Extensive measurements have
been performed on this flow by Okwuobi & Azad (1973), Trupp, Azad & Kassab
(1986) and Azad & Kassab (1989), among others. They found that sudden application
of an adverse pressure gradient at the diffuser throat affects the flow so drastically
that the downstream mean and turbulent fields become unrecognizable in relation to
the inlet condition. The Obi diffuser has an asymmetric planar configuration with a
total expansion ratio of 4.7 and a single-sided deflection wall of 10◦ (see figure 1). The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

81
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008116


Computational study on the internal layer in a diffuser 393

inlet was designed to be a fully developed turbulent channel flow, though in some of
the experiments this condition was not achieved. The inlet Reynolds number based
on friction velocity and channel half-height is 500. Obi et al. (1993) studied the flow
experimentally using a single-component laser-Doppler anemometer. Buice & Eaton
(1997) made hot-wire and pulsed-wire measurements in the Obi diffuser. Lindgren,
Tornblom & Johansson (2002) made measurements on a slightly modified geometry
based on the Obi diffuser at a higher Reynolds number to study the control of flow
separation. Lim & Choi (2004) performed shape optimization using the Obi diffuser
as the base flow configuration. The Obi diffuser has also been used as a test flow in a
number of computational studies. These include the Reynolds-averaged simulations
of Durbin (1995) and Iaccarino (2001), as well as the large-eddy-simulation (LES)
work of Kaltenbach et al. (1999) and Gravemeier (2005). Previous investigations in
the Azad diffuser emphasized the process of instantaneous flow reversal (Azad 1996).
Likewise, work in the Obi diffuser emphasized the unsteady process of separation on
the lower deflected wall, e.g. see Kaltenbach et al. (1999). The focus of the present
study is on the discovery of an internal layer over the upper flat wall of the Obi
diffuser. This subject has eluded attention in the previous diffuser studies which have
focused on separation and reattachment over the lower deflected wall.

Aside from the obvious outstanding issue of identifying internal layers in internal
flows, further flow physics questions can be raised with reference to the conditions
under which internal layers may form, about the growth rate of the internal layer, and
about a possible connection between turbulent fluctuations inside the internal layer
and identifiable large-scale motions in the central region of the flow. In addition,
from the view point of basic fluid mechanics, it is of interest to query whether it
is possible to relate the characteristics of the internal layer with any well-known
fundamental equilibrium component flows. Furthermore, the original internal-layer
concept proposed by Townsend (1965) requires further scrutiny. Can the internal
layer be accurately described as a near-wall layer with turbulence energy equilibrium?
Does the layer outside the internal layer develop as in the original unperturbed flow?
Does the internal layer emerge right at the streamwise section of change? In this
work, we attempt to address these questions using large-eddy simulation.

2. Notations and computational procedures
We consider incompressible fluid flow with constant density ρ in the Obi planar

diffuser shown in figure 1. The unit length scale is h, corresponding to the inlet
channel half-height. The two transitional curvatures between the parallel walls and
the inclined wall have the same radius of 19.4. The origin of the coordinate system is
at the intersection of the deflected wall and the lower inlet channel wall. The curvature
centre associated with the upstream curved section is located at (x = −1.7, y = −19.4).
The curvature center of the downstream curved section is at (x = 43.7, y = 12.0). The
inlet plane is located at x = −5, and the outlet plane at x = 100.

Mass and momentum conservation equations are

div u = 0, (1)

∂u
∂t

+ div (u u) = − 1

ρ
grad p + div

{
1

Re
[grad u + (grad u)T]

}
, (2)

where u is the velocity vector with Cartesian components (u, v, w) or ui , i = 1, 2, 3.
Superscript ‘T’ denotes transpose. The corresponding grid-filtered large-eddy
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simulation equations are

div u = 0, (3)

∂u
∂t

+ div (u u) = − 1

ρ
grad p + div

{
1

Re
[grad u + (grad u)T]

}
+ div (−τ ) + ε, (4)

where an overbar denotes the filtered variable. The term ε appearing in (4) represents
an error caused by the general filtering operation not commuting with differentiation,
and is neglected in this work (or absorbed into τ ). The term τ is the subgrid-scale stress
tensor with Cartesian components τij , i, j =1, 2, 3. In this paper, τij is parameterized
using the Smagorinsky model together with a slightly modified implementation of
the dynamic procedure (Germano et al. 1991). Details of the subgrid-scale stress
model equations and the associated filtering operation can be found in Mahesh,
Constantinescu & Moin (2004), and are not repeated here.

The unit velocity scale is defined as the friction velocity u∗ at the inlet. This then
defines the unit time scale as h/u∗

x=−5. The Reynolds number Re based on the unit
length h and unit velocity u∗

x=−5 is 500. As in previous studies of the Obi diffuser
(e.g. Buice & Eaton 1997; Kaltenbach et al. 1999), the majority of the results in this
paper were normalized by the inlet bulk velocity ub defined as the area-averaged
mean streamwise velocity at the x = −5 station. Time-averaging and averaging over
the spanwise homogeneous direction are represented by 〈·〉.

The two-point correlation coefficient with spatial and temporal separations is
defined as

Rij (x, y, z − z′, t − t ′, x ′, y ′) =
〈ui

′(x, y, z, t)uj
′(x ′, y ′, z′, t ′)〉

ui,rms
′(x, y)uj,rms

′(x ′, y ′)
(i, j = 1, 2, 3). (5)

For the two homogeneous dimensions z and t , only relative separation is significant.
The wall static pressure coefficient and skin friction coefficient are evaluated as

Cpw =
〈p〉wall − 〈p〉wall,x=−5

1
2
ρu2

b

, Cf =
〈wall shear stress〉

1
2
ρu2

b

. (6)

Evaluation of power spectra in this paper follows the procedure described in Choi &
Moin (1990).

The two-dimensional rate of deformation tensor for mean flow is

Sij =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj 〉
∂xi

)
(i, j = 1, 2). (7)

The first eigenvalue for Sij is

λ1 =
S11 + S22

2
+

√(
S11 − S22

2

)2

+ S2
12 , (8)

and the principal axis of Sij associated with λ1 makes an angle φ with respect to the
x-axis,

tan φ1 =
λ1 − S11

S12

. (9)

The numerical methodology used to solve the filtered continuity and momentum
equations is the unstructured fractional step method for large-eddy simulation in
complex geometries of Mahesh et al. (2004). Their method defines all independent
variables at the control volume cell center as in the collocated implicit formulation
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Figure 2. Two-point correlation coefficient R11(x =35.6, y =−0.4, z−z′, t−t ′ =0, x ′ =x, y ′ =y)
as a function of spanwise separation z − z′. �, Buice & Eaton (1997); solid line, present LES.

developed by Kim & Choi (2000). An implicit second-order Crank–Nicolson scheme
is used for both convection and viscous terms. For further details about the numerical
algorithm, see Mahesh et al. (2004). The actual parallel computer program developed
based on this method is named CDP after the late Dr Charles David Pierce of the
Center for Turbulence Research, Stanford University.

The spanwise dimension of the computational domain is 8h, taken to be the widest
value adopted in the simulation of Kaltenbach et al. (1999). The computed spanwise
two-point correlation coefficient R11 at x =35.6 and y = −0.4 is plotted together
with the experimental data of Buice & Eaton (1997) in figure 2. The comparison is
satisfactory, and the profile also indicates the adequacy of the chosen domain width.

Velocities at the inflow boundary plane, x = −5, are from a separate LES of a fully
developed channel flow at Re = 500. The channel length in the separate LES is 12,
its width and height are the same as the diffuser inlet section. Resolution used in this
channel LES is 1283 with the first layer of cell centres located at 0.000487 away from
the wall. The numerical algorithm for the channel LES is the second-order staggered
fractional step method of Pierce & Moin (2004). The mean and r.m.s. velocities
obtained from the channel LES are in good agreement with the DNS data of Moser,
Kim & Mansour (1999). The channel velocities at one selected plane were saved
for 20 time units at time intervals of 0.002. The velocity signals were interpolated
temporally and spatially in the unstructured collocated diffuser simulation for inlet
boundary condition. The time duration of the inflow data sequence is long enough to
allow a fluid particle to be convected approximately 100 length units in the streamwise
direction. When the end of the saved data sequence is reached, the signals are recycled.
In the present diffuser simulation, the saved inlet-channel velocity signals were rescaled
to match the u′

rms distribution of Buice & Eaton (1997), similar to the procedure
used by Schlüter, Pitsch & Moin (2004) and Keating et al. (2004). This is because it
was felt that in order to compare the diffuser LES results with the experiments of
Buice & Eaton (1997), the inflow statistics should match the experiment as closely
as possible. The drawback is that turbulence structures will be slightly distorted at
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the inlet. However, we found that the interpolations in time, space and rescaling of
u′

rms at the inlet resulted in small changes in the energy spectrum of u at (x = −4.99,
y = 1.8, z = 1) compared to that of the originally saved fully developed channel flow
velocity signals. A simulation without rescaling the inlet channel profiles was also
performed.

A periodic boundary condition was applied in the spanwise z-direction and no-
slip boundary conditions were applied on the walls. At the exit plane, a convective
boundary condition was used (see Kaltenbach et al. 1999; Pierce & Moin 2004).

Simulations were performed on two sets of hexahedral meshes. The fine mesh has
590(x) × 100(y) × 110(z) control volume cells. At the inlet, the first layer of cell
centres is located at 0.0013 away from the two channel walls. Along the streamwise
direction, the cell length is 0.083. At x = 20, the first layer of cell centres is located
at 0.0037 below the upper wall, and the cell length is 0.1187. The coarse mesh has
360(x) × 80(y) × 80(z) control volume cells. At the inlet, the first layer of cell centres
is located at 0.0055 away from the two channel walls. Along the streamwise direction,
the cell length is 0.11. At x = 20, the first layer of cell centres is located at 0.033 below
the upper wall, and near the upper wall the cell length is 0.175. These mesh spacings
can be translated into wall units using the skin friction results and the value of
characteristic Reynolds number. Effects of grid resolution and the subgrid-scale stress
model on predicted mean and r.m.s. velocities were studied. It was found that for the
coarse resolution, application of the subgrid-scale stress model improves predictions
of 〈u〉/ub and u′

rms/ub. With the model applied, the mean velocity 〈u〉/ub shows small
differences between the two resolutions, and agrees well with the experimental data
of Buice & Eaton (1997). The results to be presented in the next section are from the
fine-mesh simulation. The computed inlet bulk velocity ub used in the normalization
of results is 18.19.

The computation was carried out on parallel computers using 128 processors. The
time step was fixed to be �t = 0.0013. Initial velocities were set to zero across the
entire field. The flow was allowed to evolve for 120 time units (approximately 6 flow
through times) and reach a statistically steady state. Velocity fields at selected (y, z)-
planes were then saved periodically every 100�t for a duration of 100 time units for
post-processing. Mean velocity and turbulence intensities were sampled at every time
step during the simulation to collect statistics. For the calculation of power spectra
estimation 32 000 velocity samples were saved at 25 selected spatial locations at every
time step. All 25 recorded points are located in the z = 1 plane. Notations related to
power spectrum computation follow strictly those in Choi & Moin (1990).

3. Internal layer definition and identification
Townsend (1965) considered the response of a deep self-preserving turbulent

boundary layer to sudden change in surface roughness. He postulated that an
inner equilibrium layer with logarithmic mean streamwise velocity profile emerges
downstream of the perturbation. ‘Equilibrium’ is in the sense of Townsend (1961),
which refers to the equilibrium existing between local rates of turbulence energy
production and dissipation. Bradshaw & Galea (1967) extended the development of
Townsend and proposed that the internal layer may be identified by plotting total
pressure against streamfunction for various values of streamwise locations. Outside
the internal layer, the total pressure on a streamline continues to change slowly as
in the upstream flow, whereas in the internal layer under adverse pressure gradient,
the total pressure increases along a streamline. Antonia & Luxton (1971) measured
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Figure 3. Wall static pressure coefficient Cpw . Kaltenbach et al. (1999): �, lower wall;
�, upper wall. Present LES: dotted line, lower wall; solid line, upper wall.

the response of a turbulent boundary layer to a smooth-to-rough change in surface
condition. They reported that the internal layer flow near the wall downstream of the
perturbation is not in energy equilibrium as suggested by Townsend.

We propose to define the internal layer as a near-wall attached layer with inflectional
mean velocity gradient, emerging downstream of imposed perturbations on the
upstream flow.

In the Obi diffuser flow, an imposed perturbation arises from the sharp adverse
pressure gradient downstream of the diffuser throat. Planar and conical diffusers
have broadly similar wall static pressure distributions. A mildly favourable pressure
gradient turns to a sharply adverse pressure gradient at the diffuser throat, followed
by a gradual decrease in the magnitude of the adverse pressure gradient further
downstream. Such similarity can be appreciated by comparing the Cpw results for the
Obi diffuser in figure 3 with figure 4 of Okwuobi & Azad (1973) for the axisymmetric
Azad diffuser. In figure 3, the change from strongly adverse to weakly adverse pressure
gradient starts near x = 10, and in the experiment of Okwuobi & Azad (1973) similar
transition takes place approximately 8 pipe radii downstream of the throat, though
the levelling off of Cpw is not as distinct as in the Obi diffuser. This pattern of Cpw

for incompressible diffuser flows may be contrasted with the behaviour of Cpw found
in the hill/bump flows of Baskaran et al. (1987) and Webster et al. (1996). In Webster
et al. (1996) there are two adverse to favourable pressure gradient changes where
signatures of internal layers emerge. The magnitude of their favourable pressure
gradient decreases further downstream of the trailing edge. The diffuser flow and the
bump flow both experience sharp variation in streamwise pressure gradient followed
by downstream relaxation. The difference is that the signs of the sudden changes
are opposite. Given that the internal layer exists in the scenario where Cpw is from
adverse to favourable, a query which naturally presents itself is whether an internal
layer can be found in the other scenario.

Inflectional mean streamwise velocity and its wall-normal gradient are shown in
figures 4 and 5. On the scales adopted in the figures, mean velocity profiles near the
top flat wall exhibit a nearly discontinuous abrupt change of curvature at y ≈ 1.8
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Figure 4. 〈u〉/ub versus y. Symbols are from Buice & Eaton (1997) and lines are present
LES. �, x = 5.18; �, x = 11.96; �, x = 27.1; +, x = 33.86.
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Figure 5. Mean streamwise velocity and its gradient near the upper wall at x = 20.
Solid line, u/ub; +, −1/ub∂u/∂y.

for those streamwise stations located within the range from x = 11.96 to 38.4. In
addition, along the wall-normal direction from the abrupt change to approximately
y = 0, 〈u〉/ub displays linear slopes at these streamwise stations. In this paper, we
will refer to this region as the flow outside the internal layer, the outer flow, or the
core region. The linearity of mean velocity in the core region is significant because it
implies that, for the outer flow, the velocity difference is only a function of distance
(not necessarily linear) to the wall, thereby satisfying a crucial condition in Millikan’s
reasoning (velocity defect law) for the existence of a logarithmic velocity profile in the
overlap region for the flow underneath the core flow. The original argument is that
at a reasonably large distance from the wall, the viscosity factor should no longer
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Figure 6. (2 − y)+ versus 〈u〉+. dotted line, x = 6.4; dashed line, x = 10.4; �, x =18.4; �,
x =22.4; �, x = 26.4; �, x = 30.4; �, x = 34.4; solid lines are 〈u〉+ = y+ and 〈u〉+ = 2.5 ln y++4.2.
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Figure 7. Skin friction coefficient. Buice & Eaton (1997): �, lower wall; �, upper flat wall;
solid lines are from the present LES.

be predominant in determining the velocity profile. Velocity differences in this region
should therefore depend only on geometrical factors. We therefore may argue that
underneath the core flow, the mean velocity profiles should be logarithmic.

The above prediction is put to the test in figure 6 by plotting the mean velocity
〈u〉+ against wall distance (2 − y)+ in wall units. Using the friction velocity suggested
in figure 7, it can be shown that y =1.8 corresponds to approximately 45 wall units
at the last five x locations (18.4 � x � 34.4). From (2 − y)+ = 20 to 80, the 〈u〉+

profiles at these five streamwise stations collapse onto a logarithmic curve with the
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well-known slope of 1/0.4. Very close to the wall, (2 − y)+ < 10, the usual law of the
wall is satisfied. One of the signatures of the present internal layer is that the mean
velocity obeys the self-similar log law and law of the wall inside the internal layer,
and varies linearly with distance from the wall outside the internal layer. It may be
possible to further collapse the 〈u〉/ub profiles at different streamwise locations outside
the internal layer in the core region of the flow. For scaling of mean velocity in adverse
pressure gradient boundary layers, see the work of Na & Moin (1998), Skote &
Henningson (2002) and references therein. Scaling in simple equilibrium internal
flows was discussed in Nakabayashi, Kitoh & Katoh (2004).

4. Conditions of internal layer occurrence
Skin friction coefficient Cf over the upper flat wall in the Obi diffuser displays

a long plateau extending from x = 15 to 45 (figure 7). The plateau is bound by a
sharp drop from x = 0 to 10 upstream and a more gradual decline downstream of
x = 45. In the plateau region, friction velocity is approximately 0.43, and 1 viscous
wall unit corresponds to 0.0047h. A broadly similar streamwise variation of Cf exists
in the Azad diffuser (see figure 17 of Azad 1996). However, in the Azad diffuser,
the sharp drop of Cf near the diffuser throat is followed by an additional slower
decrease rather than a distinct plateau. In Webster et al. (1996), two sudden jumps
in Cf are found at the locations where the pressure gradient changes from adverse
to favourable. Downstream of their trailing edge, Cf settles into a minor descending
slope and the signature of the internal layer is distinct in this region. Wu & Squires
(1998) argued that an abrupt increase in Cf implies quasi-step changes in the near-
wall mean velocity gradient. Thus, production terms which are directly dependent
on this gradient in the transport equations for second-order turbulence statistics will
be expected to show large increases in the near-wall region, for example, streamwise
intensity. The proposition of Wu & Squires (1998) that a quasi-step increase in Cf

selectively modifies near-wall shear production of turbulent stresses and leads to
signatures of an internal layer explains well the internal layers identified in Webster
et al. (1996) and Baskaran et al. (1987), but is not directly applicable in the present
diffuser flow. This is because near the upper flat wall of the Obi diffuser, there is no
quasi-step increase in Cf . Instead, Cf has a prolonged plateau which is preceded by
a rapid decrease. Although the overall trend of Cf in the Obi diffuser is drastically
different from that in the Webster bump, both flows nevertheless show regions of
stabilized positive skin friction downstream of sections of sudden change. Again, the
signs of the sudden changes are opposite. The stabilized Cf in the relaxation region
suggests a newly established level of the near-wall mean velocity gradient, which may
be the driving factor in the formation of an internal layer. Obviously, if the sharp
drop in Cf on the upper wall of the Obi diffuser is severe enough to cause separation,
there can be no internal layer. We therefore propose to view a quasi-step change in
skin friction followed by stabilization as a necessary condition for the occurrence of
an internal layer, provided that Cf remains positive after the perturbation.

5. Similarity with other equilibrium flow
In the region of 1<y < 2 and 18 <x < 38, the present mean velocity profiles exhibit

certain similar characteristics to those in the C-type of Couette–Poiseuille turbulent
flows measured by Nakabayashi et al. (2004), which can be observed by comparing
figures 5 and 8 with the sketch shown in figure 9. The inflectional point where the
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Figure 8. Second-order turbulent statistics near the upper wall at x =20. (a) solid line,
u′

rms/ub; dotted line, vrms
′/ub; dashed line, wrms

′/ub; (b) solid line, 〈u′v′〉/u2
b; +, total shear

stress; �, wall-normal gradient of total shear stress.

second-order wall-normal mean velocity gradient changes sign is less apparent from
the distribution of 〈u〉/ub in the present diffuser flow. However, the profile of ∂〈u〉/∂y
shown in figure 5 clearly demonstrates that the inflection is located at approximately
y = 1.7. The effect on mean velocity of the lower moving wall in the C-type of flow is
mimicked in the present diffuser flow by the high-speed fluid beyond the core region,
i.e. y < 1. Thus, if the C-type of Couette–Poiseuille turbulent flows can be considered
approximately as a distant prototype for the Obi diffuser flow in the region of 1 < y < 2
and 18 < x < 38, the linearly varying high-speed fluid flow away from the top wall is
then one of the driving components in the internal-layer formation process because it
provides the necessary mechanism for a mean velocity inflection in this particular flow.

The notion that the present internal layer, together with its surrounding environ-
ment, bears a certain resemblance to the fundamental C-type of Couette–Poiseuille
turbulent flows is reinforced by considering the characteristics of second-order
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Figure 9. Sketch of the C-type of Couette–Poiseuille turbulent flows, based on the
experimental data of Nakabayashi et al. (2004).
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Figure 10. u′
rms/ub versus y. Symbols are from Obi et al. (1993) and lines are present LES.

� solid, x =18.4; � dotted, x = 22.4; � dashed, x = 26.4.

turbulence statistics in these two flows. The urms
′ profiles close to the top wall in

figures 8 and 10 may be compared with figure 14 of Nakabayashi et al. (2004).
The valley between the inner and outer urms

′ peaks in the present discussion has
been termed a plateau region in Nakabayashi et al. Reynolds shear stress similarity
between these two types of flow can be appreciated by comparing the 〈u′v′〉 profile
in figure 8 with those in figure 4 of Nakabayashi et al. (2004). Note the absence of
an inflection in the Reynolds shear stress profiles for both flow. Apparently, the total
shear stress in the present diffuser flow at x = 20 close to the top wall has different
behaviour from that in the C-type of Couette–Poiseuille turbulent flows. This reflects
the fact that the present flow is not one-dimensional and fully developed, as assumed
in the C-type of Couette–Poiseuille turbulent flows. The wall-normal gradient of total
shear stress shown in figure 8 also serves as a measure for identification of an internal
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layer. In adverse pressure gradient boundary-layer flows, it is approximately equal to
the streamwise gradient of total pressure. Outside the internal layer, the total pressure
on a streamline continues to change slowly as in the upstream flow, whereas inside
the internal layer under adverse pressure gradient, the total pressure increases along
a streamline, at the wall being equal to the static pressure. In the present flow, the
location at which the total shear stress gradient changes sign serves as one of the
markers for the edge of the internal layer.

6. Connection of internal layer with outer flow
Antonia & Luxton (1971) reported that the structure of the flow outside their

internal layer does not seem to be affected by the new surface condition, except for
a small streamline displacement. Baskaran et al. (1987) also found from their bump
experiment that flow outside the internal layer behaves as free turbulent flow affected
by a wall constraint. In this work, we primarily use two-point correlation with spatial
separation and temporal delay to gain insight into this issue.

Figure 11 compares the contour maps of R12(x = 16, y, z−z′ =0, t −t ′ = 0, x ′ = x, y ′)
in a region near the upper wall 1 <y < 2, where an internal layer exists with its
inlet counterpart R12(x = −5, y, z − z′ = 0, t − t ′ = 0, x ′ = x, y ′). At x =16 outside the
internal layer for 1 <y < 1.8, the correlation reaches peak values at zero wall-normal
separation y = y ′. The streamwise fluctuation u′ in the core region is strongly correlated
with wall-normal fluctuation v′ at the same location. The magnitude of the peaks also
increases toward the lower left-hand corner y = y ′ = 1 where the local maximum of
Reynolds shear stress is located under the effect of adverse pressure gradient. In the
contour map, a neck forms between y = 1.75 and 1.85 suggesting different correlation
characteristics of R12 inside and outside the internal layer. Inside the internal layer,
the peaks of R12(x =16, y, z−z′ = 0, t − t ′ =0, x ′ = x, y ′) are displaced away from zero
wall-normal separation, i.e. y−y ′ > 0. The streamwise fluctuation u′ inside the internal
layer is more strongly correlated with v′ further away from the wall. At the inlet plane
the correlation map does not show a distinct neck, though a slight bending toward
positive separation y − y ′ > 0 is visible for y > 1.9. The correlation reaches a local
maximum for each y at zero wall-normal separation, and the peak values decrease
monotonically along the 45◦ line connecting the upper right- and the lower left-hand
corners. The correlation coefficient map of R12 clearly suggests a distinct separation
in the behaviours of large-eddy motions inside and outside the internal layer.

The next point to be discussed is the degree of correlation between the streamwise
fluctuation u′ inside the internal layer and u′ away from the wall. This is addressed
through consideration of R11 with finite streamwise separation, variable wall-normal
separation, and also at variable time delay. Contour maps of the two-point correlation
coefficient R11(x = 33.86, y, z− z′ = 0, t − t ′, x ′ = 35.60, y ′) at nine sequentially increas-
ing time delays are shown in figure 12. At zero time delay, as indicated by the shape of
the R11 = 0.5 contour line, the streamwise fluctuations inside the internal layer y > 1.8
at the upstream station x =33.86 have a relatively high degree of correlation with
streamwise fluctuations away from the wall within 1.3 <y < 1.8 at the downstream
station of x ′ = 35.60. If long streamwise streaky structures were dominant inside the
internal layer, the coefficient R11 at zero time delay should have shown a high degree
of correlation between u′ in y > 1.8 at the upstream station with u′ at similar y ′

coordinates at the downstream station. We also found from visualization studies that
the long near-wall streamwise streaks coming from the upstream channel are destroyed
at the throat of the diffuser. The results at zero time delay are consistent with the
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Figure 11. Contours of two-point correlation coefficient R12 with wall-normal separations.
(a) R12(x = 16, y, z − z′ = 0, t − t ′ = 0, x ′ = x, y ′); (b) inflow plane R12(x = −5, y, z − z′ = 0,
t − t ′ = 0, x ′ = x, y ′).

well-established hairpin eddy structure in turbulent channel and boundary-layer flows.
Upstream u′ inside the internal layer and downstream u′ in the core region belong
to the tail and leg elements of one hairpin eddy structure, respectively. At 0.26
time delay, the correlation coefficient reaches a global peak value of 0.75 for all the
nine time delays considered, and the contours are aligned with the 45◦ diagonal line
in the (y, y ′)-coordinate system. The upstream u′ is most strongly correlated with
downstream u′ with the same wall-normal coordinate at this optimum time delay,
suggesting a simple translation of the eddy structure in the streamwise direction.
The eddy convection velocity of 0.37ub calculated based on (x ′ − x)/(t ′ − t)ub is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

81
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008116


Computational study on the internal layer in a diffuser 405

00
5

0.05

01

0.1

0.1

01
5

0.15

0.2

0.2

0
25

0.25

0.25

03

0.3

0.3

0
35

0.35

0.
35 0.4

0.4

0.
45

0.45

0 45
0.

5

0.5

y′

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

0

0 0

0
05

0.05

0.05

0
1

0.1

01
5

0.15

0
2

0.2

0.2

02
5

0.25
0.25

03

0.3

0.3

0.
35

0
35

0.35

04

0.4

0.
45

0.45

0.45

0.
5

0.5

0.5

0.
55

0.55

0.
55

0.6

0.
6

0.6

0

0

0
05

0.05
0.05

0
1

01

0.1

01
5

0.150.15

0
2

0.20.2

0.
25

02
5

0.25

0.
3

0.3
0.3

0
35

0.35

0.
4

0.4

0.
45

0.45

0.45

0.
5

0.5

0.
55

0.55

0.55

0.
6

0.6

0.
65

0.65

0.65

0.
7

0.7

0.
75

0.75

00
5

0.05

0
1

0.1

0.1

0
15

0.15

02

0.2

02
5

0.25

0.
3

0.3

0.
35

0.35

4

0.
4

0.4

0.45

0.
45

0.45

0.
5

0.5

5

0.55

0.
55

0.55

0.
6

0.6

0.6

0.
65

0
00

5

0.050.05

01

0.1

0
15

0.15

02

0.2

0.
25

0.25.25

0.
3

0.3

0.
35

0.35

0.4

0.
4

0.4

0.45

0.
45

0.45

0.5

0

0

0
05

0.05

0
1

0
1

0.1

01
5

0.15

0.
2

0.2

0.
25

0.
25

0.25

0.3

0.
3

0.3

0.35

0.
35

0.35

0.4

0.4

0.4

0
0

05
0

05

0.05

0
1

0.1

0.
15

0.15

0.
2

0.2

0.2
5

0.25

0.3

0.30.3

0.35

0.35

0.
05

0.050.05

0.1

0.
1

0.1

0.15

0.15

0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

y′

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

y′

y y y

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

1.0
1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.6

1.8

2.0

Figure 12. Two-point correlation coefficient R11(x = 33.86, y, z − z′ =0, t − t ′, x ′ = 35.60, y ′)
with finite streamwise and wall-normal separations at a certain time delay. From the upper
left-hand figure to the lower right-hand figure sequentially, the time delay t ′ − t is 0, 0.13, 0.26,
0.39, 0.52, 0.65, 0.78, 1.3, 1.46.

nearly the same as the mean streamwise velocity in this region. Thus, the large
eddies are convected downstream by the average streamwise velocity. Large eddies
are also strained along the principal axis of the rate of deformation tensor as they
move downstream. At the long time delay of 0.78, the contour line with local peak
correlation value of 0.35 has a flattened loop shape nearly parallel to the horizontal
y-axis. This suggests that at the given time delay, near-wall streamwise fluctuations
at the downstream station of x ′ = 35.60 are more strongly correlated with streamwise
fluctuations away from the wall at the upstream station x =33.86.

Figure 13 shows Reynolds decomposed instantaneous fluctuating velocity vectors
at t =200 over the (x, y)-plane at z = 1. Inside the internal layer (1.8 < y < 2), the
fluctuating velocities reach local peak values in the central region. Near the outer
edge of the internal layer they drop approximately to zero, forming a rather easily
recognizable boundary between the internal layer and the outer flow. A distinct feature
associated with the outer flow can also be seen in figure 13. From x = 20.5 to 24.5,
there exists a layer of wavy fluctuating velocity vectors pointing toward the upstream
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Figure 13. Instantaneous fluctuating velocity vectors over the z = 1 plane at t =200.

direction. We may call it a stream. At x = 22, the wall-normal position of the stream
is at y ≈ 1. It is found that the spanwise extent of the stream is approximately 1. The
magnitude of the fluctuating velocity u′ in the stream is larger than the corresponding
local turbulence intensity u′

rms . The direction of a similar stream at a different instant
may also point downstream instead of upstream. On the core flow side of the stream
(smaller y-coordinate), well-defined spanwise vortices exist. It is possible that these
spanwise vortices are related to the mean velocity inflection characteristic outside
the internal layer. This is analogous to the situation in a plane mixing layer where
an inflectional streamwise velocity profile results in a sequence of spanwise vortices
as the flow develops either temporarily or spatially. Figure 14 presents Galilean
decomposed fluctuating velocity vectors at the same time and location as in figure 13.
The constant convection velocity uc used in the Galilean decomposition is 0.5ub. At
approximately y = 1, a string of well-defined spanwise vortices are revealed by the
Galilean decomposition. Apparently, these vortices are convected downstream at a
speed of 0.5ub; but unlike the counter-rotating vortex pairs shown in figure 13, these
vortices all have the same counterclockwise swirl direction. The vortices identified
from the Galilean decomposed velocity vector fields in Adrian, Christensen & Liu
(2000) also exhibit the same sense of swirling.

7. Additional properties of the internal layer
Wu & Durbin (2001) reported direct numerical simulation of wake migration in a

turbine passage channel. They found that circular vortex tubes aligned in the principal
direction of the mean rate of deformation tensor emerge as the turbine geometry varies
in the streamwise direction. Streamwise expansion of the Obi diffuser may produce
similar effects. For this reason, the principal directions φ1 of the mean rate of the
deformation tensor as a function of y at various x stations are plotted in figure 15.
Close to the inlet channel, φ1 is nearly −45◦ throughout the upper half-channel
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Figure 14. Instantaneous fluctuating velocity vectors over the z = 1 plane at t = 200 by
Galilean decomposition with uC = 0.5ub.
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Figure 15. Principal direction φ1 of the mean strain rate tensor. +, x = −4.5; �, x = 0; �,
x =5.2; �, x = 10; �, x = 16; �, x = 20; ×, x = 27.1. Internal layer is found at the last three
stations.

and abruptly changes to +45◦ near the channel centreline. From the diffuser throat
downstream, there is a settling region at 0 <x < 10, within which the angle φ1 exhibits
significant variations. At the last three stations, the principal axis remains in nearly
the same direction. It merely changes from −45◦ near the upper wall to −50◦ at
y = 0.1. Thus, there exists a large region of the flow in which the principal axis of
the rate of deformation tensor remains nearly unchanged. Turbulent eddies will thus
be stretched along the nearly fixed direction as they are convected downstream. We
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found from our visualization study that such a stretching process in the Obi diffuser
is similar to, but less dramatic than, the process described by Wu & Durbin (2001).

In the flow over a bump (Webster et al. 1996), prior to the sudden change of Cpw

near the trailing edge, the level of u′
rms is elevated and its peak displaced away from the

wall to the central region of the boundary layer. As the streamwise pressure gradient
changes from adverse to favourable, an inner peak of u′

rms appears while the outer
peak owing to upstream adverse pressure gradient diminishes rapidly under the effect
of the newly imposed favourable pressure gradient so that the wall-normal profiles
of u′

rms show knee points, i.e. sharp turning, at the edge of internal layer. Sudden
application of strong adverse pressure gradient at the throat of the Obi diffuser
significantly elevates u′

rms near the upper flat wall, the local peak value at the throat
is nearly 100% larger than the inlet peak. However, this elevated peak decays rapidly
back to the original inlet peak level by x = 10 as a result of the levelling off of Cpw

shown in figure 3. This process of rise and decay corresponds to the precipitous drop
and subsequent stabilization in Cf discussed in figure 7. Under the effect of adverse
pressure gradient, the elevated u′

rms in the region away form the wall bifurcates away
from the inner peak and forms an outer peak. This outer peak is the one commonly
observed when the boundary layer responds to an adverse pressure gradient. It shifts
away from the wall with increasing streamwise distance from x = 6.4 to 14.4. This
process can be discerned from figure 10. Because the flow is still under the influence
of a weak adverse pressure gradient downstream of x = 10 the outer peak does not
decay as quickly as in Baskaran et al. and Webster et al. Thus, in the Obi diffuser,
internal layer signatures may also include a valley bottom at y ≈ 1.8 separating the
inner and outer peaks. The streamwise range within which such a signature is distinct
is from x = 15 to 40, consistent with figure 6. Comparison of the computed turbulence
intensity with experimental data at stations for x > 40 is less satisfactory, which is very
similar to findings from Kaltenbach et al. (1999) and the other computational studies
of the Obi diffuser. Kaltenbach et al. commented that the data of Obi et al. (1993)
downstream of x = 40 are only of qualitative value for validation because of a possible
scaling problem. No inflectional points can be found in the Reynolds shear stress and
wall-normal intensity profiles. In wall-bounded shear flows, streamwise fluctuations
respond to mean shear more quickly than Reynolds shear stress and wall-normal
fluctuations, this has also been observed in laminar to turbulent transitional boundary-
layer studies (see Wu et al. 1999). Antonia & Luxton (1971) reported that the growth
of the internal layer thickness is proportional to x0.79. Webster et al. (1996) found that
their internal layer downstream of the bump trailing edge grew rapidly away from the
wall and merged with the outer flow. The present internal layer itself is visualized in
figure 16 using contours of r.m.s. streamwise turbulence intensity. An imaginary nearly
horizontal line connecting the marked local tips of the contours close to the top wall
can be considered approximately as the outer edge of the internal layer. It is obvious
that the present internal layer exhibits negligible growth in the range of 16<x < 40.

We are interested in comparing the spectrum of u′ at different streamwise stations as
the flow experiences quasi-step change in streamwise pressure gradient near the throat
and gradual relaxation further downstream. Figure 17 plots frequency spectrum φ(ω)
for u′ as a function of ω near the outer edge of the internal layer at x = −3, 5.18, 10,
16, 20 and 30. No normalization was performed on the spectrum results. Grid spacing
limits the highest frequency that can be locally resolved in the simulation, and this
represents an implicit filter that is imposed by the grid on the flow field. The estimated
Nyquist critical frequency ωc based on the streamwise grid spacing and local value of
〈u〉 is 570 at x = −3 and 230 at x =5.18. Spectrum results at higher frequencies may
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Figure 16. Visualization of the internal layer using contours of r.m.s. streamwise
turbulence intensity.
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Figure 17. Frequency spectrum φω for u′ as a function of ω. �, x = −3; �, x = 5.18; �, x =10;
solid line, x = 16; dotted line, x = 20; dashed line, x = 30; for all the stations y = 1.8 and z = 1.0.
The left and right chain-dotted lines represent the −5/3 and −7 slopes, respectively.

therefore be ignored on the figure. Compared to the profile at x = −3, φ(ω) at 5.18
displays higher levels of low-frequency content and lower levels of high-frequency
content. This clearly demonstrates that strong adverse pressure gradient enhances
large-scale motions in the turbulent diffuser flow. From x = 5.18 to x =10 there is a
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further reduction in the energy level of high-frequency motions as the adverse pressure
gradient remains strong in this region, see figure 3. The last three stations are in a
region where the internal layer has formed as the adverse pressure gradient becomes
rather weak and the skin friction has stabilized into a plateau. The spectra of u′ at
these locations (x = 16, 20 and 30) display decent collapse, suggesting that there is
small streamwise variation in u′ near the wall after initiation of the internal layer.

8. Concluding remarks
Azad & Kassab (1989) said in their concluding remarks that, ‘it may also be

conjectured that there is a new growth of a layer in the diffuser wall underneath the
retarded, fully developed flow coming from the pipe into the diffuser.’ Our results near
the upper wall region of the asymmetric planar Obi diffuser support their conjecture,
albeit at a much lower Reynolds number and also with qualifications.

The new layer is identified as an internal layer, but with slow growth. The mean
streamwise velocity possesses a well-defined logarithmic slope inside the internal
layer upto 80 wall units, and varies linearly with wall-normal distance outside the
internal layer. One of the statistical indicators of an internal layer is an inflectional
characteristic in the wall-normal profile of streamwise turbulence intensity. This may
take the concrete form of a knee-point as reported in the external flow over a hill
(Baskaran et al. 1987), or a valley as found in the present internal flow through
a planar diffuser. Internal layers have a tendency to emerge in the relaxation zone
downstream of a sudden change in streamwise pressure gradient. Examples of such
abrupt changes in pressure gradient include the adverse to favourable drop at the
trailing edge of the bump of Webster et al. (1996), as well as the favourable to adverse
jump at the throat regions of the Azad diffuser (Okwuobi & Azad 1973), and the Obi
diffuser. Obviously, one prerequisite for internal layer formation is that the abrupt
change in pressure gradient may not lead to flow separation, though instantaneous
flow reversal is not precluded. We argue that it is possible to relate the occurrence
of an internal layer to the skin-friction coefficient Cf , which is directly related to the
near-wall mean velocity gradient. For instance, a step increase in Cf is found after
the trailing edge of the Webster bump corresponding to the adverse to favourable
streamwise pressure gradient transition, followed by a gradual levelling off. Over the
upper wall of the Obi diffuser, a rapid drop in Cf corresponding to the favourable to
adverse pressure gradient jump is followed by a levelling off downstream of x = 15.
The establishment and stabilization of a new level of Cf signals the birth of an
internal layer and may be considered as an indicator.

Certain structural features of the internal layer were revealed by analysing large-
eddy simulation results. It is found that the application of a strong adverse pressure
gradient at the diffuser throat region enhances the low-frequency content of streamwise
turbulent fluctuations. At various streamwise stations inside the internal layer, the
power spectra with the same wall-normal coordinate nearly collapse. The correlation
map of R12(x, y, z−z′ = 0, t − t ′ = 0, x ′ = x, y ′) displays a distinctly different behaviour
in the internal layer from that in the outer region. At the edge of the internal
layer, a neck is formed in the correlation map. At zero time delay, streamwise
fluctuations inside the internal layer at an upstream station have a relatively high
degree of correlation with streamwise fluctuations in the outer region at a downstream
station. Optimal time delay corresponds to eddies convected horizontally at the local
mean streamwise velocity. At long time delays, near-wall streamwise fluctuations
at the downstream station are more strongly correlated with upstream streamwise
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fluctuations away from the wall. Visualization results in the Obi diffuser suggest the
existence of organized vortices outside the internal layer. Galilean decomposition of
instantaneous velocity vectors reveals a string of well-defined spanwise vortices which
are convected downstream.

To some approximation, the present internal layer and the outer flow associated
with it together constitute a distant analogue to the fundamental C-type of Couette–
Poiseuille turbulent flows studied by Nakabayashi et al. (2004). They share broadly
similar characteristics of mean and second-order turbulence statistics, but the total
shear stress profiles are distinctly different. The role of the lower moving wall in the
C-type flow is substituted by the high-speed fluid in the central region of the diffuser
where the mean velocity 〈u〉 varies linearly with the wall-normal coordinate. In this
sense, the linearly varying high-speed flow in the outer region provides the necessary
mean flow inflection mechanism for the fluid close to the wall, and may be regarded
as one of the driving components in the present internal layer process. The location
at which the total shear stress gradient changes sign serves as one the markers for the
edge of the internal layer.

Finally, clarification should be added with reference to the discussion of Townsend
(1976) that sudden changes in external conditions in boundary layers may result in
an internal boundary layer that spreads from the section of change, and the layer
outside the internal layer develops in almost the same way as in the original flow. The
results from this study and from Wu & Squires (1998) suggest that internal layers may
emerge in the relaxation zone downstream of a sudden change in streamwise pressure
gradient. Furthermore, the layer outside the internal layer does not behave as if it
were unperturbed, i.e. in the same way as in the original flow. On the contrary, the
flow outside the internal layer displays distinct relaxation characteristics consistent
with the removal of the strong pressure gradient. Admittedly, such observations are
limited to the internal layers arising from sudden changes in streamwise pressure
gradient. Other perturbation mechanisms, e.g. change in surface roughness, probably
will result in an internal layer process not entirely the same as described in this paper.

Discussions with Juan Alonso, Sourabh Apte, George Constantinescu, Massimiliano
Fatica, Sangho Kim, Krishnan Mahesh and Cliff Wall are acknowledged. We thank
Peter Bradshaw for revising an earlier draft of the manuscript. This work is supported
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