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SUMMARY
This paper describes detailed velocity kinematics and the
statics of serial and parallel robots. Without resorting to the
screw theory, the duality between these two types of robots
is demonstrated. This duality concerns operational speeds of
serial robots and operational forces of parallel robots, as
well as internal speeds in redundant serial robots and
internal forces in redundant parallel robots. This approach
allows a deeper understanding of the duality between these
two types of robots, particularly when they are redundant.
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1. INTRODUCTION
In robotic textbooks, relations describing the position and
velocity kinematics and the statics of serial and parallel
robots are mostly described separately.1 Although this
approach allows the use of an adapted methodology to
handle their respective models, these relations can appear
quite different for these two types of robots and no
similarities between them can be demonstrated.

A strong duality between serial and parallel robots exists
however, as stated by the work of many authors.2–10

Although some similarities between their topologies or their
position kinematics can be shown when considering partic-
ular geometries,4,7 this duality concerns essentially the
velocity kinematics of serial robots and the statics of
parallel manipulators. Based on the screw theory, it is
possible to demonstrate that the direct kinematic model of
serial robots and the direct static model of parallel robots are
dual. These models can always be written immediately even
for redundant robots. But to write the inverse models,
redundancy must be taken into account. In the literature, the
latter models are not written with the same level of detail as
in robotic textbooks where the two types of robots are
however handled separately. Only non-redundant robots are
considered in some references,3,4,8,9 while in others redun-
dancy is solved in a particular way, either by means of
pseudo inverse5 or weighted pseudo inverse methods.10

In this paper, a synthesis of these two approaches is
proposed. Section 2 introduces the notations used further
and Section 3 studiesthe notion of singularity. Relations

describing the velocity kinematics and the statics are then
written in an alternative compact matrix form based on
relations that are always physically relevant. Serial robots
are discussed in Section 4, while parallel robots are
discussed in Section 5. In these sections, redundancy is
handled in the most general way. Finally, the duality
between these two types of robots is demonstrated in
Section 6. This duality holds even for redundant robots
independently of the way used to solve the redundancy. It
concerns operational speeds of serial robots and operational
forces of parallel robots, as well as internal speeds in
redundant serial robots and internal forces in redundant
parallel robots; the latter property has never been clearly
demonstrated before.

It is, however, of particular value to help finding new
control modes for redundant robots. In fact, several
interesting control modes have been developed for redun-
dant serial robots and, while redundant parallel robots have
not yet received the same attention, numerous control
modes have also been developed for grasping problems that
can be considered as redundant parallel robots. The duality
outlined in this paper should be used as a guide to apply the
same type of solutions found for one type of redundant
robots to the dual type of manipulators, leading to improved
performance or functionalities for both types of robots.

2. NOTATIONS
A robot arm is composed of an articulated mechanical
system linking a fixed base to a mobile end effector. This
system allows to control the position and/or the orientation
of the end effector with respect to the base. Two types of
robots are considered, serial robots and parallel robots.

The joint space of the manipulator (or configuration
space) is defined as the space in which all the actuated joint
variables are represented. This space is of dimension n equal
to the total number of actuators. The operational space is the
space in which the situation of the end effector is
represented (position and/or orientation). This space is of
dimension m (m≤n and m≤6).

A robot is redundant when the dimension of the joint
space n (equal to the number of actuated joints) is strictly
greater than the dimension of the operational space m (equal
to the end effector’s number of degrees-of-freedom). The
degree of redundancy is defined as r=n�m.

An example of redundant serial robot is illustrated on
Figure 1. The four revolute joints are actuated and the
degree of redundancy is equal to 1 to position and
orientation of the end effector in the plane. This redundancy
allows different joint configurations for the robot in the
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same operational configuration. In other words, it allows the
robot to perform internal movements, hence the name of
kinematic redundancy.

An example of redundant parallel robot is illustrated in
Figure 2. The revolute joints at the base of both chains and
the prismatic joints are actuated and the degree of
redundancy is equal to 1 to position and orientation of the
end effector in the plane. Note that both chains situated
between the base and the end effector are not kinematically
redundant. Thus no internal movement can appear in any
one of these chains when the end effector remains fixed. The
redundancy comes from an over actuation intended to avoid
parallel singularities. It allows the robot to apply internal
efforts, hence the name of static redundancy.

In this paper, only serial arms kinematically redundant or
not and parallel arms statically redundant or not will be
considered. We will use the same notations to describe these
two types of robots. The joint variables, speeds and torques
will be noted qart = [q1 q2 . . . qn], q̇art = [q̇1 q̇2 . . . q̇n] and
�art = [�1 �2 . . . �n], the operational variables, speeds and
forces will be noted X=[x1 x2 . . . xm], V=[V1 V2 . . . Vm]
and F=[F1 F2 . . . Fm].

3. KINETOSTATIC MODELS
The kinematic model is used to study speed transmissions in
a manipulator. It allows to compute the operational speed
from the joint speeds and vice-versa. The static model is
used to study force transmissions in a manipulator. It allows
to compute the operational forces and torques from the joint
torques and vice-versa. Generally, these models depend on
the operational configuration of the robot therefore on the
joint variables. However, we will omit to mention it in order
to simplify the notations.

In some configurations, the robot cannot be fully
controlled. These configurations are called singular config-

urations or singularities. The robotics community agrees to
define physically two types of singularities:

• Serial singularities: in such configurations, movements of
the end effector cannot be controlled in certain directions.
This restriction of the end effector’s movement comes
along with an internal movement in the robot. Serial
singularities can appear in serial robots or in substructures
of parallel robots.

• Parallel singularities: in such configurations, forces
applied in certain directions on the end effector cannot be
sustained by the actuators. Thus, movements of the end
effector cannot be blocked in certain directions. These
uncontrolled end effector’s movements are associated
with internal forces in the bodies of the robot. Parallel
singularities can only appear in parallel robots. As they
depend on the number of actuated joints, many designers
over-actuate parallel robots.

Out of the singular configurations, no uncontrolled move-
ment is possible and kinematic and static models are
invertible, provided if needed that redundancy is taken into
account.

4. SERIAL ROBOTS

4.1. Statics
Serial robots are composed of an open kinematic chain
without any closed loop. In such conditions, joint torques
�art can always be computed from operational forces F by
writing the equilibrium condition for each of the robot’s
body. Thus, statics are considered first and the inverse static
model is written under the following form:

�art =J T
art_s . F with J T

art_s an n� m matrix (1)

For a non-redundant robot (when n=m), system (1) has
the same number of equations as unknowns. Thus, it can be
inverted out of the singularities to obtain the direct static
model:

F=GT
art_s . �art with GT

art_s =J T
art_s

–1 an n� n matrix (2)

But for a redundant robot, system (1) has more equations
n than unknowns m (the unknowns are the operational
forces Fi). Therefore, when matrix J T

art_s is full rank (equal
to m), there are necessarily r=n�m linear relations of
compatibility between the joint torques �i. These relations
can be written:

Eart_s . �art =0 with Eart_s an r� n matrix (3)

The static constraint matrix Eart_s can be computed by
writing that the r characteristic determinants of system (1)
are equal to zero.

A solution for the over determined system (1) is given by
relation (4) that constitutes the direct static model. The
interest of the choice of Gart_s =J T

art_s . (Jart_s . J T
art_s)

–1 is
explained further.

F=GT
art_s . �art

with GT
art_s =(Jart_s . J T

art_s)
–1 . Jart_s an m� n matrix (4)

Fig. 1. Serial arm kinematically redundant.

Fig. 2. Parallel arm statically redundant.

Duality366

https://doi.org/10.1017/S0263574701003332 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574701003332


4.2. Kinematics
Kinematic models are written based on previous results.
Under the assumption of perfect joints without friction, the
Principle of Virtual Work states that the power developed by
the joint torques equals the power developed by the
operational forces, that is:

V T . F=q̇T
art . �art (5)

Taking into account relations (1) and (5) and considering
the independency of operational forces Fi, the direct
kinematic model is obtained as follows:

V=Jart_s . q̇art (6)

For a non-redundant robot, the elements of �art are
independent. Thus, taking into account relations (2) and (5),
the inverse kinematic model is obtained as follows:

q̇art =Gart_s . V with GT
art_s =J T

art_s
–1 an n� n matrix (7)

But for a redundant robot, the elements of �art are no more
independent (they verify the relation (3)). Therefore,
relation (7) doesn’t hold. In this case, the Principle of
Virtual Work and Lagrange’s multipliers are used to solve
the problem. The Principle of Virtual Work is written
(V T . GT

art_s � q̇T
art) . �art =0. This relation states that the scalar

product between the vector BT
art_s = (V T . GT

art_s � q̇T
art) and the

vector �art is equal to zero while relation (3) states that the
r scalar products between the vector �art and the rows of
matrix Eart_s are equal to zero. The vector Bart_s and the r
rows of matrix Eart_s are thus orthogonal to the same vector
of the joint space. They are thus linearly dependent via r
Lagrange’s multipliers that will be grouped in a vector Vint.
This dependency can be written Bart_s +ET

art_s . Vint =0. With
this expression of Bart_s, the inverse kinematic model is
obtained as follows:

q̇art =Gart_s . V+E T
art_s . Vint (8)

When the operational speed is null, joint speeds depend
only upon Vint. Thus joint displacements appear when Vint

varies even if the end effector remains fixed. Vector Vint is
therefore called a vector of internal speeds. Note that
internal speeds Vint in relation (8) are arbitrary. To solve the
redundancy, we must compute these parameters. If this is
done by considering Vint =0, relation (8) becomes q̇art-

=Gart_s . V. This solution minimises the norm of joint speeds
because Gart_s is the pseudo inverse of Jart_s.

4.3. Noticeable relations
Taking into account relations (1) and (4) and considering the
independence of operational efforts Fi, we obtain (Im� m is the
m� m identity matrix):

Jart_s . Gart_s =Im� m (9)

This relation remains always true, whatever the form of
Gart_s . It is, in particular, not necessary that Gart_s =
J T

art_s . (Jart_s . J T
art_s )–1.

Conversely, taking into account relations (1) and (3) and
considering the independence of operational efforts Fi , we
obtain:

Jart_s . E T
art_s =0 (10)

The columns of matrix E T
art_s are thus in the kernel of

Jart_s . They constitute a base of this kernel. If needed, this
base can be replaced by one whose vectors are orthogonal
and eventually normalized to unity. In this last case, we
obtain Eart_s . E T

art_s =1r� r (1r� r is the r� r identity matrix).
Relation (10) allows us to introduce an alternative method

to get the inverse kinematic model. Taking into account that
Eart_s . Gart_s =0 when Gart_s is the pseudo inverse of Jart_s and
multiplying relation (8) by Eart_s , we obtain:

Vint = (Eart_s . E T
art_s)

–1 . Eart_s . q̇art (11)

Building, as usually found in the literature,11,12 an
augmented operational speed vector composed of opera-
tional speeds V and internal speeds Vint, we obtain:

Va =� V
Vint
�=� Jart_s

(Eart_s . E T
art_s )–1 . Eart_s

� . q̇art =Ja_art_s . q̇art (12)

q̇art =J –1
a_art_s . Va (13)

The simplicity of relation (11) is obtained thanks to the
fact that Gart_s is the pseudo inverse of Jart_s . The relation
Eart_s . Gart_s =0 does not hold for another choice of Gart_s . In
this case, it would have been necessary that the internal
speed depends on V (that is internal speeds depend on end
effector’s operational speeds) to find a relation of the same
form as relation (8). Hence the interest of the choice of the
pseudo inverse for Gart_s . Beware, however, that this
solution, that minimises the norm of joint speeds, is only
adapted when all joints are of the same type. If not, it is
meaningless.

5. PARALLEL ROBOTS

5.1. Kinematics
Parallel robots are composed of a set of open kinematic
chains arranged in parallel and connecting a base to an end-
effector. In the literature, each chain has mostly only one
actuated joint that is mainly prismatic, and is mostly
connected to the base and to the end effector by a universal
joint and a spherical joint, respectively. The most famous
example is the Gough Stewart Platform. In such conditions,
joint speeds q̇art can always be computed from operational
speeds V. Thus, kinematics are considered first and the
inverse kinematic model is written under the following
form:

q̇art =Gart_ p . V with Gart_ p an n� m matrix (14)

In this paper, we will use a more extensive definition of
parallel robots. In fact, each chain can have any number of
actuated joints, providing that it is not kinematically
redundant. With this definition, relation (14) always holds.
This definition allows, in particular, to handle parallel robot
with serial linkages as a leg, as for example the platform
device designed by professor Iwata.13

For a non-redundant robot (when n=m), system (14) has
the same number of equations as unknowns. This system
can thus be inverted out of the singularities to obtain the
direct kinematic model:
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V=Jart_ p . q̇art with Jart_ p =Gart_ p
–1 an n� n matrix (15)

But for a redundant robot, system (14) has more
equations n than unknowns m which are the operational
speeds Vi. Therefore, when the rank of matrix Gart_ p is full
(equal to m), there exist necessarily r=n�m linear relations
of compatibility between the joint speeds q̇i . These relations
can be written:

Cart_ p . q̇art =0 with Cart_ p an r� n matrix (16)

The kinematic constraint matrix Cart_ p , as the static
constraint matrix Eart_s , can be computed by writing that the
r characteristic determinants of system (14) are equal to
zero.

Relation (17), that gives a solution for the over deter-
mined system (14), constitutes a direct kinematic model.
The choice of Jart_ p =(GT

art_ p . Gart_ p)
–1 . GT

art_ p will be explained
further.

V=Jart_p . q̇art

with Jart_ p =(GT
art_ p . Gart_ p)

–1 . GT
art_ p an m� n matrix (17)

5.2. Statics
Static models are written based on the results obtained for
kinematic models. Under the assumption that the joints are
frictionless, the Principle of Virtual Work states that:

V T . F=q̇T
art . �art (18)

Taking into account relations (14) and (18) and consider-
ing the independence of operational speeds Vi , the direct
static model is obtained as follows:

F=GT
art_ p . �art (19)

For a non-redundant robot, the elements of q̇art are
independent. Thus, taking into account relations (15) and
(18), the inverse static model is obtained as follows:

�art =J T
art_ p . F with JT

art_ p =GT
art_ p

–1 an n� n matrix (20)

But for a redundant robot, the relation (20) doesn’t hold
because the elements of q̇art are no more independent (they
verify the relation (16)). In this case, equation (18) is written
(F T . Jart_ p �� T

art) . q̇art =0. This relation states that the vector
BT

art_ p =(F T . Jart_ p �� T
art) is orthogonal to the vector q̇art

which is also orthogonal to the r rows of matrix Cart_ p (see
equation (16)). The vector Bart_ p and the r rows of matrix
Cart_ p are thus orthogonal to the same vector of the joint
space. They belong to the same hyperplan of Rn and are thus
linearly dependent via r Lagrange’s multipliers that will be
grouped in a vector Fint. This dependency can be written
Bart_ p +C T

art_ p . Fint =0. With this expression of Bart_ p , we
obtain the following expression of the inverse static model:

�art =J T
art_ p . F+C T

art_ p . Fint (21)

When operational forces are null, joint torques depend
only upon Fint. Consequently, joint torques �art =C T

art_ p . Fint

represent a system of auto equilibrated joint torques, as
noted by Wen and Wilfinger.14 Vector Fint is therefore called
a vector of internal forces. Note that the elements of Fint in
relation (21) are arbitrary. To solve the redundancy, we must
compute these parameters. If Fint =0. is chosen, we obtain
�art =J T

art_ p . F. This solution minimises the norm of joint
torques because J T

art_ p is the pseudo inverse of GT
art_ p .

5.3. Noticeable relations
Taking into account relations (14) and (17) and considering
the independence of operational speeds Vi , we obtain
relation (22), in which Im� m is the m� m identity matrix, and
which holds whatever the form of Jart_ p . It is, in particular,
not necessary that Jart_ p =(GT

art_ p . Gart_ p)
–1 . GT

art_ p.

Jart_ p . Gart_ p =Im� m (22)

Conversely, taking into account relations (14) and (16)
and considering the independence of the elements of the
operational speed vector V, we obtain:

GT
art_ p . C T

art_ p =0 (23)

The columns of matrix C T
art_ p are thus in the kernel of

GT
art_ p . They constitute a base of this kernel. If needed, this

base can be replaced by one whose vectors are orthogonal
and eventually normalized to unity. In this last case, we
obtain Cart_ p . C T

art_ p =1r� r (where 1r� r is the r� r identity
matrix).

Relation (23) allows us to introduce an alternative method
to obtain the inverse static model. Taking into account that
Cart_ p . J T

art_ p =0 when J T
art_ p is the pseudo inverse of GT

art_ p and
multiplying relation (21) by Cart_ p , we get:

Fint = (Cart_ p , C T
art_ p)

–1 . Cart_p , �art (24)

Building, as for the speeds of a redundant serial robots, an
augmented operational force vector composed of opera-
tional forces F and internal forces Fint, we obtain:

Fa =� F
Fint
�=� G T

art_ p

(Cart_ p , C T
art_ p )–1 , Cart_ p

� . �art =G T
a_art_ p . �art(25)

�art =G T
a_art_ p

–1 . Fa (26)

The interest of the pseudo inverse form of Jart_ p appears
here. This particular form leads to the relation Cart_ p ,
JT

art_ p =0, which would not have been true for another form
of Jart_ p . This would not be necessarily annoying but to find
a relation of the same form as relation (21), it would have
been necessary that the internal forces depend on F, i.e. the
internal forces are functions of the forces and torques
applied on the end effector. Beware, however, that this
solution, that minimises the norm of joint torques, is only
adopted when all joints are of the same type.
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6. DUALITY BETWEEN SERIAL AND PARALLEL
MANIPULATORS
Relations (1) to (13) for serial robots are similar to relations
(14) to (26) for parallel robots. These similarities are
summarized in Table I.

Relations between speeds in serial robots and forces in
parallel robots are of the same form and vice versa. This
duality is summarized in Table II.

While some of these relations are classical, the duality
between internal speeds in redundant serial robots and
internal forces in redundant parallel robots, that is very
general and does not depend on the method used to solve the
redundancy, does not appear in the literature and is
demonstrated here for the first time.

7. CONCLUSION
In this paper, kinematic and static models of kinematically
redundant or not serial robots and of statically redundant or
not parallel robots are written in great detail. It allows one
to show a strong duality between operational speeds of
serial robots and operational forces of parallel robots, as
well as between internal speeds in redundant serial robots
and internal forces in redundant parallel robots. This last
property is clearly demonstrated for the first time.

We should point out that the models are given in the most
general form, taking into account internal speeds in
redundant serial robots and internal forces in redundant
parallel robots. It allows one to handle any type of robots,
even if they have different types of joints. The redundancy
can then be solved in any way. The solution proposed here

uses the notion of pseudo inverse that leads to the minimum
Euclidean norm of joint speeds or joint torques. This
solution is valuable only when all joints are of the same
type. If not, redundancy could be solved either by
controlling the internal movements or forces in the robot,12

or the stiffness of the system,10 or by using the notion of
weighted pseudo inverse. However, this problem is beyond
the scope of this paper.

The most important and newest feature of this article is
the proof of duality between redundant serial and parallel
manipulators. They can thus be handled in the same manner
and solutions adopted to solve the duality in serial robots
can be adopted to solve the duality in parallel robots and
vice versa. This property is of particular value for the
control of such structures. It should be used as a guide to
apply the same types of solutions found for one type of
redundant robots to the dual type of manipulators, leading to
improved performance or functionalities.
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