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SUMMARY
This paper deals with an optimum synthesis of planar
parallel manipulators using two constrained optimisation
procedures based on the minimization of: (i) the overall
deviation of the condition number of manipulator Jacobian
matrix from the ideal/isotropic condition number, and (ii)
bearing forces throughout the manipulator workspace for
force balancing. A revolute jointed planar parallel manip-
ulator is used as an example to demonstrate the
methodology. The parameters describing the manipulator
geometry are obtained from the first optimisation procedure,
and subsequently, the mass distribution parameters of the
manipulator are determined from the second optimisation
procedure based on force balancing. Optimisation results
indicate that the proposed optimisation approach is system-
atic, versatile and easy to implement for the optimum
synthesis of the parallel manipulator and other kinematic
chains. This work contributes to previously published work
from the point of view of being a systematic approach to the
optimum synthesis of parallel manipulators, which is
currently lacking in the literature.

KEYWORDS: Parallel manipulator; Optimum mechanism syn-
thesis; Kinematic isotropy; Force balancing, kinematics analysis.

1. INTRODUCTION
Parallel manipulators or in-parallel actuated mechanisms,
which consist of one or more closed kinematics chains, have
the advantages of high stiffness, good dynamic character-
istics, and precise positioning capability.1 However, they
have some disadvantages, mainly due to their parallel
topology, including limited workspace, difficulties in their
analysis, synthesis, control and trajectory planning. Of
these, optimum synthesis of planar parallel manipulators
exemplified with a planar parallel manipulator articulated
with five revolute joints is the object of this paper. The
proposed synthesis methodology consists of two con-
strained optimisation procedures. The first deals with the
determination of manipulator link lengths from a kinematics
point of view such that the resulting mechanism has a
maximum of high mechanical advantage (a desirable range
of transmission angle), high kinematic accuracy, dexterity,
and singularity avoidance capabilities. The second is based
on optimum force balancing yielding proper mass distribu-
tion parameters of the manipulator links with a minimum

bearing and ground forces. The mass distributions of the
links have a direct effect on the magnitude of inertial forces
when the manipulator is in motion, especially for high-
speed applications. The resulting manipulator is optimum
with respect to kinematic isotropy and is in equilibrium in
all configurations of the manipulator with zero actuator
forces. Less powerful and smaller actuators can be
employed to move such a manipulator with a high
mechanical advantage, kinematic accuracy, dexterity, and
singularity avoidance capabilities. It has been reported2–6

that the planar parallel manipulator considered in this study
is the only one of the multi crank mechanisms having
practical importance, especially for following any arbitrary
planar curve precisely which can not be handled with single
degree of freedom mechanisms such as four-bar and slider
crank mechanisms.

Although there is a wealth of literature on analytical
techniques for synthesis of mechanisms, the optimum
synthesis of planar parallel manipulators based on the two
subsequent optimisation procedures has not been addressed
before. The work most relevant to this includes that of Lee
and Freudenstein5 who reported on the optimisation of the
variation of the transmission angle from 90 degrees for
unlimited rotations of geared cranks of a revolute-jointed
five bar mechanism. Synthesis charts for unlimited crank
rotations of the mechanism with various gear ratios were
presented. In another relevant work, Tao and Hall2 presented
an analysis of a geared symmetrical (parallel) five-bar
linkage whose output point drives another linkage – a
Scotch-Yoke mechanism. Synthesis charts based on the
ratio of the slider displacement of the Scotch-Yoke mecha-
nism to the crank length of the five-bar mechanism versus
the main crank angle were given for the purpose of selecting
the link lengths of the five-bar mechanism. Later, Rose3

employed a graphical method to synthesise revolute-jointed
five-bar mechanisms: (i) generating a straight line, (ii)
passing through six precision points, and (iii) one of their
coupler links performing a 90-degrees dwell. Pollitt4 studied
kinematics analysis of a class of five-bar mechanisms using
a graphical method.

Recently, significant efforts have been directed towards
analysing their workspace, kinematics, singularities and
solution space of five-bar manipulators.6,7–10 For example,
Feng et al.9 reported on the performance evaluation of a 2
DOF planar parallel manipulator. Atlases of global con-
ditioning and global velocity indices based on the condition
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number of the kinematic influence matrix of the manipulator
were presented. Yet, no numerical results demonstrating the
use of these indices to determine link lengths were given. It
must be noted that the influence matrix they employed was
a function of the angular positions of the two active
(driving) joints and two passive (driven) joints. That matrix
is not the manipulator Jacobian matrix, which is a function
of the angular positions of the active joints only. Zhou and
Cheung11 have described a modified genetic algorithm to
optimise a five-bar mechanism. Their objective function was
to minimize the power requirement of real-time adjustable
motors over a number of representative trajectory curves.

The link lengths based on the synthesis charts presented
in references [2,5,10,11] may not yield mechanisms that
have some desired benefits such as high mechanical
advantage, high accuracy, dexterity and singularity avoid-
ance capabilities. Although analytical techniques for the
synthesis of mechanisms result in a well-defined solution
space, they require a great deal of computation to find the
link lengths of the mechanism maximizing the desired
benefits. Therefore, it is of important practical interest to
make use of optimisation methodologies providing the best
possible mechanisms without a great deal of analysis.
Gosselin and Angeles12 have proposed a global condition/
performance index, which is based on integrating the
condition number of the manipulator Jacobian matrix over
the entire workspace of the manipulator for kinematic
optimisation of robot manipulators. Later, this method was
applied to optimise a purely translational Stewart platform
type parallel manipulator by Tsai and Joshi.13 In this paper,
a similar approach is taken to determine link lengths of the
parallel manipulator such that the overall deviation of the
condition number of the Jacobian matrix from the ideal/
isotropic number is minimum throughout its workspace.

When the weights of the links of articulated mechanisms
are not balanced, their performance is heavily impaired, and
large actuator forces are demanded to move the links.
Balancing of the link weights, known as force balancing,*
can be accomplished by a proper selection of mass
distribution of the links such that the mechanism under
consideration has a constant potential energy for all its
configurations. The practical consequence of this achieve-
ment is that zero actuator forces are required when the
manipulator is at rest, and less powerful and smaller
actuators can be employed to move the manipulator. Of
course, distributing or redistributing (in the form of adding
counterweights) the mass of the links increase the inertia
forces as well as bearing and ground forces. It is, therefore,
reasonable to optimise the mass distribution of the links in
order to ensure that the manipulator is force-balanced and is
optimum with respect to the bearing and ground forces. The
outcomes of the optimum mass distribution procedure,
hence, complete the geometric and inertial parameters
needed for kinematic and dynamic analysis.

Although significant efforts have been directed towards
force balancing of planar and spatial parallel manip-
ulators,14–18 optimisation procedures for minimization of the

force and moment transmitted to the ground,19–22 and
balancing methodologies based on shaking force and
moment transmitted to the frame of single degree of
freedom mechanisms,23–26 little has been published on the
optimal force balancing of planar parallel manipulators
based on the minimization of all bearing, support (ground)
forces simultaneously. A wide account of these studies is
provided in Lowen et al.24 Yan and Soong,23 and Conte et
al.20 have reported on a balancing method that combines
kinematic synthesis, dynamic synthesis, and input speed
trajectory synthesis to simultaneously satisfy the kinematic
requirements and constraints for four-bar linkages. In a
recent study,27 the mass distribution of a four-bar mecha-
nism with small clearances at its three passive joints has
been optimized without adding any counterweights to any
links. The change in the amplitude and direction of the joint
forces is taken as the optimization function. Jean and
Gosselin14 have reported on the static balancing of planar
parallel manipulators based on the mass distribution of
links, without paying attention to optimum force balancing.
Later, Laliberte et al.15 studied static balancing of 3-DOF
planar parallel manipulators and presented balancing condi-
tions based on the mass distribution of the links and elastic
elements for 3-DOF parallel manipulators. Static balancing
of spatial parallel platform type mechanisms based on
elastic elements only has been investigated by Ebert-Uhoff
et al.,18 and least restrictive balancing conditions are
determined. Wang and Gosselin16 have described static
balancing conditions for spatial 3-DOF parallel mechanisms
by mass distribution of the links and springs. The balancing
of spatial mechanisms has also been studied by Bagci,26 and
Walsh et al.17 The mathematical framework for employing
elastic elements to statically balance mechanisms has been
derived by Streit and Gilmore28 and Walsh et al.17 It has been
stressed that when elastic elements such as spring together
with some counterweights are exploited for balancing, the
total potential energy of the system consisting of elastic and
gravitational potential energies is constant for all the
configurations of the mechanism, and most importantly, a
much smaller counterweight is required for balancing.

We will follow the mathematical formulation derived by
Berkof and Lowen25 to determine the necessary optimisa-
tion constraints in order to keep the total potential energy of
the system constant. Other constraints are related to the size
and dimensions of the mass distribution of the links. Static
force analysis of the manipulator is accomplished by using
matrix method, which requires less mathematical manipula-
tion. The objective function employed is the mean-square
root of the sum-squared values of the bearing and ground
forces calculated for a practical range of operation of the
mechanism.

The optimisation procedures are implemented in MAT-
LAB using the constr() function (In the new version of
MATLAB, this function is superseded by fmincon()), which
performs nonlinear optimisation based on a sequential
quadratic programming method.29 Sets of optimisation trials
were accomplished to prove that the proposed optimisation
methodology was an efficient, versatile and systematic
procedure, and could be employed to determine the best
possible link lengths and mass distribution parameters of a

* Force balancing, gravity balancing and static balancing are used
interchangeably in the mechanism literature.
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five-bar parallel manipulator, without going through a great
deal of analysis. However, it must be kept in mind that the
optimum solutions depend on the initial values assigned to
the synthesis parameters and they do not necessarily
represent a global minimum.

2. FIVE-BAR MANIPULATOR WITH REVOLUTE
JOINTS
The five-bar planar manipulator considered in this study is
shown in Figure 1, where its two joints (A and E) connected
to the ground are active and the others are passive joints.
The input motions of the active joints can be independent
from each other or be provided via a set of gears
maintaining a specified phase angle between the two active
joints in order to generate an infinite number of different
motions from the output point C.5 Analytical expressions for
the coordinates of the output point C, where the end effector
is mounted, are obtained for the provided joint inputs �1 and
�4, and the specified link lengths L0, L1, L2, L3, L4 and the
angle �0.

7 It must be noted that for a parallel RRRRR
manipulator L1 =L4 and L2 =L3. The angle �1 and the radial
distance Ri describe the center of mass Gi of the ith link.

3. KINEMATIC ANALYSIS AND JACOBIAN
MATRIX
Referring to Figure 2(a), the coordinates of B and D, which
are the x and y components of the r�1 and r�4 vectors, can be
considered as the coordinates of the centers of two circles of
radii L2 and L3. The centres of two circles are expressed as
functions of the inputs provided by the actuators fixed to the
ground. It is well known that the intersection of the two
circles gives a maximum of two solutions, which are the
possible locations of point C. Referring to Figure 2(b), the
analytical expressions for these two solutions are obtained
using the following algorithm;

r�1 =L1 cos �1 i�+L1 sin �1 j�,
r�4 =(L0 +L4 cos �4)i�+L4 sin �4 j�,

(1)

q�=r�4 �r�1 = x̄i�+ȳj�, (2)

x̄=r4x �r1x, ȳ=r4y �r1y, q=�x̄2 + ȳ2, (3)

Fig. 1. Planar manipulator with all synthesis parameters. Note that the angle � is from the longitudinal axis of the ith link.

Fig. 2. (a) Geometric model of the manipulator for a0 =00, (b) representation of two possible forward kinematics solutions.
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and the coordinates of C1 and C2 are;

x1 =xB +Qx̄� ȳ�L2
2

q2 �Q2,

y1 =yB +Qȳ� x̄�L2
2

q2 �Q2,

(4)

x2 =xB +Qx̄� ȳ�L2
2

q2 �Q2,

y2 =yB +Qȳ� x̄�L2
2

q2 �Q2,

(5)

and

Q=
L2

2 +q2 �L2
3

2q2 , (6)

So, it is now possible to determine the position of the output
point for given joint inputs. Depending on the link lengths,
(x1, y1) and (x2, y2) can have real and imaginary values. If
they are imaginary, some kinematics constraints are not
satisfied; the mechanism cannot adopt those configurations.
This is one of the constraints that must be satisfied by the
link lengths.

By following the algorithm given above, the forward
kinematics equations for the point C1 of the manipulator are
obtained as;

x=L1 cos �1 +
1
2 

[L0 +L1(cos �4 �cos �1)]

�L1(sin �4 �sin �1)�L2
2

q2 �
1
4

(7)

y=L1 cos �1 +
L1

2
(sin �4 �sin �1)]

+[L0 +L1(cos �4 �cos �1)]�L2
2

q2 �
1
4

where

q2 =L2
0 +2L0L1(cos �4 �cos �1)+2L2

1[1�cos(�1 ��4)]

The inverse kinematics solution of the manipulator based on
Sylvester’s dialytic elimination method has been reported
before.8

Equation (7) can be expressed as;

F(�, X)=0 (8)

where F is two dimensional for the problem at hand and is
a function of inputs and the outputs. Taking the first time
derivative of Equation (8) leads to the relationship between

the input velocity vector, �̇=[�̇1, �̇4]
T, and the output

velocity vector, Ẋ=[ẋ, ẏ]T, as follows;

�F
��

�̇+
�F
�X 

Ẋ=0

⇒a11�̇1 +a12�̇4 +b11ẋ+b12ẏ=0
a12�̇1 +a22�̇4 +b21ẋ+b22ẏ=0�⇒A�̇+BẊ=0 (9)

where A and B are configuration dependent 2� 2 forward
and inverse Jacobian matrices, respectively. From Equation
(9), the generalised velocity equation based on the manip-
ulator Jacobian matrix J is formed as;

Ẋ=�B�1A�̇ ⇒ Ẋ=J�̇ (10)
J

where

a11 =0.5KL1q
4 sin �1 � (2EL0 +q4K2)L1 cos �1

�2EL2
1 sin(�1 ��2)

a12 =0.5KL1q
4 sin �4 +(2EL0 +q4K2)L1 cos �4

+2EL2
1 sin(�1 ��4)

a21 =�0.5KL1q
4 cos �1 �q4K2L1 sin �1 +2FL0L1 cos �1

+2FL2
1 sin(�1 ��4)

a22 =K2L1q
4 sin �4 � (2FL0 +0.5q4K)L1 cos �4

�2FL2
1 sin(�1 ��4)

and

b11 =�Kq2, b12 =0, b21 =0, b22 =�Kq2

K=�L2
2

q2 �
1
4

, E=0.5L1L
2
2 sin(�4 ��1),

F=0.5L2
2[L0 +L1(cos �4 �cos �1)].

In our previous study,8 the expressions for the determinants
of the A and B Jacobian matrices are used to generate
singularity contours for a given set of geometric parameters
of the manipulator, and the specified range of motion for �1

and �4.

3. STATIC FORCE ANALYSIS
The aim of static force analysis is to obtain analytical
expressions for the forces acting on the bearings A, B, C, D,
E while the manipulator is in equilibrium in all of the
manipulator configurations. It is assumed that there is no
friction in the system. The forces acting at the joints are
found from the equilibrium equations written for each link
of the manipulator. The equations describing the forces
acting on links 1, 2, 3, and 4 are put in a matrix-vector
form;

[M][F]=[Fg] (11)
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where M, F, and Fg denote the matrix of known mechanism
dimensional parameters and joint angles, the vector of
unknown forces, and the gravitational force vector, respec-
tively. As seen from the determinant of M given below, it is

singular when �4 =
�2 +�3

2
+

�

2
(2k+1) for k=0, 1 . . . or

�1 =�2 or �2 =�3.

| M |=�2L2
2L

2
4 cos��4 ���2 +�3

2 ��
� sin(�1 ��2)sin��2 ��3

2 � (12)

Assuming that the matrix M is non-singular throughout the
operation range of the manipulator. Equation (11) is solved
for the unknown forces, FAx, FAy, FBx, FBy, FCx, FCy, FDx, FDy,
for which mathematical expressions are given in Appendix
A.

4. STAGE 1: LINK LENGTH OPTIMISATION
FROM KINEMATIC ISOTROPY
The parameters defining the geometry of the manipulator
depicted in Figure 1 are the link lengths L0, L1, L2, L3, L4.
It must be recalled that the configuration dependent
Jacobian matrix of a robot manipulator is involved in the
force and motion transfer between the actuators and the end
effector. Depending on the Jacobian matrix either relating
the end effector velocity to the actuator velocity vector and
vice versa, the motion and force errors propagated from the
actuators to the end effector is bounded by the condition
number of the Jacobian matrix.30,31 The condition number of
the Jacobian matrix is not only a measure of how accurate
the force and motion transfer between the actuators and the
end effector is accomplished, but also the measure of the
ease with which the manipulator can arbitrarily change its
pose (position and orientation) and apply forces in arbitrary
directions. Because of this fact, the condition number of the
manipulator Jacobian matrix has been recognized as an
optimisation criterion in structural synthesis of robot
manipulators even though it is not the only synthesis
criterion.32,33 The Jacobian matrix J relating the velocity
vector Ẋ of the end effector to the velocity vector �̇ of the
actuated joints is;

Ẋ=J�̇ (13)

The error in the end effector velocity is bounded by

C(J) 
�	�̇�
��̇�

≥
�	Ẋ�
�Ẋ�

where 	Ẋ and 	�̇ are the error vectors for the end effector
and actuator velocities, respectively, C(J) is the condition
number of the Jacobian matrix given by �J� �J�1�, and � . �
denotes norm. It must be emphasised that the condition
number varies in the range of 1.0≤C(J)<
, and the
manipulator configurations resulting in C(J)=1.0 are

known as isotropic configurations where the manipulator
has the best kinematic accuracy, dexterity and singularity
avoidance. This follows that the propagation of uncertainties
from joint positions to Cartesian positions is minimum. It is
the object of the optimisation procedure carried out in this
section to minimize the overall deviation of the Jacobian
condition number from the isotropic configuration. As the
condition number of Jacobian matrix changes with the
manipulator configuration, it is appropriate to decide on an
objective function covering all parts of the workspace while
searching for the synthesis parameters satisfying the
objective function and some synthesis constraints. With this
in mind, a sum-squared deviation of the Jacobian condition
number from that of the isotropic configuration throughout
the workspace of the manipulator is adopted as the objective
function (OF):

OF=
1
n ��n

i,j=1

[1�C(J)]2 (14)

where i and j are the number of increments for �1 and �4,
respectively. The goal of the optimisation is to determine the
numerical values of the link lengths of the manipulator
minimizing the objective function and satisfying the
constraints given in the next subsection.

4.1. Constraints
In order to limit the solution, the objective function is
subjected to the following constraints:

(i) The link lengths are non-zero and positive quantities,
(ii) Although a designer is free to choose any ratio among

mechanism link lengths, the practical ratios of 
L0

L1

≤4.0

and 
L0

L2

≤2.0 are chosen to guarantee proportionate link

lengths making mechanism production and testing easy
and error-free.

(iii) The mechanism must obey the assemblability condi-
tion,5,34 which requires that L0 <Lm +Lm�1 + · · · L1,
provided that L0 and Lm are the longest and shortest
links of the mechanism, respectively. It must be noted
that when L0 =Lm +Lm�1 + · · · L1, all the links are
collinear and the mechanism is a change-point mecha-
nism. This is known as zero mobility condition.35 The
mechanism will not move unless a special precaution is
taken to pass through the change-position configura-
tion.

(iv) The transmission angle �, which is the angle between
L2 and L3 of Figure 1, must be 50°≤�≤130°, ideally be
90°, for effective force transmission from two coupler
links to the output point C. Especially when its
deviation from 90° is greater than �500, it causes
unacceptable higher acceleration and jerk, and objec-
tionable noise at high speeds. It must also be
continuous between the desirable ranges.1,5 Referring
to Figure 2(a), it is mathematically expressed as;
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cos �=1�
q2

2L2
2

(15)

(v) For the sake of generality, it is required that the
links connected to the active joints make unlimited
rotations. This constraint is based on the “the
theorem of full rotatability of linkages”.34,35 which
states that if the sum of the longest link length L0

and link Lk is smaller than the sum of the lengths
of the rest of the mechanism links, the link Lk will
make unlimited rotations. For the manipulator at
hand, the links connected to the active joints
/actuators are link 1 and link 4. Therefore, the full
rotatability constraint for the mechanism in Figure
2(a) requires L0 +L1 <L2 +L3 +L4 and L4 +L4 <
L1 +L2 +L3. However, for a parallel five-bar
manipulator, these two conditions reduce to
L0 <2L2.

When L0 +L1 =L2 +L3 +L4 and L0 +L4 =
L1 +L2 +L3, the centerlines of all links are collin-
ear, the mechanism is a change-point mechanism.

On the other hand, when L0 +L1 >L2 +L3 +L4

and L0 +L4 >L1 +L2 +L3, the mechanism is a
double-rocker mechanism; the active joints cannot
make a full rotation.35 Each of the active joints
can move between two limit positions shown in
Figure 3. Such a five bar mechanism can be called
quadruple-rocker mechanism – drawing the same
analogy from a double-rocker-four-bar mecha-
nism known as triple-rocker mechanism.37

Hence, the problem is formulated as a constrained nonlinear
optimisation problem. A computer program based on a

sequential quadratic programming method is prepared in
MATLAB to accomplish the constrained minimization of
the OF as a function of the synthesis parameters, starting
with an initial value for each parameter.

4.2. Optimisation results
For 300 ≤�1 ≤3900 and �4 =�1, many optimisation trials
with different initial values for the synthesis parameters
were conducted. It must be noted that Frobenius norm
defined as �sum(diag(JTJ)) is used for the norm of the
Jacobian matrix. For every trial, the initial value of only one
of the parameters was varied with a step size of 0.1 while
the others were kept constant. The range of initial values for
the parameters was ≤L0, L1, L2 ≤2.0 and =0.8. Different
initial values resulted in different solutions satisfying the
objective function and the synthesis constraints. Sets of
optimised link lengths are given in Table I. The variation of
the transmission angle and the condition number of the
Jacobian matrix for the solution number 1 given in Table I
are depicted in Figure 4. The three configurations of the
resulting five bar parallel manipulator are shown in Figure
5.

The results given in Table I are in agreement with “Five-
Bar Grashof Criteria” proposed by Ting,35 which states that
when Lmax +Lmin 1 +Lmin 2 >Lother 1 +Lother 2, the mechanism
has at most two cranks. This is also required by Constraint
V given above; while L1 and L4 are making full rotations,
the transmission angle is satisfying Constraint IV, as shown
in the top plot of Figure 4. Other linkages satisfying the
“Five-Bar Grashof Criteria” can be obtained by introducing
appropriate constraints into the optimisation procedure.

In order to demonstrate the effectiveness of the optimisa-
tion procedure, we chose a set of manipulator link lengths

Fig. 3. Limit positions of the mechanism for links 1 and 4 connected to the ground link.

Table I. The solutions obtained from the constrained optimisation of the mechanism. The units for link lengths are arbitrary length
units.

Solution No. Initial Values
(L0, L1, L2)

Optimised Values
(L0, L1, L2)

Transmission
Angles (deg.)
(�min, �max)

Overall
Objective
Function

1 1.7, 1.4, 1.7 8.0745, 3.2950, 5.4365 51.7765, 120.1068 1.5594

2 1.6, 1.2, 1.5 13.4005, 4.305, 9.0 60.3734, 114.6718 2.2431

3 1.0, 1.4, 1.0 10.9380, 2.9036, 6.9654 70.0873, 120.8616 1.844

4 1.7, 1.4, 1.6 29.9748, 9.6113, 23.9729 50.0023, 89.9458 1.3218
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(L0 =9.0, L1 =4.0, L2 =6.0) satisfying all of the constraints
expressed, except Constraint IV related to the transmission
angle. The transmission angle and OF are calculated from
Equation (14) and Equation (15), respectively, and are
shown in Figure 6. Note that although the transmission
angle almost satisfies Constraint IV by chance
(�min =48.85390, �max =124.86930), the overall deviation of
the Jacobian matrix condition number from the isotropic
configuration is quite high (OF=220.4423) when compared
to those of the solutions given in Table I. This follows that

although the mechanism satisfy all the synthesis constraints,
its accuracy, dexterity and singularity avoidance capabilities
are lower than the ones synthesised using the objective
function and the synthesis constraints.

5. STAGE 2: MASS DISTRIBUTION
OPTIMISATION FROM FORCE BALANCING
Mass distributions of the links of an articulated mechanism
are as important as its geometry for a good global
performance. The aim of this stage of the optimum

Fig. 4. Variation of the transmission angle (top plot), and of the Jacobian matrix condition number (bottom plot) with �1.

Fig. 5. The manipulator with optimised link lengths given in the first row of Table 1; “. . ” is for �1 =1200, �4 =960, �=119.38810, “- - -“
is for �1 =300, �4 =240, �=98.49690, and “. . ..”is for �1 =3000, �4 =2400, c=52.15350.

Optimum synthesis 103

https://doi.org/10.1017/S0263574703005216 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005216


synthesis methodology is to determine mass distribution
parameters of the manipulator for force balancing, assuming
that the links lengths determined from Stage 1 are the
specified manipulator parameters. Although the aim of a
typical balancing procedure is to minimize the forces
transmitted to the ground, that of the optimisation procedure
presented in this section is to minimize all the reaction
forces.

5.1. Balancing conditions
A force-balanced mechanism requires that its potential
energy consisting of gravitational and elastic potential
energies is constant for all configurations of the mecha-
nism.17 The total potential energy is formulated as

V=MTgRg +Ve (16)

where MT is the total mass of the moving links, Rg is the
vertical component of the position vector R� , given by
Equation (20), describing the mass center of the mechanism,
and Ve is the elastic potential energy of the system, which is
not applicable for the balancing approach adopted in this
paper.

Using the notation given in Figure 1, the position vector
R� describing the mass center of the mechanism is38

R� =
1

MT
�4

i=0

mir�i (17)

where r�i is the position vector describing the mass center Gi

of the ith moving link with a mass of mi with respect to the

reference point A. The individual position vectors are
expressed in complex numbers as

r�1 =R1e
j(�1 +�1),

r�2 =L1e
j�1 +R2e

j(�2 +�2),

r�3 =L0e
j�0 +L4e

J�4 +R3e
j(�3 +�3),

r�4 =L0e
j�0 +R4e

j(�4 +�4),

(18)

The exponential terms are related to each other by the loop
closure equation

L1e
j�1 +L2e

j�2 =L0e
j�0 +L3e

j�3 +L4e
j�4 (19)

The exponential term ej�3 (or ej�2) is extracted from Equation
(19), and then substituted into Equation (18). Consequently,
the position vectors in Equation (18) can be put into
Equation (17) from which the position vector describing the
overall mass center of the mechanism is obtained as

ej�1�m1R1e
j�1 +

m3R3L1

L3

ej�3 +m2L1�
+ej�2�m2R2e

j�2 +
m3R3L2

L3

ej�3�
R�=

1
MT

(20)

+ej�4�m4R4e
j�4 �

m3R3L4

L3

ej�3 +m3L4�
+L0e

j�0��
m3R3

L3

ej�3 +m3 +m4�

Fig. 6. Variation of the transmission angle (top plot), and of the Jacobian matrix condition number (bottom plot) with �1. Link lengths
are chosen arbitrarily, without considering the objective function.
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When the component of R� associated with the gravitational
acceleration is substituted into Equation (16), the total
potential energy of the system becomes

sin �1�m1R1e
j�1 +

m3R3L1

L3

ej�3 +m2L1�
+sin �2�m2R2e

j�2 +
m3R3L2

L3

ej�3�
V=g (21)

+sin �4�m4R4e
j�4 �

m3R3L4

L3

ej�3 +m3L4�
+L0 sin �0��

m3R3

L3

ej�3 +m3 +m4�
If the coefficients of sin �z (for z=1, 2, 4) are zero, the
potential energy of the system will be constant. After
necessary mathematical operations, the following force
balancing conditions are derived

g�m1R1 cos �1 +
m3R3L1

L3

cos �3 +m2L1�=0 (22)

g�m1R1 sin �1 +
m3R3L1

L3

sin �3�=0 (23)

g�m2R2 cos �2 +
m3R3L2

L3

cos �3�=0 (24)

g�m2R2 sin �2 +
m3R3L2

L3

sin �3�=0 (25)

g�m4R4 cos �4 �
m3R3L4

L3

cos �3 +m3L4�=0 (26)

g�m4R4 sin �4 �
m3R3L4

L3

sin �3�=0 (27)

From Equations (24) and (25),

�2 =�3 and R3 =��m2

m3
��L3

L2
�R2 (28)

This is an important observation for the mass distribution of
links 2 and 3, which have to obey Equation (28) for force
balancing. Depending on the mass ratio and the link length

ratio and R2 ≠0.0, R3 is evaluated in terms of negative R2,
which implies that one of them is always negative, i.e., the
locations of the mass centers for link 2 and link 3 are
separated from each other by 1800. This might restrict the
usable workspace of the manipulator. However, this prob-
lem can be avoided by imposing tight constraints on the
sizes of the radial distances R2 and R3.

The remaining four conditions (Equations (22), (23),
(26), (27)) are taken as the constraints which must be
satisfied by the balancing parameters while minimizing an
optimisation function described in the next subsection.

5.2. Objective function
Similar to the optimisation functions used before by
others19–21,23,27 for optimum balancing of single degree
freedom mechanisms, a mean-square root of the sum-
squared discrete values of all reaction forces in the
manipulator is adopted as the objective function (OF)

OF=
1
n ��n

i=1

(F2
A +F2

B +F2
C +F2

D +F2
E) (29)

where n is the number of the discrete values into which the
operation range of manipulator divided. The goal of the
optimisation is to determine the numerical values of mi, Ri,
�i (for i=1, 2, 3, 4), minimizing the objective function and
satisfying the constraints given in the next subsection.

5.3. Constraints
The objective function is subjected to the following
constraints, in addition to the constraints imposed by
Equations (22), (23), (26–28):

1. �Lz ≤Rz ≤Lz for z=1 · · · 4,
2. 1≤mz ≤5 for z=1, 4 and 1≤mz ≤3 for z=2, 3,
3. 0≤�z ≤1800 for z=1 · · · 4,

Hence, force balancing of the manipulator is also formu-
lated as a constrained nonlinear optimisation problem. A
computer program in MATLAB is employed to accomplish
the constrained minimization of the OF as a function of the
balancing parameters, starting with an initial value for each
parameter.

5.4. Numerical results
The link lengths L0 =3 *8.0745=24.2235, L1 =3 *3.2950,
and L2 =3 *5.4365 given in the first row of Table I are
utilised here while determining the optimum values of mass
distribution parameters. With reference to Equation (28),
m3 =m2 gives R3 =�R2. This has reduced the number of
balancing parameters to nine. For 300 ≤�1 ≤3900, �4 =0.8�1,
with step sizes of 0.1 rad (i.e., n=63), and �0 =00, a number
of optimisation trials with different initial values for the
balancing parameters were conducted. Different initial
values provided different solutions satisfying the objective
function and the balancing constraints. Sets of optimised
balancing parameters together with the initial values used
are given in Table II. These values describe the mass
distribution (mz, Rz, �z) parameters for optimum force
balancing. The numerical values of mass distribution
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parameters change with their initial values as well as the
chosen link lengths, and thus, they do not necessarily
represent a global minimum.

The reaction forces acting at bearings/joints A, B, C, D,
E, were found to have constant magnitudes of 23.0912,
11.5456, 1.7355, 8.0746, and 17.8846, respectively, for the
solution given in the first row of Table II.

In order to demonstrate the effectiveness of the optimisa-
tion procedure for mass distribution parameters, the
numerical values of the balancing parameters* given for a
planar parallel manipulator (basically the same manipulator
considered in this study) by Jean and Gosselin14 are used to
calculate the bearing forces for an arbitrary L=10 units and
m=2 units. It is determined that although the parameters
satisfy the necessary balancing conditions expressed by
Equations (22), (23), (26–28), the average values of the
forces acting at the bearings A, B, C, D, E, (22.6511,
21.3253, 22.6570, 71.0258, and 81.1819, respectively) are
significantly higher than those obtained from the optimisa-
tion procedure presented above.

As given in Equation (12), when �4 =
�2 +�3

2
+

�

2
(2k+1)

for k=0, 1 . . . or �1 =�2 or �2 =�3, the forces in the
mechanism tend to approach infinity. This is an undesirable
situation that must be avoided by selecting proper link
lengths during the synthesis stage. When the mechanism is
in these singular configurations (�1 =�2 or �2 =�3), the
transmission angle requirement is also violated. This
problem was considered while determining the link
lengths.

6. CONCLUSIONS
We have presented an optimum synthesis methodology for
planar parallel manipulators. Once the parameters describ-
ing the geometry of the manipulator have been determined
from an optimisation procedure based on kinematic isot-
ropy, the remaining synthesis parameters, the mass
distribution parameters, have been obtained from a sub-
sequent optimisation procedure based on force balancing.
The resulting manipulator is expected: (i) to have a good
global performance based on high kinematic accuracy,
dexterity and singularity avoidance capabilities with a high

mechanical advantage, (ii) to require less powerful and
smaller actuators to move its links, and (iii) to transmit less
shaking force and moment to the ground. Optimisation
results indicate that the proposed optimisation approach is
systematic, versatile and easy to implement for the optimum
synthesis of a parallel manipulator and other kinematic
chains. This work contributes to previously published work
from the point of view of being a simple and systematic
approach to the optimum synthesis of parallel manipulators,
which is currently lacking in the literature. Future work
includes optimum synthesis of other planar parallel manip-
ulators articulated with prismatic and revolute joints, using
multi-objective functions based on kinematic isotropy,
dynamic synthesis (e.g., minimization of angular accelera-
tions) and dynamic balancing. These objectives will be
formulated into a convex optimisation problem, which can
be solved using either heuristic search algorithms such as
genetic algorithms or interval analysis to obtain a global
optimum solution.
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APPENDIX A: BEARING/JOINT FORCES

FAx =
1

L2L4 sin(�1 ��2) 
	gL2m1R1 cos(�1 +�1) cos �2

+L4 cos �1[gL2m2 cos �2 �gR2m2 cos(�2 +�2)]
� (A1)

FAy =
1

L2L4 sin(�1 ��2) 
	�gL4m2R2 sin �1 cos(�2 +�2)+gL2R1m1 sin �2 cos(�1 +�1)

+L2L4 sin �1 cos �2[gm1 +gm2]�gL2L4m1 cos �1 sin �2
� (A2)

FBx =
1

L2L4 sin(�1 ��2) 
	�gL2m1R1 cos(�1 +�1) cos �2

+L4 cos �1[�gL2m2 cos �2 +gR2m2 cos(�2 +�2)]
� (A3)

FBy =
1

L2L4 sin(�1 ��2) 
	gL4m2R2 sin �1 cos(�2 +�2)�L2L4gm2 sin �1 cos �2

�gL2R1m1 sin �2 cos(�1 +�1)
� (A4)
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FCx =
1

L2L4 sin(�1 ��2) 
	L4 cos �1[�gL2m2 cos �2 +gR2m2 cos(�2 +�2)]

�L2gR1m1 cos(�1 +�1) cos �2
� (A5)

FCy =
1

L2L4 sin(�1 ��2) 
	gL4m2R2 sin �1 cos(�2 +�2)

�L2 sin �2[gL4m2 cos �1 +gR1m1 cos(�1 +�1)]
� (A6)

FDx =
g

L2L4[sin(�4 ��2)�sin(�4 ��3)] 
L2m4R4 cos(�4 +�4)(cos �2 �cos �3)

+L4 cos �4
L2m3 cos �2 +R2m2 cos(�2 +�2)
�L2m3 cos �3 +R3m3 cos(�3 +�3)

� (A7)

FDy =
g

L2L4[sin(�4 ��2)�sin(�4 ��3)] 

L2L4m3 cos �2 sin �4 +L4m2R2 sin �4 cos(�2 +�2)
�L2L4m3 cos �3 sin �4 +L4m3R3 sin �4 cos(�3 +�3)
+L2m4R4 sin �2 cos(�4 +�4)
�L2m4R4 sin �3 cos(�4 +�4)

(A8)

FEx =FDx (A9)

FEy =
g

L2L4[sin(�4 ��2_�sin(�4 ��3)] 

L2L4(m3 +m4) cos �2 sin �4 +L4m2R2 sin �4 cos(�2 +�2)
�L2L4(m3 �m4) cos �3 sin �4 +L4m3R3 sin �4 cos(�3 +�3)
+L2m4L4 cos �4(sin �3 �sin �2)
+L2m4R4 cos(�4 +�4)(sin �2 �sin �3)

(A10)
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