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Abstract. A simple analytic expression of the two-dimensional Child–Langmuir law
is derived for non-zero injection velocities and Lau’s result is obtained in our model
by setting the injection velocity equal to zero. The calculation results show that
the modify term in our model is larger than Lau’s with a non-zero electronic initial
energy, and it is twice as large as Lau’s when the electronic initial energy is much
greater than the potential energy of the gap.

1. Introduction
The Child–Langmuir law is widely used in plasma physics and microwave electron-
ics [1–4]. It gives the maximum current density allowed for steady-state electron
beam transports across a gap. This maximum value is a result of the space charge
effect.
Several studies have been carried out to extend the Child–Langmuir law to other

situations. For example, Jaffé derived the one-dimensional Child–Langmuir law
for non-zero injection velocities in [5]. The maximum current JSCL that can be
transmitted across the diode [6] and the current JBF, marking the bifurcation of
the state from completely to partially transmitting [7], can be derived from Jaffé’s
model.
The analytical solution of the two-dimensional limiting current in a diode is very

difficult to obtain [8, 9]. However, many attempts have been made because the
two-dimensional problem is of fundamental importance in microwave electronics.
Luginsland et al. generalized the Child–Langmuir law to two dimensions via particle
simulations [9]. Lau obtained a simple analytic theory for the two-dimensional
Child–Langmuir law in 2001 [8], and the maximum current was given by

J(2)
J(1)

∼= 1 +
D

4R
. (1)

Here J(2) is the maximum current for two-dimensional model, J(1) is the maximum
current for one-dimensional model, D is the gap separation and R is the beam
radius. Lau’s theory agrees well with Luginsland et al.’s simulation results [9].
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However, Lau’s model cannot be used to calculate the current JBF with non-zero
injection velocities.
In this paper, we have derived the analytic expression of the two-dimensional

Child–Langmuir law for non-zero injection velocities for the first time. It is shown
that Lau’s result [8] is only a special case of our paper.
The paper is structured as follows. First, in Sec. 2 the one-dimensional

Child–Langmuir law is reviewed, and we present the analytical forms of the two-
dimensional Child–Langmuir law for non-zero injection velocities. In Sec. 3 we give
some calculation results. A short summary is given in Sec. 4.

2. Derivation of the two-dimensional Child–Langmuir law for
non-zero injection velocities

2.1. One-dimensional model for the Child–Langmuir law

It is generally assumed that the electrodes are infinite parallel planes and where
all electrons are supposed to enter the space between the two planes with the same
velocity v0 . Let the emitter plane, at z = 0, be kept at the potential V = 0, and
the receiver plane, at z = D, be kept at the potential V = VD . The equations for a
one-dimensional diode can be written as follows [5]:

d2V (z)
dz2 = − ρ

ε0
, (2)

−ρ =
J0

vz
, (3)

1
2
mv2z = eV + K, (4)

where we define V (z), J0 , ρ, vz and K as the electronic potential, the current
density, the space charge density, the electronic velocity and the electronic initial
energy respectively; ε0 and m are the dielectric constant in vacuum and electronic
mass. Let zmin be the value of z for which the minimum tmin occurs. Assuming α =
(J0/ε0)(m/2K)1/2 , t = [(eV/K)+1]1/2 and considering the condition of continuity
at z = zmin , we obtain the solution of the above equations as follows:

2
3
(t − 2c1)(t + c1)

1
2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(

αe

K

)1
2

z +
2
3
(1 − 2c1)(1 + c1)

1
2 0 � z � zmin ,

(
αe

K

)1
2

z − 2
3
(1 − 2c1)(1 + c1)

1
2 zmin � z � D.

(5)

(6)

Considering dt/dz|z=zm in = 0, we obtain zmin and tmin as

zmin =
2
3

(
K

αe

)1
2

(1 − 2c1)(1 + c1)
1
2 , (7)

tmin = −c1 . (8)

The constant c1 is determined from the boundary condition V (D) = VD . From
equation (8) and t = [(eV/K) + 1]1/2 , it is found that we can obtain the current
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JBF and zmin with c1 = 0:

JBF =
4ε0

9D2e

√
2
m

K
3
2

[(
VD

V0
+ 1

)3
4

+ 1
]2

, (9)

zmin =
D

1 + (1 + VD /V0)
3
4
, (10)

where V0 = mv20/2e.

2.2. Modifications to the two-dimensional Child–Langmuir law

Let ρ(r, ϕ, z) be the charge density within the gap. Considering the case where
electron emission is restricted to a circular patch of radius R on the cathode, the
space charge yields an electric field at (0, 0, zmin) with the magnitude

|ΔE| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(r, ϕ, z)rΔrΔϕΔz

4πε0 [r2 + (z − zmin)2 ]
, 0 � z � zmin ,

ρ(r, ϕ, z)rΔrΔϕΔz

4πε0 [r2 + (zmin − z)2 ]
, zmin � z � D.

(11)

(12)

We consider the z component of the electric field on the axis line. By multiplying
equations (11) and (12) by the directional cosine and summing over the space charge
within the gap, the space charge field at (0, 0, zmin) is given by

|E| =
∫ zm in

0
dz

∫ 2π

0
dϕ

∫ R

0
dr

ρ(r, ϕ, z)(zmin − z)r
4πε0 [r2 + (zmin − z)2 ]

3
2

−
∫ D

zm in

dz

∫ 2π

0
dϕ

∫ R

0
dr

ρ(r, ϕ, z)(z − zmin)r
4πε0 [r2 + (z − zmin)2 ]

3
2
. (13)

Assuming R � D and the charge density ρ is independent of r and ϕ, we can
write (13) as follows by integrating over variables r and ϕ:

|E| =
1

2ε0

{∫ zm in

0
dz ρ(z)

[
1 − 1

R

(zmin − z)√
1 + ((zmin − z)/R)2

]

−
∫ D

zm in

dz ρ(z)
[
1 − 1

R

(z − zmin)√
1 + ((z − zmin)/R)2

]}
,

≈ 1
2ε0

{∫ zm in

0
dz ρ(z)

[
1 − (zmin − z)

R

]
−

∫ D

zm in

dz ρ(z)
[
1 − (z − zmin)

R

]}
. (14)

Since the injection current density J0 is constant, we can write (14) as

|E| = G

(
J

2ε0

){∫ zm in

0
dz

1
v(z)

[
1 − (zmin − z)

R

]
−

∫ D

zm in

dz
1

v(z)

[
1 − (z − zmin)

R

]}
.

(15)

The multiplication factor G is used to account for the image charges in (15). The
2D limiting current density JBF is reached when this total space charge field equals
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(V0/zmin) − ((VD + V0)/(D − zmin)). This gives

G

(
JBF(2)

2ε0

){∫ zm in

0
dz

1
v(z)

[
1 − zmin − z

R

]
−

∫ D

zm in

dz
1

v(z)

[
1 − (z − zmin)

R

]}

=
V0

zmin
− VD + V0

D − zmin
. (16)

Letting R approach infinity, we obtain the one-dimensional result from (16):

G

(
JBF(1)

2ε0

){∫ zm in

0
dz

1
v(z)

−
∫ D

zm in

dz
1

v(z)

}
=

V0

zmin
− VD + V0

D − zmin
. (17)

Assuming that G is applicable for any value of R, we can obtain the ratio of JBF(2)
to JBF(1) as follows:

JBF(2)
JBF(1)

∼= 1 +
1
R

[∫ zm in

0 dz((zmin − z)/v(z)) −
∫ D

zm in
dz((z − zmin)/v(z))∫ zm in

0 dz(1/v(z)) −
∫ D

zm in
dz(1/v(z))

]
. (18)

From (5)–(8) and c1 = 0, we can obtain the electronic velocity as follows:

vz =

⎧⎨
⎩

β[zmin − z]
2
3 0 � z � zmin ,

β[z − zmin ]
2
3 zmin � z � D,

(19)

(20)

where β2 = (2K/m)(1/zmin)4/3 .
Substituting (19) and (20) into (18), we obtain

JBF(2)
JBF(1)

∼= 1 +
D

4R

[
(zmin/D)

4
3 − (1 − zmin/D)

4
3

(zmin/D)
1
3 − (1 − zmin/D)

1
3

]
, (21)

which is the analytical expression for two-dimensional Child–Langmuir law for
non-zero injection velocities.

3. Calculation results
We set the planar gap is equal to 1 cm, gap voltage is equal to 1 kV. Figure 1 shows
zmin as a function of gap voltage VD with R = 8 cm. We can see that zmin is less
than D/2 with VD > 0 and zmin is equal to zero with VD �V0 (see [9,10]). Assuming

f

(
zmin

D

)
=

[
(zmin/D)

4
3 − (1 − zmin/D)

4
3

(zmin/D)
1
3 − (1 − zmin/D)

1
3

]
(22)

and according to (10), we can see that zmin/D is equal to zero if VD �V0 , then
f(zmin/D) = 1, which is shown in Fig. 2. This means that (21) agrees with (1) with
VD �V0 , and that the maximum value of f(zmin/D) is 2 with zmin/D = 0.5 which
means the modify term in (21) is twice as large as that in (1).
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Figure 1. zm in as a function of VD .

Figure 2. f (zm in/D) as a function of zm in/D.

4. Summary
In this paper, the two-dimensional Child–Langmuir law for non-zero injection ve-
locities in a planar diode is presented. The calculation results show that zmin is less
than D/2 with VD > 0 and the modify term is twice as large as Lau’s model with
VD = 0. Our model degenerates to Lau’s model with VD �V0 .
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