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We analyse a class of chemical reaction networks under mass-action kinetics involving multiple
time scales, whose deterministic and stochastic models display qualitative differences. The networks
are inspired by gene-regulatory networks and consist of a slow subnetwork, describing conversions
among the different gene states, and fast subnetworks, describing biochemical interactions involv-
ing the gene products. We show that the long-term dynamics of such networks can consist of a
unique attractor at the deterministic level (unistability), while the long-term probability distribution
at the stochastic level may display multiple maxima (multimodality). The dynamical differences stem
from a phenomenon we call noise-induced mixing, whereby the probability distribution of the gene
products is a linear combination of the probability distributions of the fast subnetworks which are
‘mixed’ by the slow subnetworks. The results are applied in the context of systems biology, where
noise-induced mixing is shown to play a biochemically important role, producing phenomena such
as stochastic multimodality and oscillations.
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1 Introduction

Biochemicalprocesses in living systems, such as molecular transport, gene expression and pro-
tein synthesis, often involve low copy numbers of the molecular species involved.For example,
gene transcription, a process of transferring information encoded on a DNA segment to a messen-
ger RNA (mRNA), and gene translation, a process by which ribosomes utilise the information on
an mRNA to produce proteins, typically involve interactions between 1 and 3 promoters which
control transcription, on the order of 10 polymerase holoenzyme units or copies of repressor
proteins, and on the order of 1000 RNA polymerase molecules and ribosomes [18]. At such low
copy numbers of some of the species, the observed dynamics of the processes are dominated by
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stochastic effects, which have been demonstrated experimentally for single-cell gene expression
events [30, 22, 19]. An example of this arises in the context of a simple pathway switch com-
prising two mutually repressible genes, each of which produces a protein that inhibits expression
of its antagonistic gene. Stochastic fluctuations present in the low copy numbers lead to random
choices of the prevailing pathway in a population of cells, and thus to two distinct phenotypes
[27, 12]. Said otherwise, the probability distribution of the phenotypes is bimodal, even in a
genotypically homogeneous population. Two major sources of intrinsic noise in gene-regulatory
networks are transcriptional and translational bursting which have been directly linked to DNA
dynamics [27, 29, 32]. Transcriptional bursting results from slow transitions between active and
inactive promoter states, which produces bursts of mRNA production, while translational burst-
ing, which results from the random fluctuations in low copy numbers of mRNA, leads to bursts
in protein numbers.

Most signal transduction and gene-regulatory networks are highly interconnected and involve
numerous protein–protein interactions, feedback and cross-talk at multiple levels. Analysing the
deterministic model of such complicated networks, which neglects the stochastic effects, may
be challenging on its own. Even more difficult is determining when there are significant dif-
ferences between the less-detailed deterministic and the more-detailed stochastic models. Such
differences have been called ‘deviant’ in the literature [28], and some attempts at understanding
them in terms of the underlying network architecture have been made [17], but there is no general
understanding of when the deviations arise. Of particular interest are the qualitative differences
between the long-term solutions of the deterministic and stochastic models [8, 20]. Central to
such differences is a relationship between multiple coexisting stable equilibria at the determinis-
tic level (multistability) and coexisting maxima (modes) of the stationary probability distribution
at the stochastic level (multimodality). In general, mutistability and multimodality, for both tran-
sient and long-term dynamics, do not imply each other for finite reactor volumes (such as in
living cells) [26, 10]. For example, even feedback-free gene-regulatory networks, involving only
first-order reactions, which are deterministically unistable, may be stochastically multimodal
under a suitable time-scale separation between the gene switching and protein dynamics [16, 7].
Long-term solutions of the deterministic model are not necessarily time-independent, which fur-
ther complicates the analysis. For example, in Section 5.2 we study relationships between a
deterministic limit cycle (a time-dependent long-term solution) and the corresponding stationary
probability mass function (PMF).

The objective of this paper is to identify a class of chemical reaction networks which display
the ‘deviant’ behaviours, and analyse the origin of such behaviours. To this end, we consider
a class of reaction networks with two time scales, which consist of fast subnetworks involving
catalytic reactions and a slow subnetwork involving conversions among the catalysts (genes).
It is shown that a subset of such reaction networks are deterministically unistable, but stochas-
tically multimodal. We demonstrate that the cause for the observed qualitative differences is a
phenomenon we call noise-induced mixing, where the probability distribution of the gene prod-
ucts is a linear combination of the probability distributions of suitably modified fast subnetworks,
which are mixed together by the slow subnetworks.

The paper is organised as follows. In Section 2, we introduce the mathematical background
regarding chemical reaction networks. In Section 3, we introduce the class of networks studied in
this paper, which are then analysed in Section 4. The results derived are then applied to a variety
of examples in Section 5. Finally, we provide summary and conclusion in Section 6.
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2 Chemical reaction networks

In this section, chemical reaction networks are defined [10, 11, 21, 1], which are used to model the
biochemical processes considered in this paper, together with their deterministic and stochastic
dynamical models. We begin with some notation.

Definition 2.1 Set R is the space of real numbers, R≥ the space of nonnegative real num-
bers and R> the space of positive real numbers. Similarly, Z is the space of integer numbers,
Z≥ the space of nonnegative integer numbers and Z> the space of positive integer numbers.
Euclidean vectors are denoted in boldface, x = (x1, x2, . . . , xm) ∈R

m. The support of x is defined
by supp(x) = {i ∈ {1, 2, . . . , m}|xi �= 0}. Given a finite set S , we denote its cardinality by |S|.

Definition 2.2 A chemical reaction network is a triple {S , C, R}, where

(i) S = {S1, S2, . . . , Sm} is the set of species of the network.

(ii) C is the finite set of complexes of the network, which are nonnegative linear combina-
tions of the species, i.e. complex C ∈ C reads

∑m
i=1 νiSi, where ν = (ν1, ν2, . . . , νm) ∈Z

m≥
is called the stoichiometric vector of C.

(iii) R= {∑m
i=1 νiSi →∑m

i=1 ν̄iSi|∑m
i=1 νiSi,

∑m
i=1 ν̄iSi ∈ C, ν �= ν̄

}
is the finite set of reac-

tions, with
∑m

i=1 νiSi and
∑m

i=1 ν̄iSi called the reactant and product complexes,
respectively.

For simplicity, we denote chemical reaction networks in this paper by R, with the species and
complexes understood from the context. Furthermore, abusing the notation slightly, we denote
the complex

∑m
i=1 νiSi by ν, when convenient. A complex which may appear in reaction networks

is the zero-complex, ν = 0, which is denoted by ∅ in the networks. The reaction 0 → ν̄ then rep-
resents an inflow of the species, while reaction ν → 0 represents an outflow of the species [21].

The order of reaction (ν → ν̄) ∈R is given by
∑m

i=1 νi ≥ 0, while the order of chemical reac-
tion network R is then given by the order of its highest-order reaction. We now define a special
class of first-order networks, called single species complexes (SSC) networks [1] (also known as
compartmental networks [10] and first-order conversion networks [13]), which play an important
role in this paper.

Definition 2.3 First-order reaction networks R such that (ν → ν̄) ∈R implies
∑m

i=1 νi ≤ 1 and∑m
i=1 ν̄i ≤ 1 are called the SSC networks. Such networks contain only the complexes which are

either a single species, or the zero-complex. SSC networks which contain the zero-complex are
said to be open, otherwise they are closed.

A reaction network R can be encoded as a directed graph by identifying complexes C with the
nodes of the graph, and identifying each reaction (ν → ν̄) ∈R with the edge directed from the
node corresponding to ν to the node corresponding to ν̄. A connected component of the graph is
a connected subgraph which is maximal with respect to the inclusion of edges. Each connected
component is called a linkage class, and we denote their total number by �.

Definition 2.4 A reaction network R is said to be weakly reversible if the associated graph
is strongly connected, i.e. if for any reaction (ν → ν̄) ∈R there is a sequence of reactions,
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starting with a reaction containing ν̄ as the reactant complex, and ending with a reaction con-
taining ν as the product complex. A reaction network is called reversible if (ν → ν̄) ∈R implies
(ν̄ → ν) ∈R.

Thus, weakly reversible networks induce a directed graph that contains only strongly connected
components. When (ν → ν̄) ∈R and (ν̄ → ν) ∈R, we denote the two irreversible reactions
jointly by (ν � ν̄) ∈R, for convenience.

Before stating the last definition in this section, we define�x = (ν̄ − ν) ∈Z
m≥ to be the reaction

vector of reaction (ν → ν̄) ∈R. It quantifies the net change in the species counts caused by
a single occurrence (firing) of the reaction. The set S= span{ν→ν̄∈R}{�x = (ν̄ − ν)} is called
the stoichiometric subspace of reaction network R, where span{·} denotes the span of a set of
vectors, and its dimension is denoted by dim(S) = s.

Definition 2.5 The deficiency of a reaction network R is given by δ = |C| − �− s, where |C|
is the number of complexes, � is the number of linkage classes and s is the dimension of the
stoichiometric subspace of network R.

Network deficiency is a nonnegative integer, δ ∈Z≥, which may be interpreted as the difference
between the number of independent reactions based on the reaction graph and actual number
when stoichiometry is taken into account [11, 21]. Note that SSC networks are zero-deficient [1]
and are exploited in Section 2.2.

2.1 The deterministic model

Let x = (x1, x2, . . . , xm) ∈R
m≥ be the vector with element xi denoting the continuous concen-

tration of species Si ∈ S . Furthermore, let us assume reactions from R fire according to the
deterministic mass-action kinetics [10], i.e. reaction (ν → ν̄) ∈R fires at the rate k xν , where
k ∈R≥ is known as the rate coefficient, and xν =∏m

i=1 xνi
i , with 00 = 1. The deterministic model

for chemical reaction network R, describing time evolution of the concentration vector x = x(t),
where t ∈R≥ is the time variable, is given by the system of autonomous first-order ordinary
differential equations (ODEs), called the reaction-rate equations (RREs) [10, 1], and, under
mass-action kinetics, reads as

dx

dt
= f(x; k) =

r∑
j=1

kjx
νj�xj. (2.1)

Here, |R| = r is the total number of reactions, �xj = (ν̄ j − ν j) is the reaction vector of reaction
(ν j → ν̄ j) ∈R and k = (k1, k2, . . . , kr) ∈R

r≥ is the vector of rate coefficients. Note that, as a con-
sequence of the mass-action kinetics, ODE system (2.1) has a polynomial right-hand side (RHS).

A concentration vector x∗ ∈R
m≥, solving (2.1) with the left-hand side (LHS) set to zero,

f(x∗; k) = 0, is called an equilibrium of the RREs. An equilibrium x∗ is said to be complex-
balanced [11, 21] if the following condition, expressing a ‘balancing of reactant and product
complexes’ at the equilibrium, is satisfied:∑

{ j∈{1,2,. . .,r}|νj=c}
kj(x

∗)νj =
∑

{ j∈{1,2,. . .,r}|ν̄j=c}
kj(x

∗)νj , ∀c ∈ C. (2.2)
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For fixed rate coefficients, RREs which have a positive complex-balanced equilibrium are called
complex-balanced RREs. Such equations have exactly one positive equilibrium for each positive
initial condition, and every such equilibrium is complex-balanced [11]. Furthermore, given a
positive initial condition, the complex-balanced equilibrium is globally asymptotically stable, a
result recently proved in [6]. Any equilibrium on the boundary of Rm≥ is thus unstable, so that
complex-balanced RREs have a unique stable equilibrium for each initial condition – i.e. they
are unistable. We conclude this section by stating a theorem which relates weak reversibility,
deficiency and complex-balanced equilibria.

Theorem 2.6 (Feinberg [11]) Let R be a chemical reaction network under mass-action kinetics.
If the network is zero-deficient, δ= 0, then the underlying RREs have a positive complex-
balanced equilibrium x∗ ∈R

m
> if and only if network R is weakly reversible.

2.2 The stochastic model

With a slight abuse of notation, we also use x = (x1, x2, . . . , xm) ∈Z
m≥ to denote the state

vector of the stochastic model, where element xi now denotes the discrete copy number of
species Si ∈ S . Furthermore, assume reactions from R fire according to the stochastic mass-
action kinetics [21, 1] – i.e. reaction (ν → ν̄) ∈R fires with propensity (intensity) k xν , where
k ∈R≥ is the rate coefficient, and xν =∏m

i=1 x
νi
i , where x

νi
i is the νith factorial power of

xi: x
νi
i = xi(xi − 1) . . . (xi − νi + 1) for νi > 0, and x 0

i = 1 for xi ∈Z≥. Let p(x, t) be the PMF,
i.e. the probability that the copy number vector at time t ∈R≥ is given by x ∈Z

m≥. The stochas-
tic model for chemical reaction network R, describing the time evolution of the PMF p(x, t), is
given by the partial difference–differential equation, called the chemical master equation (CME)
[31, 21], which under mass-action kinetics reads as

∂

∂t
p(x, t) =Lp(x, t) =

r∑
j=1

(
E

−�xj
x − 1

) [
k xν j p(x, t)

]
, (2.3)

where, as in the deterministic setting, |R| = r is the total number of reactions. Here, the
shift-operator E−�x

x =∏m
i=1 E−�xi

xi
is such that E−�x

x [ p(x, t)] = p(x −�x, t), while the linear
difference operator L is called the forward operator.

Function p(x), solving (2.3) with the LHS set to zero, Lp(x) = 0, is called the stationary PMF,
and it describes the stochastic behaviour of chemical reaction networks in the long run. It exists
and is unique for the reaction networks considered in this paper. In general, the stationary PMF
cannot be obtained analytically (but computational algorithms for obtaining it are known [20,
15, 5, 4]). However, in the special case when the underlying RREs are complex-balanced, the
stationary PMF can be obtained analytically. Before stating the precise result, let us note that the
stationary solution of (2.3) may be written as [2]

p(x) =
∑
�

a� p�(x), (2.4)

where {�} are closed and irreducible subsets of the state space, a� ≥ 0,
∑

{�} a� = 1, and p�(x)
is the unique stationary PMF on the subset �, satisfying p�(�) = 1.

Theorem 2.7 (Anderson et al. [2]) Let R be a chemical reaction network under mass-action
kinetics, with the rate coefficient vector fixed to k in both the RREs and the CME. Assume the
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underlying RREs have a positive complex-balanced equilibrium x∗ ∈R
m
>. Then, the stationary

PMF of the underlying CME, given by (2.4), consists of the product-form functions

p�(x) = A�
(x∗)x

x! , ∀x ∈ �, (2.5)

and p�(x) = 0 otherwise, where x! = x1! x2! . . . xm!, and A� > 0 is a normalising constant.

Note that Theorem 2.7 is applicable for any choice of rate coefficients with supp(k) fixed, pro-
vided a reaction network is both zero-deficient and weakly reversible, by Theorem 2.6. In this
paper, we utilise two specific instances of Theorem 2.7.

State space: � =Z
m≥. If the state space is given by all nonnegative integers, and it is irreducible,

then Theorem 2.7 implies that the stationary PMF is given by the Poissonian product form

p(x) =
m∏

i=1

P(xi; x∗
i ), ∀x ∈Z

m
≥, (2.6)

where P(xi; x∗
i ) is the Poissonian with parameter x∗

i ,

P(xi; x∗
i ) = exp(−x∗

i )
(x∗

i )xi

xi! .

If an open SSC network is weakly reversible, then the underlying stationary PMF is of the form
(2.6) [2, 13].

State space: � = πN
m . If the state space is given by the set πN

m = {x = (x1, x2, . . . , xm) ∈Z
m≥
∣∣∑m

i=1 xi = N} ⊂Z
m≥, where N ∈Z>, and if the set is irreducible, then Theorem 2.7 implies that

the stationary PMF is given by the multinomial product form

p(x) = N ! (x∗)x

x! , ∀x ∈ πN
m . (2.7)

Here, x∗ is the unique positive complex-balanced equilibrium normalised according to
∑m

i=1 x∗
i =

M = 1, i.e. the deterministic conservation constant, which we denote by M ∈R>, is set to unity.
If a closed SSC network is weakly reversible, then the underlying stationary PMF is of the form
(2.7) [2, 13].

3 Fast–slow catalytic reaction networks

In this section, we introduce a class of chemical reaction networks central to this paper. Before
doing so, let us briefly adapt the generic notation from Section 2 to the specific networks studied
in this section. In what follows, the set of species is partitioned according to S =P ∪ G, where
P = {P1, P2, . . . , Pm} (proteins) and G = {G1, G2, . . . , Gn} (genes). We also suitably partition
the set of reactions and denote the rate coefficients appearing in a subnetwork using the same
letter as the network subscript. For example, assuming network Rα has r reactions, vector α =
(α1, α2, . . . , αr) ∈R

r≥ contains the rate coefficients αj appearing in the network, and ordered in a
particular way. Let us stress that we allow rate coefficients, introduced in Sections 2.1 and 2.2, to
be nonnegative, k ∈R

m≥. In the degenerate case when a rate coefficient is set to zero, we take the
convention that the corresponding reaction is deleted (switched-off) from the network, so that a
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new reaction network is obtained. For this reason, structural properties of reaction networks (such
as those introduced in Definitions 2.4 and 2.5) are stated for k with a fixed support. Finally,
when convenient, dependence of a reaction network on species of interest is indicated, e.g. to
emphasise that R involves species P , we write R=R(P).

Definition 3.1 Consider mass-action reaction networks R=R(P , G), depending on m bio-
chemical species P = (P1, P2, . . . , Pm) and n catalytic species G = (G1, G2, . . . , Gn), taking the
following form:

R(P , G) =Rα,β(P , G) ∪Rε
γ (P , G), (3.1)

with

Rα,β(P , G) =Rα(P; G) ∪Rβ(P). (3.2)

All the reactions in Rα =Rα(P; G) are catalysed by (a subset of ) catalysts G, and the network is
called the catalysed network. On the other hand, all the reactions in Rβ =Rβ(P) are independent
of the catalysts G, and the network is called the uncatalysed network. Network Rε

γ =Rε
γ (P , G)

is called the catalysing network. If all the reactions in the catalysing network depend only on the
catalysts G, then the network is said to be unregulated, otherwise, if at least one reaction depends
on some of the species P , the network is said to be regulated.

Let network Rδ =Rδ(P), obtained by removing the catalysts G from the reactions underlying
Rα , be called the decatalysed network. We call the catalyst-independent network

Rδ,β(P) =Rδ(P) ∪Rβ(P), (3.3)

the auxiliary network corresponding to (3.1).

To facilitate the analysis of network (3.1), we introduce several assumptions concerning its
structure and dynamics, starting with assumptions about catalysed and auxiliary networks.

Assumption 3.2 (Catalysed network) Structurally, the catalysed network Rα , given in (3.2), is
assumed to take the following separable form:

Rα(P; G) =
n⋃

i=1

Rαi (P; Gi), (3.4)

where α = (α1, α2, . . . , αn), with vector αi containing the rate coefficients appearing in the ith
catalysed network Rαi . Each subnetwork Rαi is first-order catalytic in exactly one species Gi,
with the jth reaction given by

rij : Gi +
(

m∑
k=1

νk
ijPk

)
αij−→ Gi +

(
m∑

k=1

ν̄k
ijPk

)
, for i ∈ {1, 2, . . . , n}. (3.5)

Dynamically, the CME underlying auxiliary network (3.3), which, considering (3.4), reads as

Rδ,β(P) =
(

n⋃
i=1

Rδi (P)

)
∪Rβ(P) (3.6)
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is assumed to have a unique stationary PMF for any choice of the underlying rate coefficients
(δ, β) = (δ1, δ2, . . . , δn, β), and we call it the auxiliary PMF. In other words, the stochastic pro-
cess induced by the network is unconditionally ergodic [23]. Here, the jth reaction in the ith
decatalysed network Rδi reads

rij :
m∑

k=1

νk
ijPk

δij−→
m∑

k=1

ν̄k
ijPk , for i ∈ {1, 2, . . . , n}. (3.7)

The following assumptions are made on the structural properties of the catalysing network
underlying (3.1), where Definitions 2.3 and 2.4 are used.

Assumption 3.3 (Catalysing network) The catalysing network Rε
γ =Rε

γ (G), given in (3.1), is
assumed to be unregulated. Furthermore, it is assumed to be a closed SSC network which is
weakly reversible, with the reactions taking the following form:

rij : Gi
εγij−→ Gj, i, j ∈ {1, 2, . . . , n}, i �= j. (3.8)

The final assumption involves the rate coefficients appearing in (3.1).

Assumption 3.4 (Time-scale separation) Consider the nonnegative rate coefficient vectors α =
(α1, α2, . . . , αn), β and εγ , appearing in the catalysed network Rα = ∪n

i=1Rαi , uncatalysed
network Rβ and catalysing network Rε

γ , respectively. It is assumed that 0< ε� 1, while the
positive elements in α, β and γ are of order one, O(1), with respect to ε. In other words, the
catalysed and uncatalysed networks, jointly denoted Rα,β , are fast, while the catalysing network
Rε
γ is slow.

Network (3.1), under three Assumptions 3.2–3.4, describes feedback-free gene-regulatory net-
works [16]. In particular, species G may be seen as different gene expressions (gene with
different operator occupancy), while P can represent suitable gene products (such as mRNAs
and proteins) and species which can interact with the products. Under this interpretation, the
unregulated catalysing network Rε

γ (G), with reactions (3.8), describes the gene which slowly
switches between n different states, independently of the gene products. Catalysed network
Rαi (P; Gi), with reactions (3.5), describes the action of the gene in state Gi on the products P .
Finally, the uncatalysed network Rβ(P) describes interactions between gene products (and pos-
sibly other molecules), such as formations of dimers and higher-order oligomers, which take
place independently of the gene state.

Example 3.5 Consider the following fast–slow network:

Rα1 : G1

α11−⇀↽−
α12

G1 + P1,

Rα2 : G2
α21−→ G2 + P1,

Rβ : P1
β1−→∅,

Rε
γ : G1

εγ12−−⇀↽−−
εγ21

G2, 0< ε� 1, (3.9)
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involving species P = (P1) and catalysts G = (G1, G2), with rate coefficients (all assumed to
be positive) α1 = (α11, α12), α2 = (α21), β = (β1), γ = (γ12, γ21). Here, � denotes a reversible
reaction (see also Section 2).

There are two catalysed networks of the form (3.5) embedded in (3.9): network Rα1 =Rα1

(P1; G1), describing a production and degradation of P1 catalysed by G1, and Rα2 =
Rα2 (P1; G2), describing a production of P1 catalysed by G2. The uncatalysed network, Rβ =
Rβ(P1), describes a degradation of P1, occurring independently of G1 and G2. Finally, the
unregulated catalysing network Rε

γ =Rε
γ (G) is a closed and reversible SSC network of the form

(3.8), with n = 2 (where we implicitly assume γ12, γ21 > 0). Network (3.9) may be interpreted
as describing a gene slowly switching between two expressions G1 and G2. When in state G1,
the gene produces and degrades protein P1, while when in state G2, it only produces P1, but
generally at a different rate than when it is in state G1. Furthermore, P1 may also spontaneously
degrade. Networks similar to (3.9) have been analysed in the literature [16, 7].

The auxiliary network Rδ,β , given generally by (3.6) and (3.7), in the specific case of network
(3.9) reads as

Rδ1 : ∅
δ11−⇀↽−
δ12

P1,

Rδ2 : ∅
δ21−→ P1,

Rβ : P1
β1−→∅. (3.10)

The auxiliary network (3.10) is equivalent to

∅
δ11+δ21−−−−⇀↽−−−−
δ12+β1

P1,

which induces a simple birth–death stochastic process (again, implicitly assuming positive rate
coefficients). Network (3.9) satisfies Assumptions 3.2 and 3.3. Provided the rate coefficients are
O(1) with respect to 0< ε� 1, Assumption 3.4 is also fulfilled.

4 Dynamical analysis

In this section, we analyse the deterministic and stochastic models of the fast–slow network (3.1),
under three Assumptions 3.2–3.4, focusing on the long-term dynamics of species P (proteins).
It is shown that, due to the time-scale separation and catalytic nature of G (genes), one can ‘strip
off’ the catalysts from the fast subnetwork, thus obtaining the auxiliary network Rδ,β , which
plays a key dynamical role.

4.1 Deterministic analysis

Let us denote the concentration of species P = (P1, P2, . . . , Pm) by x = (x1, x2, . . . , xm) ∈R
m≥,

and of G = (G1, G2, . . . , Gn) by y = ( y1, y2, . . . , yn) ∈R
n≥. The RREs induced by (3.1) (see also

Section 2.1) may be written as follows:

ε
dx

dτ
=
(

n∑
i=1

yi fαi (x; αi)

)
+ fβ(x; β), (4.1)

dy

dτ
= fγ (y; γ ), (4.2)
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where τ = εt is the slow time scale, with t being the original time variable. Terms { yifαi (x;
αi)}n

i=1 on the RHS of (4.1) arise from the catalysed networks {Rαi (P)}n
i=1 of the form (3.5),

while fβ(x; β) arises from the uncatalysed network Rβ(P). The RHS of (4.2) is induced by the
catalysing network Rγ (G) (obtained by setting ε= 1 in Rε

γ (G), which is given by (3.8)). Let us
now consider the equilibrium behaviour of system (4.1) and (4.2).

By Assumption 3.3, the catalysing network is zero-deficient and weakly reversible. Thus, the
results presented in Section 2.1 (and Theorem 2.6, in particular) imply that equation (4.2) has
a unique equilibrium for each initial condition, with the equilibrium being positive, stable and
complex-balanced, and denoted by

y∗(γ ) = ( y∗
1(γ ), y∗

2(γ ), . . . , y∗
n(γ )) ∈R

n
>. (4.3)

The equilibria of equation (4.1), denoted x∗ = x∗( y∗
1(γ )α1, y∗

2(γ )α2, . . . , y∗
n(γ )αn, β), satisfy(

n∑
i=1

fδi(x
∗; y∗

i αi)

)
+ fβ(x∗; β) = 0. (4.4)

Note that equation (4.1) may display attractors such as stable limit cycles, in which case the
equilibria satisfying (4.4) may still be relevant in providing dynamical information. In (4.4), we
use the fact that yi fαi(x; αi) = fδi(x; yiαi), for each fixed y. In particular, for y = y∗, the catalysed
network Rαi is the decatalysed network Rδi with rate coefficients δi = y∗

i αi. Thus, it follows
from (4.4) that the equilibrium of the species of interest P , appearing in the composite fast–
slow network (3.1), is determined by the equilibrium of the underlying auxiliary network Rδ,β

with rate coefficients δ = ( y∗
1(γ )α1, y∗

2(γ )α2, . . . , y∗
n(γ )αn), i.e. with rate coefficients αi each

weighted by the underlying catalyst equilibrium y∗
i given in (4.3). The following proposition can

be deduced from equation (4.4).

Proposition 4.1 Consider network (3.1), under three Assumptions 3.2–3.4, with supp(α),
supp(β) and supp(γ ) fixed. Furthermore, assume the auxiliary network Rδ,β , given by (3.3),
is weakly reversible and zero-deficient when supp(δ) = supp(α). Then, the RREs underlying
network (3.1) have a unique stable equilibrium (x∗, y∗) ∈R

m+n
> for any choice of the rate

coefficients, i.e. network (3.1) is unconditionally deterministically unistable.

Note that if Rδ,β is a first-order reaction network, the RREs underlying network (3.1) are also
deterministically unistable.

Example 4.2 Let us consider again network (3.9) given in Example (3.5). Since the underlying
auxiliary network, given by (3.10), is reversible and zero-deficient, it follows from Proposition
4.1 that (3.9), with all the rate coefficients positive, is always deterministically unistable. Note
that the composite fast–slow network (3.9) itself is not zero-deficient (nor weakly reversible).
The same conclusion follows from the fact that (3.10) is an ergodic first-order network. The
underlying RREs are given by

dx1

dt
= ( y1α11 − y1α12x1 + (M − y1)α21)− β1x1, (4.5)

dy1

dt
= −εγ12y1 + εγ21(M − y1), (4.6)

https://doi.org/10.1017/S0956792518000517 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000517


Noise-induced mixing and multimodality in reaction networks 897

0 100 200 300 400 500 600 700 800 9001000
0

50

100

150

200

250

300

350

400
(a) (b)

(c) (d)

0 50 100 150 200 250 300 350 400
0

0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045

0 100 200 300 400 500 600 700 800 9001000
0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400
0

0.002

0.004

0.006

0.008

0.01

0.012

FIGURE 1. (a) Representative sample path for the reaction network (3.9), obtained by applying the Gillespie
algorithm (blue–green), together with the deterministic trajectory, obtained by solving equations (4.5) and
(4.6), in the case the two catalysts satisfy the conservation law y1(t) + y2(t) = N = M = 1, ∀t ≥ 0. The ini-
tial condition is (x1, y1, y2) = (0, 0, 1). (b) Stationary x1-marginal PMF obtained by the Gillespie algorithm
(blue–green histogram) and by the analytic approximation (5.5) (purple). (c) Analogous results as in panel
(a) for the case y1(t) + y2(t) = N = M = 4, ∀t ≥ 0, and with the initial condition (x1, y1, y2) = (800, 3, 1). (d)
Analogous results as in panel (b) for the case y1(t) + y2(t) = N = M = 4, ∀t ≥ 0. The parameters are fixed
to α11 = 102, α12 = 2, α21 = 5 × 102, β1 = 2, γ12 = γ21 = 1 and ε= 10−2.

where the catalysts satisfy the conservation law y1(t) + y2(t) = M, for t ≥ 0, with M ∈R>, while
the equilibrium reads

(x∗
1, y∗

1) =
(

y∗
1α11 + (M − y∗

1)α21

y∗
1α12 + β1

,
γ21

γ12 + γ21
M

)
. (4.7)

In Figure 1(a) and (c), we present in red the x1-solutions of (4.5) and (4.6) with the catalyst con-
servation constants M = 1 and M = 4, respectively, and α11 = 100, α12 = 2, α21 = 500, β1 = 2,
γ12 = γ21 = 1, ε= 10−2. One can notice that x1 approaches the equilibrium x∗

1 = 100 in Figure
1(a), while x∗

1 = 200 in Figure 1(c). In Figure 1(a) and (c), we take the catalyst initial conditions
( y1(0), y2(0)) = (0, 1) and ( y1(0), y2(0)) = (3, 1), respectively. One can notice that, on the fast
time scale (transient dynamics), i.e. when εt � 1, x1 approaches the quasi-equilibria approxi-
mately obtained by taking y∗

1 = y1(0) in the auxiliary network, which are given by 250 and 100
for Figure 1(a) and (c), respectively. In the next section, it is shown that auxiliary networks with
such catalyst values play an important role in the equilibrium stochastic dynamics.
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4.2 Stochastic analysis

With a slight abuse of notation, we also use x = (x1, x2, . . . , xm) ∈Z
m≥ (resp. y = ( y1, y2, . . . , yn)

∈Z
n≥) to denote the copy number values of species P = (P1, P2, . . . , Pm) (resp. G = (G1,

G2, . . . , Gn)). The CME induced by (3.1) (see also Section 2.2) is given by

∂

∂τ
p(x, y, τ ) =

(
1

ε
Lα,β +Lγ

)
p(x, y, τ ). (4.8)

Operators Lα,β and Lγ are the forward operators of networks Rα,β = ∪n
i=1Rαi ∪Rβ , and Rγ

(obtained by setting ε= 1 in Rε
γ ), from (3.1) to (3.2), respectively, with

Lα,β =
(

n∑
i=1

yi Lαi

)
+Lβ , (4.9)

where yi Lαi is the forward operator of the catalysed network Rαi , while Lβ of the uncatalysed
network Rβ .

The forward operator from (4.8) is singularly perturbed and, in what follows, we apply per-
turbation theory to exploit this fact. The underlying perturbation theory appropriate for such
singularly perturbed operators, along with convergence results, can be found in, e.g., [23, 15].
Substituting the power series expansion

p(x, y, τ ) = p0(x, y, τ ) + ε p1(x, y, τ ) + · · · + εk pk(x, y, τ ) + · · · ,

into (4.8), and equating terms of equal powers in ε, the following system of equations is obtained:

O
(

1

ε

)
: Lα,β p0(x, y, τ ) = 0, (4.10)

O(1) : Lα,β p1(x, y, τ ) = −
(
Lγ − ∂

∂τ

)
p0(x, y, τ ). (4.11)

Function p0(x, y, τ ) is required to be a PMF, and it is called the zero-order approximation of
p(x, y, τ ). We use the definition of conditional PMF to write p0(x, y, τ ) = p0(x|y) p0(y, τ ). Then
the zero-order approximation of the stationary x-marginal PMF, which is the main object of
interest in this paper, is given by

p0(x) =
∑

y∈πN
n

p0(y) p0(x|y), (4.12)

where

πN
n =

{
y = ( y1, y2, . . . , yn) ∈Z

n
≥

∣∣∣∣∣
n∑

i=1

yi = N

}
⊂Z

n
≥, (4.13)

as defined in Section 2.2. Note that πN
n may be interpreted as the set of all the constrained

n-element permutations of {0, 1, . . . , N}, under the constraint that the elements sum up to N .
Let us also note that y is an element of πN

n as a consequence of Assumption 3.3, demanding that
Rε
γ is closed (conservative). πN

n is also called the reaction simplex for the slow dynamics [21].
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Order 1/ε equation (4.10). Since Lα,β acts only on x, it follows that equation (4.10) is equivalent
to Lα,β p0(x|y) = 0. For a fixed y, analogously as in the deterministic setting, Lα,β =Lδ,β with
δ = ( y1α1, y2α2, . . . , ynαn), where Lδ,β is the forward operator of the auxiliary network Rδ,β .
By Assumption 3.2, the CME of the auxiliary network has a unique PMF for any choice of the
rate coefficients (called the auxiliary PMF), so that we may write the solution to equation (4.10)
as

p0(x|y) = p(x; y1α1, y2α2, . . . , ynαn, β), (4.14)

where p(x; y1α1, y2α2, . . . , ynαn, β) is the auxiliary PMF.
Order 1 equation (4.11). The solvability condition [23], obtained by summing equation (4.11)
over the fast variable x, gives the effective CME

∂

∂τ
p0(y, τ ) =Lγ p0(y, τ ). (4.15)

Let us focus on the stationary PMF p0(y). By Assumption 3.3, a unique stationary PMF p0(y)
exists. Furthermore, Theorem 2.7 implies that the PMF takes the multinomial product form (2.7):

p0(y) = N ! (y∗(γ ))y

y! , ∀y ∈ πN
n , (4.16)

where y∗(γ ) is the unique normalised equilibrium obtained by setting the deterministic conser-
vation constant to M = 1 in (4.3).

Substituting (4.14) and (4.16) into (4.12), one obtains the following result.

Theorem 4.3 Consider network (3.1), under Assumptions 3.2–3.4. The zero-order approxima-
tion of the stationary x-marginal PMF corresponding to network (3.1) is given by

p0(x) =
∑

y∈πN
n

(
N ! (y∗(γ ))y

y!
)

p(x; y1α1, y2α2, . . . , ynαn, β), (4.17)

where πN
n and N are defined in (4.13).

Theorem 4.3 implies that the stationary x-marginal PMF, describing the equilibrium behaviour
of the fast species P , is given by a sum of the stationary PMFs of the underlying auxiliary
networks, with rate coefficients which depend on y, i.e. on the species G. Furthermore, each of
the auxiliary PMFs is weighted by a coefficient which depends on the underlying equilibrium of
the catalysts, y∗(γ ). Put more simply, as the subnetwork Rε

γ slowly switches between the states
y ∈ πN

n , it mixes (forms a linear combination of ) the auxiliary PMFs of the fast subnetworks Rδ,β

with rate coefficients δ = ( y1α1, y2α2, . . . , ynαn). As shown in Section 4.1, such a mixing does
not occur at the deterministic level. Hence, we call this stochastic phenomenon noise-induced
mixing. Note that the deterministic equilibria satisfying (4.4) may correspond to the single term
from (4.17) for which y is closest to y(γ )∗, i.e. when the catalysts reside in a discrete state closest
to the corresponding continuous equilibrium.
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5 Applications

In this section, we apply Theorem 4.3 to investigate stochastic multimodality, arising as a con-
sequence of noise-induced mixing in systems biology. Firstly, fast–slow networks involving
zero-deficient and weakly reversible auxiliary networks are considered, so that the auxiliary
PMFs from (4.17) are analytically obtainable. It is shown via Proposition 5.1 that the equilibrium
deterministic and stochastic dynamics of such fast–slow networks deviate from each other: the
networks are deterministically unistable, but may display stochastic multimodality. We derive as
Proposition 5.2 bounds between which the modes in the underlying stationary PMF may occur,
when the auxiliary networks are first-order and involve only one species. First- and second-order
auxiliary networks involving multiple species are then considered. We investigate cases when
some stationary marginal PMFs are unimodal, while others are multimodal. Also demonstrated
is that, in the multiple-species case, modes of different species are generally coupled. We high-
light this with an example where modes of the output species simply scale with modes of the input
species. Secondly, we design a fast–slow network with third-order auxiliary network involving
multimodality and stochastic oscillations. It is demonstrated that gene-regulatory-like networks,
involving as few as three species, may display arbitrary many noisy limit cycles.

5.1 Zero-deficient and weakly reversible auxiliary networks

In order to gain more insight into noise-induced mixing, we first consider a class of fast–
slow networks (3.1) for which one can obtain the auxiliary PMFs analytically, appearing as the
x-dependent factors in (4.17). In particular, we consider fast–slow networks R with the auxiliary
networks Rδ,β which are zero-deficient and weakly reversible for any choice of the rate coeffi-
cients (δ, β), with supp(δ) and supp(β) fixed, and for which the state space Z

m≥ is irreducible. It
follows from Theorems 2.6 and 2.7 that, in this case, the auxiliary PMFs take the Poisson product
form (2.6), so that equation (4.17) becomes

p0(x) =
∑

y∈πN
n

(
N ! (y∗(γ ))y

y!
) m∏

i=1

P (xi; x∗
i ( y1α1, y2α2, . . . , ynαn, β)

)
, (5.1)

where x∗( y1α1, y2α2, . . . , ynαn, β) ∈R
m
> is the underlying complex-balanced equilibrium of the

auxiliary network. Thus, in this special case, the PMF modes are determined by the deterministic
equilibria of the auxiliary network Rδ,β with rate coefficients δ = ( y1α1, y2α2, . . . , ynαn), y ∈
πN

n , while the values of the marginal PMF at the modes by the deterministic equilibrium of the
slow network Rε

γ .

Proposition 5.1 Consider network (3.1), under three Assumptions 3.2–3.4, with supp(α),
supp(β) and supp(γ ) fixed. Furthermore, assume the auxiliary networks Rδ,β , given by (3.3),
with rate coefficients δ = ( y1α1, y2α2, . . . , ynαn), are weakly reversible and zero-deficient for
any choice of y = ( y1, y2, . . . , yn) ∈ πN

n . In this case, the zero-order approximation of the sta-
tionary x-marginal PMF, given by (5.1), has maximally |πN

n | modes, where set πN
n is given

by (4.13).

A comparison of Propositions 4.1 and 5.1 identifies a class of chemical reaction networks
which are deterministically unistable, but which may be stochastically multimodal. Note that
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when the auxiliary networks are not zero-deficient or weakly reversible, the auxiliary PMFs may
be multimodal themselves. Hence, in this more general case, the maximum number of modes in
the stationary x-marginal PMF, given by (4.17), may be greater than |πN

n |. See also Section 5.2.

5.1.1 One-species networks

We begin by applying result (5.1) in the simplest scenario: fast–slow networks with one-species
first-order auxiliary networks given by

Rδi : ∅
yiαi1−−⇀↽−−
yiαi2

P1, i ∈ {1, 2, . . . , n},

Rβ : ∅
β1−⇀↽−
β2

P1. (5.2)

The stationary PMF of (5.2) is a Poissionian with parameter x∗
1 = (

∑n
i=1 yiαi1 + β1)/

(
∑n

i=1 yiαi2 + β2), so that (5.1) becomes

p0(x1) =
∑

y∈πN
n

(
N ! (y∗(γ ))y

y!
)
P
(

x1;

∑n
i=1 yiαi1 + β1∑n
i=1 yiαi2 + β2

)
. (5.3)

We call the parameters x∗
1 = (

∑n
i=1 yiαi1 +, β1)/(

∑n
i=1 yiαi2 + β2) when y ∈ {Nei|i ∈ {1, 2, . . . ,

n}} (at the boundary of the simplex
∑n

i=1 yi = N) the outer modes, while when y /∈ {Nei|i ∈
{1, 2, . . . , n}} (in the interior of the simplex) the inner modes. Note that the outer mode occurring
at y = Nei arises from network Rδi ∪Rβ with rate coefficients δi = Nαi. Denoting the smallest
and largest outer modes of network (5.2) by

xmin
1 = min

i∈{1,2,. . .,n}

(
Nαi1 + β1

Nαi2 + β2

)
,

xmax
1 = max

i∈{1,2,. . .,n}

(
Nαi1 + β1

Nαi2 + β2

)
,

one can readily prove the following proposition.

Proposition 5.2 Consider network (3.1), under three Assumptions 3.2–3.4. Assume the under-
lying auxiliary network is given by (5.2). Then, the inner modes of the stationary PMF (5.3) are
bounded below by the smallest outer mode, xmin

1 , and above by the largest outer mode, xmax
1 :

xmin
1 <

∑n
i=1 yiαi1 + β1∑n
i=1 yiαi2 + β2

< xmax
1 , ∀y /∈ {Nei|i ∈ {1, 2, . . . , n}}. (5.4)

Note that if all the outer modes are identical, then (5.3) is unimodal. Let us also note that
Proposition 5.2 does not generally hold for fast–slow networks with multiple-species auxiliary
networks involving higher-order reactions – see also Example 5.5.

Example 5.3 Let us consider again network (3.9). The corresponding auxiliary network (3.10)
takes the form (5.2) with n = 2, α22 = β1 = 0, and with β2 renamed to β1. Fixing the conservation
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constant to N = 1, it follows that the possible catalyst states are ( y1, y2) ∈ π1
2 = {(1, 0), (0, 1)},

and equation (5.3) becomes

p0(x1) = γ21

γ12 + γ21
P
(

x1;
α11

α12 + β1

)
+ γ12

γ12 + γ21
P
(

x1;
α21

β1

)
. (5.5)

It follows from (5.5) that there are maximally two modes, which are achieved if the underlying
two Poissonians are well-separated, with the (outer) modes given by

xm
1 ∈

{
α11

α12 + β1
,
α21

β1

}
.

Let us fix the parameters to α11 = 102, α12 = 2, α21 = 5 × 102, β1 = 2, γ12 = γ21 = 1, ε= 10−2,
as in Example 4.2, so that the two modes become xm

1 ∈ {25, 250}. Note that taking γ12 = γ21 = 1
fixes each of the weights in (5.5) to 1/2, fixing the relative time the stochastic system spends
in each of the two modes. On the other hand, taking ε= 10−2 determines the time scale at
which the stochastic system switches between the two modes. In Figure 1(a), we display in
blue–green a representative stochastic trajectory for the reaction network (3.9), obtained by
applying the Gillespie stochastic simulation algorithm . We also show, in the same plot, the cor-
responding deterministic trajectory, obtained by solving (4.5) and (4.6), in red. One can notice
that the system is stochastically bistable, while deterministically unistable, with the determin-
istic equilibrium matching neither of the two stochastic modes. For the gene initial condition
( y1(0), y2(0)) = (0, 1), taken in Figure 1(a), the transient deterministic dynamics of x1 overshoot
close to the largest mode xm = 250, as mentioned in Example 4.2. In Figure 1(b), we plot as the
blue–green histogram the stationary x1-marginal PMF obtained by utilising the Gillespie algo-
rithm, while as the purple curve the analytic approximation (5.5), and one can see an excellent
match between the two.

Fixing the conservation constant to N = 4, it follows that ( y1, y2) ∈ π4
2 = {(4, 0), (3, 1),

(2, 2), (1, 3), (0, 4)}. Equation (5.3) then predicts maximally |π4
2 | = 5 modes, given by

xm
1 ∈

{
4α11

4α12 + β1
,

3α11 + α21

3α12 + β1
,

2α11 + 2α21

2α12 + β1
,
α11 + 3α21

α12 + β1
,

4α21

β1

}
,

with 4α11/(4α12 + β1) and 4α21/β1 being the outer modes, while the rest are inner ones. Under
the same parameter choice as before, the modes become xm

1 ∈ 102 × {0.4, 1, 2, 4, 10}. Note that
all the inner modes lie between the two outer modes xmin

1 = 40 and xmax
1 = 103, in accordance with

Proposition 5.2. Analogous to Figure 1(a), in Figure 1(c) we plot the stochastic and deterministic
trajectories, where one can notice the five stochastic modes. For the particular choice of the
parameters, the deterministic equilibrium is close to the third stochastic mode xm

1 = 2 × 102.
Let us note that ( y1(0), y2(0)) = (3, 1) is taken in Figure 1(c), and the transient dynamics of x1

undershoots close to the inner mode xm
1 = 102. In Figure 1(d), we again demonstrate an excellent

matching between the stationary x1-marginal PMF obtained from the simulations, and the one
obtained from the analytic prediction (5.3).

5.1.2 Multiple-species networks

When considering fast–slow networks with multiple-species auxiliary networks, we focus, for
simplicity, on one-species marginal PMFs (as opposed to, e.g., the joint PMF). For a given
fast–slow network, some marginal PMFs may display unimodality, while others multimodality.
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There are broadly two reasons why networks of the form (3.1) may display (marginal) unimodal-
ity. Firstly, a marginal PMF may appear unimodal if it takes a significant value at only one mode
– i.e. if the weights in (5.1) take a significant value for only one auxiliary Poissonian. Secondly,
the xi-marginal PMF p0(xi) is unimodal if the underlying Poissonians P(xi; x∗

i ) from (5.1) are
not well-separated, which occurs under insufficient separation between the deterministic equi-
libria x∗

i = x∗
i ( y1α1, y2α2, . . . , ynαn, β), y ∈ πN

n , of the auxiliary networks. We now provide an
example of the extreme case, when the deterministic equilibrium x∗

i is independent of y (i.e. all
the deterministic equilibria of the auxiliary network coincide), so that p0(xi) is a sum of iden-
tical Poissonians, and is hence unconditionally unimodal. We call such a phenomenon robust
unimodality, as the modality of the underlying PMF is insensitive to the catalyst state.

Example 5.4 Let us consider the following fast–slow network:

Rα1 : G1 + P2
α11−→ G1 + P1,

Rα2 : G2 + P2
α21−→ G2 + P1,

Rβ : P1
β1−→∅,

∅
β2−→ P2,

Rε
γ : G1

εγ12−−⇀↽−−
εγ21

G2, 0< ε� 1, (5.6)

involving species P = (P1, P2) and catalysts G = (G1, G2). In gene-regulatory networks, species
P2 may be interpreted as the substrate needed for the gene in both states G1 and G2 to build
the protein P1. Alternatively, in enzyme networks, G1 and G2 may represent two different
conformational states of an enzyme, each of which catalyses molecules P2 into product P1 at a
different rate.

The auxiliary network Rδ,β , with δ = ( y1α11, y2α21), is given by

Rδ1 : P2
y1α11−−−→ P1,

Rδ2 : P2
y2α21−−−→ P1,

Rβ : P1
β1−→∅,

∅
β2−→ P2. (5.7)

The deterministic equilibrium of (5.7) reads

x∗ =
(
β2

β1
,

β2

y1α11 + y2α21

)
.

In particular, x∗
1 is independent of the catalyst state y. Since (5.7) is zero-deficient and weakly

reversible, equation (5.1) is applicable. Summing the equation over x2 and x1, we respectively
obtain

p0(x1) =
⎛
⎜⎝∑

y∈πN
2

N ! (y∗(γ ))y

y!

⎞
⎟⎠P

(
x1;

β2

β1

)
, (5.8)
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FIGURE 2. (a) The stationary x1-marginal PMFs of chemical system (5.6) obtained by the Gillespie algo-
rithm (blue–green histogram) and by analytic approximation (5.8) (purple solid line), illustrating that
species P1 from (5.6) is unimodally distributed, with the mode xm

1 = 200. (b) The stationary x2-marginal
PMFs illustrating that P2 has a trimodal distribution, with the modes xm

2 ∈ 102 × {2, 3, 6}. The parameters
are fixed to α11 = 1/2, α21 = 1/6, β1 = 1, β2 = 2 × 102, γ12 = γ21 = 1, ε= 10−2 and N = 2.

p0(x2) =
∑

y∈πN
2

(
N ! (y∗(γ ))y

y!
)
P
(

x2;
β2

y1α11 + y2α21

)
. (5.9)

Thus, the stationary x1-marginal PMF (5.8) is robustly unimodal – i.e. it is unimodal indepen-
dently of the catalyst copy numbers y. On the other hand, the stationary x2-marginal PMF (5.9)
may display noise-induced multimodality. Hence, the protein P1 is unimodally distributed, while
the substrate P2 may be multimodally distributed. This is also verified in Figure 2 for a par-
ticular parameter choice, where one can also notice that (5.8) and (5.9) provide an excellent
approximation when ε= 10−2.
A more complicated reaction network is now presented, involving a second-order auxiliary
network.

Example 5.5 Let us consider the following fast–slow network:

Rα1 : G1
α11−→ G1 + P1,

Rα2 : G2
α21−→ G2 + P2,

Rα3 : G3 + P1
α31−→ G3,

G3 + P2
α32−→ G3,

Rβ : P1
β1−→∅,

P2
β2−→∅,

P1 + P2

β3−⇀↽−
β6

P3

β4−⇀↽−
β5

P2 + P4,

Rε
γ : G1

εγ12−−⇀↽−−
εγ21

G2

εγ23−−⇀↽−−
εγ32

G3, 0< ε� 1, (5.10)
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involving species P = (P1, P2, P3, P4) and catalysts G = (G1, G2, G3). One may interpret G1, G2

and G3 as three possible gene expressions: G1 and G2 are the producing gene states, creating
proteins P1 and P2, respectively, while G3 is a degrading gene state, destroying the two proteins.
Molecules P1 and P2 may also freely decay (without a direct influence of the gene), as well as
reversibly form a complex protein P3, which may be reversibly converted into a new protein P4.
Proteins P1 and P2 may be seen as input molecules (produced by the gene directly), while P3

and P4 as output of network (5.10). We are interested in the equilibrium dynamics of protein P4.
The auxiliary network Rδ,β , with δ = ( y1α11, y2α21, y3α31, y3α32), is given by Rδ,β =Rδ1 ∪

Rδ2 ∪Rδ3 ∪Rβ , where Rβ is given in (5.10) and

Rδ1 : ∅
y1α11−−−→ P1,

Rδ2 : ∅
y2α21−−−→ P2,

Rδ3 : P1
y3α31−−−→∅,

P2
y3α32−−−→∅.

The deficiency of network Rδ,β may be computed using Definition 2.5: |C| = 6, �= 2 and s = 4,
so that it is a zero-deficient network, which is also reversible. The deterministic equilibrium
reads as

x∗ =
(

y1α11

y3α31 + β1
,

y2α21

y3α32 + β2
,
β3

β6
x∗

1x∗
2,
β3β4

β5β6
x∗

1

)
. (5.11)

It follows from (5.1) and (5.11) that the equilibrium behaviour of proteins P3 and P4, which are
produced by the gene indirectly (via P1 and P2), is captured by

p0(x3) =
∑

y∈πN
3

(
N ! (y(γ )∗)y

y!
)
P
(

x3;
β3

β6
x∗

1x∗
2

)
,

p0(x4) =
∑

y∈πN
3

(
N ! (y(γ )∗)y

y!
)
P
(

x4;
β3β4

β5β6
x∗

1

)
. (5.12)

One can notice from (5.12) that, for each gene state y ∈ πN
3 , the mode of the complex protein

P3 is given by the product of the modes of P1 and P2 scaled by a factor β3/β6. This is an
example showing that Proposition 5.2, which has been proved for one-species auxiliary net-
works, generally does not apply to one-species marginal PMFs, in the case of multiple-species
auxiliary networks. In particular, the outer modes of p0(x3) are all zero, but the inner ones
may be non-zero. For example, if N = 3, the outer modes are zero, since

(
β3
β6

x∗
1x∗

2

)= 0 when

y ∈ {(3, 0, 0), (0, 3, 0), (0, 0, 3)}, but one of the inner modes is non-zero, since
(
β3
β6

x∗
1x∗

2

) �= 0 when
y = (1, 1, 1).

On the other hand, modes of P4 are modes of P1 scaled by a factor β3β4/(β5β6). This is also
illustrated in Figure 3, where we fix N = 2, and display the stationary x1-marginal PMF in Figure
3(a), while x4-marginal PMF with β3β4/(β5β6) = 1/2 in Figure 3(b), and with β3β4/(β5β6) = 2
in Figure 3(c). One can notice that the modes of p0(x4) are contracted, and dilated, by a factor
of two in Figure 3(b) and (c), respectively, when compared to p0(x1). Let us note that, for this
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FIGURE 3. (a) The stationary x1-marginal PMF of system (5.10) obtained by analytic approximation
(5.1). The parameters are α11 = 102, α21 = 50, α31 = 1, α32 = 1, β1 = β2 = β3 = β5 = 1, β6 = 102, γ12 =
γ32 = 1, γ21 = 20, γ23 = 2, ε= 10−3, N = 2 and β4 = 50. (b) The stationary x4-marginal PMF of system
(5.10) given by (5.12). (c) The stationary x4-marginal PMF of system (5.10) given by (5.12) when the
value of β4 is changed to β4 = 200 (other parameters are the same as in other panels).

parameter change, only the plotted stationary x4-marginal PMF changes, while the other one-
species marginal PMFs remain the same, because they are independent of the coefficient β4,
which is the only parameter we vary in Figure 3.

5.2 Stochastic multicyclicity

In this section, we present a fast–slow network with auxiliary network that exhibits multimodality
and stochastic oscillations, which we have constructed using (4.17). In this case, in contrast
to Section 5.1, the auxiliary PMFs are not Poissonians (more generally, Theorem 2.7 is not
applicable). The resulting fast–slow network displays an arbitrary number of noisy limit cycles
(known as stochastic multicyclicity [25]) and may illustrate the kind of stochastic dynamics
arising when a gene produces a protein whose concentration oscillates in time.

Example 5.6 Let us consider the following fast–slow network:

Rα1 : G1 + 2P2
α11−→ G1 + P1 + P2,

Rβ : ∅
β1−⇀↽−
β2

P2,
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P2
β3−→ P1,

P1 + 2P2
β4−→ 3P2,

Rε
γ : G1

εγ12−−⇀↽−−
εγ21

G2, 0< ε� 1. (5.13)

Subnetwork Rα1 may be seen as a caricature of the gene, in state G1, creating products which
bind two proteins P2 and then converting one of them to a new protein P1. Subnetwork Rβ is the
biochemical oscillator known as the Brusselator [24], here describing interactions between the
two proteins.

The auxiliary network Rδ,β , with δ1 = y1α11, is given by Rδ,β =Rδ1 ∪Rβ , where Rβ is given
in (5.13) and

Rδ1 : 2P2
y1α11−−−→ P1 + P2. (5.14)

Note that Rδ,β is not zero-deficient (nor weakly reversible), so that (5.1) is not applicable. We
set β1 = β2 = β4 = 1 and β3 = 10 in the following analysis and in Figure 4.

Deterministic analysis. The RREs of the auxiliary network, with the concentration of catalyst G1

set to its equilibrium value y∗
1, given in (4.7), read as

dx1

dt
= 10x2 − (x1 − y∗

1α11) x2
2,

dx2

dt
= 1 − 11x2 + (x1 − y∗

1α11) x2
2. (5.15)

System (5.15) has a unique equilibrium (x∗
1, x∗

2) = (10 + y∗
1α11, 1), which is unstable, and

surrounded by a unique stable limit cycle, for the parameters chosen in our paper [24].
Deterministically, the only effect reaction Rδ1 has on Brusselator Rβ is to simply translate
its equilibrium and limit cycle by y1α11. Hence, qualitative properties of the equilibrium and
limit cycle are independent of the values of y1 and α11. Fixing α11 = 102, the conservation con-
stants N = M = 2 and coefficients γ12 = 1, γ21 = 3/2 give the equilibrium (x∗

1, x∗
2) = (130, 1). In

Figure 4(a), we show in red the x1-solution of the RREs underlying (5.13) for a given initial
condition, and one can notice the time oscillations.

Stochastic analysis. Applying (4.17) on reaction network (5.13), it follows that, for sufficiently
small ε, the stationary x1-marginal PMF is approximately given by

p0(x1) =
(

γ12

γ12 + γ21

)2

p(x1; 0) + 2γ12γ21

(γ12 + γ21)2
p(x1; α11) +

(
γ21

γ12 + γ21

)2

p(x1; 2α11)

= 4

25
p(x1; 0) + 12

25
p(x1; 100) + 9

25
p(x1; 200), (5.16)

where p(x1; y1α11) is the auxiliary PMF.
In Figure 4(a), we display in blue–green a representative sample path of (5.13) which appears

to switch between three noisy limit cycles, one of which is close to the deterministic limit cycle.
To gain more insight, in Figure 4(c)–(e), the auxiliary PMFs p(x1; 0), p(x1; 100) and p(x1; 200)
from (5.16) are presented, respectively, obtained by numerically solving the two species CME
for auxiliary network Rδ,β =Rδ1 ∪Rβ given in (5.13) and (5.14). In all the three cases, the
underlying deterministic model displays only one stable set – the limit cycle, while the auxil-
iary PMFs are bimodal. In Figure 4(b), we present as the blue–green histogram the x1-marginal
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FIGURE 4. (a) A representative sample path for network (5.13) (blue–green), together with a deterministic
trajectory, obtained by numerically solving the underlying RREs (red). The parameters are α11 = 102, β1 =
β2 = β4 = 1, β3 = 10, γ12 = 1, γ21 = 3/2, ε= 10−3 and N = 2. (b) The stationary x1-marginal PMF of (5.13)
(blue–green histogram) and its approximation given by (5.16) (purple solid line). (c)–(e) The stationary x1-
marginal PMFs of the underlying auxiliary network given in (5.16), when} (c) y1 = 0, (d) y1 = 1 and (e)
y2 = 2.

PMF obtained from simulations, and as the purple curve the analytic approximation given by the
weighted sum (5.16). One can notice a good match for ε= 10−3 taken in Figure 4. In addition
to the three modes where the PMF takes largest values, there are two other modes (one at 0,
and one near 100), arising from p(x1; 0) and p(x1; 100). On the other hand, the second mode
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of p(x1; 200), appearing near 200 in Figure 4(e), is merged with p(x1; 100) for the particular
choice of the parameters. Let us note that, while the stationary x1-marginal PMF displays multi-
modality, the stationary x2-marginal PMF is unimodal and concentrated around 0. This results
from the fact that X2(t) spends most of the time near zero for each of the three noisy limit cycles.

More generally, taking the conservation constant N ≥ 0, network (5.13) may display (N + 1)
distinct noisy limit cycle. Moreover, replacing the slow subnetwork

G1

εγ12−−⇀↽−−
εγ21

G2, from (5.13) by G1

εγ10−−⇀↽−−
εγ01

∅

(which relaxes Assumption 3.3, see also Section 6 for a discussion), the resulting fast–slow
network may display an infinite number of noisy limit cycles.

6 Summary and conclusion

In this paper, we have introduced a class of chemical reaction networks under mass-action kinet-
ics, involving two time scales and catalytic species, and inspired by gene-regulatory networks
[16], whose deterministic and stochastic descriptions display ‘deviant’ differences [28]. More
precisely, fast–slow networks of the form (3.1) and (3.2), under three Assumptions 3.2–3.4,
as defined in Section 3, have been considered. By analysing the underlying dynamical models
in Section 4, we have identified a stochastic phenomenon causing the qualitative differences
between the deterministic and stochastic models. In particular, it is shown that, as a result of the
conversions among the catalysts (genes) in the slow subnetwork, the fast species (proteins) have
a probability distribution which is a mixture of the probability distributions of modified fast sub-
networks, called auxiliary networks, which are obtained if the catalysts are ‘stripped off’. We call
this phenomenon noise-induced mixing, and it is captured in Theorem 4.3, which was established
by applying first-order perturbation theory on the underlying singularly perturbed CME.

In Section 5, we have applied the result to investigate multimodality in the context of systems
biology. In Section 5.1, fast–slow reaction networks with auxiliary networks under suitable con-
straints (zero-deficiency and weak-reversibility) were considered, allowing for analytic results.
It is shown in Proposition 5.1 that, under these constraints, while the deterministic model is
always unistable, the stochastic model may display multimodality. When the auxiliary networks
involve only one species and first-order reactions, we also derived bounds on the modes, given as
Proposition 5.2. When the auxiliary networks involve multiple species, we discuss, and demon-
strate via examples (5.6) and (5.10), that some species may be unimodal, while other multimodal,
and that modes of different species are generally coupled. In Section 5.2, a reaction network
involving an oscillator is presented, capturing the kind of behaviour which may arise in gene-
regulatory networks involving proteins whose concentrations oscillate in time. We show that,
as a result of noise-induced mixing, the reaction network may display stochastic multimodality,
where the modes correspond to copies of the underlying unique deterministic limit cycle, thus
also showing that gene-regulatory networks, involving as few as three species, may display an
arbitrary number of noisy limit cycles. It was also demonstrated that result (4.17) is beneficial
for numerical simulations – instead of simulating the higher-dimensional stiff dynamics of the
fast–slow networks, involving the small parameter ε, one may instead simulate the underlying
lower-dimensional auxiliary networks and use (4.17) (see also [15, 5, 9, 3] for discussions on
simulating general fast–slow networks).
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Three Assumptions 3.2–3.4 have been made in this paper to facilitate the analysis. However,
noise-induced mixing occurs in a broader class of reaction networks. For example, we may
relax the assumptions about the catalysing network, made in Assumption 3.3, in the follow-
ing two ways. Firstly, we may allow the slow subnetwork Rε

γ (G) to be open, in which case
the multinomial function (4.16), appearing as x-independent weights in (4.17), is replaced with
the Poissonian function of the form (2.6). Secondly, we may consider the more general reg-
ulated slow subnetworks, Rε

γ (P , G), describing gene-regulatory networks with feedback [16].
In this case, the derivation from Section 4.2 remains valid under one modification: the RHS of
the effective CME (4.15) depends on the moments of the fast species x (proteins) with respect
to the auxiliary PMF, which themselves depend on the catalysts (genes) y. As a consequence,
the weights from (4.17) then generally have a different form. However, the auxiliary PMFs
(x-dependent factors from (4.17)) remain unchanged, so that noise-induced mixing remains to
operate. Put more simply, proteins in the discussed gene-regulatory networks with and without
feedback have approximately the same modes, but the height of the probability distribution at the
modes is generally different. Note that networks (3.1) and (3.2) experience, not only long-term,
but also transient noise-induced mixing: if the time-dependent PMF p0(y, τ ), satisfying (4.15),
is substituted into (4.17), one obtains an approximation to the time-dependent marginal PMF,
p0(x, τ ), which has the same form as (4.17), but with suitable time-dependent weights.

Finally, let us note that noise-induced mixing may also be applicable to the field of synthetic
biology, which aims to design reaction systems with predefined behaviours [26]. In particular,
given a target probability distribution, one may construct a suitable fast–slow network, such that
its probability distribution, given by (4.17), approximates the target one.
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