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Ecological classification of coastal waters has become increasingly important as one of the basic issues in the biology of con-
servation. Management and protection of coastal areas take place at different spatial scales. Thus, proper classification
schemes should integrate equivalent information at various levels of definition in order to show its feasibility as a useful
tool for assessment of coastal environments at the required scales. In this work, a global approach applied to the classification
of the NE Atlantic coast is analysed in order to discuss pros and cons regarding different conceptual and technical issues for
effective implementation of such a management tool. Using the hierarchical system applied at three different geographic
scales: Biogeographic (NE Atlantic coast), Regional (Bay of Biscay) and Local (Cantabria region), five different topics were
considered for debating strengths and weaknesses of the methodological alternatives at those spatial scales, using for valid-
ation the rocky shore macroalgae as a representative biological element of benthic communities. These included: (i) the
spatial scales; (ii) the physical variables and indicators; (iii) the classification methodologies; (iv) the biological information;
and (v) the validation procedure. Based on that analysis, the hierarchical support system summarized in this paper provides a
management framework for classification of coastal systems at the most appropriate resolution, applicable to a wide range of
coastal areas. Further applications of the physical classification for management of biodiversity in different environmental
scenarios are also analysed.
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I N T R O D U C T I O N

One of the requirements associated with the ecosystem-based
management approach in coastal areas is the characterization
of marine assemblages and species distribution, in order to
preserve and maintain the integrity and services of ecosystems
through the conservation of marine diversity (Douvere &
Ehler, 2009). For achieving that goal, delineation of ecologic-
ally meaningful regions and zoning categories is a basic object-
ive (Gilliland & Laffoley, 2008). For instance, a general
problem in the implementation process of the European
Water Framework Directive (WFD, 2000/60/EC) was the
need to find a balance between water body typologies being
too specific (too many types) and being too general (types
that do not adequately reflect natural variability) (Hering
et al., 2010). So, it was necessary to establish suitable
‘common types’ in order to accomplish the intercalibration
exercise (IC) at certain biogeographic regions (European
Commission, 2009).

Thus, from both conservation and planning perspectives,
one of the first steps is to establish ecologically homogeneous
types that can be ultimately comparable. But the problem
arises in the difficulty of establishing clear borders in a

natural and continuous environment. If standardized and
extensive biological cartographies were available, the first clas-
sification option would be directly based on species informa-
tion. However, there is a general lack of homogeneous,
systematic and standardized species databases, especially
along large areas. Besides, these kinds of classifications will
characterize just a certain moment, being static. Hence, eco-
logical models based on abiotic characteristics are emerging
as a useful predictive tool for a variety of related assessment
purposes, which facilitates the quantification of the responses
of biological patterns and processes to human uses within a
region. These models are dynamic, they have the capacity of
evolving over time and can be periodically re-validated.
Furthermore, they may also be useful for the development
of conservation strategies to preserve species in degraded or
fragmented areas, as well as in the analysis of shifting habitats
due to climate change (Rice et al., 2011).

Taking into account that the management of coastal areas
takes place from broad to fine areas, the availability of classi-
fications at different scales represents an essential element for
an appropriate protection of a zone according to different spe-
cific objectives (Bianchi et al., 2012; Swaney et al., 2012). It will
allow implementing action plans at levels of detail that are
both ecologically meaningful and appropriate to the inte-
grated management needs. This feature is particularly import-
ant for many policies and management initiatives which are
characterized by a range of scales, with goals set at national
or regional domains but implemented at a more local
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domain (Rice et al., 2011). For instance, many efforts at man-
aging environmental resources in coastal waters attempt to
conserve species and to preserve the structure and processes
of habitats in medium or large areas (e.g. Zacharias & Roff,
2000; Gregr & Bodtker, 2007). Biogeographic approaches are
typically useful for understanding species distribution patterns
and dynamics. This need of global studies can be handled
through ecological classifications that permit the collation,
unification and synthesis of data from large areas, providing
an objective basis for analyses (Snelder et al., 2007).

On the other hand, studies of marine ecosystems need also
to be addressed on a case by case basis, since each area is
unique in terms of locally specific environmental, social and
economic characteristics (Reis, 2014). Therefore, classifica-
tions at a finer level of resolution may be useful for conserva-
tion planning and for the implementation of effective
biomonitoring programmes in a particular region (Briceño
et al., 2013).

In this context, different methods have been applied to
classify coastal waters at regional and larger scales all over
the world (e.g. Sherman, 1986; Roff & Taylor, 2000; Mount
et al., 2007; Madden et al., 2009). Specifically, several classifi-
cation systems have been developed along the NE Atlantic
region, including: the European Palaearctic Habitat
Classification (Devilliers & Devilliers-Terschuren, 1996), the
CORINE-Biotopes (Commission of the European
Communities, 1991) or the Biogeographic regions for the
Habitats Directive (1992/43/EEC), all of them based on
species or communities distribution; the OSPAR regions
(Dinter, 2001); the EUNIS Habitat classification (Davies
et al., 2004) or the WFD ecoregions for coastal and transition-
al waters (WFD, 2000/60/EC), which are both based on abiotic
attributes; or the Baltic HELCOM and the BioMar project
(Connor et al., 1997), that encompass and complement all of
them. Nowadays, the most harmonized and standardized clas-
sification approach adopted for management and conservation
purposes along the European coasts is the EUNIS system.
However, this broad-scale approach (i.e. all terrestrial and
aquatic systems) is very static, lacking an adaptive capacity to
detect changes over time or predict future scenarios in specific
communities or species assemblages. On the other hand,
thresholds of abiotic indicators are not very precisely defined
and distinction between categories may be misleading.

Along the coast, the interaction between physical and biotic
factors has been frequently analysed and it is well known that
species vary due to natural abiotic influences and biological
interactions (Lüning, 1990). Several abiotic and biotic
factors determine the distribution and structure of coastal
benthic communities, depending on the main drivers of eco-
logical processes and patterns at the spatial scale of interest
(Levin, 1992; Burrows et al., 2009). For example, at a global
scale, temperature and solar radiation are mainly responsible
for biogeographic differences (Van den Hoek, 1982; Lüning,
1990). At higher scales (e.g. at a Regional scale) factors such
as exposure to wave action, tidal range, salinity and nutrients
may play a major role in the distribution and structure of
communities (Kautsky & van der Maarel, 1990). However,
at a local scale some of these variables do not vary significant-
ly; therefore, other factors, such as geomorphological
characteristics and bathymetry, seem to affect species distribu-
tion (Schoch & Dethier, 1996; Dı́ez et al., 2003; Chappuis
et al., 2014; Ramos et al., in press). The successful protection
of marine diversity, the assessment of anthropogenic impacts

and the restoration of altered ecosystems rely largely on the
understanding of processes and factors that structure biologic-
al assemblages (Chapman, 1999). Therefore, it is important to
establish the significance of physical variables at different
scales of analysis, as well as the interaction between them as
a decisive element in the distribution of organisms.

Thus, given the influence of physical factors on the distri-
bution of species, it could be advantageous to use these vari-
ables in coastal classifications, especially in the large-scale
ones, due to the possibility of continuous data acquisition
against the lack of homogeneous reliable biological informa-
tion across large coastal areas. Based on such an assumption,
it is possible to consider that more easily measured and stan-
dardized physical or chemical variables, which rely increasing-
ly on remote sensing (Allee et al., 2014) and models (e.g.
Verfaillie et al., 2009), could be used to develop specific meth-
odologies for prediction of the potential distribution of
species.

In the last decade, the ability of some variables (e.g. wave
exposure, substrate composition, topography, current speed,
temperature, etc.) as potential predictors of physical habitats
for different communities has been applied to coastal system
classifications (e.g. Roff & Taylor, 2000; Connor et al., 2004;
Mount et al., 2007; Madden et al., 2009). However, these clas-
sifications greatly vary depending on the region where they
were developed, on the physical and biological heterogeneity
and on the availability of data (Valentine et al., 2005). In add-
ition, the main results of these classifications are represented
as habitat polygons instead of continuous coastal areas, as
necessary for the various management purposes.

Regarding the biological element, intertidal macroalgae
communities seem to be an optimum component. These com-
munities are very relevant from an ecological and scientific
point of view. From an ecological perspective, it has been
shown that despite their small relative representation, they
are vital for the ecological functioning of coastal zones
(Lubchenco et al., 1991). Scientifically, the composition and
distribution of these assemblages have been widely studied,
as they are the basis of rocky substrate reefs.

Therefore, in order to solve existing gaps, Ramos (2015a)
developed a standardized hierarchical classification system
along the NE Atlantic Region, at three different scales:
Biogeographic (Ramos et al., 2012, 2014), Regional (Ramos
et al., 2016) and Local (Ramos et al., in press). This system
takes into account both the physical characteristics of the
coastal zones and those related to biological communities
that colonize this environment at different scales. However,
some questions arise from scientific and technical debates
regarding the general suitability of such a type of classification
system concerning, among others, the following issues: (i) the
decision on scales and the definition of the spatial domain, (ii)
the selection of the most representative physical variables, the
required number of indicators and their type, (iii) the classifi-
cation methodologies (statistical tools), (iv) the kind of bio-
logical information to test the ecological meaning of the
classification and (v) the biological validation procedure.

So, based on the experience of those previous studies, the
main objective of the present work is to discuss pros and
cons regarding different conceptual and technical issues for
effective implementation of such a hierarchical management
tool. For this purpose, this paper is organized taking into
account the five previously established topics (i–v), using
the NE Atlantic case study as a reference point for discussion.
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N E A T L A N T I C C A S E S T U D Y

Decisions on spatial domains and scales
At least three main elements must be considered for analysis
of this topic: the spatial domains, the size of the assessment
units and the definition of the coastlines required at different
working scales. The establishment of the most suitable spatial
domain according to ecological features and management
purposes is the first step to develop a hierarchical classification
system at different scales. Once the study scales are selected,
the specific spatial domains must be delimited to ensure that
the physical data series properly describe the main processes
within the study area. The scales could be Global (e.g.

Europe), Biogeographic (e.g. NE Atlantic), Regional (e.g.
North Sea) or Local (e.g. the North coast of Brittany).
According to the objectives established by Ramos (2015a),
three different scales integrate the reference case study:
‘Biogeographic’, that encompasses the NE Atlantic coast
(NEA), from Norway to the Canary Islands, including all the
regional seas integrated in that ‘Geographic Intercalibration
Region’ (European Commission, 2013); ‘Regional’, that encom-
passes the North-west and North Iberian Peninsula coast, all
along the important environmental gradients associated to
the southern Gulf of Biscay; and ‘Local’ that corresponds to
the coast of the administrative region of Cantabria (Figure 1).

In a second step, a uniform procedure for the division of
the entire coasts in sections or assessment units of identical

Fig. 1. Detailed representation of the technical procedure followed for division in stretches along the three scales, from top: NE Atlantic (Biogeographic scale), NW
and N Iberian Peninsula (Regional scale) and Cantabria coast (Local scale). Black circles indicate reference points for quantification of physical variables.
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length has to be established. The size of these basic units has to
be in accordance to the level of detail required in each case.
Thus, the choice was based on a balance between an appropri-
ate characterization of the environmental heterogeneity and a
realistic number of segments that facilitate database manage-
ment. After several experiences, a general pattern may be
outlined, approximately, as follows: greater than 50 km at
Global scale, between 25 and 50 km at Biogeographic scale,
between 10 and 25 km at Regional scale, and smaller than
5 km at Local scale. Assuming those guidelines, different
partitioning schemes were employed in the NEA case study:
at the Biogeographic level (�22,000 km) the coast was subdi-
vided each 40 km (550 stretches), at the Regional level
(�2350 km) each 20 km (41 stretches) and, finally, at the
local scale (�200 km) each 1 km (209 stretches).

For accomplishing this task, a third element should be prelim-
inarily considered: the definition of the coastline at each scale,
since a smooth line can be used at Global and Biogeographic
scales (�1:500,000) (ESRI, 2002) and a more intricate one at
Local scales (�1:5000) (National Center for Geographic
Information by the National Geographic Institute; Spanish
Government). A detail of the coastline drawn at different scales
is shown in the zoom areas within Figure 1.

In summary, the methodological approach used to charac-
terize a certain coastal area has to use a spatial resolution that
recognizes the variability of environmental conditions at the
level of detail required in each case.

Physical variables and indicators
The selection of the most representative physical variables is a
crucial factor, since it is the basis for the whole classification.
Some variables may only have ecological meaning at a certain
scale and, what is most important, the use of unspecific vari-
ables may significantly affect the correct recognition of clear
classification categories. For example, following the different
selection of variables carried out by Ramos (2015a), the sea
surface temperature is a very versatile variable, critical for all
organisms because of its effect on physiological activities
and molecular properties. Accordingly, the role of tempera-
ture is therefore recognized as one of the most important
environmental factors directly responsible for differences in
the distributions of marine organisms resulting in the delimi-
tation of large biogeographic regions (e.g. Van den Hoek,
1982; Breeman, 1988). Another variable that determines the
structure of communities along the coast at the whole range
of scales is the intensity of wave action (Sousa, 1984;
Burrows, 2012). Salinity also determines species distribution
along Global or Biogeographic scales, while it varies over a
short range along coastal waters at Regional or Local scales
except in the proximity of large river discharges and ecotones
between some regional seas (e.g. Baltic Sea – North Sea)
(Lüning, 1990). Coastal morphology affects species distribu-
tion at Local scale (Ramos et al., 2015b), while tidal range
does not vary significantly along a limited area (Bermejo
et al., 2015; Ramos et al., 2015b), but influences communities
at larger scales (Lewis, 1964). Also, other factors as turbidity,
topographic features or rockpools influence at each specific
point causing local modifications (e.g. Dı́az-Tapia et al.,
2013; Martı́n-Garcı́a et al., 2013). As the aim of this classifica-
tion system is to describe macroalgae distribution patterns
along Biogeographic, Regional and Local scales, specific
factors such as those mentioned above have not been included.

In a second step, these variables have to be quantified in a
standardized way and with the level of precision required. For
this purpose, the great advance produced in generating
oceanographic and meteorological data from satellite sensors
and numerical modelling provides a suitable tool for the
development of ecological classifications, which allows easy
quantitative measurements of physical variables and provides
continuous and uniform information along the coast. The
type of information needed and, consequently, the specific
source employed to obtain it depends on the required accur-
acy and precision at each scale. These sources could be satellite
sensors, numerical reanalysis, numerical modelling and in situ
sampling.

Coming back to the NEA case study, the sources for obtain-
ing environmental information for the selected variables vary
among the three spatial scales (Table 1). In situ salinity values
were used at a European scale due to the lack of long temporal
series of remotely sensed data. Vertical profiles of water salin-
ity measurements were provided by the World Ocean
Database 2009 (WOD) of the National Oceanic and
Atmospheric Administration (NOAA)-NESDIS National
Oceanographic Data Center (NODC) (Boyer et al., 2006).
The tidal range was calculated from harmonic analysis com-
puted using sea level observations of the TOPEX/Poseidon
satellite altimetry. At a regional level, estimates of
Photosynthetically Active Radiation (PAR), derived from
9.3 km Sea-viewing Wide Field-of-view Sensor (SeaWIFS)
Level 3 data, were provided by the NASA Goddard Space
Flight Center, Distributed Active Archive Center. The data
used are integrated daily, which takes into account the
number of daylight hours and cloud coverage. On the other
hand, at local scale MyOcean (MODIS-Aqua and SeaWIFS
sensors) products were employed due to their higher temporal
resolution. To estimate the variations of sea surface tempera-
ture (SST) at the largest scales, remotely sensed Advanced
Very High Resolution Radiometer (AVHRR) data from the
Jet Propulsion Laboratory Physical Oceanography
Distributed Active Archive Center (JPL PODAAC) were
used. These data were processed in JPL within the NASA/
NOAA AVHRR Oceans Pathfinder 5 project. Data from the
Group for high Resolution Sea Surface Temperature
(GHRSST) L4 products were used for the local scale. This
sensor has the necessary accuracy to properly describe the
coast of Cantabria, where extremely high temperatures seem
to cause the distribution shifts in species (Fernández, 2011;
Dı́ez et al., 2012; Duarte et al., 2013; Voerman et al., 2013).

Regarding coastal morphology, this variable was obtained
by analysis of Geological Maps of Spain (Geological and
Mining Institute of Spain, IGME) and by fieldwork in some
cases (Ramos et al., 2015b). Finally, in the case of the exposure
to wave action, the information provided by the satellite mis-
sions TOPEX, TOPEX 2, Jason, Envisat and Geosat
Follow-On GFO along a mesh of 1 × 1.58 was accurate
enough at the Biogeographic scale. However, the inclusion
of a numerical reanalysis (Global Ocean Wave, GOW)
improved the temporal and spatial coverage of the wave
height record (spatial resolution of 0.18) at the Regional
scale (Reguero et al., 2012). At the Local scale a database
with even higher resolution was used (200 m), the reanalysis
Downscaled Ocean Waves (DOW) (Camus et al., 2013).
This wave reanalysis to coastal areas uses a hybrid method-
ology which combines numerical models (dynamic downscal-
ing) and mathematical tools (statistical downscaling). The
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methodology has been tested and validated, confirming a good
reproduction of the hourly time series structure and the differ-
ent statistical parameters. Besides, it was calculated along the
depth of closure (the most landward depth seaward of which
there is no significant change in bottom elevation and no sig-
nificant net sediment exchange between the nearshore and the
offshore), more appropriate to characterize the intertidal area
with the high level of detail required in this case study.

The third relevant decision regarding this topic is about
selection of the ‘virtual sampling points’. As most information
relies on standardized, interpolated and validated databases
associated to different grids (i.e. spatial resolution), we must
establish the specific location of the representative sampling
points at different scales. An important debate arose at this
point regarding the representativeness of those stations at
the three working domains of the NE Atlantic study. In the
end, variables were calculated at points 5 km off the coast at
the Biogeographic scale (Ramos et al., 2012), distance neces-
sary to obtain homogeneous and reliable data from satellite
sensors along regional seas with very distinct physical and
oceanographic singularities (e.g. Canary Island, Biscay Gulf,
Irish Sea, North Sea). A different criterion, based on average
depth (�150 m deep), was established at the Regional scale
(Ramos et al., 2016), since it is an area with a more similar
continental shelf, where depth could be used as an appropriate
reference; finally, a fixed distance of 2 km was the selected
threshold at the Local scale (Ramos et al., in press), so these
data need to be more accurate (cf. black dots in Figure 1).
The suitability of these procedures has been demonstrated
because of the similarity of the simulated patterns versus
those obtained from in situ measurements at the three scales
(cf. Ramos et al., 2012, 2016, in press). As stated by Ramos
et al. (2012), this similarity confirms that the variability of
the main coastal physical features was analysed appropriately.
Besides, if the location of the reference points had been situ-
ated closer to the coastline, it would not have been possible
to obtain continuous information throughout the coast.

A final element that must be established is the number of
indicators for each variable, their type and how to ensure
the absence of redundancies amongst them. An ‘indicator’ is
a specific driver of a physical variable (e.g. 99th percentile,
maximum, monthly average) associated to the spatio-
temporal distribution of natural components (species, com-
munities, habitats). As previously established, this constitutes
a key point for classification because of the predictability
capacity of each selected indicator. Different approaches

previously developed in other regions agree on the use of
some physical descriptors, although there are differences in
how to express them (e.g. Mount et al., 2007; Madden et al.,
2009). In general, it can be possible to consider several indica-
tors for each variable, as average, maximum and minimum
values and standard deviation, since data series with high tem-
poral resolution were available. This way, normal and extreme
conditions were considered. Then, one of the most suitable
methodologies to avoid redundancy among indicators is to
remove those that show mutual influence (i.e. intercorrelation
coefficient higher than 0.9 or 0.95).

In any case, further studies on physical indicators should be
carried out, in order to find out those that more accurately
reflect the specific ecological responses of different biological
communities. For example, related with SST, the number of
days in summer that a certain temperature is exceeded
(Voerman et al., 2013); or, related with exposure to wave
action, the bottom shear stress or the frequency of extreme
events, which have greater explanatory potential for the
important interactions between wave energy and organisms
(Gaylord, 1999). In the case of soft bottoms, it would also
be very important to include some homogeneous indicator
related to the grain size of sediments (Ysebaert et al., 2002)
or a physical surrogate related to this variable.

Classification approaches (statistical tools)
Once all the information is available, a different problem
arises: the interpretation of results by means of statistical
tools. Despite uncertainties related to the introduction of
mathematical artefacts for these types of combined analyses,
they may provide an objective way to detect general trends
in the distribution of areas with similar characteristics.
Between the different statistical possibilities, two approaches
are frequently applied: hierarchical agglomerative clustering
(Legendre & Legendre, 1998) or a combination of self-
organizing map (SOM; Kohonen, 2001) and the k-means
algorithm (Hastie et al., 2001). Both approaches can be
applied at different spatial scales, but the advantages and dis-
advantages summarized in Table 2 should be taken into con-
sideration, as explained through their application in the NE
Atlantic case study.

In this study, the hierarchical agglomerative clustering was
applied at the Biogeographic scale (Ramos et al., 2012), with
complete linkage as amalgamation rule, as a suitable method
to look for discontinuities in data (Legendre & Legendre,

Table 1. Physical variables employed at each scale. Type of data sources in brackets: in situ, satellite sensor (sat. sensor) or numerical modelling (num.
modelling).

Variable Scales

Biogeographic Regional Local

Salinity NODC (in situ) X X
Tidal range TOPEX/Poseidon Mission (sat. sensor) X
Wave height TOPEX, Jason . . . (sat. sensors) GOW (num. modelling) DOW (num. modelling)
PAR SeaWiFS (sat. sensor) MyOcean (sat. sensors)
SST AVHRR (sat. sensor) GHRSST (sat. sensors)
Coastal morphology X X Geological map + fieldwork

PAR, Photosynthetically Active Radiation; SST, Sea Surface Temperature; NODC, National Oceanographic Data Center (NOAA Data Center); GOW,
Global Ocean Wave; DOW, Downscaled Ocean Waves; SeaWiFS, Sea-viewing Wide Field-of-view; AVHRR, Advanced Very High Resolution
Radiometer; GHRSST, Group for high Resolution Sea Surface Temperature.
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1998). This procedure reflects different divisions of a region
depending on the significance level (linkage distance)
applied to the cluster analysis. This iterative procedure for
the selection of a classification scheme also generates a suffi-
cient variety of results that may accomplish the different
requirements needed in each study (Figure 2A). This is one
of the main strengths of this statistical methodology, since
the identified groups are integrated in a continuous

environment, whose limits must be better considered as gradi-
ent zones.

On the other hand, the procedure applied at Regional
(Ramos et al., 2016) and Local (Ramos et al., in press) scales
combined two techniques: (i) self-organizing map (SOM;
Kohonen, 2001), an artificial neural network (ANN) tech-
nique; and (ii) the k-means algorithm (Hastie et al., 2001)
(Figure 2B). The SOM is a classification method that detects
patterns or classes in a set of data, preserving the neighbouring
relationships. This means that similar clusters in the multidi-
mensional space are located together on a 2D grid that
allows the data to be intuitively visualized. This allows distin-
guishing the environmental variability of even limited areas.
However, the number of groups obtained with the application
of the SOM was too high in order to create a simple and man-
ageable classification. Thus, as the second step, a k-means
algorithm was applied to cluster the trained map. One of the
strengths of this protocol is the reduction of the level of sub-
jectivity in the final classification, since several decision rules
have been provided. First, the optimum map size of the
SOM (number of units) was chosen based on the heuristic
formula proposed by Vesanto et al. (2000). Besides, the
number of units chosen was also supported as an optimum
solution based on the minimum values for quantization and
topographic errors by training with different map sizes.
Second, the number of k-means group was justified according
to the minimum Davies–Bouldin index (DBI) for a solution
with low variance within clusters and high variance between
them (Negnevitsky, 2002).

In addition, qualitative variables can be added hierarchical-
ly to the statistical classification, as a second level of the clas-
sification (Ramos et al., in press). This approach may be very

Table 2. Pros and cons of two different approaches (statistical tools) to
classify coastal waters.

Statistical
tool

Advantages Disadvantages

Cluster Different divisions
according to the specific
objective

Subjective decision on
linkage distance

Hierarchical visualization Independent visualization
of physical and
biological variables

Groups integrated in a
continuous environment

SOM +
k-means

Preservation of
neighbouring
relationships

K-means establishes a rigid
border in a continuous
environment

Patterns of data intuitively
visualized

Visualization of physical
variables, groups and
biological information
together

Objective decision rules

Fig. 2. Classification methodologies applied at different scales. (A) Cluster analysis throughout the NEA region (thresholds refer to cut-off Euclidean distances
used for segregation of groups). Bottom: Groups obtained (biotypes) for a threshold of 4.64. (B) SOM analysis along NW and N Iberian Peninsula. Top left:
gradient analysis of each physical variable on the trained SOM. Top right: k-means result on the SOM plane. Bottom: Map of the typologies obtained. (C)
Map of the typologies obtained after SOM and k-means analysis along the coast of Cantabria and their hierarchical subdivision according to the variable
‘coastal morphology’. Modified from Ramos et al. (2012, 2016, in press).
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useful to include the type of substratum (soft bottom or
rocky), given the high influence of this characteristic in the
distribution of benthic communities.

In our case study, the above-mentioned second level of the
classification is accomplished at the Local scale. The units
obtained by the application of SOM and k-means were subdi-
vided by the addition of the categorical variable coastal
morphology (Figure 2C). The addition of this variable pro-
vides a more detailed environmental characterization and a
better explanation of the distribution of macroalgae species
(Bermejo et al., 2015). Thus, this hierarchical approach gives
the option of including this variable or not, deciding in each
case according to the purpose.

Biological information
In the end, the most important point is that our statistical clas-
sification has a real ecological meaning in terms of agreement
with the specific objective and the study scale. It is therefore
necessary to know the actual distribution of communities at
the level of detail required in each case, in order to establish
their relationship with the physical groups. The lack of stan-
dardized information of biological elements along the spatial
domain, mainly for studies over large areas (e.g. NE
Atlantic, Bay of Biscay), is one of the most frequent problems
in this kind of work.

Two main questions arise in regard to this topic: What kind
of data do we need? How can we obtain them? In general, at
Regional and Local scales, quantitative or semi-quantitative
information could be obtained from specific local studies.
However, at Global and Biogeographic scales a homogeneous
approach is required. In this sense, international initiatives
aimed to palliate these problems by installing permanent
international networks of observation stations, such as the
COST Action ES1003 EMBOS (Development and implemen-
tation of a pan-European Marine Biodiversity Observatory
System). In this network specific protocols were proposed in
order to ensure standardized and homogeneous long-term
monitoring for soft bottoms, hard substrata and pelagic com-
munities in several pilot sites throughout Europe. This kind of
work is of great importance, allowing assessment of long-term
changes in marine biodiversity and their possible causes,
taking into account natural and anthropogenic gradients
along a large area.

In practice, two different approaches were applied to
acquire the biological data depending on the requirements
of each scale in the analysed case study. In this case, intertidal
macroalgae communities are the biological element used at
the three scales, although other organisms could also be
employed. At the Biogeographic level (Ramos et al., 2014),
the generation of quantitative standardized data all along
the NEA region was a very difficult task. The cost of carrying
out homogeneous sampling to obtain data that could be dir-
ectly comparable is very high. Because of this, a collaborative
work among experts from EU member states involved in the
intercalibration of metrics for assessment of macroalgae
along the NEA space facilitates the generation of a standar-
dized biological database, including the most suitable macro-
algae species that may represent the NEA intertidal rocky
shore all around the NE Atlantic area. Then, semi-quantitative
abundance data of those macroalgae taxa were compiled using
three levels: common (2), rare (1) or absent (0). The experts of
each country determined these ranges taking into account the

original quantitative data obtained by field surveys in the dif-
ferent regions. In this case, the compilation of data using the
same species matrix and the same procedure ensured that
there were no differences in taxonomic identification within
working groups.

However, at smaller spatial scales, more detailed biological
information is required, including quantitative macroalgae
cover data along the altitudinal gradient on the shore
(Ramos et al., 2016, in press). In contrast to the biogeographic
gradients, at these scales the macroalgae distributions at dif-
ferent bathymetric levels along the shore can help to explain
certain patterns of longitudinal variability. Therefore, along
the NW and N coast of the Iberian Peninsula quantitative
data, standardized by both time and space, were obtained.
For this purpose, field surveys were carried out during the
same low spring tide cycle. At each site, three transects, per-
pendicular to the coast with a characteristic zonation
pattern were selected. Then, a stratified and systematic sam-
pling procedure was applied, dividing each transect into
four areas (lower intertidal, middle intertidal, upper intertidal
and supralittoral). Algae were identified in situ and taxa cover
was obtained by photographic analysis in ARCGIS. This com-
bined technique presents three main advantages. First, the
identification of taxa through direct observation in the field
allows the recognition of organisms partially hidden by
canopy species, which would be more difficult at a later
stage from photographs. Secondly, the automatic digital
picture analysis provided objectivity to coverage data versus
traditional observer estimation. Finally, photographs provide
the added benefit of permanent visual records, which can
later be revisited for additional information in the images
(Parravicini et al., 2009). The resolution obtained by this pro-
cedure is good enough for the application of some of the biotic
indices developed for the assessment of macroalgae in applica-
tion of the European WFD, such as the CFR index (Juanes
et al., 2008; Guinda et al., 2014).

Biological validation (statistical tools)
The final question to be answered along this technical debate
is related to the specific statistical tools for testing the suitabil-
ity of the physical groups related to the distribution of com-
munities and for characterizing these groups according to
their species composition. To accomplish these goals, several
statistical methods, with different degrees of objectivity, are
currently available.

In general, standard analyses, such as cluster, SIMPER,
MDS or PERMANOVA, are very often used in benthic
ecology to test the statistical relationship between biological
data and physical groups from different points of view. In
short, the cluster analysis is mainly a screening tool, which
allows identifying groups according to species distribution
that may be later related with the physical groups (i.e. bio-
types). Complementarily, MDS is a technique useful for gradi-
ent analyses, showing a clear advantage to see patterns of
distribution of elements (e.g. sampling stations, cluster
groups, etc.) in a continuous environment. In addition,
SIMPER, PERMANOVA and ANOSIM tests provide a way
to check differences in taxa composition between the physical
groups previously defined.

Beyond this traditional scheme, alternative statistical pro-
cedures applied in the NEA case study, ratified their suitability
for fitting biological-physical interactions. As demonstrated
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by Ramos et al. (2016, in press), the SOM analysis is not just a
useful tool for the classification of environmental variables (cf.
Section on Classification approaches), but a technique that
allows (i) to visualize, in a very intuitive way, the patterns in
macroalgae communities distribution and (ii) to identify
their relation to environmental data and physical typologies
by visualization of the gradient distribution in the same
figure. In addition, the weight (i.e. connection intensity) of
each species in each cell of the SOM can be interpreted as
its occurrence probability in a given area, even in areas in
which they did not occur during the sampling (Céréghino
et al., 2005). In fact, different studies have proved the
benefit of SOM in processing of ecological and environmental
data compared with conventional statistical methods
(Céréghino et al., 2005; Solidoro et al., 2007).

Furthermore, new techniques related with the SOM ana-
lysis, such as the component planes (Vesanto, 1999), integrates
the graphical representation of the physical variables that were
previously included in the SOM and the macroalgae data. The
simultaneous inspection of multiple component planes allows
for the visualization of correlated variables, both physical and
biological, because closely placed planes are indicative of
similar behaviour or correlation between respective variables.
An example of this technique is available from the Local scale
(Ramos et al., in press) of the NEA case study (Figure 3),
applied to the interpretation of macroalgae distribution for
the lower intertidal along the coast of Cantabria according

to the physical classification of that coastal zone (SOM and
k-means). Thus, environmental conditions, species distribu-
tion and physical groups can be analysed and compared as a
whole. Those variables with a strong correlation appear as
component planes that are closest together. For instance, in
the top of the graph (Figure 3), the average SST was correlated
with higher abundances of Corallina officinalis/Ellisolandia
elongata, Gelidium corneum and Pterosiphonia complanata
species where the temperature presented high values (group
E) and with higher abundance of Bifurcaria bifurcata and
Halopteris scoparia where the temperature is low (group W
and C).

At this point, it is not possible to ignore the power of logis-
tic regression models as another very useful statistical tool
available to relate the environmental conditions and commu-
nity assemblages, mainly for the case of using categorical vari-
ables (Ysebaert et al., 2002; Guanche et al., 2013). This method
measures the fitting quality by comparing the deviance ratio
(Ddev) and the chi-square distribution (x2). Assuming a con-
fidence level a ¼ 95%, if Ddev . x2

0.95%, Ddev, the fitting
quality of the parameter was significant. Once the parameters
estimated for the models are known, the predicted probabil-
ities p of the significant fittings could be represented according
to different categories. Thereby, the graphical representation
allowed visualizing the probability of occurrence of each
species, according to the analysed physical variable. For
example, in Ramos et al. (2015b) it was used to relate

Fig. 3. Component planes ordering the physical variables and taxa in the lower intertidal. Visualization of variables in a shading scale on the previously trained
SOM. Right: visualization of physical classification in the same trained SOM. Modified from Ramos et al. (in press).
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geomorphological variables to macroalgae distribution. In this
case, species probability of occurrence was represented as
absent, low (0–33%), medium (33–66%) or high (99–100%)
(Figure 4). Among other relations, it can be observed, at the
lower intertidal, how C. officinalis/E. elongata has a great prob-
ability of occurrence in steep slopes that faced N and W. On the

contrary, Bifurcaria bifurcata appeared mostly in wave-cut
platforms facing W or E. Thus, the regression logistic models
define and characterize the spatial patterns of species along
environmental gradients, an important result supporting the
suitability of those factors (i.e. coastal orientation and coastal
morphology) in the classification approach at Local scale.

Fig. 4. Graphical results of logistic regression models: probability of occurrence of three macroalgae species conditioned by geomorphological variables (coastal
orientation and coastal morphology).

Fig. 5. Hierarchical support system used as management framework for classification of coastal areas at different spatial scales.
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A P P L I C A T I O N S

The hierarchical classification approach presented in this paper
offers alternative procedures for the definition of ecologically
relevant regions, a basic requirement for coastal environmental
protection and management. This classification system would
support the application of ecological-based approaches for
diagnostics and assessments of health status of marine
systems (e.g. ecological status, sensu WFD; state of conserva-
tion, sensu Habitats Directive, etc.), which ultimately will
allow for their sustainable management at the required level
of definition (i.e. geographic scales). Among others, such a hier-
archical classification could be useful for works linked to mari-
time spatial planning, environmental impact assessment,
analysis of climate change effects, rehabilitation and restoration
projects, establishment of reference conditions, integrated
coastal management, implementation of environmental legisla-
tion, etc. (e.g. Laruelle et al., 2010; Pittman et al., 2011).

A good example of some of those applications was the use of
the Biogeographic classification carried out at the NE Atlantic
scale (Ramos et al., 2012) as technical justification for the estab-
lishment of physically harmonized coastal zones for the potential
distribution of macroalgae. Thereby, new ‘biotypes’ (physical-
based groups) were adopted for the Intercalibration of assessment
metrics for macroalgae carried out at this geographic region (IC
NEA GIG), splitting off the common IC type NEA 1/26 (from
Canary islands to the Arctic Sea) into three more homogeneous
subtypes: (1) NEA ‘1/26 A1’ (Canary Island and Azores); (2)
NEA ‘1/26 A2’ (Iberian Peninsula and Southern France) and
‘NEA 1/26 B21’ (Northern France, Ireland, Norway and UK)
(European Commission, 2013).

Further applications of these procedures may focus on the
temporal scales of variability. In that complementary frame-
work, some applications to predict future changes in macroal-
gae communities and the related consequences on their
current ecological status were proposed by Sales & Ballesteros
(2009). The physical information compiled with high spatial
and temporal resolution (i.e. meteo-oceanographic data
series) allows studying historical shifts in species distribution.
The understanding of these changes is very important to deter-
mine the specific indicators (environmental conditions) that
may cause the disappearance, reduction, increase or appearance
of a specific species or population. Therefore, based on physical
surrogates and information on actual patterns of distribution it
may be possible to retrospectively estimate the degree of stress
in a specific area (McArthur et al., 2010).

In a prospective way, the availability of accurate information
on current physical characteristics and communities distribution
provides an important base for assessment of habitat suitability of
different species. This information allows developing species dis-
tribution models (SDMs) that could be applied for prediction of
their future spatial distribution in different projected climate
scenarios (e.g. Intergovernmental Panel on Climate Change).
Climatic conditions in future could be introduced in SDMs
and predict the distribution of target species and marine bio-
diversity (e.g. Cheung et al., 2009; Jordà et al., 2012).

C O N C L U S I O N S

The methodological framework proposed in this paper allows
the establishment of a classification system of the coastal envir-
onment and to recognize the physical and biological variability

associated within and between groups at different scales. This is
based on the analysis of specific abiotic characteristics that
determine the distribution of different benthic communities,
adapting the methodologies to specific spatial requirements.
For this purpose, the hierarchical support system, summarized
in Figure 5, provides a management framework for classifica-
tion of coastal systems at the most appropriate resolution,
applicable to a wide range of coastal areas.

This classification system offers an objective statistical tool
for the definition of ecologically relevant regions, which may
be useful for environmental protection and for the assessment
of anthropogenic effects and climate change in coastal ecosys-
tems. In addition, the knowledge obtained about the relation-
ships of species with environmental factors will be helpful for
decision-making on the management and conservation of
natural resources, offering a procedure to predict the compos-
ition and structure of sustainable systems over space and time.
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González B. (2012) Coastal waters classification based on physical attri-
butes along the NE Atlantic region. An approach for rocky macroalgae
potential distribution. Estuarine, Coastal and Shelf Science 112, 105–114.

Ramos E., Puente A. and Juanes J. (2016) An ecological classification of
rocky shores at a regional scale: a predictive tool for management of con-
servation values. Marine Ecology 37, 311–328. doi: 10.1111/maec.12280.

Ramos E., Puente A., Guinda X. and Juanes J.A. (in press) A hierarchical
classification system along the NE Atlantic coast: focusing on the local
scale (Cantabria, N Spain). European Journal of Phycology.

Ramos E., Puente A., Juanes J.A., Neto J.M., Pedersen A., Bartsch I.,
Scanlan C., Wilkes R., van den Bergh E., Ar Gall E. and Melo R.
(2014) Biological validation of physical coastal waters classification
along the NE Atlantic region based on rocky macroalgae distribution.
Estuarine, Coastal and Shelf Science 147, 103–112.

Reguero B.G., Menéndez M., Méndez F.J., Mı́nguez R. and Losada I.J.
(2012) A Global Ocean Wave (GOW) calibrated reanalysis from 1948
onwards. Coastal Engineering 65, 38–55.

Reis J. (2014) Introduction to systems approaches in coastal management –
the legacy of the SPICOSA project. Marine Policy 43, 1–2.

Rice J., Gjerde K.M., Ardron J., Arico S., Cresswell I., Escobar E., Grant
S. and Vierros M. (2011) Policy relevance of biogeographic classifica-
tion for conservation and management of marine biodiversity beyond
national jurisdiction, and the GOODS biogeographic classification.
Ocean and Coastal Management 54, 110–122.

Roff J.C. and Taylor M.E. (2000) National frameworks for marine con-
servation – a hierarchical geophysical approach. Aquatic
Conservation: Marine and Freshwater Ecosystems 10, 209–223.

Sales M. and Ballesteros E. (2009) Shallow Cystoseira (Fucales:
Ochrophyta) assemblages thriving in sheltered areas from Menorca (NW
Mediterranean): relationships with environmental factors and anthropo-
genic pressures. Estuarine, Coastal and Shelf Science 84, 476–482.

Schoch G.C. and Dethier M.N. (1996) Scaling up: the statistical linkage
between organismal abundance and geomorphology on rocky intertidal
shorelines. Journal of Experimental Marine Biology and Ecology 201, 37–72.

Sherman K. (1986) Introduction to parts one and two: large marine eco-
systems as tractable entities for measurement and management. In
Sherman K. and Alexander L.M. (eds) Variability and management
of large marine ecosystems. AAAS Selected Symposium 99. Boulder,
CO: Westview Press, pp. 3–7.

Snelder T., Leathwick J., Dey K., Rowden A., Weatherhead M., Fenwick
G., Francis M., Gorman R., Grieve J., Hadfield M., Hewitt J.,
Richardson K., Uddstrom M. and Zeldis J. (2007) Development of
an Ecologic Marine Classification in the New Zealand Region.
Environmental Management 39, 12–29.

Solidoro C., Bandelj V., Barbieri P., Cossarini G. and Umani S.F. (2007)
Understanding dynamic of biogeochemical properties in the northern
Adriatic Sea by using self-organizing maps and k-means clustering.
Journal of Geophysical Research 112, C07S90. doi: 10.1029/2006JC003553.

Sousa W.P. (1984) The role of disturbance in natural communities.
Annual Review of Ecology and Systematics 15, 353–391.

Swaney D.P., Humborg C., Emeis K., Kannen A., Silvert W., Tett P.,
Pastres R., Solidoro C., Yamamuro M., Hénocque Y. and Nicholls
R. (2012) Five critical questions of scale for the coastal zone. Estuarine,
Coastal and Shelf Science 96, 9–21. doi: 10.1016/j.ecss.2011.04.010.

Valentine P.C., Todd B.J. and Kostylev V.E. (2005) Classification of
marine sublittoral habitats, with application to the northeastern North
America region. American Fisheries Society Symposium 41, 183–200.

Van den Hoek C. (1982) The distribution of benthic marine algae in rela-
tion to the temperature regulation of their life histories. Biological
Journal of the Linnean Society 18, 81–144.

Verfaillie E., Degraer S., Schelfaut K., Willems W. and Van Lancker V.
(2009) A protocol for classifying ecologically relevant marine zones, a
statistical approach. Estuarine, Coastal and Shelf Science 83, 175–185.

Vesanto J. (1999) SOM-based data visualization methods. Intelligent Data
Analysis 3, 111–126.

Vesanto J., Himberg J., Alhoniemi E. and Parhankangas J. (2000) SOM
Toolbox for Matlab 5, Technical Report A57. Helsinki: University of
Technology, Neural Networks Research Centre.

Voerman S.E., Llera E. and Rico J.M. (2013) Climate driven changes in
subtidal kelp forest communities in NW Spain. Marine Environmental
Research 90, 119–127.

Ysebaert T.J., Meire P., Herman P.M.J. and Verbeek H. (2002)
Macrobenthic species response surfaces along estuarine gradients: pre-
diction by logistic regression. Marine Ecology Progress Series 225, 79–
95. doi: dx.doi.org/ 10.3354/meps225079.

and

Zacharias M.A. and Roff J.C. (2000) A hierarchical ecological approach to
conserving marine biodiversity. Conservation Biology 14, 1327–1334.

Correspondence should be addressed to:
J.A. Juanes
Environmental Hydraulics Institute (IHCantabria),
Universidad de Cantabria, Santander, Spain
email: juanesj@unican.es

476 jose’ a. juanes et al.

https://doi.org/10.1017/S0025315416000801 Published online by Cambridge University Press

mailto:juanesj@unican.es
https://doi.org/10.1017/S0025315416000801

	A global approach to hierarchical classification of coastal waters at different spatial scales: the NEA case
	INTRODUCTION
	NE ATLANTIC CASE STUDY
	Decisions on spatial domains and scales
	Physical variables and indicators
	Classification approaches (statistical tools)
	Biological information
	Biological validation (statistical tools)

	APPLICATIONS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES


