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Abstract

Microbiome, the study of microbial communities in specific environments, has developed sig-
nificantly since the Human Microbiome Project began. Microbiomes have been associated
with changes within environmental niches and the development of various diseases. The
development of high-throughput technology such as next-generation sequencing has also
allowed us to perform transcriptome studies, which provide accurate functional profiling
data. Metabolome studies, which analyse the metabolites found in the environment, are the
most direct environmental condition indicator. Although each dataset provides valuable infor-
mation on its own, the integration of multiple datasets provides a deeper understanding of the
relationship between the host, agent and environment. Therefore, network analysis using mul-
tiple datasets might give a clearer understanding of disease pathogenesis.

Introduction

Currently, the human body is viewed not only as a complex organism, but also as an envir-
onment within which countless microorganisms live. The number of microorganism genes
in the human body is approximately 150 times the number of human genes (Ref. 1). These
microorganisms live and interact with the human body in different symbiotic relationships,
for example, mutualism, commensalism or even parasitism (Ref. 2). These interactions may
be associated with a disturbance in normal physiology. Therefore, microbiome studies may
provide a better understanding of the development of human diseases.

The human stomach was once thought to be a ‘sterile’ environment because of its extremely
high acidity (Refs 3, 4). It was then thought to be the most important gastrointestinal barrier to
various pathogenic microorganisms. However, this theory was debunked when Helicobacter
pylori was successfully isolated from the human stomach by Barry Marshal and Robin
Warren in the early 1980s (Refs 5, 6). This breakthrough suggested that other microorganisms
might be able to survive and colonise the human stomach. However, past efforts to profile
stomach microbiota were hampered by the limitations of conventional culture, histology
and immunohistochemistry. The culture method required a huge effort to isolate and identify
bacteria and could not characterise most of them. Therefore, it most likely underestimated the
actual number of microbiota in the stomach.

The development of sequencing technology has shed new light on the gastric microbiota.
The application of next-generation sequencing (NGS) is a huge leap that has enabled a shift to
a culture-independent approach and focused on sequence analysis to identify stomach micro-
organisms. The microbiome and transcriptome are then used to characterise the microbiota
and viable microorganisms in the stomach.

Another type of study, the metabolome study, is currently used to support microbiome and
transcriptome studies. A metabolome study is a comprehensive analysis of metabolites, where
the molecules released by the organisms into the environment are identified and quantified.
The metabolome is considered the most direct indicator of alterations in the environment.

In this review, we aim to summarise the current updates on microbiota, microbiome, tran-
scriptome and metabolome studies of the human stomach. We also review the importance of
integrating multiple datasets to get a better understanding of the development of gastric
diseases.

Next-generation sequencing

The stomach is unique within the human gastrointestinal tract because of its harsh environ-
ment with extremely high acidity, ranging between a pH of 1 and 3 in healthy subjects
(Refs 7, 8). Therefore, it is extremely difficult for microorganisms to successfully colonise it.
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Most viable microorganisms are eliminated in the stomach, result-
ing in significantly lower microbial loads in the stomach (101–103

microbes/g) compared with that in the small intestine (104–107

microbes/g) or colon (1011–1012 microbes/g) (Refs 9–11). This is
one of the causes of the difficulty in profiling the microorganisms
within the human stomach. In the past, very few methods could
be used for gastric microbiota profiling. A conventional method
such as the culture of gastric biopsy and gastric juice can reveal
viable microorganisms in the specimens (Refs 12–14). Histology
and immunohistochemistry are also frequently used for profiling
(Ref. 12). However, these methods are costly, require extensive
effort, take a long time to achieve results and have a low sensitiv-
ity. Therefore, a more reliable method to provide detailed data
about gastric microbiota is needed. NGS has been used extensively
for comprehensive profiling of microorganisms ever since the
Human Microbiome Project began (Ref. 15). NGS is a ‘culture-
independent’ method that can provide a deep and high through-
put of DNA sequences. It results in gastric microbiome data,
which then can be used to determine the microbiota.
Microbiome, in this case, refers to the collection of genomes
from all microorganisms in a specific environment, whereas
microbiota refers to the specific microorganisms. The pipeline
for a microbiome study is shown in Figure 1.

Currently, NGS is widely used for profiling microorganisms in
a specific environment, such as the stomach, gut, oral cavity or
skin. There are several NGS methods; however, 16S ribosomal
RNA (16S rRNA) gene sequencing and shotgun metagenomic
sequencing are the two most used. The 16S rRNA sequencing
method uses 16S rRNA as a marker gene to be amplified. 16S
rRNA is a highly conserved gene with hyper-variable regions
within it; it is unique and can be used to distinguish between spe-
cies and microbiome strains (Refs 16, 17). The hyper-variable
regions within the 16S rRNA gene, such as V1–V9, are the amp-
lification target in microbiome studies. A combination of several
hyper-variable regions is also commonly used, such as the com-
bination of V1–V3, V2–V3, V3–V4 and V5–V6 (Refs 18–21).

The sequencing reads are then filtered based on the number of
expected errors and the length of the reads to obtain high-quality
clean tags. Chimeric sequences can be detected using specific soft-
ware such as UCHIME (Ref. 22). Chimeric sequences are usually
removed to obtain the effective tag sequences and to avoid mis-
identification. Next, sequences with high similarity are assigned
the same cluster name operational taxonomic unit (OTU). Most
studies used a 97–99% similarity as the basis of determining the
OTUs (Refs 18, 19, 23). However, 16S amplicon sequencing
also has limitations. First, it may underestimate the diversity in
the community given the biases associated with the polymerase
chain reaction amplification method. Second, amplicon sequen-
cing can generate wide estimations of diversity. Third, this
method cannot provide data related to biological functions
encoded in the genome (Refs 24–26).

On the contrary, shotgun metagenomic sequencing targets all
genomic DNA available in the given sample. The library prepar-
ation and workflow are similar to other whole-genome sequencing
methods. It enables us to provide a better species- (Ref. 27) and
strain-level classification of microorganisms (Ref. 28). However,
despite the advantages, this method has several challenges, such
as relatively complex data leading to complicated bioinformatics
analyses, the presence of a lot of host DNA and contaminant
genomes.

Various analyses can be conducted from the OTU data.
Diversity analysis is one of the basic analyses for microbiome
studies. In general, we recognise two types of diversity, alpha-
diversity and beta-diversity. Alpha-diversity is used to analyse
the diversity of the samples’ richness and evenness through sev-
eral parameters: observed species, Chao1 index, Shannon index,
Simpson index and Good’s coverage (Refs 29, 30).
Beta-diversity is used to analyse the species complexity of the
samples. Diversity analysis is commonly performed using
QIIME software (Ref. 31). Principal coordinate analysis is another
method used to obtain the principal coordinates and visualise
complex data (Ref. 32).

Fig. 1. Schematic pipeline for microbiome, transcriptome and metabolome study.
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A study by Johnson et al. highlighted the potential of the high-
throughput sequencing of the entire 16S rRNA gene to provide
better taxonomic resolution than is achieved by only targeting
the hyper-variable regions with a short-read sequencing platform.
They performed an in-silico comparison of full and partial 16S
rRNA sequencing that showed the importance of utilising the
full 16S rRNA gene to accurately classify the microorganisms at
high taxonomic resolution (Ref. 33).

NGS can also provide high-throughput transcriptome sequen-
cing or RNA sequencing data. It enables us to detect, quantify and
perform deep analyses of the well-known transcripts and novel,
unknown transcripts. Although microarrays are also a powerful
method to study the transcriptome, RNA sequencing (RNASeq)
using NGS offers several advantages. For example, RNASeq can
be performed without prior knowledge of the genome sequences,
therefore, without reference genomes. RNASeq can also be used
to directly measure all RNA transcripts, whereas microarrays
are indirect, measuring fluorescence after hybridisation using a
probe sequence. Furthermore, RNASeq can be used to detect
novel transcripts, and, finally, RNASeq data provide less noise
compared with microarrays, in which cross-hybridisation may
increase background signals (Ref. 34).

The types of sequencers used for NGS should also be consid-
ered. Because of the huge number of NGS platforms currently
available, choosing the most suitable sequencer is important.
This will depend mostly on the study design and the project
goal. Other considerations are the run time, read length, number
of reads per run, maximum output and price.

Overview of gastric microbiota and factors affecting the
composition

The successful identification of Campylobacter pyloridis by Barry
Marshal and Robin Warren in the early 1980s was a breakthrough
in medicine. Campylobacter pyloridis, renamed Helicobacter pylori
in 1984, was shown to successfully colonise the human stomach,
which debunked the old ‘sterile stomach’ theory. This discovery
suggested the possibility of human stomach colonisation by
other pathogenic microorganisms. However, the comprehensive
characterisation of gastric microbiota was still not carried out
because of the limitations of conventional methods such as cul-
ture, histology or immunohistochemistry. The development of
NGS methods has enabled better assessment of the composition
of stomach microbiota. In addition, most of the early gastric
microbiota studies focused on bacteria rather than other microor-
ganisms such as fungi or parasites.

Because of the anatomical location of the stomach, the micro-
biota detected in the stomach might include microbiota from the
oral cavity or duodenum. For example, there is an abundance of
Lactobacillus and Veillonella, previously described as oral micro-
biota (Refs 35, 36). However, these are transient bacteria, and
their importance in developing gastric diseases is still not clear.

Bik et al. characterised the microbial diversity within the
human stomach using the 16S rDNA clone library. They identi-
fied 128 phylotypes and assigned them into five major phyla:
Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and
Fusobacteria. Not surprisingly, they found that 67% of phylotypes
in the study have been described as phyla commonly found in the
oral cavity. They also demonstrated an abundance of transient
bacteria (Ref. 37). Importantly, the same study showed that
H. pylori was the most abundant species in the stomach of
H. pylori-infected subjects. A study conducted by Nam et al. on
20 Korean patients reported that gut microbiota differed between
subjects from different geographical regions. They proposed that
microbiota might be affected by host and environmental factors,
such as genetic variations and diet (Ref. 38). Five dominant

phyla were characterised from the stomachs of Korean subjects:
Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria and
Proteobacteria. Another study by Ferreira et al. also supports
these results; the gastric microbiota in 135 Portuguese was domi-
nated by five phyla: Proteobacteria (69.3%), Firmicutes (14.7%),
Bacteroidetes (9.0%), Actinobacteria (4.3%) and Fusobacteria
(1.3%). Therefore, the studies showed no differences in phyla
between subjects from different geographical areas, and the differ-
ences might be more pronounced at the level of genus, species or
subspecies. Delgado et al. examined specimens from 12 healthy
subjects from different populations. They found that
Streptococcus, Proprionibacterium and Lactobacillus were the
most abundant genera, and the microbiota was similar at the phy-
lum level (Ref. 39). The gastric microbiota is more dynamic at the
genus level, and various factors might affect this level. Gastric
microbiota also reportedly changed with the development of gas-
tric diseases, including H. pylori infection. Studies have investi-
gated the relationship between microbiota composition and the
development of various gastric diseases (Table 1).

The human stomach is a complex organ with various mechan-
isms to maintain a healthy state. Therefore, the exact mechanisms
determining the gastric microbiota composition are not clearly
understood. However, factors such as dietary habits, and the use
of antibiotics, anti-inflammatory drugs, probiotics and proton-
pump inhibitors or H2-antagonists, are thought to play important
roles. The extensive and long-term use of acid secretion inhibitors
such as proton pump inhibitors (PPIs) and H2-antagonists is said
to be the most important factor influencing the microbiota
composition (Ref. 23). Another proposed mechanism influencing
the gastric microbial composition is that PPIs may directly target
the bacterial and fungi proton-pump mechanisms of organisms
such as H. pylori, Clostridium difficile, Candida albicans and
Saccharomyces cerevisiae (Ref. 40). A high pH level may facilitate
bacterial overgrowth in the stomach (Refs 40, 41). Subsequently,
the change of gastric microbiota composition will also affect the
gut microbiota. A study by Imhann et al. revealed that the use
of PPI significantly alters gut microbiota, reducing its microbial
diversity (Ref. 42). Furthermore, bacterial composition in the
PPI user group was clustered differently compared with the
non-PPI user group (Ref. 42).

In animal models, dietary habit was reported to be associated
with the disturbance of normal gastric microbiota (Ref. 43).
Moreover, a long-term high-fat diet was associated with gastric
dysbiosis. However, the mechanism leading to dysbiosis in the
mouse model might also be caused by the metabolic syndrome,
which comprises obesity, hyperlipidaemia and insulin resistance.
Probiotics contain live microbial components that have a benefi-
cial effect on human health (Ref. 44). They have, therefore, been
proposed as an alternative or supplemental therapy for gastro-
intestinal diseases. For example, Igarashi et al. showed the poten-
tial of LG21 probiotic to restore the gastric microbiota
composition of patients with functional dyspepsia (Ref. 45). The
patients had an alteration of gastric microbiota compared with
healthy subjects. In the functional dyspepsia group, the level of
Bacteroidetes was higher than that of Proteobacteria, with absent
Acidobacteria. In contrast, in healthy subjects, the Proteobacteria
level was higher than that of Bacteroidetes, and Acidobacteria
were present. The LG21 probiotic supplementation was able to
return the gastric microbiota of dyspeptic patients to a composition
similar to that of healthy subjects, significantly decreasing the
Bacteroidetes/Proteobacteria ratio and increasing Acidobacteria
levels. In addition, the abundance of Lactobacillus, which is the
genus of the LG21 strain was not increased after 12 weeks therapy
(Ref. 45), showing that the huge amount of LG21 administered,
caused a minimum of side effects and no Lactobacillus overgrowth
in the stomach.
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Overview of gastric transcriptome studies

The metagenomic approach is a powerful method for profiling the
gastric microbiota. It is a culture-independent method for charac-
terising microorganisms within the human stomach. It is consid-
ered a breakthrough from conventional culture-based or
histological approaches, which could only characterise approxi-
mately 30% of gastric microbiota. However, metagenomics can
only provide information on the ‘presence’ or ‘absence’ of micro-
organisms; therefore, another approach is needed to shed light on
the functional profile of the gastric microbial community. The
value of transcriptome studies in examining viable bacteria and
microbial gene expression in the human stomach has been
shown by Thorell et al. (Ref. 46). Their results showed that H. pyl-
ori is the predominant microbiota both in infected individuals
and in most uninfected individuals. Conventional methods such
as urea breath test, serology and culture confirmed this. H. pylori
abundance is positively correlated with the presence of
Campylobacter, Deinococcus and Sulphurospirillum. Importantly,
the results also showed that the expression of H. pylori genes
involved in pH regulation and nickel transport was high (Ref. 46).

Transcriptome studies use a different approach than metagen-
ome studies, focusing on expressed genes in the specific environ-
ment (Ref. 47), either from the microbial community or the host.
Transcriptome studies analyse gene expression by capturing the
mRNA found in a specific environment (Refs 48, 49), thus deter-
mining the viable microbiota. The pipeline for transcriptome
studies is shown in Figure 1.

As the mRNA is extracted from biopsy or stool specimens, it
may contain microbial, and host RNA; differentiating between
the two has proven challenging. A suitable transcriptome refer-
ence database should be used to provide accurate data on the
expressed genes either from the host or the microbes.

Differentiating between microbial and host RNA may help pro-
vide sequencing data with less background noise caused by the
abundant host RNA. Currently, commercial kits used to separate
and isolate bacterial RNA from mixed samples are widely avail-
able. Several studies have demonstrated the use of bacterial
RNA enhancement kits to clean up samples by removing non-
bacterial RNA (Refs 50–52).

It is important to note that transcriptome studies can be per-
formed from either the microbial or host perspective. The bio-
logical significance depends on the design and aims of the
study. For example, where a study aims to examine the expression
of genes responsible for antibiotic resistance mechanisms, the
microbial transcriptome may provide more significant data. On
the contrary, when the study aims to examine the effect of infec-
tion on the host, the host transcriptome may give deeper informa-
tion on the disease pathogenesis. The researcher should consider
the best approach to fulfil the study goal.

Microbiome, transcriptome and gastric diseases

The success of H. pylori in colonising the stomach demonstrates
the important role of gastric microbiota in gastroduodenal disease
pathogenesis. Other microbiota might be able to survive in the
extreme gastric niche environment and be related to disease patho-
genesis. Therefore, it is important to examine the association
between gastric microbiota and various gastric diseases. The micro-
biome modification during gastric diseases is shown in Table 2.

Gastric cancer

Gastric cancer is the fifth most common malignancy globally
(age-standardised rates 11.1 per 100 000 in 2018; Global Cancer
Observatory). The incidence of gastric cancer shows wide

Table 1. Studies investigating the predominant microbiota in gastric diseases

Country
Published

year
Total

samples

Predominant OTUs in disease

ReferenceH. pylori gastritis
H. pylori atrophic

gastritis Gastric cancer

China 2017 207 – – Peptostreptococcus
stomatis, Streptococcus
anginosus, Parvimonas
micra, Slackia exigua and
Dialister pneumosintes

Coker et al. (Ref. 68)

United
Kingdom

2017 95 Helicobacteraceae Helicobacteraceae,
Streptococcaceae,
Fusobacteriaceae and
Prevotellaceae

– Parsons et al.
(Ref. 69)

Malaysia 2017 36 – – Lactococcus, Veillonella
and Fusobacteriaceae

Castaño-Rodríguez
et al. (Ref. 70)

China 2018 276 – – Prevotella melaninogenica,
Streptococcus anginosus
and Propionibacterium
acnes

Liu et al. (Ref. 71)

Mongolia 2019 75 Helicobacter genus
in H. pylori-positive
gastritis

– – Gantuya et al.
(Ref. 72)

China 2018 62 – – Peptostreptococcus,
Streptococcus and
Fusobacterium

Chen et al. (Ref. 73)

Mongolia 2020 168 H. pylori H. pylori Lactobacilli and
Enterococci

Gantuya et al.
(Ref. 74)

China 2020 132 – – Phyla Actinobacteria,
Bacteriodes, Firmicutes
and Fusobacteria

Wang et al. (Ref. 75)
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variation worldwide, with a notably high prevalence in East Asian
countries such as Japan, Korea, Mongolia and China (Refs 53, 54).
H. pylori is the most successful colonising pathogen in the human
stomach. It was classified as a class I carcinogen in 1994 by the
International Agency for Research on Cancer. H. pylori is one
of the most important risk factors for gastric cancer. Several stud-
ies have reported a strong association between gastric cancer
development and H. pylori infection (Refs 55, 56). Gastric cancer
develops and progresses slowly over years, starting from gastric
inflammation/gastritis, and progressing through gastric atrophy,
intestinal metaplasia, finally developing into gastric cancer.
H. pylori plays an important role in inducing gastritis. Moreover,
because of H. pylori being able to persistently colonise gastric epi-
thelial cells, chronic inflammation continues in the stomach.

The eradication of H. pylori is crucial for reducing gastric can-
cer risk. Lee et al. showed that H. pylori eradication prevents gas-
tritis progression into gastric cancer in the INS-GAS mice model
(Ref. 57). H. pylori infection accelerates the development of pre-
malignant lesions, intestinal metaplasia and severe dysplasia,
whereas the administration of antibiotics and eradication therapy
as early as 8 weeks post-infection prevents dysplasia, atrophy and
intestinal metaplasia (Ref. 57). Studies highlighting the significant
role of gastric microbiota in gastric disease pathogenesis include
another study by Lofgren et al. (Ref. 58). The absence of gastric col-
onisation with microbiota in germ-free INS-GAS mice significantly
delayed gastric cancer development. In addition, H. pylori alone is
capable of promoting gastritis and gastrointestinal intraepithelial
neoplasia in INS-GAS mice. Furthermore, H. pylori-infected
INS-GAS mice with complex microbiota develop neoplasia faster
compared with H. pylori-mono-association INS-GAS mice with
the absence of gastric microbiota.

Transcriptome studies can be used to analyse the host genes
that might be responsible for gastric cancer. Zhang et al. used
transcriptome analysis to identify the genes and pathways
involved in gastric adenocarcinoma pathogenesis (Ref. 59). They
found that there were 1477 upregulated and 282 downregulated
genes in the gastric adenocarcinoma group, compared with the
normal controls. Moreover, the functional enrichment analysis
and clustering analysis also showed that the upregulated differen-
tially expressed genes (DEGs) were significantly associated with
cell adhesion molecule binding, serine hydrolase activity and sev-
eral inflammation and tumour pathways, such as the p53 pathway,
tight junction pathway, apoptosis pathway and tumour necrosis
factor signalling pathway. In addition, the relationship of the
expression of genes such as RASGRP3 and CTHRC1 to prognosis
suggests their potential use as prognostic markers.

Transcriptome studies can also be used to investigate novel
therapies for gastric cancer by targeting genes associated with
cancer development. For example, Ren et al. found that the
GPNMB gene is highly expressed in gastric cancer patients and
indicates a worse prognosis. Knockdown of this gene in the gastric
cell lines, such as AGS cell and NCI-N87, inhibits the prolifer-
ation and migration of cancer cells. Moreover, GPNMB could
affect the expression of coinhibitory molecules in the cancer cell
and be involved in the escape of cancer cells from the host
immune system. Therefore, the GPNMB gene is a promising tar-
get for gastric cancer immunotherapy (Ref. 60).

Gastritis

Li et al. examined the microbiota composition of healthy subjects
and non-H. pylori gastritis patients (Ref. 61). By using 16S rRNA
sequencing, they found that Firmicutes was the most abundant
phylum and Streptococcus the most abundant genus in patients
with antral gastritis, compared with healthy controls. In addition,
there was an under-representation of Proteobacteria in antralTa
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gastritis patients. Streptococcus, Prevotella, Porphyromonas,
Neisseria and Haemophilus were the most common genera in
antral gastritis patients (Ref. 61).

Nookaew et al., using the microarray method, examined the
transcriptomic changes in corpus atrophic gastritis patients facili-
tated by H. pylori infection (Ref. 62). They found a significant
depletion of DEGs in both antrum and corpus of corpus atrophic
gastritis patients. Interestingly, they observed the antralisation
process in the corpus atrophy patients, characterised by increased
gastrin expression and downregulation of several corpus-specific
genes. They also revealed that in corpus atrophy patients, the
acidic mammalian chitinase (AMCase) gene had the most signifi-
cant reduction of expression because of the high expression of this
gene in normal corpus mucosa (Ref. 62).

Metabolome studies complement metagenome and
transcriptome studies

Metabolomics is the comprehensive analysis of metabolites from
the specimen. The small molecules released by the organisms
into the environment are identified and quantified to describe
alterations in the environment. The metabolome is considered
the most direct indicator of a healthy or altered environment’s
condition. Variations in the production of signature metabolites
are related to changes in the activity of metabolic routes; therefore,
metabolomics is useful for pathway analysis (Ref. 63). In addition,
metabolomics shows promise for use in drug discovery and
pharmacogenomics (Refs 64, 65).

Metabolome data are obtained by a very different method
compared with microbiome and transcriptome data. The latter
data are obtained through nucleotide sequencing, whereas meta-
bolome data are obtained by mass spectrometry, chromatography
and nuclear magnetic resonance. Mass spectrometry has been
widely used to measure metabolites with high sensitivity.
Chromatography is used to separate more complex mixtures of
metabolites (Ref. 66). These methods can be combined as liquid
chromatography-mass spectrometry, gas spectrometry-mass spec-
trometry or capillary electrophoresis-mass spectrometry (CE-MS)
to provide reliable data with high precision (Ref. 66).

A systematic review by Huang et al. analysed 52 molecular epi-
demiologic metabolomics studies of human upper gastrointestinal
cancers (Ref. 67). Metabolomic studies have facilitated effective
biomarker detection in gastric cancer, supporting the potential
of applying metabolomic profiling in cancer prevention and dis-
ease management. Although several metabolites have been identi-
fied for gastric cancer, the identification of putative metabolomic
biomarkers has remained inadequate. Application of metabolomic
profiling to molecular epidemiologic studies on gastric cancers
may provide insights into the biological significance of crucial
metabolites and metabolic pathways, but there is no information
on the underlying mechanisms. Given the multi-stage progression
of gastric carcinogenesis, metabolic biomarkers associated with
precancerous and early gastric cancers must be identified to
improve screening and early diagnosis in high-risk populations.

Considering the importance of metabolome studies, it is
logical to integrate them with microbiome and transcriptome
studies. This addition could provide insights into the outcome
of changes in gene expressions, which may lead to differential
expression of specific metabolites that impact the health of the
host environment. Understanding the whole ecosystem will
open exciting approaches for generating new knowledge.

Conclusion and future insights

In future, the integration of multiple datasets obtained from
microbiome, transcriptome and metabolome studies will provide

solutions to some current challenges. The application of individ-
ual methods might not be enough to provide accurate data to sup-
port hypotheses because of their limitations. The integration of
different studies will allow the researchers to build and test models
of microbial activity and inter-microbe or microbe–host interac-
tions. This will enable a better understanding of the association
between the environment and the microbial community. For
example, the combination of metagenomics and metatranscrip-
tomics may reveal overexpression or underexpression of particular
functions and, in some cases, the activities of specific organisms.
However, network analysis is crucial for analysing the combin-
ation of microbiota, expressed genes and metabolites data
obtained with each method to draw accurate conclusions. Only
by performing complex network analysis between microbiota,
transcriptome and metabolome data we can shed new light on
the association between the host, agent and environment.
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