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F-94010, Créteil, France

(e-mail: benoit.kloeckner@u-pec.fr)

(Received 25 March 2019 and accepted in revised form 24 January 2020)

Abstract. We consider dynamical systems T : X→ X that are extensions of a factor
S : Y → Y through a projection π : X→ Y with shrinking fibers, that is, such that T is
uniformly continuous along fibers π−1(y) and the diameter of iterate images of fibers
T n(π−1(y)) uniformly go to zero as n→∞. We prove that every S-invariant measure µ̌
has a unique T -invariant lift µ, and prove that many properties of µ̌ lift to µ: ergodicity,
weak and strong mixing, decay of correlations and statistical properties (possibly with
weakening in the rates). The basic tool is a variation of the Wasserstein distance, obtained
by constraining the optimal transportation paradigm to displacements along the fibers. We
extend classical arguments to a general setting, enabling us to translate potentials and
observables back and forth between X and Y .
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1. Introduction
Let T : X→ X be a dynamical system where X is a compact metric space, and assume that
T has a topological factor S : Y → Y , that is, there is a continuous onto map π : X→ Y
such that πT = Sπ . Each fiber π−1(y)⊂ X is collapsed under π into a single point y,
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and S can thus be thought of as a simplification of T , which may retain certain of its
dynamical properties but forget others. When additionally T shrinks the fibers, that is,
two points x , x ′ such that π(x)= π(x ′) have orbits that are attracted one to another, one
suspects that actually all important dynamical features of T survive in S: along the fibers,
the dynamic is trivial anyway. It might still happen that S is easier to study than T , in which
case one can hope to obtain interesting dynamical properties of T by proving them for S
and lifting them back. The present paper aims to develop a systematic machinery to do that
in the context of the thermodynamical formalism, that is, the study of equilibrium states
(invariant measure optimizing a linear combination of entropy and energy with respect to
a potential).

This setting has already been much studied, first in the symbolic case of X = {0, 1}Z

(or a subshift), Y = {0, 1}N (or the corresponding one-sided subshift), π the map that
forgets negative indexes, T and S the left shifts. Then the strategy outlined above was
used for a long time; see, for example, [Bow08]. The advantage of one-sided shifts is that
an orbit can be looked at backward in time as a non-trivial, contracting Markov chain;
one can use this to prove existence, uniqueness and statistical properties of equilibrium
states for a wide range of potentials. The same reason makes expanding maps rather easier
to study than hyperbolic ones. Recently, several works have used the above approach to
study various flavors of hyperbolic dynamics on manifolds or domains of Rn . However,
they are often written for specific systems and the technical details are often not obviously
generalizable. Moreover, the basic result that an S-invariant measure of S has a unique
T -invariant lift seems not to be known in general. Our first aim will be to propose a
simple and general argument, based on ideas from optimal transportation, to lift invariant
measures and show uniqueness. Then we shall use uniqueness and adapt folklore methods
to a general framework to lift a rather complete set of properties of invariant measures.

While the dynamical study of uniformly hyperbolic maps is considered reasonably well
understood, the study of various kinds of non-uniformly hyperbolic maps has witnessed
a great deal of activity in the last two decades; see, for example, [You98, ABV00,
AMV15, ADLP17], the surveys [Alv15, CP15] and other references cited below. Even
in the uniformly expanding case, new approaches are welcome; see [CPZ18]. As is
well known, the ‘extension’ approach can be used to study certain uniformly and non-
uniformly hyperbolic maps, when the default of hyperbolicity can be in the contraction or
the expansion, or when the potential lacks Hölder regularity (see §1.3 and Remark 1.12).

1.1. Shrinking fibers: main definition and first main result. All measures considered
are probability measures, and we denote by P(X) the set of measures on X and by PT (X)
the set of T -invariant measures, both endowed with the weak-∗ topology.

We shall consider the case where the extension T exhibits some contraction along fibers;
we introduce a single notion that includes a global property and continuity along fibers
(details on moduli of continuity are recalled in §2.1).

Definition 1.1. We say that T is uniformly continuous along fibers whenever there is a
modulus of continuity ω̄T such that, for all x, x ′ ∈ X with π(x)= π(x ′),

d(T x, T x ′)≤ ω̄T (d(x, x ′)).
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We say that T is an extension of S with shrinking fibers (keeping implicit π and S)
whenever T is uniformly continuous along fibers and there is a sequence (an)n∈N of
positive numbers such that lim an = 0 and, for all x, x ′ ∈ X with π(x)= π(x ′),

d(T n x, T n x ′)≤ an .

If an = Cθn for some θ ∈ (0, 1), (respectively, an = Cn−d for some d > 0) we may
specify that T has exponentially (respectively, polynomially) shrinking fibers, of ratio θ
(respectively, degree d). We may specify the shrinking sequence (an)n , for example, by
saying that T has (an)n-shrinking fibers.

For example, if, for some θ ∈ (0, 1) and all x, x ′ ∈ X such that π(x)= π(x ′), we have
d(T x, T x ′)≤ θd(x, x ′), then T has exponentially shrinking fibers; however, the latter
property is weaker.

Of course, if T is continuous then it is uniformly continuous along fibers; the first
part of the above definition is meant to make it possible to deal quite generally with
discontinuous maps S. It will be used mainly in the proof of Theorem 3.1, which is at
the core of Theorem A below.

Some of our results actually hold more generally, and to state them in their full scope
we introduce the following notion.

Definition 1.2. Given µ̌ ∈ PS(Y ), we say that T is an extension of S whose fibers are
shrunk on average with respect to µ̌ whenever T is uniformly continuous along fibers and
there is a sequence (ān)n∈N of positive numbers such that limn ān = 0 and∫

diam(T n(π−1(y))) dµ̌(y)≤ ān for all n ∈ N.

At certain points we will also need some mild additional regularity for π .

Definition 1.3. We say that the projection π is non-singular with respect to positive
measures λX and λY when π∗λX is equivalent to λY , that is, when, for all Borel sets
B ⊂ Y ,

λY (B) > 0⇔ λX (π
−1(B)) > 0.

Definition 1.4. We say that π induces a continuous fibration whenever, for some modulus
of continuity ω̄π and all y, y′ ∈ Y , for all x ∈ π−1(y), there exists x ′ ∈ π−1(y′) such that

d(x, x ′)≤ ω̄π (d(y, y′)).

Then by the measurable selection theorem, there exists a measurable map τ
y′
y :

π−1(y)→ π−1(y′) such that d(x, τ y′
y (x))≤ ω̄π (d(y, y′)) for all x ∈ π−1(y).

The modulus of continuity ω̄π should not be confused with the modulus of continuity
of the map π , which whenever needed will be denoted by ωπ .

With these definitions set up, we can state our first results gathered in the following
statement.

THEOREM A. If T is an extension of S with shrinking fibers, then π∗ induces a
homeomorphism from PT (X) to PS(Y ). In particular, for each S-invariant measure µ̌
there is a unique T -invariant measure µ such that π∗µ= µ̌.
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Moreover, for all (not necessarily invariant) ν ∈ P(X) such that π∗ν = µ̌, we have
T n
∗ ν→ µ in the weak-∗ topology, and:

(i) each of the following adjectives applies to µ (with respect to T ) if and only if it
applies to µ̌ (with respect to S): ergodic, weakly mixing, strongly mixing;

(ii) if T is continuous and X, Y have reference measures with respect to which π is non-
singular, then each of the following adjectives applies to µ if and only if it applies to
µ̌: physical, observable;

(iii) if S, T are continuous, then µ and µ̌ have the same Kolmogorov–Sinai entropy.

Theorem A is unsurprising, and some parts of it are already known in more or less
general settings (e.g. lifting of physicality); however, the uniqueness of the lift was not
known in general, and greatly simplifies the proof of further properties. It is, in particular,
interesting to compare the existence and uniqueness part of Theorem A to [APPV09, §6.1]
where Araujo, Pacifico, Pujals and Viana construct a lift of µ̌. The first advantage of our
result is that we prove uniqueness among all invariant measures, while they get uniqueness
only under the property they use in the construction. Second, we need milder assumptions
(see Remark 3.2).

Castro and Nascimento have studied in [CN17] two kinds of maps, the first one fitting
in the theme of the present paper. Namely, they consider the case where S is a non-
uniformly expanding map in the family introduced by Castro and Varandas [CV13] and T
is exponentially contracting along fibers. They focus there on the maximal entropy measure
for T , proving it exists, is unique, and enjoys exponential decay of correlations and a
central limit theorem for Hölder observables. Leaving aside the statistical properties for
now, Theorem A in particular shows that existence and uniqueness of the maximal entropy
measure for T does not depend on the specifics of S or on the rate of contraction along
fibers (as stated, we actually do not even need T to be a contraction along fibers, only to
shrink them globally): item (iii) is a broad generalization of [CN17, Theorem A] since,
under the sole assumptions that S, T are continuous and that fibers are shrinking, it shows
that T has a unique measure of maximal entropy if and only if S does.

1.2. Further main results: thermodynamical formalism. In our subsequent results we
shall assume T is Lipschitz, and this hypothesis deserves an explanation. We will often
need to work in some functional spaces where observables or potentials are taken, and we
made the choice of generalized Hölder spaces, that is, spaces of functions with modulus
of continuity at most a multiple of some reference, arbitrary modulus. This choice seems a
good balance between generality (it includes functions less regular than Hölder, enabling
us to consider in particular polynomial rates of shrinking) and clarity (proofs stay pretty
simple and the amount of definition needed is significant but not overwhelming). It is
often a crucial ingredient that the iterated Koopman operators f 7→ f ◦ T k are bounded
on the chosen functional space, with good control of their norms; requiring T to be
Lipschitz is the natural hypothesis to ensure this for generalized Hölder spaces. Were one
interested in discontinuous maps (e.g. when S is discontinuous), the principle of proofs
could certainly be adapted but one would need (as usual) to work in a suitable functional
spaces. Another advantage of our choice is that we can work directly with the Wasserstein
distance between measures.
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The convergence result (T nν→ µ whenever π∗ν = µ̌) in Theorem A seems new in
this generality. It is, however, not as satisfying as those obtained by Galatolo and Lucena
in [GL15, §5.1] in their particular setting, where instead of π∗ν = µ̌ it is only required
that π∗ν is absolutely continuous with respect to µ̌ (with some regularity assumptions
on the density). In this direction, we prove the following variation of [GL15, §5.1] (our
hypotheses are quite general, but we assume T to be Lipschitz and our convergence is in
the Wasserstein metric instead of the particular metric constructed in [GL15]).

THEOREM B. Assume that T is an extension of S with exponentially shrinking fibers; that
S admits a conformal measure λY ∈ P(Y ) such that the associated transfer operator has
a spectral gap on some Banach space B, whose normalized eigenfunction is denoted by h;
that T is Lipschitz; and that π induces a Hölder-continuous fibration. Let µ be the unique
T -invariant lift of h dλY . Then, for all ν ∈ P(X) such that π∗ν is absolutely continuous
with respect to λY with density in B, the sequence (T n

∗ ν)n converges to µ exponentially
fast in the Wasserstein metric.

The classical definitions needed are given in §2; in particular, the Wasserstein metric
is defined in §2.4 (for now, let us simply say that in our compact setting it metrizes the
weak-∗ topology) and transfer operators are defined in §2.5. A more general (but less
precise) result is given in Corollary 3.5.

We now turn to equilibrium states and their statistical properties. It will be convenient
to use the following definition (the reader may want to have a look at §2.1 on moduli of
continuity and generalized Hölder spaces; in particular, we shall use the very mild modulus
of continuity ωα log(r)' (log (1/r))−α).

Definition 1.5. Let ωp, ωo be moduli of continuity, let ρ ∈ (0,∞] and let T be the name
of a limit theorem for discrete-time random processes (e.g. LIL for the law of the iterated
logarithm, CLT for the central limit theorem, or ASIP for the almost sure invariance
principle; see Definition 2.19). We shall say that T has unique equilibrium states for
potentials in Holωp (X) of norm less than ρ, with limit theorem T for observables in
Holωo(X) (in short, that T satisfies UE(ωp[ρ];T , ωo)) whenever:
(i) for all potentials ϕ ∈ Holωp (X) such that ‖ϕ‖ωp < ρ, there exists a unique

equilibrium state µϕ , that is, a maximizer of the free energy F (µ)= hKS(T, µ)+
µ(ϕ) over all µ ∈ PT (X) (where hKS denotes Kolmogorov–Sinai entropy); and

(ii) for all f ∈ Holωo(X), the random process ( f ◦ T k(Z))k∈N, where Z is a random
variable with law µϕ , satisfies the limit theorem T (see Definition 2.19 for further
details).

When there is no bound on the norm of potential (i.e. ρ =∞), we may shorten
UE(ωp[∞];T , ωo) to UE(ωp;T , ωo). When this property is satisfied for all Hölder-
continuous potentials or observables, whatever the Hölder exponent, we write ω∗ in place
of ωp or ωo. When we only want to state existence and uniqueness of equilibrium state, we
agree to take T =∅ and we can simplify the notation to UE(ωp;∅) as there is no need
to specify the observables.

THEOREM C. Assume that T is L-Lipschitz and that π is β-Hölder and admits a Lipschitz
section. Let T ∈ {∅, LIL, CLT, ASIP}.
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(i) Assume that the fibers are exponentially shrinking with ratio θ , let α ∈ (0, 1] and
set γ = αβ/(1− log L/ log θ). If S satisfies UE(ωγ [ρ];T , ω∗) then T satisfies
UE(ωα[Cρ];T , ω∗) for some C > 0.

(ii) Assume that the fibers are polynomially shrinking with degree d > 1,
consider α, γ ∈ (1/d, 1] and set α′ = αd − 1 and γ ′ = γ d − 1. If S satisfies
UE(ωα′ log[ρ];T , ωγ ′ log), then T satisfies UE(ωα[Cρ];T , ωγ ) for some C > 0.

(iii) Assume that the fibers are exponentially shrinking, consider α, γ > 1 and let
α′ = (α − 1)/2 and γ ′ = (γ − 1)/2. If S satisfies UE(ωα′ log[ρ];T , ωγ ′ log) then
T satisfies UE(ωα log[Cρ];T , ωγ log) for some C > 0.

Many other combinations of moduli of continuity and shrinking speed can be
considered; see Theorem 5.5. The main tool is to construct from a potential or an
observable on X a suitable potential or observable on Y . For this, we generalize a method
that is classical in the symbolic setting: adding a coboundary to make the potential or
observable constant along fibers.

Item (i) generalizes [CN17, Theorems A and C]: Castro and Nascimento were
concerned with the maximal entropy measure, that is, the equilibrium state for the null
potential, while item (i) provides in their setting (using the known results for S a Castro–
Varandas map [CV13]) existence, uniqueness and CLT for Hölder observables for the
equilibrium state of any Hölder potential of small enough norm. The generalization
is actually far broader, since one can take much more varied base maps S for which
equilibrium states have the desired limit theorem (see, for example, [MT02, MN05,
Gou10] for the ASIP). Some examples will be provided below.

Interestingly, it appears more efficient to directly lift limit theorems from S to T than to
lift decay of correlations and then use them to prove limit theorems for T . Nevertheless,
decays of correlations have a long history and are prominent features of invariant measures,
and it thus makes sense to lift them as well. In this regard, we obtain the following result.

THEOREM D. Let T be a Lipschitz extension of S with shrinking fibers, assume that there
is a Lipschitz section σ , let µ be T -invariant probability measure and µ̌ := π∗µ be the
corresponding S-invariant measure.
(i) If, for some α0 ∈ (0, 1], the transfer operator Ľ of (S, µ̌) has a spectral gap in each

Hölder space Holα(Y ) (α ∈ (0, α0]) and if fibers are exponentially shrinking, then µ
has exponential decay of correlation in each Hölder space.

(ii) If, for some α ∈ (0, 1] and all n ∈ N, the transfer operator Ľ of (S, µ̌) satisfies

Holα(Ľ nh). Holα(h) and ‖Ľ n f ‖∞ .
Holαd log( f )

n p

whenever h ∈ Holα(Y ), f ∈ Holαd log(Y ) with µ̌( f )= 0, and if the fibers of π are
polynomially shrinking of degree d, then µ has polynomial decay of correlation of
degree min(αd, p/2) for all ωα-continuous observables.

(iii) If, for some α > 0 and all n ∈ N, the transfer operator Ľ of (S, µ̌) satisfies

Holα log(Ľ
nh). Holα log(h) and ‖Ľ n f ‖∞ .

Hol(α/2) log( f )
n p
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whenever h ∈ Holα log(Y ), f ∈ Hol(α/2) log(Y ) with µ̌( f )= 0, and if the fibers of π
are exponentially shrinking, then µ has polynomial decay of correlation of degree
min(α, p/2) for all ωα log-continuous observables.

To prove this result, our main tool is expected: we prove the regularity of the
disintegration of µ with respect to π (Theorem 6.3). Such results appeared in the work of
Galatolo and Pacifico [GP10, Appendix A] (extra difficulty in the proof there seems to be
caused by the way disintegration is set up, making it necessary to deal with non-probability
measures) and in the recent works of Butterley and Melbourne [BM17, Proposition 6]
(cf. Theorem 6.3 below) and Araujo, Galatolo and Pacifico [AGP14, Theorem A].
Compared to these works, we gain in generality: we can consider very general maps while
they tend to restrict to uniformly expanding maps, and we consider an arbitrary S-invariant
measure instead of restricting to the absolutely continuous one. Items (ii) and (iii) have no
equivalent that I know of in the literature.

1.3. A few examples. A commonly studied situation where our framework applies
readily is that of skew-products, where X = Y ×8 for some compact metric space 8
and

T : x = (y, φ) 7→ (S(y), R(y, φ)).

The fact that T shrinks fibers then translates into d(Rn(y, φ), Rn(y, φ′))≤ an for all
n ∈ N and all φ, φ′ ∈8 where an→ 0, R1

= R and Rn+1(y, φ)= R(S(y), Rn(y, φ)).
The projection map is then π : (y, φ)→ y and all needed hypotheses on π in
Theorems A–C are easy to check, endowing for example X with the metric
d((y, φ), (y′, φ′))=

√
d(y, y′)2 + d(φ, φ′)2. Note that since we will apply our above

results, in many cases we will assume T (and thus S and R) to be Lipschitz; and in all
cases our ‘shrinking fiber’ hypothesis implies that R(y, φ) depends continuously on the
variable φ when y is fixed.

Remark 1.6. One can easily generalize this setting to fiber bundles: X is then no longer a
product, but there exist a compact metric space 8 and a fibered atlas (Ui , hi )i∈I , that is,
the Ui form an open cover of Y and the hi are homeomorphisms from Ui ×8 to π−1(Ui )

such that hi (y ×8)= π−1(y). The simplest example of a fiber bundle that is not a product
is the Möbius band, together with the usual projection on the circle. In this setting, T is
required to send fibers into fibers and is locally of the form (y, φ) 7→ (S(y), R(y, φ))
(where the charts hi are used to identify π−1(Ui ) with a product). Our main results are
stated in an even more general framework, and in order to aim for simplicity we shall
restrict the examples to product spaces, but fiber bundles seem unjustly under-represented
in the dynamical literature.

We shall consider examples spanning all the following weaknesses of the system to
be considered: non-uniform expansion in the ‘horizontal’ direction; slow shrinking in the
‘vertical’ direction; and low-regularity of potentials (and observables).

Let us recall the classical benchmark for non-uniformly expanding maps, the Pomeau–
Manneville family defined on the circle T= R/Z (identified with [0, 1)) by
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Sq : T→ T

y 7→

{
(1+ (2y)q)y if y ∈

[
0, 1

2

]
,

2y − 1 if y ∈
[ 1

2 , 1
)
,

where q ≥ 0 (when q = 0 we get the doubling map, which is uniformly expanding). Let 8
be a compact metric space endowed with a reference (finite, positive) measure λ8, denote
by λT the Lebesgue measure on the circle, and endow X = T×8 with the reference
measure λX := λ8 × λT.

COROLLARY 1.7. Assume T : T×8→ T×8 is a continuous skew-product with base
map Sq for some q ∈ (0, 1) and with shrinking fibers.
(i) T admits a unique physical measure µT .
(ii) Assume further that q < 1

2 , that fibers are exponentially shrinking and that T is
Lipschitz. Then µT satisfies the ASIP for all Hölder-continuous observables.

(iii) If T is L-Lipschitz and fibers are exponentially shrinking with ratio θ and if
q ′ := q(1− log L/ log θ) is less than 1, then for all α ∈ (q ′, 1] the map T satisfies
UE(ωα; CLT, ω∗); that is, each α-Hölder potential ϕ has a unique equilibrium
state µϕ , for which Hölder-continuous observables satisfy the central limit theorem.
Moreover, Hölder observables have exponentially decaying correlations with respect
to µϕ .

Let us say that a map S : Y → Y is uniformly expanding when it is a self-covering
map of degree k, and there is some θ ∈ (0, 1) such that, for each y, y′ ∈ Y , denoting by
z1, . . . , zk and z′1, . . . , z′k the inverse images of y and y′, there is a permutation σ such
that d(zi , z′σ(i))≤ θd(y, y′) for all i . We assume here for simplicity that Y is a manifold
endowed with a volume form yielding a reference measure λY and that X = Y ×8 is
again endowed with a product measure λX = λY × λ8.

COROLLARY 1.8. Assume that T is a Lipschitz skew-product with base map S a uniformly
expanding map and with polynomially shrinking fibers of degree d > 2, and let α ∈
(2/d, 1]. Then, for all α-Hölder potential ϕ:
(i) T has a unique equilibrium state µϕ;
(ii) if α > 5/(2d), then T satisfies UE(ωα; CLT, ωα−1/d): we have the central limit

theorem for µϕ and for all (α − 1/d)-Hölder observables;
(iii) for all γ ∈ [α − 1/d, 1], all γ -Hölder observables have polynomial decay of

correlations of degree αd/2− 1 with respect to µϕ ,

Note that the second item is not enough to obtain the third: when α is only slightly
above 5/(2d), we get decay of correlation of degree only slightly above 1/4, while degree
1/2 would be a minimum to obtain the CLT. This is a sign that Theorem D might not be
optimal.

Let us now consider low-regularity maps, that is, below the C 1,α regularity.

COROLLARY 1.9. Assume that N is a manifold admitting a uniformly expanding C 1,α log

map S : N → N with expanding factor λ, that D is a d-dimensional closed ball with
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FIGURE 1. Some attractors on the annulus: the images picture T ni
i (U ) with U a neighborhood of the attractor,

n1 = 4, n2 = 9 and n3 = 8. The left-hand attractor is homeomorphic to the product of a Cantor set with a circle,
pinched at one fiber (to achieve this, the map T1 pinches two fibers to a common point). The topology of the
other two attractors is very intricate, and in particular their fundamental groups seem not to be finitely generated;
we expect these attractors to be homotopic to complement of Cantor sets in the plane, which would make them

homotopic to one another; they could even be homeomorphic.

some Riemannian metric, and that T : M = N × D→ M is written as a continuous skew-
product T (y, z)= (S(y), R(y, z)) with shrinking fibers. Then T admits a unique physical
measure µT , and the basin of attraction of µT has full volume.

If T is Lipschitz and has exponentially shrinking fibers (in particular, when T is
uniformly hyperbolic), thenµT has a polynomial decay of correlations of degree (α − 1)/2
for C (2α−2) log observables. Moreover, if α > 3/2, then µT satisfies the central limit
theorem for C (2α−1) log observables.

The regularities needed on observables are quite weak (they include, in particular, all
Hölder observables) but the assumption that T is a skew-product is very strong; it is
a whole research project to consider the case where T is a general C 1+α log uniformly
hyperbolic diffeomorphism onto its image, for example, with a ‘solenoidal’ attractor: one
can quotient out by the stable foliation, obtaining a skew-product over a bundle, but only up
to a conjugacy as regular as the foliation. Often, this conjugacy is not C 1, and the regularity
of the foliation’s holonomy needs to be finely controlled to overcome this difficulty.

Remark 1.10. The skew-products of the above corollaries need not be diffeomorphisms,
and can have intricate attractors: Figure 1 shows some examples with Y = T and 8=
[0, 1], and with S an expanding map of the circle.

1.4. Physical versus SRB. We close this gallery of examples by stressing the difference
between physical measures and Sinai–Ruelle–Bowen (SRB) measures, where we use the
distinction advocated by Young [You02] (see §2.3 and, in particular, Definition 2.10).

Theorem A combines with a result of Campbell and Quas [CQ01] (where they say
‘SRB’ for ‘physical’) to yield the following corollary.

COROLLARY 1.11. There is a C 1 diffeomorphism onto its image T :U →U, where
U ⊂ R3 is open and bounded, having a compact uniformly hyperbolic attractor 3=⋂

k≥0 T k(U ) with unstable dimension one, supporting exactly one physical measure µT ,
but supporting no SRB measure.

https://doi.org/10.1017/etds.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.22


1804 B. R. Kloeckner

The proof, detailed in §7, can be summed up easily as follows. We construct T as
a uniformly hyperbolic skew product (S, R) on T× D2; [CQ01] shows that taking S
a generic C 1 expanding map, it has a unique physical measure µ̌, but no absolutely
continuous measure. The lift µ of µ̌ is a physical measure of T with full basin of attraction,
but an SRB measure would project to an absolutely continuous measure of S and thus does
not exist. In other words, [CQ01] already provides many examples of the above kind, but
somewhat degenerate as the stable dimension vanishes; the present work only serves to
add some stable dimensions.

Remark 1.12. When T : M→ M is a C2 diffeomorphism with a hyperbolic attractor3=⋂
ni nN T n(U ), where U is an open set with T (Ū )⊂U , and when in addition there exists

a compact C 1 submanifold Y ∈U transversal to the stable foliation and intersecting each
stable leaf at exactly one point, one can identify Y with the space of leaves and gets a factor
S : Y → Y of T with a nice section Y ↪→U (e.g. if the unstable dimension is 1 and stable
leaves on U are relatively compact, such a Y is easily constructed). One can easily endow
Y with a (not necessarily Riemannian) metric that makes S expanding. On the one hand, it
follows from [Klo17, Theorem 5.8] that S satisfies UE(ω∗; CLT, ω∗); on the other hand,
the geometric potential ϕT =−log J u T (where J u is the determinant of the restriction of
DT to the stable distribution) is C 1, in particular Hölder, and one can thus use the present
results to construct a Hölder potential ϕ̂T cohomologous to ϕT and constant on stable
leaves. This potential descends on Y into a Hölder potential, for which S has a unique
equilibrium state. It follows that T has a unique equilibrium state µT for the geometric
potential, and that µT has the expected statistical properties (CLT, exponential decay of
correlations). By the work of Ledrappier [Led84], we know that such an equilibrium state
is an SRB measure. Moreover, it is a physical measure thanks to the absolute continuity of
holonomy of the stable foliation (see, for example, [AV09]). Without relying on Markov
partitions, we recover in this case the classical result that there is a measure µT that is the
unique physical measure, the unique SRB measure and the unique equilibrium state of the
geometric potential; and that µT has good statistical properties.

1.5. Beyond Lipschitz maps with uniformly shrinking fibers. The present work can be
developed in several directions; for example, one could apply similar ideas for flows.
Section 3 only uses an averaged shrinking, and could thus be applied to the examples
introduced by Diı́az, Horita, Rios and Sambarino [DHRS09] and further studied by
Leplaideur, Oliveira and Rios [LOR11] and Ramos and Siqueira [RS17]. These examples,
which are at the frontier between hyperbolic and robustly non-hyperbolic dynamics, are
indeed extensions of uniformly expanding maps on a Cantor subset of R, with only some
exceptional fibers not being contracted. The ideas of the other sections might be applicable
to such examples as well.

As mentioned above, in some interesting cases the map S is not continuous; see, for
example, [Gal18, GNP18]. We expect most of the ideas used to prove Theorems B–D
to be adaptable to such a setting, up to devising suitable functional spaces to work on
(we do not claim that such an adjustment should always be straightforward); this should
make it possible to consider more general invariant measures than the lift of the absolutely

https://doi.org/10.1017/etds.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.22


Extensions with shrinking fibers 1805

continuous S-invariant measure. In particular, using disintegration with respect to π in its
full generality should be useful.

Note also that the ideas presented here can be used without assuming compact fibers, if
one has contraction properties instead of shrinking (e.g. d(T x, T x ′)≤ λd(x, x ′) for some
λ ∈ (0, 1) and all x, x ′ in the same fiber, or milder contraction using decay functions as in
[Klo17]). One would need to assume some moment condition on the lifted measures µ,
in order to use a Wasserstein distance (and its modification Wµ̌). In the examples I could
think of, it would be possible to actually restrict to a stable compact subset of the space
though, so that we do not pursue this direction.

1.6. Organization of the paper. In §2 we introduce a number of tools and definitions,
many of them classical. Given the variety of properties considered in our main theorem,
this section is rather long for a preliminary one. Each subsequent section starts by pointing
to the relevant subsections of §2, so that it can be mostly skipped and used as reference.

In §3 we prove existence and uniqueness of the T -invariant lift of an S-invariant
measure and study convergences to it under iteration of T (this covers the first part of
Theorem A, and Theorem B). Section 4 concludes the proof of Theorem A by considering
each preserved property. In this part we consider the more general case of fibers shrunk on
average with respect to an S-invariant measure, while all the subsequent sections assume
that fibers are all (uniformly) shrinking.

In §5 we consider equilibrium states and establish a correspondence between potentials
and observables on X and Y , by adding coboundaries and using the projection. In
particular, Theorem C is proved.

Section 6 is devoted to the decay of correlations, and proves Theorem D. To
this end, we use another correspondence between observables on X and Y , using
disintegration; we prove that disintegration preserves some regularity properties of
observables (Theorem 6.3).

Finally, in §7, we explain how to deduce Corollaries 1.7–1.11 from the main theorems
and the literature.

2. Preliminaries
This section sets up notation and states some results for later use.

Let X be a compact metric space and T : X→ X be a map (all maps are assumed
to be Borel-measurable), admitting a factor S : Y → Y , that is, Y is a compact metric
space, S is a map, and there is a continuous onto map π : X→ Y such that Sπ = πT (we
denote composition of maps by either juxtaposition or using the usual symbol ◦). The sets
π−1(y) are called fibers. We denote by d(·, ·) both metrics on X and on Y , the context
preventing any ambiguity. Note that to state the more general results, we do not require
S, T to be continuous unless specified; in contrast, the continuity of π is crucial in many
arguments.

We denote by BX , BY the Borel σ -algebras of X and Y , with respect to which all
measurability conditions are considered unless otherwise specified. Let P(X), P(Y ) be
the sets of probability measures of X , Y and PT (X) the set of T -invariant probability
measures (similarly, PS(Y ) is the set of S-invariant probability measures). We denote
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by
∫

f dµ,
∫

f (x) dµ(x) or µ( f ) the integral of an integrable or positive function f
with respect to a measure µ.

In order to simplify a few arguments, we always assume (up to changing the metrics
by a constant, thus not altering the statements of the theorems in the introduction) that
diam X, diam Y ≤ 1.

Constants denoted by C are positive and can vary from line to line, and we write a(n).
b(n) to express that, for some C > 0 and all n ∈ N, a(n)≤ Cb(n).

2.1. Moduli of continuity. By a modulus of continuity we mean a continuous,
increasing, concave function ω : [0,∞)→ [0,∞) mapping 0 to 0. We may only define
a modulus near 0, and the understanding is that it is extended to the half line; since we
shall only be concerned with compact spaces, the specifics of the extension are irrelevant.

A function f : X→ R is said to have modulus of continuity ω when

| f (x)− f (x ′)| ≤ ω(d(x, x ′)) for all x, x ′ ∈ X.

Every continuous function on a compact metric space is uniformly continuous, hence has
a modulus of continuity: concavity of the modulus can be ensured by taking the convex
hull of {(η, ε) ∈ [0,∞)2 | ∃x, x ′ ∈ X, d(x, x ′)≤ η, | f (x)− f (x ′)| ≥ ε}.

A function is said to be ω-continuous if there is a constant C > 0 such that it has Cω
as a modulus of continuity; the infimum of all such C is denoted by Holω( f ), and the set
of ω-continuous functions X→ R is a Banach space (‘generalized Hölder space’) when
endowed with the norm

‖ f ‖ω := ‖ f ‖∞ + Holω( f )

(this claim follows from the corresponding classical claim for the Lipschitz modulus
and from the observation that ω(d(·, ·)) defines a metric). An observation that will be
used without warning is that whenever f has zero average with respect to an arbitrary
probability measure, then it takes both non-positive and non-negative values; then ‖ f ‖∞ ≤
ω(diam X) Holω( f ) and thus ‖ f ‖ω . Holω( f ).

The most classical moduli of continuity are the Hölder ones, defined for α ∈ (0, 1] by
ωα(r)= rα (so that ωα-continuous means α-Hölder). We shall have use for a family of
more lenient moduli.

Definition 2.1. For each α ∈ (0,∞), we denote by ωα log the modulus of continuity such
that, on (0, 1],

ωα log(r)=
1

(log (rα/r))α

where rα > 1 is chosen large enough to ensure monotony and concavity on (0, 1], and
ωα log is constant for r ≥ 1.

A ωα log-continuous function is also said to be α log-Hölder; a function is said to be
log-Hölder if it is α log-Hölder for some α > 0.

To simplify notation, we write Holα instead of Holωα and Holα log instead of Holωα log .

Example 2.2. When X = {0, 1}N with the metric d(x, x ′)= 2−i(x,x ′), where i(x, x ′) is the
first index where xi 6= x ′i , a function f is Hölder-continuous when the maximal influence
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of the i th component decays exponentially fast, while f is α log-Hölder when the maximal
influence of the i th component decays like i−α .

Let us show that the modulus ωα log being very concave, it is only mildly affected by
pre-composition by a high-order iterate of a Lipschitz map.

PROPOSITION 2.3. For all α > 0 and all L ≥ 1, there exists D > 0 such that, for all n ∈ N
and all r ∈ [0, 1],

ωα log(Lnr)≤ Dnαωα log(r).

In particular, if T : X→ X and σ : Y → X are Lipschitz and f ∈ Holα log(X), then
Holα log( f T nσ). nα Holα log( f ).

Proof. When Lnr ≤ 1, we have

ωα log(Lnr)
ωα log(r)

=

(
1−

log Ln

log (rα/r)

)−α
which is bounded independently of n since Ln

≤ 1/r < rα/r ; while when Lnr ≥ 1, we
have

ωα log(Lnr)
ωα log(r)

=
ωα log(1)
ωα log(r)

.

(
log

rα
r

)α
. (n log L)α. �

2.2. Sections, disintegration. The map π can be used to push measures forward: given
µ ∈ P(X), π∗µ : A 7→ µ(π−1 A) is a probability measure on Y . Moreover, a T -invariant
measure is pushed to an S-invariant measure: for all f : Y → R,∫

f ◦ S d(π∗µ)=
∫

f ◦ Sπ dµ=
∫

f ◦ πT dµ=
∫

f ◦ π dµ=
∫

f d(π∗µ).

Our first goal, in §3, will be to lift an invariant measure µ̌ of S into an invariant measure
µ of T , where ‘lifting’ entails that π∗µ= µ̌.

Recall a notion borrowed from the theory of fiber bundles.

Definition 2.4. A section of π is a measurable map σ : Y → X such that πσ = IdY .

In other words, σ(y) ∈ π−1(y) for all y ∈ Y , that is, σ picks a point in the fiber of its
argument. The map σπ : X→ X then sends each point to the point in its own fiber picked
by σ . Note that there is no assumption relating the section with the dynamics. Requiring
σ to be measurable is very mild, and in many cases we will require it to be continuous, or
even Lipschitz.

PROPOSITION 2.5. (Measurable selection theorem [KRN65]) There exists a section σ :
Y → X. As a consequence, π∗ is onto P(Y ).

(That π∗ is onto follows from the observation that ,for all ν ∈ P(Y ), π∗(σ∗ν)= ν.)
We shall use in a central way the disintegration along a map. We state here the

disintegration theorem for π , but it only needs measurability and can be used with other
maps, such as S.
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PROPOSITION 2.6. (Disintegration theorem [Roh52, Sim12]) Let µ ∈ P(X) and µ̌=
π∗µ ∈ P(Y ) be (not necessarily invariant) probability measures. There exist a family
(ξy)y∈Y of probability measures on X such that y 7→ ξy is Borel-measurable, ξy is
concentrated on π−1(y) for all y ∈ Y , and∫

ξy( f ) dµ̌=
∫

f dµ for all f ∈ L1(µ).

Moreover, (ξy)y∈Y is uniquely defined by these properties up to a µ̌-negligible set.

For example, if µ= σ∗µ̌ for some section σ , then ξy = δσ(y) for µ̌-almost all y ∈ Y .
Given a function f : X→ R in L1(µ), we can define a function in L1(µ̌) by ξ( f ) :

y 7→ ξy( f ) (and then µ̌(ξ( f ))= µ( f ) and ξ( f )(y) only depends on the values of f on
π−1(y)). In §6 we shall study how much regularity ξ( f ) retains from the regularity of f ;
but we have to keep in mind that even when f is continuous, ξ( f ) is unambiguously
defined only modulo a µ̌-negligible set.

Definition 2.7. We say that a measurable function u : Y → R has a continuous version if
there exist a continuous ū : Y → R which is equal to u at µ̌-almost every point. If supp µ̌=
Y , then ū is unique.

We say that ξ preserves continuity if, for all continuous f : X→ R, ξ( f ) : y 7→ ξy( f )
has a continuous version.

If ω, ω̌ are two moduli of continuity, we say that ξ is (ω, ω̌)-bounded if, for all
ω-continuous f , ξ( f ) is ω̌-continuous and, moreover, the linear map f 7→ ξ( f ) is
a continuous operator Holω(X)→ Holω̌(Y ). If ω̌ = ω, then we simply say that ξ is
ω-bounded.

2.3. Physicality, observability, SRB. Assume now that X and Y are equipped with
measures λX and λY (which a priori need not have any particular relation with T , S but
will serve as reference measure); for example, X, Y are manifolds equipped with volume
forms, or are domains of Rm, Rm̌ equipped with the Lebesgue measure.

Definition 2.8. The basin of a T -invariant measure µ is defined as

Ba(µ)=
{

x ∈ X
∣∣∣∣ 1

n

n−1∑
k=0

δT k x → µ

}
(where→ denotes weak-∗ convergence and δx is the Dirac mass at x).

The invariant measure µ is said to be physical if its basin has a positive volume:

λX (Ba(µ)) > 0.

Often, physical measures are said to be those that can be seen in practice, given they
drive the behavior of a positive proportion of the points. However, note that in some cases
Guihéneuf [Gui15] has shown that non-physical measures could be actually observed.

Physical measures do not always exist, and a more general class of measures was
proposed in [CE11].
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Definition 2.9. Given x ∈ X , denote by pω(x)⊂ P(X) the set of cluster points of the
sequence (

∑n−1
k=0 δT k x )n . Observe that pω(x)⊂ PT (X).

Given µ ∈ P(X) and ε > 0, the ε-basin of µ is

Baε(µ)= {x ∈ X |W(pω(x), µ) < ε}.

An invariant measure µ ∈ PT (X) is said to be observable when, for all ε > 0, its
ε-basin has positive volume. (Note that while choosing W as metric has an influence on the
ε-basins, any metric inducing the weak-∗ topology yields the same notion of observability.)

It is important to make the distinction between the above notion of physical measures
and the related but distinct notion of SRB measure (beware that some authors use ‘SRB’
instead of ‘physical’). To introduce SRB measure we need to recall some preliminary
definitions.

Let U be an open bounded set of a manifold M ; a diffeomorphism onto its image
T :U →U has a stable subset 3 :=

⋂
n T n(U ), called its attractor, on which T induces

a homeomorphism. Assuming that T (U )⊂U (equivalently, that the closure in U of T (U )
is compact), the attractor is compact: we have T n+1(U )= T n(T (U ))⊂ T n(U )⊂ T n(U ),
so that 3=

⋂
n T n(U ) is a decreasing intersection of compact sets.

One says that 3 is a strongly partially hyperbolic attractor whenever there are
continuous sub-bundles Eu, E s of T3M (the restriction of the tangent bundle T M to 3)
of respective dimension du , ds , and there are numbers C and λ+ > λ− > 0 such that, for
all x ∈3 and all n ∈ N,

‖DT n
x (u)‖ ≤ Cλn

−‖u‖ for all u ∈ E s
x and ‖DT n

x (u)‖ ≥ C−1λn
+‖u‖ for all u ∈ Eu

x .

If, moreover, λ− < 1< λ+, one says that 3 is a uniformly hyperbolic attractor.
Assuming 3 is a uniformly hyperbolic attractor, we get an invariant ‘stable’ foliation

W s of U , whose leaf W s
x through x ∈3 is the set of points whose orbit converges to the

orbit of x ; and an invariant ‘unstable’ lamination W u of3, whose leaf W u
x through x is the

set of points whose backward orbit converges to the backward orbit of x . The leaves of W s

and W u are C 1, and they are continuous but not necessarily transversely C 1. Moreover,
Tx W s

= E s
x and Tx W u

= Eu
x .

Locally, we can then write the attractor 3 as a product (one factor corresponding to
the unstable direction, the other to the stable direction). Given an invariant measure µ ∈
PT (U ) (which must be supported on3), we can disintegrate the restriction of µ to a small
open set of 3 with respect to the (local) projection π s in the stable direction, obtaining
one the one hand a family of measures (µL)L supported on each local unstable leaf L , and
on the other hand a projected measure ν = π s

∗µ.

Definition 2.10. We say that µ is an SRB measure when in this local disintegration, µL is
absolutely continuous with respect to the Riemannian volume induced on L for ν-almost
all L .

2.4. Wasserstein metric and its vertical version. We will make use of the Wasserstein
metric to metrize the weak-∗ topology on P(X). It is defined for µ0, µ1 ∈ P(X) by

W(µ0, µ1)= inf
γ∈0(µ0,µ1)

∫
d(x0, x1) dγ (x0, x1)= sup

f 1-Lipschitz
|µ0( f )− µ1( f )|
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where 0(µ0, µ1) is the set of couplings or transport plans between µ0 and µ1, that is,
the set of γ ∈ P(X × X) such that γ (A × X)= µ0(A) and γ (X × A)= µ1(A) for all
Borel A ⊂ X . The equality between the two definitions (by transport plans or by duality
with Lipschitz functions) is not trivial, and is called Kantorovich duality. The infimum is
reached, any transport plan realizing it is said to be optimal, and the set of optimal plans is
compact in the weak-∗ topology (see, for example, [Vil09]).

To prove Theorem 3.1 below we introduce a variation of the Wasserstein metric where
mass is only allowed to move along fibers. This constraint implies that we need to consider
pairs of measure with the same projection. Similar ideas have been developed in [GP10,
AGP14, GL15], but in somewhat restricted settings, without taking full advantage of the
dual formulations of the Wasserstein metric and of the disintegration theorem.

For each µ̌ ∈ P(Y ), by continuity of π the fiber π−1
∗ (µ̌) is a closed subset of P(X)

in the weak-∗ topology, thus is compact. Set 1π = {(x0, x1) ∈ X × X | π(x0)= π(x1)}.
Given any µ0, µ1 ∈ π

−1
∗ (µ̌), we denote by 0π (µ0, µ1) the set of γ ∈ 0(µ0, µ1) which

are concentrated on 1π . We define

Wµ̌(µ0, µ1)= inf
γ∈0π (µ0,µ1)

∫
d(x0, x1) dγ (x0, x1).

We will see in a moment that this is a finite number, but it is already clear that W≤Wµ̌.

LEMMA 2.11. As soon as π∗µ0 = π∗µ1, the set 0π (µ0, µ1) is non-empty, and as
a consequence Wµ̌(µ0, µ1) <∞. More precisely, if (ξy)y∈Y and (ζy)y∈Y are the
disintegrations of µ0 and µ1 with respect to π , then

Wµ̌(µ0, µ1)=

∫
W(ξy, ζy) dµ̌(y).

Proof. Choose measurably ηy ∈ 0(ξy, ζy) for each y ∈ Y (e.g. ηy = ξy ⊗ ζy), and let
γ =

∫
ηy dµ̌ ∈ P(X × X), that is, for all Borel A, B ∈ X , γ (A × B)=

∫
ηy(A × B) dµ̌.

Then γ (A × X)=
∫
ξy(A) dµ̌= µ0(A) and γ (X × A)=

∫
ζy(A) dµ̌= µ1(A) so that

γ ∈ 0(µ0, µ1). Moreover, since ηy projects to two measures supported on π−1(y),
it is supported on π−1(y)× π−1(y)⊂1π . It follows that γ is concentrated on 1π

and γ ∈ 0π (µ0, µ1). Any γ ∈ 0π (µ0, µ1) is of the form
∫
ηy dµ̌, (ηy)y∈Y being

the disintegration of γ with respect to the map induced by π from 1π to Y .
Since

∫
d(x, x ′) dγ (x, x ′)=

∫∫
d(x, x ′) dηy(x, x ′) dµ̌(y)≥

∫
W(ξy, ζy) dµ̌(y), taking

an infimum, we get Wµ̌(µ0, µ1)≥
∫

W(ξy, ζy) dµ̌.
For each y, the set of optimal transport plans from ξy to ζy is compact, thus by

the measurable selection theorem there is a measurable family (ηy)y∈Y such that, for
µ̌-almost all y ∈ Y ,

∫
d(x, x ′) dηy(x, x ′)=W(ξy, ζy). It follows that Wµ̌(µ0, µ1)≤∫

W(ξy, ζy) dµ̌. �

PROPOSITION 2.12. For all µ̌ ∈ P(Y ), Wµ̌ is a complete metric on the set π−1
∗ (µ̌).

Proof. The expression
∫

W(ξy, ζy) dµ̌(y) is the L1(µ̌) metric for functions from Y to the
compact metric space (P(X),W). By Lemma 2.11, Wµ̌ is the restriction of this metric
to the closed subset π−1

∗ (µ̌). The claim thus follows from the Riesz–Fischer theorem for
functions with values in a complete metric space. �
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2.5. Transfer operators, spectral gap and correlations. Transfer operators are
multifaceted objects that are both tools and objects of study. We will use a definition that
needs to introduce a generalization of the notion of invariant measure, and then we shall
describe other equivalent definitions.

2.5.1. Quick introduction to transfer operators. We consider S acting on Y since it is
the level at which transfer operators will be most relevant.

Definition 2.13. A measure λY ∈ P(Y ) is said to be a conformal measure of S when S∗λY

is absolutely continuous with respect to λY .
Given a conformal measure λY of S, one defines the transfer operator

Ľ = Ľ λY : L
1(λY )→ L1(λY )

of S with respect to λY by S∗( f dλY )= Ľ ( f ) dλY .

For example, the Lebesgue measure on the circle is a conformal measure for all local C 1

diffeomorphisms (but not for a map that is constant on an interval). The transfer operator
simply translates the action of S∗ on the set of absolutely continuous measures (with
respect to λY ) to the space of densities. In particular, finding an absolutely continuous
invariant measure is equivalent to finding a non-negative, non-zero eigenfunction of Ľ

(the eigenvalue is then necessarily 1, since
∫

Ľ ( f ) dλY =
∫

f dλY ).
Another classical way to say the same thing is to define Ľ as the dual operator of

the Koopman operator f 7→ f ◦ S : L∞(λY )→ L∞(λY ), that is, to characterize it by the
property∫

f · Ľ (g) dλY =

∫
f ◦ S · g dλY for all f ∈ L∞(λY ), for all g ∈ L1(λY ). (1)

Invariant measures µ̌ are characterized by the property that their transfer operators have
the property Ľ µ̌1= 1 where 1 is the constant function with value one.

2.5.2. Decay of correlations and spectral gap. Transfer operators are precious tools to
study the decay of correlations.

Definition 2.14. Given µ ∈ PT (X) and functions u, v : X→ R (called observables),
correlations are defined (whenever it makes sense) as

Cn
µ(u, v)=

∣∣∣∣∫ u ◦ T n
· v dµ−

∫
u dµ

∫
v dµ

∣∣∣∣
(and of course Cn

µ̌
( f, g) with f, g : Y → R implicitly involves the map S).

We say thatµ ∈ PT (X) has decay of correlations (bn)n∈N forω-continuous observables
whenever, for all f ∈ Holω(X), all g ∈ L1(µ) and all n ∈ N,

Cn
µ( f, g)≤ bn Holω( f )‖g‖L1(µ).

The link between the transfer operator and decay of correlation is quite direct: assuming
g ∈ L1(µ̌), f ∈ L∞(µ̌) and adding a constant to f to ensure µ̌( f )= 0, we obtain

Cn
µ̌
(g, f )=

∣∣∣∣∫ g ◦ Sn
· f dµ̌

∣∣∣∣= ∣∣∣∣∫ g · Ľ n
µ̌
( f ) dµ̌

∣∣∣∣≤ ‖g‖L1(µ̌)‖Ľ
n
µ̌
( f )‖L∞(µ̌)

https://doi.org/10.1017/etds.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.22


1812 B. R. Kloeckner

(other pairs of functional spaces can be considered, such as L2 and L2, or inverting the
roles of L1 and L∞). One thus only has to prove decay of Ľ n

µ̌
for zero-average observables

in some functional space to obtain a corresponding decay of correlations. A particularly
nice case, both to find an absolutely continuous invariant probability (Acip) and to prove
exponential decay of correlations for it, is when the transfer operator has a spectral gap.

Definition 2.15. Given a Banach space B of functions Y → R whose norm ‖·‖ is not less
than ‖·‖∞ (one could generalize to ‖·‖L1(µ̌)), one says that Ľ has a spectral gap on B
whenever:
• Ľ preserves B and acts on it as a bounded operator;
• there is a positive function h ∈ B such that Ľ h = h, which without loss of generality

can be assumed to satisfy λY (h)= 1;
• there are numbers C ≥ 1, δ ∈ (0, 1) such that, for all f ∈ B with λY ( f )= 0, ‖Ľ n f ‖ ≤

C(1− δ)n‖ f ‖.

Then hdλY is an S-invariant probability measure absolutely continuous with respect
to λY , satisfying exponential decay of correlations for observables in B (note that Ľ and
Ľ hdλY are conjugated one to another).

We shall need some transfer operators to preserve some functional spaces in the
following sense.

Definition 2.16. An operator P : L1(µ̌)→ L1(µ̌) is said to preserve Holω(Y ) if
P(Holω(Y ))⊂ Holω(Y ) and, moreover, if it induces a bounded operator on Holω(Y ).
The operator P is said to be iteratively bounded with respect to ω if it preserves
Holω(Y ) and, moreover, if there exists D ≥ 0 such that, for all n ∈ N and all u ∈ Holω(Y ),
Holω(Pnu)≤ D Holω(u).

For example, if P has a spectral gap on Holω(Y ), then it is iteratively bounded with
respect to ω (but the latter assumption is much milder than having a spectral gap).

2.5.3. Disintegrations and transfer operators. To close this subsection, we shall
consider a slightly different point of view on transfer operators, which seems novel in
this generality (although it is folklore in the case of Lebesgue measure) and will enable us
to relate the transfer operators of T and S. We restrict to the case of a T -invariant measure
µ and its S-invariant projection µ̌= π∗µ. The transfer operators of (T, µ) and (S, µ̌) are
denoted by L and Ľ .

We denote by (ξy)y∈Y the disintegration of µwith respect to the map π , which we recall
is characterized by two properties: µ=

∫
ξy dµ̌(y) and supp ξy ⊂ π

−1(y) for all y ∈ Y .
The disintegration theorem can also be applied to T andµ, and yields an essentially unique
measurable family of probability measures (ηx )x∈X characterized by µ=

∫
ηx dµ(x)

and ηx (T−1(x))= 1 for all x ∈ X (here T−1(x) need not be closed, and while ηx is
concentrated on T−1(x) its support could be larger).

To understand the meaning of this disintegration, one can say that each measure ηx

collects the ‘derivatives’ of T with respect to the measure µ at the points of T−1(x). The
clearest situation is when T is at most countable-to-one, in which case ηx is atomic and

https://doi.org/10.1017/etds.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.22


Extensions with shrinking fibers 1813

the masses of the atoms can be taken as definition of this derivative. If T is one-to-one,
then of course ηx = δT−1x .

We can use the disintegration to express the transfer operator.

PROPOSITION 2.17. We have L g(x)= ηx (g) for all g ∈ L1(µ) and µ-almost all x ∈ X.

Proof. The proposed formula defines a bounded operator L̃ (g)(x)= ηx (g) of L1(µ) into
itself, and to prove L̃ =L it suffices to check the defining property (1). Let f ∈ L∞(µ)
and g ∈ L1(µ); using the fact that x = T x ′ for ηx -almost all x ′, we get∫

f · L̃ g dµ=
∫

f (x)
∫

g(x ′) dηx (x ′) dµ(x)

=

∫ ∫
f (T x ′)g(x ′) dηx (x ′) dµ(x)=

∫
f ◦ T · g dµ. �

Very often, one works the other way around: the family (ηx )x∈X is given and used to
define a transfer operator, which is in turn used to construct an invariant measure µ with
the prescribed derivatives. Using the disintegration theorem makes transparent the fact that
one can go both ways round in a consistent fashion.

Note that, using either definition of transfer operator, we easily get the classical property
L ( f ◦ T · g)= f L (g) (where g ∈ L1(µ), f ∈ L∞(µ)). We have T∗ηx = δx since ηx is
a probability measure supported on T−1(x).

The same applies to S, and we denote by (η̌y)y∈Y the disintegration of µ̌ with respect to
S and by Ľ its transfer operator. The same relations as above hold, in particular Ľ u(y)=
η̌y(u). Now, our goal is to relate the transfer operators (or equivalently, the disintegrations)
of T and S.

LEMMA 2.18. For µ̌-almost all y ∈ Y , all u ∈ L1(µ̌) and all n ∈ N, we have

π∗(∫ ηx dξy(x))= η̌y, Ľ nu(y)= ξy(L
n(u ◦ π)).

Proof. To prove the first claim, it suffices to check the two defining properties of (η̌y)y∈Y .
First, the measure

∫
ηx dξy(x) is concentrated on T−1(π−1(y))= {x ∈ X | πT (x)= y} =

π−1(S−1(y)) so that its push-forward by π is concentrated on S−1(y). Second, for all
u ∈ L1(µ̌), we have∫

π∗(∫ ηx dξy(x))(u) dµ̌(y)=
∫ ∫

ηx (u ◦ π) dξy(x) dµ̌(y)

=

∫
ηx (u ◦ π) dµ(x)=

∫
u ◦ π dµ=

∫
u dµ̌.

We prove the second claim using the duality definition of Ľ :∫
ξy(L

n(uπ)) · v(y) dµ̌(y)=
∫
ξy(L

n(uπ) · vπ) dµ̌(y)

=

∫
L n(uπ) · vπ dµ=

∫
uπ · vSnπ dµ

=

∫
u · vSn dµ̌=

∫
Ľ n(u) · v dµ̌. �
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2.6. Statistical properties. Let us define precisely the three statistical properties we
shall focus on (as will be clear from the proofs, we could consider any statistical theorem
insensitive to adding a bounded error term to

∑n
k=1 f ◦ T k).

Definition 2.19. Let T ∈ {LIL, CLT, ASIP}; we shall say that an invariant measure
µ ∈ PT (X) satisfies T for all ω-continuous observables if, for each f ∈ Holω(X), there
is σ f ≥ 0 (meant as a standard deviation, not to be confused with a section) such that,
whenever σ f > 0, the following statements hold.

When T = LIL: for µ-almost every x ∈ X ,

lim sup
n→∞

∑n
k=1 f ◦ T k(x)− nµ( f )√

2n log log n
= σ f .

When T = CLT: denoting by Gm,σ 2 the cumulative distribution function of the normal
law of mean m and variance σ 2, for all r ∈ R,

µ

{
x ∈ X :

1
√

n

n∑
k=1

f ◦ T k(x)≤ r
}
→ Gµ( f ),σ 2

f
(r).

When T = ASIP: for some λ ∈ (0, 1
2 ], there exist a probabilistic space � and two real-

valued processes defined on �:
• (Ak)k∈N with the same law as ( f ◦ T k(Z))k∈N, where Z is a random variable with

law µ,
• (Bk)k∈N, a sequence of independent Gaussian random variables of mean µ( f ) and

variance σ 2
f ,

such that almost surely |
∑n

k=1 Ak −
∑n

k=1 Bk | = o(nλ).
We will usually keep the data σ f , λ implicit but they are part of the statistical theorem,

and when we state that a UE(ω′p[ρ];T , ω′o) property for S implies a UE(ωp[Cρ];T , ωo)

property for T , we always implicitly mean that the equilibrium state µϕ of a potential ϕ
and µ̌ := π∗(µϕ) (which will be an equilibrium state for a potential ϕ̌) satisfy T with the
same parameters under a correspondence f 7→ f̌ (made explicit in §5), that is, σ f = σ f̌
in the respective statements for µ and µ̌ (and, in the case of the ASIP, additionally λ is the
same in both statements).

3. Lifting invariant measures
This section uses the material of §§2.1, 2.4, and 2.5 additionally for the proof of
Theorem B.

3.1. Existence and uniqueness. It is proved in [APPV09] that under a shrinking
hypothesis each µ̌ ∈ PS(Y ) has a lift µ ∈ PT (X) ∩ (π∗)−1(µ̌). Uniqueness seems to be
known only under some ergodicity hypotheses (see [BM17, Remark 2(b)]). Our first result
gives uniqueness in general and a quantified convergence, and generalizes to the case of
fibers shrunk on average (Definition 1.2).

THEOREM 3.1. (Lifting theorem) Let µ̌ be an S-invariant probability measure, and
assume that the fibers of the extension T are shrunk on average with respect to µ̌,
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with shrinking sequence (ān)n . Then there is a unique µ ∈ PT (X) such that π∗µ= µ̌.
Moreover, for all ν ∈ P(X) (not necessarily invariant) such that π∗ν = µ̌ and all n ∈ N,
we have W(T n

∗ ν, µ)≤ ān; in particular, T n
∗ ν→ µ in the weak-∗ topology.

If T has (an)n-shrinking fibers then the above statement holds for all µ̌ ∈ PS(Y ) with
ān = an .

Proof. For all µ0, µ1 ∈ π
−1
∗ (µ̌), and all γ ∈ 0π (µ0, µ1), denoting by (T n, T n) the map

from X × X to itself sending (x0, x1) to (T n x0, T n x1), we have

(T n, T n)∗γ ∈ 0π (T n
∗ µ0, T n

∗ µ1).

Since γ is supported on 1π , for γ -almost all (x0, x1), we have π(x0)= π(x1); using this,
that the first marginal of γ is µ0 and that π∗µ0 = µ̌, we have∫

d(x0, x1) d((T n, T n)∗γ )(x0, x1)=

∫
d(T n x0, T n x1) dγ (x0, x1)

≤

∫
diam(T n(π−1(π(x0)))) dγ (x0, x1)

≤

∫
diam(T n(π−1(y))) dµ̌(y),

Wµ̌(T n
∗ µ0, T n

∗ µ1)≤ ān . (2)

Applying this to any ν ∈ π−1
∗ (µ̌) and to T m−n

∗ ν ,we get W(T n
∗ ν, T m

∗ ν)≤ ān for all
n < m ∈ N, that is, (T n

∗ ν)n is a Cauchy sequence with respect to Wµ̌. By Proposition 2.12,
it has a limit µ ∈ π−1

∗ (µ̌) in the metric Wµ̌, which is also a weak-∗ limit since W≤Wµ̌.
Since T is uniformly continuous along fibers, we have, for any γ ∈ 0π (T n

∗ ν, µ),∫
d(x, x ′) d((T, T )∗γ )(x, x ′)≤

∫
ω̄T (d(x, x ′)) dγ (x, x ′)

≤ ω̄T

(∫
d(x, x ′) dγ (x, x ′)

)
.

Taking an infimum, we get W(T n+1
∗ ν, T∗µ)≤ ω̄T (Wµ̌(T n

∗ ν, µ)); the left-hand side
converges to W(µ, T∗µ) while the right-hand side goes to 0, so that µ is T -invariant.

Reapplying (2) to ν and µ, we get the desired convergence in the Wasserstein metric. �

Remark 3.2. The existence part in [APPV09, Corollary 6.2] might at first seem more
general in the case of shrinking fibers, as no continuity of the map T (denoted there by F) is
explicitly assumed while we assume uniform continuity along the fibers in Definition 1.1.
However, full continuity is implicitly used in the proof of [APPV09, Corollary 6.2]: to
obtain that µF is invariant, [APPV09, Lemma 6.1] is applied to the observable ψ ◦ F ,
implicitly assuming it to be continuous.

A related issue found elsewhere in the literature is to construct µ ∈ (π∗)−1(µ̌) as the
limit of push-forward measures T n

∗ ν, and deducing invariance of µ by writing

T∗µ= T∗
(

lim
n→∞

T n
∗ ν
)
= lim

n→∞
T n+1
∗ ν = µ.

This is perfectly fine when T is continuous, but without this assumption the second
equality may fail.
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COROLLARY 3.3. If T is an extension of S with shrinking fibers, then the map π∗ :
P(X)→ P(Y ) induces a homeomorphism from PT (X) to PS(Y ).

Proof. By Theorem 3.1, π∗ induces a bijection PT (X)→ PS(Y ). Since π∗ is continuous
and PT (X) is compact, this induced map is a homeomorphism. �

We shall denote by π∗ : PS(Y )→ PT (X) the inverse map of this homeomorphism (this
notation has a differential-geometric flavor: an index star denotes push-forward, while an
exponent star denotes pull-back).

3.2. Stable leaves of invariant measures. Imagine that one wishes to draw a random
point x ∈ X whose law is close to µ. Using Theorem 3.1, one could draw a random
point y ∈ Y with law µ̌, choose in any way (random or deterministic) an inverse image
x0 ∈ π

−1(y), and take x = T n(x0) for some large n. However, one may not be able to
draw y with precisely the law µ̌. One would hopefully be able to draw y with a law very
close to µ̌, and still get that the law of x is close to µ.

In other words, one asks for conditions on a probability measure ν ∈ PT (X) ensuring
that T n

∗ ν converges to a given invariant measure µ. This idea also connects with the
construction of SRB measures by iteratively pushing forward the Lebesgue measure.
Define the stable leaf of an invariant measure µ by

Sl(µ, T∗)= {ν ∈ P(X) | T n
∗ ν→ µ}

where the convergence is in the weak-∗ topology. Since we are concerned here with the
relations between T and S, the question is to relate Sl(µ, T∗) to Sl(µ̌, S∗).

LEMMA 3.4. Let µ̌ ∈ PS(Y ) and assume that:
• the fibers are (ān)n-shrunk on average with respect to µ̌;
• T is continuous, and let ωT k be a modulus of continuity of T k , for each k ∈ N;
• π induces a continuous fibration with modulus ω̄π .
Then, for all k, ` ∈ N and all ν ∈ P(X), we have

W(T k+`
∗ ν, µ)≤ ωT k ◦ ω̄π (W(S`∗π∗ν, µ̌))+ āk .

Proof. We first prove that, given any µ0 ∈ P(X) and any µ̌1 ∈ P(Y ), there exist µ1 ∈

π−1
∗ (µ̌1) such that

W(µ0, µ1)≤ ω̄π (W(π∗µ0, µ̌1)).

Let γ̌ be an optimal transport plan from π∗µ0 to µ̌1 and (ξy)y∈Y be the disintegration

of µ0 with respect to π . Recall that τ y′
y is a measurable map from π−1(y) to

π−1(y′) such that d(x, τ y′
y (x))≤ ω̄π (d(y, y′). We define a measure on X × X by γ =∫

(Id, τ y′
y )∗ξy dγ̌ (y, y′), that is, for f : X × X→ R,

γ ( f )=
∫ ∫

f (x, τ y′
y (x)) dξy(x) dγ̌ (y, y′).

The first marginal of γ is µ0, since when f only depends on its first argument,

γ ( f )=
∫ ∫

f (x) dξy(x) dγ̌ (y, y′)=
∫

f (x) dξy(x) dπ∗µ0(y)= µ0( f ).
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Let µ1 be the second marginal of γ ; then π∗µ1 = µ̌1 since when f (x, x ′)= g(π(x ′)),

γ ( f )=
∫ ∫

g(y′) dξy(x) dγ̌ (y, y′)=
∫

g(y′) dγ̌ (y, y′)= µ̌1(g).

We get

W(µ0, µ1)≤

∫
d(x, x ′) dγ (x, x ′)≤

∫
d(x, τ y′

y (x)) dξy(x) dγ̌ (y, y′)

≤

∫
ω̄π (d(y, y′)) dγ̌ (y, y′)≤ ω̄π

(∫
d(y, y′) dγ̌ (y, y′)

)
= ω̄π (W(π∗µ0, µ̌1)).

We now apply this with µ0 = T `∗ ν and µ̌1 = µ̌: there exists µ1 ∈ π
−1
∗ (µ̌) such that

W(T `∗ ν, µ1)≤ ω̄π (W(π∗T `∗ ν, µ̌)
)
. Since π∗T `∗ ν = S`∗π∗ν and T k

∗ µ= µ, we get

W(T k+`
∗ ν, µ)≤W(T k+`

∗ ν, T k
∗ µ1)+W(T k

∗ µ1, µ)

≤ ωT k (W(T `∗ ν, µ1))+ āk

≤ ωT k ◦ ω̄π (W(S`∗π∗ν, µ̌))+ āk . �

COROLLARY 3.5. If T is continuous, π induces a continuous fibration, and fibers are
shrunk on average with respect to µ̌, then Sl(µ, T∗)= π−1

∗ (Sl(µ̌, S∗)).

Proof. If ν ∈ Sl(µ, T∗), then Sn
∗π∗ν = π∗T

n
∗ ν→ π∗µ= µ̌, so that ν ∈ π−1

∗ (Sl(µ̌, S∗)).
Assume now that ν ∈ P(X) is such that Sn

∗π∗ν→ µ̌ and let ε > 0. Choose k such that
ak ≤ ε/2; then there exists η > 0 such that r ∈ [0, η] H⇒ ωT k ◦ ω̄π (r)≤ ε/2. Choose `0

such that, for all `≥ `0, W(S`∗π∗ν, µ̌)≤ η and apply Lemma 3.4: for all n ≥ k + `0, we
have W(T n

∗ ν, µ)≤ ε. �

Proof of Theorem B. According to the statement to be proved, we assume that S has a
conformal measure λY and that the corresponding transfer operator Ľ has a spectral gap
on some Banach space of functions (B, ‖·‖) (see Definition 2.15), with eigenfunction h
(normalized by λY (h)= 1). Let ν ∈ P(X) such that π∗ν = f dλY with f ∈ B, and observe
that λY ( f )= 1, so that we can write f = h + f̄ where λY ( f̄ )= 0. We have Sn

∗ ( f dλy)=

(h + Ľ n f̄ ) dλY and

‖Ľ n f̄ ‖L1(λy)
≤ ‖Ľ n f̄ ‖ ≤ C(1− δ)n

for some δ ∈ (0, 1). Since diam Y ≤ 1, the Wasserstein metric is not greater than the total
variation distance (take a transport plan that leaves the common mass in place and moves
the remaining mass arbitrarily), so that

W(h dλY , (h + Ľ n f̄ ) dλY )≤ ‖Ľ
n( f̄ ) dλY ‖TV = ‖Ľ

n f̄ ‖L1(λY )
≤ C(1− δ)n .

By hypothesis there is some θ ∈ (0, 1) such that an ≤ Cθn for all n ∈ N. Applying
Lemma 3.4 and denoting by L the Lipschitz constant of T and by ω̄π (r)=: Krα the
modulus of continuity of the fibration induced by π , we get, for all k, ` ∈ N,

W(T k+`
∗ ν, µ)≤ Lk K (W(h dλY , (h + Ľ ` f̄ ) dλY ))

α
+ ak ≤ C Lk(1− δ)α` + Cθk .

(3)
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Take β ∈ (0, 1) such that

β <
α log (1/(1− δ))

log L + α log (1/(1− δ))

and define two integer sequences such that kn = βn + O(1), `n = (1− β)n + O(1) and
n = kn + `n . Applying (3) yields W(T n

∗ ν, µ)≤ Cηn for some η ∈ (0, 1). �

4. Preserved properties of lifted invariant measures
Standing Assumption From now on the map T is assumed to be an extension of S with
shrinking fibers.

This assumption will remain active until the end of the paper, and we will only restate
it when we want to specify the rate of shrinking or for the most important results.

With the uniqueness of the T -invariant lift of each S-invariant measure comes naturally
the problem of which special properties of invariant measures are preserved under lifting
(we shall later be specifically concerned with statistical properties). Theorem A is the
concatenation of Theorem 3.1 with the main results of the present section. We shall use
the material of §§2.2, 2.3 and 2.5.

4.1. Ergodicity and mixing. It is known that ergodicity is preserved by the lift map π∗;
see [APPV09] and [BM17]. We give an alternative proof, taking advantage of uniqueness
in Theorem 3.1.

PROPOSITION 4.1. For all µ ∈ PT (X), µ is ergodic if and only if π∗µ is ergodic.

Proof. This follows from π∗ being an affine map inducing a homeomorphism PT (X)→
PS(Y ) (Corollary 3.3), since ergodic measures are the extremal points of the convex set of
invariant measures.

Assume, indeed, that µ is not ergodic: then we can write µ= pµ0 + (1− p)µ1

where µ0 6= µ1 ∈ PT (X) and p ∈ (0, 1). The three measures π∗µ, π∗µ0 and π∗µ1 are
S-invariant and satisfy π∗µ= pπ∗µ0 + (1− p)π∗µ1. Moreover, π∗µ0 6= π∗µ1 and thus
π∗µ is not ergodic. If π∗µ is not ergodic, then similarly a decomposition lifts and µ is not
ergodic either. �

PROPOSITION 4.2. A measure µ ∈ PT (X) is weakly mixing if and only if π∗µ is.

Proof. That µ̌ := π∗µ is weakly mixing is equivalent to µ̌⊗ µ̌ being ergodic for the
diagonal action S × S on Y × Y (see, for example, [Wal82, Theorem 1.24]).

The map T × T is an extension of S × S with factor map π × π : X × X→ Y × Y
and fibers (π × π)−1(y0, y1)= π

−1(y0)× π
−1(y1). If we endow products with the `∞

combined metric, for example, d((x0, x1), (x ′0, x ′1)) :=max(d(x0, x ′0), d(x1, x ′1)), then
the diameter of (T × T )n([(x, x ′]) (where we recall that [·] denotes fibers) is the maximum
diameter of T n([x]), T n([x ′]), so that T × T is an extension of S × S with shrinking fibers.

By Proposition 4.1, the ergodicity of µ̌⊗ µ̌ is equivalent to the ergodicity of its lift
µ⊗ µ, and thus µ̌ is weakly mixing if and only if µ is. �
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We now turn to strong mixing. Recall thatµ is said to be strongly mixing if, for all f, g ∈
L2(µ), Cn

µ( f, g)→ 0 as n→∞. We shall relate observables f, g : X→ R to observables
on Y , which amounts to constructing observables that are constant along fibers. As stressed
in [BM17], a natural solution is to use the average along the disintegration (ξy)y∈Y of
µ with respect to µ̌ (the disintegration theorem is recalled above as Proposition 2.6).
Given a Borel function f : X→ R, we define ξ( f ) : Y → R by ξ( f )(y)= ξy( f ) and
f̃ = ξ( f ) ◦ π . In this way, f̃ is an observable on X which is constant on fibers; moreover,∫

f̃ dµ=
∫
ξ( f ) dµ̌=

∫
f dµ.

By convexity, ξ( f )p
≤ ξ( f p), so that f ∈ L p(µ) H⇒ ξ( f ) ∈ L p(µ̌) for all p ∈ [1,∞].

It is obvious that, for all u ∈ L p(µ̌) and v ∈ L p′(µ̌) (where 1/p + 1/p′ = 1, possibly
{p, p′} = {1,∞}), we have Cn

µ(u ◦ π, v ◦ π)= Cn
µ̌
(u, v). We will need a slightly stronger

observation.

LEMMA 4.3. If u ∈ L p(µ̌) and g ∈ L p′(µ), then Cn
µ(u ◦ π, g)= Cn

µ̌
(u, ξ(g)).

Proof. Since for all y ∈ Y , ξy is supported on π−1(y), we have∫
u ◦ π · g dµ=

∫ (∫
u ◦ π(x) · g(x) dξy(x)

)
dµ̌(y)=

∫
u · ξ(g) dµ̌.

Applying this to u ◦ π ◦ T n
= u ◦ Sn

◦ π , we get the desired result. �

The next lemma is inspired by [AGY06, Lemma 8.2], and will be used immediately to
prove that the strong mixing property lifts to extensions with shrinking fibers, and reused
later to study rates of decay of correlations.

LEMMA 4.4. Assume that the fibers are (an)n-shrinking, let µ ∈ PT (X) and µ̌= π∗µ and
let f, g : X→ R be two observables with f continuous of modulus ω and g ∈ L1(µ). For
all k, m ∈ N, we have

Ck+m
µ ( f, g)≤ Cm

µ̌
(ξ( f ◦ T k), ξ(g))+ ω(ak)‖g‖L1(µ).

Proof. Up to adding a constant, we assume µ( f )= 0. For each y ∈ Y ,

sup
π−1(y)

f ◦ T k
− inf
π−1(y)

f ◦ T k < ω(ak).

After integration with respect to ξy , we obtain that ( f ◦ T k)˜ := ξ( f ◦ T k) ◦ π and f ◦ T k

are ω(ak)-close in the uniform norm, so that

Ck+m
µ ( f, g)= Cm

µ ( f ◦ T k, g)≤ Cm
µ (( f ◦ T k)˜, g)+ ω(ak)‖g‖L1(µ).

Applying Lemma 4.3, we get Cm
µ (( f ◦ T k)˜, g)= Cm

µ̌
(ξ( f ◦ T k), ξ(g)). �

PROPOSITION 4.5. A measure µ ∈ PT (X) is strongly mixing if and only if π∗µ is.

Proof. Assume first that µ is strongly mixing, and let u, v : Y → R be observables in
L2(µ̌). Since Cn

µ(u ◦ π, v ◦ π)= Cn
µ̌
(u, v) and µ is strongly mixing, this goes to 0 as n

goes to∞. (This is classical and does not use the shrinking property).
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Assume now that µ̌ is strongly mixing. Given f, g ∈ L2(µ), define ξ( f ), f̃ , ξ(g), g̃
as above and recall that ξ( f ), ξ(g) ∈ L2(µ̌). Fix ε > 0 and let h be a continuous
approximation of f , with ‖ f − h‖L2(µ) < ε. We have∣∣∣∣∫ ( f − h) ◦ T n

· g dµ
∣∣∣∣≤(∫ ( f − h)2 ◦ T n dµ

)1/2(∫
g2 dµ

)1/2

≤

(∫
( f − h)2 dµ

)1/2(∫
g2 dµ

)1/2

≤ ε‖g‖L2(µ)

so that
Cn
µ( f, g)≤ Cn

µ(h, g)+ ε‖g‖L2(µ). (4)

Let ω be a modulus of continuity of h, and let (an)n be a shrinking sequence. There is
a k such that ω(ak) < ε. By Lemma 4.4 and using ‖·‖L1(µ) ≤ ‖·‖L2(µ),

Ck+m
µ (h, g)≤ Cm

µ̌
(ξ(h ◦ T k), ξ(g))+ ε‖g‖L2(µ). (5)

Combining (4) and (5), we get Ck+m
µ ( f, g)≤ Cm

µ̌
(ξ(h ◦ T k), ξ(g))+ 2ε‖g‖L2(µ). Since

µ̌ is strongly mixing, there is an m0 such that, for all n > m0 + k, Cn
µ( f, g)≤ (1+

2‖g‖L2(µ))ε, and µ is strongly mixing. �

4.2. Entropy. Entropy preservation in Theorem A is unsurprising and, thanks to
the uniqueness in Theorem 3.1, follows easily from the relative variational principle
established by Ledrappier and Walters [LW77]: for all µ̌ ∈ PS(Y ),

sup
µ∈π−1

∗ (µ̌)

hKS(T, µ)= hKS(S, µ̌)+
∫

h(T, π−1(y)) dµ̌(y)

where hKS(T, µ) is the Kolmogorov–Sinai entropy and h(T, K ) is the topological entropy
of T on the (not necessarily invariant) compact set K ⊂ X .

PROPOSITION 4.6. If S, T are continuous, then h(T, µ)= h(S, π∗µ) for all µ ∈ PT (X).

Proof. Let µ ∈ PT (X) and µ̌= π∗µ. By Theorem 3.1, π−1
∗ (µ̌)= {µ}, so that

the Ledrappier–Walters relative variational principle reads hKS(T, µ)= hKS(S, µ̌)+∫
h(T, π−1(y)) dµ̌(y), and we are left with proving h(T, π−1(y))≡ 0.
Let y ∈ Y and δ > 0. There is an n0 ∈ N such that, for all n > n0, an < δ. Let E0

be a maximal (n0, δ)-separated set of π−1(y). For all x, x ′ ∈ E0 and all m such that
n0 < m ≤ n, d(T m x, T m x ′)≤ am < δ so that E0 must be (n, δ)-separated as well. It
follows that the cardinal of an (n, δ)-separated set is bounded independently of n, and
therefore h(T, π−1(y))= 0. �

4.3. Absolute continuity, physicality, observability. Assume here that X and Y are
equipped with reference measures λX and λY . In general, the lift to an extension with
shrinking fibers of an Acip is not itself an Acip; the map S could have an Acip while
T does not (e.g. take Y to be a point, T contracting). However, the weaker property of
physicality is preserved under a mild regularity assumption on π .

PROPOSITION 4.7. Assume that T is continuous and X, Y equipped with reference
measures with respect to which π is non-singular. A measure µ ∈ PT (X) is physical if
and only if π∗µ is.
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Proof. As usual, we set µ̌= π∗µ. For all x ∈ X , we have π∗((1/n)
∑n−1

k=0 δT k x )=

(1/n)
∑n−1

k=0 δSkπ(x). If (1/n)
∑n−1

k=0 δT k x converges to some ν ∈ PT (X), then

(1/n)
∑n−1

k=0 δSkπ(x) converges to π∗ν. This proves that Ba(µ)⊂ π−1(Ba(µ̌)). We
get equality by compactness: if π(x) ∈ Ba(µ̌), then any cluster point of the sequence
((1/n)

∑n−1
k=0 δT k x )n is mapped by π∗ to µ̌. Since T is continuous, such cluster points are

T -invariant, so that Theorem 3.1 implies that µ is the unique cluster point of the sequence,
hence its limit.

Since π is non-singular, λY (Ba(µ̌)) > 0 if and only if λX (π
−1(Ba(µ̌))) > 0, that is, µ̌

is physical if and only if µ is physical. �

Since ergodic Acips are particular cases of physical measures, while they do not
necessarily lift to Acips, they do lift to physical measures. This implies that many weakly
hyperbolic systems have physical measures (see, for example, Corollaries 1.7, 1.9).

It is not much more difficult to lift observability.

PROPOSITION 4.8. Assume that T is continuous and X, Y are equipped with reference
measures with respect to which π is non-singular. A measure µ ∈ PT (X) is observable if
and only if π∗µ is.

Proof. Given any ε > 0, since π∗ is continuous there exists some η > 0 such that, for all
µ0, µ1 ∈ P(X), W(µ0, µ1) < η H⇒ W(π∗µ0, π∗µ1) < ε. Let x ∈ Baη(µ): there exist
µ0 ∈ PT (X) such that W(µ0, µ) < η and an increasing sequence of positive integers
(nk)k∈N such that µ0 = limk (1/nk)

∑nk−1
j=0 δT j (x). Then (1/nk)

∑nk−1
j=0 δS jπ(x)→

π∗µ0 ∈ PS(Y ) and W(π∗µ0, µ̌)≤ ε, so that π(x) ∈ Baε(µ̌). We have proved Baη(µ)⊂
π−1(Baε(µ̌)); if µ is observable, then λX (Baη(µ)) > 0 and, by non-singularity of π , we
deduce that µ̌ is observable.

Since π∗ is continuous, for all ε > 0 there exists an η > 0 such that, for
all ν0, ν1 ∈ PS(Y ), W(ν0, ν1) < η H⇒ W(π∗ν0, π

∗ν1) < ε. Let x ∈ X such that
π(x) ∈ Baη(µ̌). There exist ν0 ∈ PS(Y ) such that W(µ̌, ν0) < η and an increasing
sequence of positive integers (nk)k∈N such that ν0 = limk (1/nk)

∑nk−1
j=0 δS jπ(x) =

limk π∗((1/nk)
∑nk−1

j=0 δT j x ). It follows that any cluster point of ((1/nk)
∑nk−1

j=0 δT j x )k is
mapped by π∗ to ν0. Since T is continuous, these cluster points are T -invariant and there
is only one of them, π∗ν0. Moreover, since W(ν0, µ̌) < η, we have W(π∗ν0, π

∗µ̌) < ε,
so that x ∈ Baε(µ). We have thus proved that π−1(Baη(µ̌))⊂ Baε(µ), from which we
deduce that if µ̌ is observable, then so is µ. �

5. Equilibrium states and statistical properties
In this section we consider some classical objects and properties that form the core of the
thermodynamical formalism, and lift them from S to T . This will, for example, be used
to recover information about certain hyperbolic maps from information about expanding
maps. This is an old strategy, notably well developed in symbolic dynamics, that has been
extended more generally through Markov partition and coding. More recently, a ‘direct
lifting’ approach has been frequently used, often in quite specific cases. Our goal is to
use this approach in the most general way while keeping all proofs simple. We shall use
§§2.1, 2.2 (definition of a section) and 2.6.
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5.1. Equilibrium states. Let ϕ : X→ R be a function, here called a potential, to be
interpreted physically (up to sign) as a density of energy: a T -invariant measure µ is called
a ‘state’, the total energy of the system in state µ being −µ(ϕ). The ‘free energy’ is then
F (µ) := hKS(T, µ)+ µ(ϕ), and we seek equilibrium states, that is, invariant measures
maximizing free energy. The main questions underlying the ‘thermodynamical formalism’
are existence, uniqueness and statistical properties of equilibrium states.

Here of course we want to relate this to the corresponding situation for S; since µ̌= π∗µ
is the state on Y corresponding to µ and hKS(S, µ̌)= hKS(T, µ) (Proposition 4.6), one
only needs to consider the energy term. We would thus like to construct a potential
ϕ̌ : Y → R related to ϕ; using the disintegration of µ to construct ξ(ϕ) as in §4.1 is
not suitable here since invariant measures are to be considered all at once and compared.
Rather, we will add a suitable coboundary to ϕ, as is classically done in the case of shifts;
see [Bow08].

Coboundaries are defined as the functions of the form h − h ◦ T : X→ R. They
are important because, for all T -invariant measures µ, we have µ(h − h ◦ T )= µ(h)−
µ(h ◦ T )= 0: adding a coboundary to a potential does not change its energy with respect
to any state. We will construct a potential ϕ̂ = ϕ + h − h ◦ T that is constant on fibers
(then ϕ̂ = ϕ̌ ◦ π will define ϕ̌ : Y → R).

LEMMA 5.1. Assume that fibers are (an)n-shrinking, and that π admits a continuous
section σ : Y → X. Let ϕ : X→ R be a ω-continuous potential where

∑
n≥0 ω(an) <∞,

and set h =
∑
∞

n=0(ϕT nσπ − ϕT n). Then h : X→ R is well defined and ϕ̂ := ϕ + h −
h ◦ T is constant on each fiber.

If T is continuous, so is h. If T is L-Lipschitz, then, for all x, x ′ ∈ X and all N ∈ N,

|h(x)− h(x ′)| ≤ 2 Holω(ϕ)
( N∑

n=0

ω
(
Lnωσπ (d(x, x ′))

)
+

∑
n>N

ω(an)

)
where ωσπ is any modulus of continuity of σπ such that ωσπ (r)≥ r for all r ∈
[0, diam X ].

(The assumption on ωσπ can always be obtained up to increase the modulus, and is only
meant to simplify the conclusion.)

Proof. Let H = Holω(ϕ). For all x ∈ X , σπ(x) and x lie on the same fiber, so that
d(T nσπ(x), T n(x))≤ an and |ϕT nσπ(x)− ϕT n(x)| ≤ Hω(an). The convergence of∑
ω(an) ensures the uniform convergence of the series defining h which is therefore well

defined, and continuous whenever T is.
Next, we have

ϕ̂ = ϕ +

∞∑
n=0

(ϕT nσπ − ϕT n)−

∞∑
n=0

(ϕT nσπT + ϕT n+1)

= ϕ + ϕσπ − ϕ +

∞∑
n=0

(ϕT n+1σπ − ϕT n+1
− ϕT nσ Sπ + ϕT n+1)

= ϕσπ +

∞∑
n=0

(ϕT n+1σπ − ϕT nσ Sπ)
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which is constant on fibers since π factors on the right. Assume now that T is L-Lipschitz
and σπ has modulus of continuity ωσπ . Then

|h(x)− h(x ′)| ≤
∞∑

n=0

|ϕT nσπ(x)− ϕT n(x)− ϕT nσπ(x ′)+ ϕT n(x ′)|

≤

N∑
n=0

|ϕT nσπ(x)− ϕT nσπ(x ′)| +
N∑

n=0

|ϕT n(x)− ϕT n(x ′)|

+

∑
n>N

|ϕT nσπ(x)− ϕT n(x)| +
∑
n>N

|ϕT nσπ(x ′)− ϕT n(x ′)|

≤

N∑
n=0

Hω(Lnωσπ (d(x, x ′)))+
N∑

n=0

Hω(Lnd(x, x ′))+ 2
∑
n>N

Hω(an).

We conclude by using d(x, x ′)≤ ωσπ (d(x, x ′)). �

THEOREM 5.2. Assume that T is an extension of S with (an)n-shrinking fibers, that π has
modulus of continuity ωπ (r)≥ r and admits a Lipschitz section σ : Y → X, and that T is
L-Lipschitz. Let ω, ω̌ be two moduli of continuity with ω̌ & ω.

If, for some constant D > 0 and for all r ∈ [0, diam X ], there exists some N = N (r) ∈
N such that ∑

n>N

ω(an)≤ Dω̌(r) and
N∑

n=0

ω(Lnωπ (r))≤ Dω̌(r), (6)

then:
(i) for all ω-continuous potential ϕ : X→ R there is an ω̌-continuous potential ϕ̌ : Y →

R such that ϕ differs from ϕ̂ = ϕ̌ ◦ π by a coboundary;
(ii) for all µ ∈ PT (X), writing µ̌= π∗µ, we have

hKS(T, µ)+ µ(ϕ)= hKS(S, µ̌)+ µ̌(ϕ̌)

(in particular, π∗ realizes a bijection between equilibrium states of ϕ̌ and equilibrium
states of ϕ);

(iii) we can realize ϕ 7→ ϕ̌ as a continuous linear map from Holω(X) to Holω̌(Y ).

Proof. Given ϕ ∈ Holω(X), let h be the function defined by Lemma 5.1. The hypotheses
are tailored to ensure that h is ω̌-continuous (more precisely, Holω̌(h)≤ 4D Holω(ϕ)).
It follows that Holω̌(h ◦ T )≤ 4L D Holω(ϕ), and the potential ϕ̂ = ϕ + h − h ◦ T is ω̌-
continuous. Since σ is Lipschitz, ϕ̌ := ϕ̂ ◦ σ is also ω̌-continuous. Since ϕ̂ is constant on
fibers, ϕ̌ ◦ π = ϕ̂.

The equality of free energies follows from the equality of entropies (Proposition 4.6)
and from µ(ϕ)= µ(ϕ̂)= π∗µ(ϕ̌).

The fact that ϕ 7→ ϕ̌ is continuous linear follows from the construction. �

From here the game consists of finding the optimal choice of N (r) depending on the
available assumptions. We will restrict in the following to the case where π is Hölder-
continuous, a common situation in hyperbolic dynamics.
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COROLLARY 5.3. Assume that T is L-Lipschitz for some L ≥ 1, that σ is Lipschitz and
that π is β-Hölder.
(i) If the fibers are exponentially shrinking with ratio θ ∈ (0, 1) and ω = ωα is a Hölder

modulus of continuity, then the conclusions of Theorem 5.2 hold with ω̌ = ωγ where
γ = αβ/(1− log L/ log θ).

(ii) If the fibers are polynomially shrinking with degree d > 0, and ω = ωα where α >
1/d, then the conclusions of Theorem 5.2 hold with ω̌ = ωα′ log where α′ = αd − 1.

(iii) If the fibers are exponentially shrinking and ω = ωα log with α > 1, then the
conclusions of Theorem 5.2 hold with ω̌ = ωα′ log where α′ = (α − 1)/2.

Note that we can always replace ω̌ with a larger modulus if needed. In particular, in
the case of exponentially shrinking fibers, if each Hölder-continuous potential on Y has a
unique equilibrium state for S, then each Hölder-continuous potential on X has a unique
equilibrium state for T .

Proof. We apply Theorem 5.2 three times. For (i), take N (r)= γ log r/(α log θ)+ O(1);
then ∑

n>N

ω(an). θ
αN . rγ and

N∑
n=0

ω(Lnωπ (r)). LαN rαβ . rγ
′

with γ ′ = γ (log L/ log θ)+ αβ = γ .
For (ii), take N (r)= η log (rα′/r)/ log L + O(1) with any η < β; then∑

n>N

ω(an).
1

Nαd−1 .
1

(log (rα′/r))α′

and
N∑

n=0

ω(Lnωπ (r)). LαN rαβ . rα(β−η)� ωα′ log(r).

For (iii), take N (r)= (log (rα′/r))1/2 + O(1); then, using Proposition 2.3 for the
second term, ∑

n>N

ω(an).
1

Nα−1 .
1

(log (rα′/r))α′

and
N∑

n=0

ω(Lnωπ (r)).
Nα+1

(log (rα/rβ))α
.

1
(log (rα′/r))α′

. �

5.2. Statistical properties. We would now like to lift statistical properties, assuming
them for µ̌ ∈ PS(Y ) and deducing them for its lift µ ∈ PT (X). One can in principle lift
a decay of correlations (which we will consider next) and then use it to prove statistical
properties, but it is in fact simpler to use Theorem 5.2 on observables to lift statistical
properties directly.

PROPOSITION 5.4. Assume π has a section σ : Y → X. Consider µ ∈ PT (X), µ̌= π∗µ,
T ∈ {LIL, CLT, ASIP}, and let ω, ω̌ be two moduli of continuity. If
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(i) for each f ∈ Holω(X) there is a continuous h : X→ R such that f̂ = f + h − h ◦ T
is constant on fibers and f̌ = f̂ ◦ σ belongs to Holω̌(Y ), and

(ii) µ̌ satisfies T for all ω̌-continuous observables,
then µ satisfies T for all ω-continuous observables, with the same parameters as µ̌
(see Definition 2.19).

Proof. This is classical and straightforward. For all f ∈ Holω(X), we have
n∑

k=1

f̂ ◦ T k
=

n∑
k=1

f ◦ T k
+ h ◦ T − h ◦ T n+1

=

n∑
k=1

f ◦ T k
+ O(1)

where the O(1) is bounded in the uniform norm, and
∑n

k=1 f̂ ◦ T k
= (
∑n

k=1 f̌ ◦ Sk) ◦ π .
Then, when (µ̌, f̌ ) satisfy the LIL with some variance σ f̌ > 0, we have∑n

k=1 f ◦ T k(x)− nµ( f )√
2n log log n

=

∑n
k=1 f̌ ◦ Sk(π(x))− nµ̌( f̌ )√

2n log log n
+ o(1),

and the superior limit is σ f̌ for all x /∈ π−1(E) for some µ̌-negligible set E . Since
µ̌= π∗µ, π−1(E) is µ-negligible.

In the case of the CLT, for all ε > 0, for all n large enough,∥∥∥∥ n∑
k=1

f̂ ◦ T k
−

n∑
k=1

f ◦ T k
∥∥∥∥
∞

≤ ε
√

n

and therefore

µ

{
x ∈ X :

1
√

n

n∑
k=1

f ◦ T k(x)≤ r
}
≥ µ

{
x ∈ X :

1
√

n

n∑
k=1

f̂ ◦ T k(x)≤ r − ε
}

= µ̌

{
y ∈ Y :

1
√

n

n∑
k=1

f̌ ◦ Sk(y)≤ r − ε
}

→ G
µ̌( f̌ ),σ f̌

(r − ε)

so that, by continuity of G
µ̌( f̌ ),σ f̌

= Gµ( f ),σ f̌
,

lim inf
n→∞

µ

{
x ∈ X :

1
√

n

n∑
k=1

f ◦ T k(x)≤ r
}
≥ Gµ( f ),σ f̌

(r).

The superior limit is treated in the same way, and we get the CLT for µ, with the same
variance.

In the case of the ASIP, we have processes ( Ǎk)k∈N, whose law is the same as that of
( f̌ ◦ Sk(Ž))k∈N where Ž has law µ̌, and (Bk)k∈N, independent Gaussian of mean µ̌( f̌ )=
µ( f ) and variance σ f̌ , such that |

∑n
k=1 Ǎk −

∑n
k=1 Bk |= o(nλ) almost surely. We first

construct a random variable Z with law µ such that Ž = π(Z): up to enriching �, we can
assume we have a uniform random variable V on [0, 1] independent of all previous random
variables, and by measurable selection we have a measurable family of measurable maps
4y : [0, 1] → X such that 4y(V ) has law ξy , where (ξy)y∈Y is the disintegration of µ
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with respect to π . Then Z =4Ž (V ) is the desired random variable; now ( Ǎk)k∈N has
the same law as ( f̂ ◦ T k(Z))k∈N. Since f ◦ T k(Z)= f̂ ◦ T k(Z)− h(T k Z)+ h(T k+1 Z),
there is a process (Hk)k with the same law as (h(T k Z)− h(T k+1 Z))k such that (Ak)k =

( Ǎk − Hk)k has the same law as ( f ◦ T k(Z))k ; in particular,
∑n

k=1 Hk has the same law
as h(T Z)− h(T n+1 Z) and is bounded almost surely by 2‖h‖∞. Finally, almost surely∣∣∣∣ n∑

k=1

Ak −

n∑
k=1

Bk

∣∣∣∣≤ ∣∣∣∣ n∑
k=1

Ǎk −

n∑
k=1

Bk

∣∣∣∣+ ∣∣∣∣ n∑
k=1

Hk

∣∣∣∣= o(nλ)+ O(1)= o(nλ). �

Theorem C follows directly from Proposition 5.4 and Corollary 5.3. More generally,
applying Theorem 5.2, we obtain the following result.

THEOREM 5.5. Assume that T is an L-Lipschitz extension of S with (an)n-shrinking
fibers, that the factor map π is β-Hölder-continuous and that there is a Lipschitz section
σ : Y → X.

We consider moduli of continuity ωp, ωo, ω̌p, ω̌o where p stands for ‘potential’ and o
for ‘observable’ and a limit theorem T ∈ {LIL, CLT, ASIP}.

If S satisfies UE(ω̌p[ρ];T , ω̌o) and if, for some constant D > 0 and for all r ∈
[0, diam X ], there exists some N = N (r) ∈ N such that, for each i ∈ {o, p},

∑
n>N

ωi (an)≤ Dω̌i (r) and
N∑

n=0

ωi (Lnrβ)≤ Dω̌i (r), (7)

then T satisfies UE(ωp[Cρ];T , ωo) (with the same parameters in T as for S).

6. Decay of correlations
The fact that strong mixing is preserved by the lift map hints at the fact that decay of
correlation, which quantifies mixing for regular enough observables, might also lift from
(S, µ̌) to (T, µ). This section uses §§2.1, 2.2 and 2.5.

Assume we have some decay of correlations for observables of a given regularity
for (S, µ̌). Given f, g : X→ R, we have Cn

µ( f̃ , g̃)= Cn
µ̌
(ξ( f ), ξ(g)), and Lemma 4.4

relates Cn
µ( f, g) to Cn

µ( f̃ , g̃) (up to composition with T n and a shift in n). The crucial
missing piece is to understand whether the disintegration (ξy)y∈Y preserves regularity. For
example, if f is Hölder does it follow that ξ( f ) is Hölder?

6.1. Regularity of the disintegration. The following result is close to [BM17,
Proposition 3], but we do not assume a skew-product structure and add continuity to the
conclusion.

LEMMA 6.1. Assume that T is continuous and that there is a continuous section σ . Fix
µ ∈ PT (X), µ̌= π∗µ and let (ξy)y be the disintegration of µ with respect to π and Ľ be
the transfer operator of (S, µ̌).

Then, for all y ∈ Y and all continuous f : X→ R, we have ξy( f )=
limn Ľ n( f T nσ)(y). If, moreover, Ľ sends continuous functions to continuous functions,
then (ξy)y∈Y preserves continuity.
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Proof. For all n, m ∈ N and all continuous f : X→ R, using g = Ľ m(gSm),
‖Ľ (g)‖∞ ≤‖g‖∞ and πT mσ(y)= πσ Sm(y), we have

‖Ľ n+m( f T n+mσ)− Ľ n( f T nσ)‖∞ = ‖Ľ
n+m( f T n

◦ T mσ)− Ľ n+m( f T n
◦ σ Sm)‖∞

≤ ‖ f T n
◦ T mσ − f T n

◦ σ Sm
‖∞

≤ ω(an)

where ω is a modulus of continuity of f and (an)n is a shrinking sequence.
It follows that ζ n

y := Ľ n( f T nσ)(y) converges as n→∞, uniformly in y ∈ Y , and that
the limit ζy := limn ζ

n
y defines for each y ∈ Y a continuous linear form on C 0(X), that is,

a measure on X .
If Ľ sends continuous functions to continuous functions, then, for all n ∈ N, the

function y 7→ ζ n
y ( f ) is continuous, and by uniform convergence so is y 7→ ζy( f ).

All that remains is to check that (ζy)y∈Y coincides with (ξy)y∈Y on a set of full µ̌
measure. Since Ľ n(1T nσ)= 1 and Ľ n( f T nσ)≥ 0 whenever f ≥ 0, ζy is a probability
measure for each y. If f ≡ 0 on π−1(y), then f T nσ ≡ 0 on S−n(y) and Ľ n( f T nσ)(y)=
0, so that ζy( f )= 0; that is, ζy is concentrated on π−1(y). Finally,∫

ζy( f ) dµ̌= lim
n

∫
Ľ n( f T nσ) dµ̌= lim

n

∫
f T nσ dµ̌

=

∫
f d
(

lim
n

T n
∗ (σ∗µ̌)

)
=

∫
f dµ

and, by uniqueness in the disintegration theorem, ζy = ξy for µ̌-almost all y ∈ Y . �

We shall now consider functions f : X→ R with a specified amount of regularity, that
is, f ∈ Holω(X) for some modulus ω. We will need a stronger hypothesis on the transfer
operator of S.

LEMMA 6.2. Assume that Ľ is iteratively bounded with respect to ω. Then, for all f ∈
Holω(X), there is a version of ξ( f ) such that, for all y, y′ ∈ Y and all k, n ∈ N,

|ξy( f T k)− ξy′( f T k)| ≤ 2 Holω( f )ω(an+k)+ C Holω( f T n+kσ)ω(d(y, y′)).

Proof. Set, as above, ζ n
y ( f )= Ľ n( f T nσ)(y) for all y ∈ Y . Then (ζ n

y )y∈Y is the
disintegration of T n

∗ (σ∗µ̌), while (ξy)y is the disintegration of µ= T n
∗ µ. There exists

γ ∈ 0π (µ, σ∗µ̌) (actually γ is unique, equal to (Id, σπ)∗µ), and γ n
:= (T n, T n)∗γ is

in 0π (µ, T n
∗ (σ∗µ̌)). Let (ηn

y)y∈Y be the disintegration of γ n with respect to the map
1π → Y sending (x, x ′) to π(x)= π(x ′). Then, for µ̌-almost all y, ηn

y ∈ 0(ξy, ζ
n
y ) and

for ηn
y-almost all (x, x ′), we have x = T n(w) and x ′ = T n(w′) for some w, w′ with

π(w)= π(w′). Now we get

|ξy( f T k)− ζ n
y ( f T k)| =

∣∣∣∣∫ f T k(x) dηn
y(x, x ′)−

∫
f T k(x ′) dηn

y(x, x ′)
∣∣∣∣

=

∣∣∣∣∫ ( f (x)− f (x ′)) d((T k, T k)∗η
n
y)(x, x ′)

∣∣∣∣
≤Holω( f )

∫
ω(d(x, x ′)) d((T k, T k)∗η

n
y)(x, x ′)

≤Holω( f )ω(an+k)
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since, for (T k, T k)∗η
n
y-almost all (x, x ′), x = T k+n(w) and x ′ = T n+k(w′) for somew, w′

in the same fiber. We then have

|ξy( f T k)− ξy′( f T k)| ≤ |ξy( f T k)− ζ n
y ( f T k)| + |ζ n

y ( f T k)− ζ n
y′( f T k)|

+ |ζ n
y′( f T k)− ξy′( f T k)|

≤ 2 Holω( f )ω(an+k)+ |Ľ
n( f T n+kσ)(y)− Ľ n( f T n+kσ)(y′)|

≤ 2 Holω( f )ω(an+k)+ C Holω( f T n+kσ)ω(d(y, y′)). �

THEOREM 6.3. (Regularity of disintegrations) Let T be a L-Lipschitz extension of S with
(an)n-shrinking fibers, and assume that there is a Lipschitz section σ . Let α ∈ (0, 1] and
let µ ∈ PT (X), µ̌= π∗µ.
(i) If the transfer operator Ľ of (S, µ̌) is iteratively bounded with respect to ωα and if

fibers are exponentially shrinking with ratio θ ∈ (0, 1), then the disintegration ξ of
µ with respect to π is (ωα, ωβ)-bounded for β = α/(1− log L/ log θ).

(ii) If the transfer operator Ľ of (S, µ̌) is iteratively bounded with respect to ωα
and if (an)n is polynomial of degree d, then (ξy)y∈Y is (ωα, ωαd log)-bounded and,
moreover, the maps

Dk : Holα(X)→Holαd log(Y )

f 7→ ξ( f T k)

have operator norm bounded above by Ckαd .
(iii) If the transfer operator Ľ of (S, µ̌) is iteratively bounded with respect to ωα log and

if (an)n is exponential, then (ξy)y∈Y is (ωα log, ω(α/2) log)-bounded.

Note that the norm bound in (ii) is not a specific feature but will be needed later, as the
trivial bound of C Lαk is much too weak in this case.

Note that Butterley and Melbourne [BM17, Proposition 6] obtain the better exponent
β = α in item (i), but only in a restricted setting.

Proof. We apply Lemma 6.2 three times.
For item (i) we take ω = ωα , k = 0 and get, for all f ∈ Holα(X), y, y′ ∈ Y and k, n ∈ N,

|ξy( f )− ξy′( f )|. Holα( f )(θαn
+ Lαnd(y, y′)α).

Taking n = β log d(y, y′)/(α log θ) yields θαn
' Lαnd(y, y′)α ' d(y, y′)β .

For item (ii) we take ω = ωα and consider arbitrary k to get the norm estimate. Given
y 6= y′ ∈ Y , we would like to choose m = n + k =−c log d(y, y′)+ O(1) for some small
constant c > 0 to be specified later on. This is possible whenever k ≤−c log d(y, y′); in
this case we get Lαm

' d(y, y′)−cα log L and thus

|ξy( f T k)− ξy′( f T k)|. Holα( f )(ωαd log(d(y, y′))+ d(y, y′)α(1−c log L)).

Choosing c < 1/ log L ensures the last term above is (much) less than ωαd log(d(y, y′)).
We are left with the case k >−c log d(y, y′), but then 1≤ k/(c log(1/d(y, y′))) and

|ξy( f )− ξy′( f )| ≤ sup f − inf f . Holα( f ). Holα( f )kαdωαd log(d(y, y′)).
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For item (iii) we take ω = ωα log, k = 0 and get ω(an)' n−α . Given y 6= y′ ∈ Y , we
choose n ' ω(1/2) log(d(y, y′))' (− log d(y, y′))1/2 so that by Proposition 2.3,

Holα log( f T nσ). (− log d(y, y′))α/2 Holα log( f );

then Lemma 6.2 yields |ξy( f )− ξy′( f )|. Holα log( f ) ω(α/2) log(d(y, y′)) as desired. �

6.2. Lifting decay of correlations. Combining Lemma 4.4 with Theorem 6.3, we can
finally lift decay of correlations.

Proof of Theorem D. For item (i) we start from f ∈ Holα(X) of zero µ-average and
g ∈ L1(µ); then f ∈ Holα′(X) for all α′ ≤ α, with Holα′( f )≤ Holα( f ). Up to choosing
a smaller α, the hypothesis on the transfer operator enables us to assume that Ľ has a
spectral gap on Holα(Y ), and is thus ωα-iteratively bounded. From Theorem 6.3, we get
that ξ( f T k) is in Holβ(Y ) for some β ∈ (0, α), with

Holβ(ξ( f T k)). Holα( f T k). Lαk Holα( f )

where L is a Lipschitz constant for T . Lemma 4.4 then yields for all k, m ∈ N:

Ck+m
µ ( f, g). (1− δ)m Lαk Holα( f )‖ξ(g)‖L1(µ̌) + θ

αk Holα( f )‖g‖L1(µ)

where δ is the spectral gap of Ľ and θ is the ratio of shrinking (recall ‖ξ(g)‖L1(µ̌) =

‖g‖L1(µ)). Taking sequences kn = tn + O(1) and mn = (1− t)n + O(1) summing to n
with t ∈ (0, 1) small enough provides exponential decay of Cn

µ( f, g).
For (ii) we start again from f ∈ Holα(X) of zero µ-average and g ∈ L1(µ); by

hypothesis Ľ is iteratively ωα-bounded and µ̌ has polynomial decay of correlations
of degree p for αd log-Hölder observables. Theorem 6.3 ensures that ξ( f T k) is in
Holαd log(Y ) with norm at most Ckαd . Then Lemma 4.4 yields, for all k, m ∈ N,

Ck+m
µ ( f, g). Holα( f )‖g‖L1(µ)

(
kαd

m p +
1

kαd

)
.

Given n, to optimize over pairs (k, m) such that k + m = n, one is led to make both terms
of the same order of magnitude, that is, to take k ' (n − k)p/2αd . If p > 2αd, then m� k
and thus k ' n, and we get a polynomial decay of degree αd. If p < 2αd , then k� m and
thus m ' n, k ' m p/2αd and we get a polynomial decay of degree p/2. If p = 2αd, we
take k ' m both of the same order as n and we get a polynomial decay of correlations of
degree αd = p/2.

For item (iii) we start from f ∈ Holα log(X) of zero µ-average and g ∈ L1(µ); by
hypothesis Ľ is iteratively ωα log-bounded and µ̌ has polynomial decay of correlations of
degree p in Hol(α/2) log(Y ). Theorem 6.3 ensures that ξ( f T k) is in Holα/2(Y ) with norm
at most C Holα log( f T k). kα Holα log( f ) (Proposition 2.3). Then Lemma 4.4 yields, for
all k, m ∈ N,

Ck+m
µ ( f, g). Holα log( f )‖g‖L1(µ)

(
kα

m p +
1

kα

)
and, as above, we get Cn

µ( f, g). Holα log( f )‖g‖L1(µ)/nmin(α,p/2). �
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7. Proofs of corollaries given in the introduction
Proof of Corollary 1.7. To prove the first part of item (i), observe that the unique
absolutely continuous invariant measure µ̌S of Sq is ergodic and has full support [Tha80],
and it must thus be the unique physical measure; then Theorem A implies that the
unique lift µT of µ̌S is the unique physical measure of T . To obtain the ASIP, consider
an α-Hölder observable f . By Corollary 5.3, for some γ > 0, there exists a γ -Hölder
observable f̌ : T→ R such that f̂ := f̌ ◦ π differs from f by a coboundary. Then as in
Proposition 5.4, the ASIP for (T, µT , f ) follows from the ASIP for (Sq , µ̌, f̌ ), which has
been proved by Melbourne and Nicol [MN05] (the return time R of Sq to [ 12 , 1] is n on an
interval of size '1/n1+1/q , so that when q < 1

2 we have R in L2+δ for some δ > 0). Note
that ASIPs with better rates have been obtained recently by Cuny, Dedecker, Korepanov
and Merlevède for intermittent maps [CDKM18]; Theorem 5.5 enables us to lift these
rates.

For item (iii), [Klo17, Theorem A] states that Sq satisfies UE(ωγ , CLT, ω∗) for all
γ > q and that the transfer operators of γ -Hölder potentials have a spectral gap on Hölder
spaces of small enough exponent (use [TK05] for the CLT; see the comment below
Corollary F in [Klo17]). Theorem C, item (i) (where β = 1: π is Lipschitz) then ensures
that T satisfies UE(ωα, CLT, ω∗) for all α > q ′. The decay of correlation follows from
Theorem D. �

Proof of Corollary 1.8. Setting α′ = αd − 1> 1, [Klo17, Theorem E] shows that:
(i) the transfer operator associated to a α′ log-Hölder potential ϕ̌, defined by

Ľ ϕ̌ f (z)=
∑

z∈S−1(y)

eϕ(y) f (y),

acts on (α′ − 1) log-Hölder observables; it can be normalized, that is, up to adding
to ϕ̌ a constant and a coboundary, one can assume Ľ ϕ̌1= 1; and once normalized
there is a unique S-invariant probability measure µ̌ϕ̌ that is also fixed by the dual
operator Ľ ∗

ϕ̌
;

(ii) the transfer operator decays polynomially with degree α′ − 1 in the uniform
norm for all u ∈ Hol(α′−1) log(Y ) such that µ̌ϕ̌(u)= 0, that is, ‖Ľ n

ϕ̌
u‖∞ .

Hol(α′−1) log(u)/nα
′
−1;

(iii) when α′ > 3/2, using [TK05] as above, µ̌ϕ̌ satisfies the CLT for all (α′ − 1) log-
Hölder observables.

While it is not stated in [Klo17], µ̌ϕ̌ is the unique equilibrium state for ϕ̌ (see Ledrappier
[Led74] and Walters [Wal75]; the statements there are for one-sided subshifts of finite
type, but the assumption really used is the existence of a one-sided generator, which
holds here), so that S satisfies UE(ωα′ log,∅), and when α′ > 3/2 it also satisfies
UE(ωα′ log, CLT, ω(α′−1) log). Theorem C enables us to deduce for T both UE(ωα;∅)
when α > 2/d , and UE(ωα; CLT, ωα−1/d) when α > 5/(2d) (take γ = α − 1/d , so that
γ ′ = α′ − 1).

Since the transfer operator of a uniformly expanding map with respect to the equilibrium
state of a Hölder potential is well known to have a spectral gap (and thus is iteratively
ωγ -bounded), Theorem D, item (ii) applies (with the exponent γ = α − 1/d instead
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of α, and p = αd − 2), implying a polynomial rate of decay of correlations of degree
αd/2− 1. �

Proof of Corollary 1.9. By [Klo17] (see also [FJ01b, FJ01a]), S has a unique absolutely
continuous measure µ̌, which has polynomial decay of correlations of degree (α − 1) for
all (α − 1) log-Hölder observables (in particular, it is ergodic). Let µT be the unique
T -invariant lift of µ̌ provided by Theorem A: then µT is physical, and since µ̌ is also
the unique physical measure of S, T admits no other physical measure. Better still, its
basin of attraction is the inverse image by π of the basin of attraction of µ̌ (Corollary 3.5),
thus by Fubini’s theorem it has full volume.

Moreover, in [Klo17] it is shown that the transfer operator of S for the geometric
potential ϕS(y)=−log det(DSy) (or any other α log-Hölder potential) has polynomial
decay of degree γ = α − 1 in the uniform norm for all γ -log Hölder observables (implying
the central limit theorem as soon as α > 3/2). If T has exponentially shrinking fibers,
then we can apply the last item of Theorem D to (2α − 2) log-Hölder observables with
p = γ = α − 1 to obtain the desired decay of correlation, and the last item of Theorem C
to get the central limit theorem for (2α − 1) log-Hölder observables. �

Proof of Corollary 1.11. We construct T as a Smale DE (‘derived from expanding’)
example [Sma67]. As their name indicates, DE examples start from an expanding map
of a manifold; we will take S : T→ T to be a uniformly expanding circle map of class
C 1 (since we start from a one-dimensional base map, this kind of example can be called a
‘solenoidal’ example: the attractor will topologically be a solenoid). For some λ > 1, we
have S′(y)≥ λ for all y ∈ T; we then take a skew-product

T : T× D2
→ T× D2

(y, z) 7→ (S(y), R(y, z))

where D2 is the open unit disk of R2, and R is smooth and chosen so that:
• T is a diffeomorphism onto its image (i.e. for all y ∈ T, R(y, ·) : D2

→ D2 is a
diffeomorphism onto its image and whenever y, y′ ∈ T have the same image under S,
R(y·) and R(y′, ·) are disjoint);

• we assume that whenever S(y)= S(y′), the images of R(y, ·) and R(y′, ·) have
disjoint closures (in particular, the closure in T× D2 of the image Im(T ) is compact);

• ‖Dz R(y, z)‖ ≤ λ−1 (in particular, T is an extension of S with exponentially shrinking
fibers).

We identify T× D2 with an open subset U of R3 (e.g. a solid torus of revolution, with
the angle of cylindrical coordinates corresponding to the y variable). By assumption,
3=

⋂
n T n(U ) is a compact attractor, and one can easily check that the restriction of

the projection π to 3 is still onto T; we denote this restriction by the same letter π .
We first check that 3 is uniformly hyperbolic (this argument is classical and can be

skipped by the experienced reader). The stable bundle is trivially constructed over the
whole of U as E s

x = {0} × Tz D2 (where x = (y, z)), and the main point is to find a
transversal bundle Eu that is T -invariant. We consider the space of all continuous one-
dimensional sub-bundles E ⊂ T3U transversal to E s ; such a bundle is parametrized by
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a field (L E
x )x=(y,z)∈3 of linear maps TyT→ Tz D2, simply setting Ex = {(u, Lx (u)) ∈

TxU : u ∈ TyT} (i.e. Lx (u) is the unique v ∈ Tz D2 such that u + v ∈ Ex ), and we obtain
a complete metric by using the operator norm: d(E, F)=maxx‖L E

x − L F
x ‖. Now the

facts that S is at least λ-expanding and that ‖Dz R‖ ≤ λ−1 ensure that T acts on this
space of bundles as a contraction: writing x ′ = (y′, z′)= T−1(x), the definition (T∗E)x =
DTx ′(Ex ′) translates as (T∗L)x (u)= Dz Rx ′ ◦ Lx ′(DS−1

x ′ (u)), so that d(T∗E, T∗F)≤
λ−2d(E, F). There is thus a unique T -invariant continuous sub-bundle transverse to E s .
Up to changing the Riemannian metric, we can make it coincide on Eu with the pull-back
of the metric of T; then DT is at least λ-expanding along Eu in this metric, so that 3 is
uniformly hyperbolic.

Now the usual theory ensures we have an unstable lamination W u of 3 (the stable
foliation is trivial, its connected components of leaves being the vertical slices {y} × D2),
and the definition of an SRB makes sense. We shall use the following lemma.

LEMMA 7.1. If µ is an SRB measure of T = (S, R) a uniformly hyperbolic skew product,
then the projection µ̌ of µ to the first factor is absolutely continuous.

Proof. Consider a small open set V ⊂ T, and partition π−1(V )⊂3 into small enough
subsets V1, . . . , Vk such that each Vk is given a product structure by W s, W u . For each
i ∈ {1, . . . , k}, let µi

= µ|Vi and write its disintegration with respect to the projection
on the stable direction as µi

=
∫
µi

L dνi (L). If µ is SRB, there are positive integrable
functions f i

L such that dµi
L = f i

L dVol where dVol is the volume (i.e. Lebesgue measure)
on T. Then, for any continuous g : T→ R,

µ̌|V (g)=
k∑

i=1

∫ ∫
g(y) f i

L(y) dVol(y) dνi (L)=
∫

g(y)
( k∑

i=1

∫
f i
L(y) dνi (L)

)
dVol(y)

is absolutely continuous. �

Note that we did not use invariance of µ and that the converse of this lemma is
not obvious: there are (not necessarily invariant) measures that project to the Lebesgue
measure without having absolutely continuous disintegrations.

The work of Campbell and Quas [CQ01] shows that, taking S generic, we can assume
it has a unique physical measure µ̌, with full basin of attraction, but singular with respect
to dVol (and thus S has no Acip). Then its lift µ is a T -invariant measure that is physical,
with full basin of attraction. Moreover, T has no SRB measure, since it would have an
absolutely continuous projection. �

Acknowledgement. I warmly thank Stefano Galatolo for many interesting comments on
a preliminary version of this work.

REFERENCES

[ABV00] J. F. Alves, C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose central
direction is mostly expanding. Invent. Math. 140(2) (2000), 351–398.

[ADLP17] J. F. Alves, C. L. Dias, S. Luzzatto and V. Pinheiro. SRB measures for partially hyperbolic systems
whose central direction is weakly expanding. J. Eur. Math. Soc. (JEMS) 19(10) (2017), 2911–2946.

https://doi.org/10.1017/etds.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.22


Extensions with shrinking fibers 1833
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[Gou10] S. Gouëzel. Almost sure invariance principle for dynamical systems by spectral methods. Ann.
Probab. 38(4) (2010), 1639–1671.

[GP10] S. Galatolo and M. J. Pacifico. Lorenz-like flows: exponential decay of correlations for the
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