Environment and Development Economics (2020), 25, 459-481

doi:10.1017/S1355770X2000011X E D E

RESEARCH ARTICLE

Does choice of drought index influence estimates
of drought-induced rice losses in India?

Francisco Fontes,!* Ashley Gorst,2 and Charles Palmer®

'Monitoring and Analyzing Food and Agricultural Policies (MAFAP) program, Agricultural
Development Economics Division (ESA), Food and Agriculture Organization of the United Nations
(FAO), Rome, Italy; 2Vivid Economics Ltd., London, UK and *Department of Geography and
Environment & Grantham Research Institute on Climate Change and the Environment, London School of
Economics and Political Science, London, UK

*Corresponding author. E-mail: frapfontes@gmail.com

(Submitted 5 December 2018; revised 25 August 2019, 16 December 2019; accepted 28 January 2020;
first published online 3 April 2020)

Abstract

Drought events have critical impacts on agricultural production yet there is little consensus
on how these should be measured and defined, with implications for drought research and
policy. We develop a flexible rainfall-temperature drought index that captures all dry events
and we classify these as Type 1 (above-average cooling degree days) and Type 2 droughts
(below-average cooling degree days). Applied to a panel dataset of Indian districts over
1966-2009, Type 2 droughts are found to have negative marginal impacts comparable to
those of Type 1 droughts. Irrigation more effectively reduces Type 2 drought-induced yield
losses than Type 1 yield losses. Over time, Type 1 drought losses have declined while Type 2
losses have risen. Estimates of average yield losses due to Type 1 droughts are reduced by up
to 27 per cent when Type 2 droughts are omitted. The associated ex-post economic costs in
terms of rice production are underestimated by up to 124 per cent.
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1. Introduction

Extended periods of low rainfall that reduce the availability of moisture relative to
normal climate conditions constitute drought events (Mishra and Singh, 2010), with
the severity of these events being aggravated by climatic factors such as temperature
(Wilhite, 20004). Since 1900, two billion people have been affected by drought and
annual economic costs are estimated at US$6-8 billion (Food and Agriculture Organi-
zation, 2013). A number of low- and middle-income countries, including those located
in Sub-Saharan Africa and the Indian subcontinent, are particularly vulnerable to the
impacts of drought. In India, the setting for our paper, severe drought lowered annual
GDP by two to 5 per cent between 1951 and 2003 (Gadgil and Gadgil, 2006); among
drought-affected households, drought led to a 12-33 per cent increase in the poverty
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headcount ratio and a 25-60 per cent decline in household income (Pandey et al., 2007).
The onset of drought in India has also been empirically linked to conflict, rural wages and
human capital accumulation (Jayachandran, 2006; Sarsons, 2015; Shah and Steinberg,
2017).

Against a backdrop of rising temperatures and drier conditions, droughts are pro-
jected to become more common, with critical implications for agricultural production
(IPCC, 2012). How meteorological drought is defined plays a central role in policymak-
ers’ responses, not only in the agricultural sector but also in the water sector and in
early-warning systems. Yet, there is presently little consensus on how droughts might
be measured and hence, defined. Indeed, there is no universal definition of the condi-
tions constituting a drought (Wilhite, 2000b). A range of indices attempt to quantify
the severity of a drought, ranging from simple rainfall measures to complex indices that
account for rainfall, temperature and estimates of potential evapotranspiration! (Mishra
and Singh, 2010). Different criteria of what constitutes a ‘drought’ therefore imply that
a drought in one index may not constitute a drought in another. The implication is that,
depending on the index used, there are classes of dry events which may be overlooked
both in empirical analyses and by policymakers.

In this article, we develop a simple rainfall-temperature index that allows for a flexi-
ble characterization of drought events. It captures every dry event in which cumulative
rainfall over the growing season is below average relative to the average long-term cumu-
lative rainfall for the growing season, while accounting for temperature. The novelty of
our index is to include both the type of dry events typically captured by indices that
account for temperature, i.e., characterized by above-average values of cooling degree
days (CDD),? which we term ‘Type 1’ droughts, as well as ones characterized by below-
average values of CDD. To our knowledge, the latter, which we term ‘“Type 2’ droughts,
have not been explicitly studied before.

Type 2 droughts are likely to have impacts that differ from those driven by Type 1
droughts. First, rainfall deficiency drives water stress thus negatively impacting on crop
yields but the combined effects of heat and rainfall are likely to be greater than their
individual impacts (Lamaoui et al., 2018). This implies that Type 1 droughts have higher
potential impacts than Type 2 droughts. Second, for a Type 2 drought, a lower value of
CDD over the growing season does not imply an absence of hot days. Heat stress, even for
short periods of time, can cause permanent harm to plant growth (see, e.g., Luo, 2011).
Third, some of the largest deviations in rainfall in India have occurred in years that were
not considered particularly hot. In these years, impacts are likely to have been large and
as such should not be overlooked.

Our index is applied to a panel dataset of Indian districts over the period 1966-2009
in order to estimate the marginal and total effects of each drought type on rice produc-
tivity. Rice is a principal food crop that is mainly grown in the kharif season (June to
September). We also consider how, conditional on drought type, the marginal effects
change over time, as well as the extent to which they are mitigated by irrigation. Our
base estimates are then used to calculate yield changes and associated ex-post economic
impacts, which are likely to be underestimates, given unobserved behavioral responses of
farmers, e.g., if they engage in lower-risk, lower-return activities because they anticipate

Evapotranspiration is the combined process of water evaporated from land surfaces and plants.

2‘Degree days’ is a unit of temperature degree deviation from a benchmark during a 24-h period. A ‘cool-
ing’ degree day is a measure of heat, traditionally used to calculate the energy used to cool homes during a
hot day.
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the possibility of a drought (Elbers et al., 2007; Oviedo and Moroz, 2014). In a coun-
try where over two-thirds of total land area is vulnerable to drought (Gol, Ministry of
Agriculture, 2009), and rain-fed agriculture covers approximately 60 per cent of cropped
area (Sharma, 2011), our analysis contributes to an important body of research on the
impacts of droughts on Indian agriculture (e.g., Pandey et al., 2007; Sarkar, 2011).

After presenting background to our analysis in section 2, we present Indian weather
data underlying Type 1 and Type 2 droughts and propose an extension to a multiplica-
tive index, developed by Yu and Babcock (2010), in section 3. This extension allows for
a more flexible characterization of drought events while retaining a key strength of their
index, namely the inclusion of temperature and the capacity to capture the interaction
between rainfall and temperature. Applied to our panel dataset of Indian districts, in
section 4, we find that Type 2 droughts consistently display large negative marginal and
total effects, comparable to those of Type 1 droughts. The omission of Type 2 droughts
leads to a large underestimation of total drought impact. Irrigation appears to be more
effective at reducing Type 2 drought-induced yield losses than those attributed to Type 1
droughts. Over time, Type 1 drought losses, as a proportion of yield, have become
smaller while Type 2 losses have risen. Yield and ex-post economic losses are shown in
section 5 to be underestimated by up to 27 and 124 per cent, respectively. We also test
the forecasting accuracy of our index and we find that, while it outperforms the other
indices considered, the improvements in terms of forecasting accuracy are marginal and
statistically insignificant. Section 6 discusses the results and their implications for public
policy.

2. Defining ‘drought’

Simple drought indices often rely solely on rainfall measures and are typically preferred
by policymakers, including the Indian Meteorological Department (IMD), over more
complex indices. Until 2016, the IMD recorded a ‘drought event’ when seasonal rainfall
was below 75 per cent of its long-term average (between 1950 and 2000), and a ‘severe
drought’ when rainfall was below 50 per cent (Indian Meteorological Department, Gov-
ernment of India, undated). Simple metrics of precipitation deficiency, which have the
advantage of being easily interpretable, are also used to evaluate drought impacts on
agricultural production (e.g., Pandey et al., 2007; Aufthammer et al., 2012).

Simple definitions of drought based on rainfall are, however, problematic for our
understanding of drought impact. Variables in addition to rainfall, in particular temper-
ature, help determine the physical severity of a drought. A growing literature suggests
critical turning points at which higher temperatures cease to have positive impacts on
agricultural yield (e.g., Guiteras, 2009; Schlenker and Roberts, 2009; Lobell et al., 2012;
Burgess et al., 2014). High temperatures have particularly acute effects on crop growth
during periods of low precipitation since the rate of evapotranspiration increases as tem-
peratures rise (Prasad et al., 2008; Lobell and Gourdji, 2012). In general, this increases a
plant’s demand for water at a time when water availability is already low due to deficient
precipitation. Drought is documented to increase in severity as mean temperatures have
risen. Higher temperatures, rather than the increased intensity of low rainfall events,
have been held responsible for these drying trends (Vicente-Serrano et al., 2014; Dift-
enbaugh et al., 2015). As such, neglecting the effect of temperature on the severity of a
drought event could underestimate drought impact.

More complex indices tend to rely on data that are often not readily available in most
economic datasets, e.g., for soil moisture levels. The lack of data needed to derive such
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measures, which can depend on factors such as wind, radiation and humidity, limits
their applicability in empirical analysis of drought impacts. Bridging the gap between
simple and complex indices, Yu and Babcock (2010) propose a drought index that neatly
captures the interaction between temperature and rainfall, thus giving it the potential to
capture the combined effect of cumulative heat and water stress on yield. Applied to the
study of drought tolerance of soybean and corn yields in the US, it takes a non-zero value
for years of below-average rainfall and above-average values of CDD:

DI; = [— max(0, CDD$**™)] x [min(0, TRS )], (1)

stand
it
is standardized,

where DI;; denotes the drought index for geographical unit i in year t; TR is stan-

dardized total monthly rainfall over the growing season; and CDDf-ttand
cumulative CDD above 18°C.

The index described in (1) gives a value of zero whenever either CDD?ttand

is below
or TR?ttarlcl is above their respective long-term averages. Thus, a drought ‘event’ or ‘year’
is defined when CDD$2" is higher and TR is lower than their respective long-term
averages. A strength of this index lies in its capacity to capture the potential of high
temperatures to exacerbate the effects of low rainfall on crop production. Birthal et al.
(2015) adopt the index to study the tolerance of rice yields to drought in India.

While Yu and Babcock’s (2010) approach has the advantage of being a relatively
simple way to account for both temperature and precipitation, the index restricts the
definition of drought to events characterized by below-average TRls»ttand accompanied by
above-average values of CDDS$*", that is, our Type 1 drought. It does not consider events
characterized by below-average values of CDD$#" as well as below-average TR$! 9, that
is, our Type 2 drought. Despite being common in many settings, the impacts of such
events on agricultural production remain unknown, due to either being omitted alto-
gether (as in Birthal et al., 2015) or joined with Type 1 droughts in arbitrarily-defined
rainfall indices.

Type 2 droughts should not be omitted a priori because, as explained in the introduc-
tion, focusing only on years with an above-average value of CDD$** (Type 1 drought)
ignores the possibility that, in years with a below-average value of CDD$", there may
still be a number of very hot days sufficient to negatively impact agricultural productiv-
ity.3 Thus, a class of potentially destructive dry events would not be defined as ‘drought’
per equation (1), which may underestimate the aggregate impact of all dry events. The
classification of these events as non-droughts could lead to biased estimates of drought
impact. Thus, if Type 2 droughts do have a significant negative impact on productiv-
ity, then the application of Yu and Babcock’s index potentially underestimates drought
impacts due to the inclusion of Type 2 drought events in the ‘no drought’ control group.
Finally, since we expect crops to respond differently to increasing deviations from mean
rainfall, depending on whether the value of CDD$2" is below- or above-average, Type 2
droughts ought not only to be included but also to be modelled separately from Type 1
droughts.

3In Yu and Babcock (2010), a below-average value of CDD?}"‘“d means that the cumulative sum of
degree-days above 18°C over a given period is lower than its long-term average. While this suggests lower
cumulative heat during the season, it does not imply an absence of hot days and/or temperature spikes
during the growing season.
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Our definitions of drought — Type 1 and Type 2 - are important for understanding
and predicting crop yields. We argue that they are an improvement on measures and
indices used in earlier research. Table 1 lists previous studies that have adopted both
simple and more complex nonlinear functions of temperature and rainfall as predictors
for crop yields. In general, these measures focus on either heat or rainfall, thus neglect-
ing the combined impact on yield from cumulative heat and water stress. One possible
reason is that the temperature bins approach is often used and requires a very large num-
ber of coefficients to estimate the combined effect of heat and rainfall. Previous work on
drought impacts also typically adopts a single binary definition to estimate the impact of
drought on yields. However, the use of a binary definition makes it difficult to assess the
relationship between drought and yield.

3. Anew index to define drought in India

Weather data on daily rainfall and daily average temperature at the district level are
sourced from the IMD for figures 1 and 2.* We define our growing season as June-
September® and both long-term average rainfall and CDD are defined vis-a-vis their
1956-2009 averages.®

Panel (a) of figure 1 shows the proportion of districts, by year, limited to events char-
acterized by both below-average rainfall and above-average values of CDD (Type 1).
The vertical lines indicate All-India Drought Years.” Panel (b) of figure 1 shows the pro-
portion of districts in years characterized by below-average rainfall and below-average
values of CDD (Type 2).

Figure 2 shows why the omission of Type 2 droughts is likely to be problematic. For
each year, we estimate the number of districts affected by Type 1 droughts net of the
number of those affected by Type 2 droughts, with a positive number (in darker grey)
denoting a year in which the former exceeds the latter. A negative number (in lighter
grey) indicates a year in which the latter exceeds the former. Overall, Type 1 droughts
are slightly more prevalent (55 per cent) than Type 2 droughts (45 per cent). In the
1990s, most of the drought-affected districts were affected by Type 1 droughts. Since
1999, Type 2 droughts have increased, with the number of districts affected by Type 2

4The weather data were obtained under license from IMD for a fee. The rainfall data are available in grid-
ded format at a resolution of 0.25° x 0.25° (Pai et al., 2014). Gridded temperature data are at a resolution of
1° x 1° (Srivastava et al., 2009). District-level weather data are then obtained by taking a weighted average of
gridded weather observations from grid cells that fall within a district’s boundary, based on the proportion
of the grid cell that falls in each district.

>The majority of India’s rice production is cultivated in the kharif season, between June and September,
and the majority of total yearly rainfall (approximately 80 per cent) also falls between these months (Jain
and Kumar, 2012).

®The reference temperature for the CDD is the average June-September daily temperature for the district
between 1956 and 2009. The CDD variable is calculated as CDD;; = Zﬁ‘Ll Zg=1 (DTjmd — DTA;), where
we subtract the average daily temperature over the growing season observed from 1956-2009 (DTA;) from
the observed daily temperature (DTjyq). We then sum all the positive deviations over the growing period
and give a value of 0 to negative deviations. See online appendix A.

7According to the IMD, 13 ‘All-India Drought Years’ have been recorded since 1966 (Birthal et al., 2015).
Such ‘Drought Years’” were recorded when the total area affected by a moderate or severe drought covered
20-40 per cent of the total land area of the country and rainfall during the monsoon season fell 10 per cent
below average seasonal rainfall recorded between 1950 and 2000. When more than 40 per cent of the total
land area was affected by drought, this was termed an ‘All India Severe Drought Year’.
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Table 1. List of previous studies

Author(s) Context Variable used Inclusion of drought in model Empirical model Crop(s)
Auffhammer et al. India Drought dummy Dummy variable. 1 if 15% below state mean annual  Fixed effects Rice
(2012) rainfall, 0 otherwise.

Birthal et al. (2015) India Drought index Continuous drought index variable (linear and Fixed effects Rice

quadratic). Drought index is the interaction

between the S.D. seasonal rainfall and S.D. mean

monthly temperature.
Burgess et al. (2014) India Daily temperature Seven ‘bins’ of 2°C capturing number of days each Rainfall terciles Fixed effects multiple

and Annual rainfall year spentin bin (composite index)

Lobell et al. (2012) India Degree days (>34°C) Continuous variable (number of days above 34°C) Linear regression Wheat yields
Sarsons (2015) India Drought dummy Dummy variable. 1 if Annual rainfall below 20th Fixed effects Multiple (composite

percentile of normal

index)

Schlenker and
Roberts (2009)

us

Daily temperature

Temperature and precipitation included additively
as: (i) A step function for 3°C temperature
interval; (i) Eighth order Chebychev polynomial;
and (iii) Piecewise linear function. Precipitation
and squared precipitation are included
separately.

Fixed effects

Soy, corn, cotton

Yu and Babcock
(2010)

us

Drought index

Continuous drought variable (linear and quadratic).
Drought index is the interaction between the S.D.
seasonal rainfall and S.D. mean monthly
temperature.

Fixed effects

Corn, soy

Deschénes and
Greenstone (2007)

us

Degree days. Annual
precipitation

Separate temperature (growing season degree
days) and rainfall variables (linear and quadratic)

Fixed effects

Multiple (profits per
hectare)

Lobell et al. (2014)

us

Daytime vapor deficit
pressure

Multivariate adaptive regression splines to account
for nonlinearities

Regression splines

Maize, soybean

(continued)
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Table 1. Continued

Author(s) Context

Variable used

Inclusion of drought in model

Empirical model

Crop(s)

Gammansetal. (2017)  France

Daily temperature
and Seasonal
rainfall

Separate regressions of stepwise 2°C temperature bins
and flexible polynomial over 1°C bins. Rainfall is
included separately in all regressions.

Fixed effects

Wheat, barley

Schlenker and Lobell Sub-Saharan
(2010) Africa

Temperature and
rainfall

Temperature and rainfall included as follows: (i) Linear
in the average growing season temperature and total
precipitation for growing season; (ii) Quadratic
specification for mean temperature and total
precipitation; (iii) Piecewise-linear function captured
by two variables (degree days 10-30°C and above
30°C); and (iv) Degree days categories:
piecewiselinear functions within 5°C intervals.

Fixed effects

Maize, sorghum,
millet, groundnuts
and cassava

Chen et al. (2016) China

Degree days and
annual rainfall

Climate effects on crop yields are cumulative and
additively substitutable over time. Temperature is
captured by degree days above 34°C and rainfall is
included separately using annual rainfall.

Fixed effects

Corn, soy
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Figure 1. Proportion of affected districts, by drought type. (a) Proportion affected (Type 1); (b) Proportion
affected (Type 2).

Notes: The numbers above the bars represent the proportion of districts (rounded to two decimal places) that
were affected by a given drought type in a given year.

Source: Authors’ own calculations.

droughts outnumbering the number of districts affected by Type 1 droughts in seven out
of 11 years.

Formally shown in online appendix A, the first step of our index involves the calcu-
lation of the deviation of CDD over the growing season (June-September) from average
long-run (1956-2009) CDD over the growing season, a variable we define as DCDD.
Positive values of DCDD indicate above-average CDD while negative values indicate
below-average CDD. A similar procedure is followed for rainfall in that we create a vari-
able, DTR, which is defined as the deviation of district-specific, cumulative rainfall from
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Figure 2. Type 1droughts in excess of Type 2 droughts (June-September only).

Notes: Bar graphs show the number of districts affected by Type 1 droughts in excess of the number affected by
Type 2 droughts. As a result, a value of 50 would mean that there were 50 more districts affected by a Type 1
drought than affected by a Type 2 drought in a given year. The converse applies to a negative number, which
highlights a higher number of districts affected by type 2 droughts in a given year. The solid vertical lines
represent the years considered by the Indian Government as All-India drought years.

Source: Authors’ own calculations.

long-term, mean cumulative rainfall between 1956 and 2009. Negative values of DTR
represent below-average cumulative rainfall while positive values indicate above-average
rainfall.

Next, we normalize DCDD and the negative of DTR, which we define as NCDD;; and
NTRj;, respectively. Normalizing the negative of rainfall, rather than rainfall directly,
allows us to generate a variable bounded between 0 and 1, with higher values signaling
more severe rainfall deficiency. Thus, NCDD;; is increasing in temperature and NTR;
is increasing in rainfall deficiency. Using the normalized negative of rainfall enables us
to construct an index without running into the problem of negative values that emerges
from the interaction of the standardized variables. Finally, a multiplicative relationship
is generated between the two normalized variables, resulting in two drought indices.
Type 1 droughts are denoted DI1;; and Type 2 are denoted DI2;:

D ht DI1; = NTR;; x NCDD;; if DTR;; < 0and DCDDj; > 0; 0 otherwise 2
rought = .
& DI2;; = NTR;; x NCDD;; if DTR;; < 0 and DCDDj; < 0; 0 otherwise

As such, DI1;; can be interpreted as a normalized version of Yu and Babcock’s (2010)
index. It takes a strictly positive value for all events characterized by below-average rain-
fall and above-average CDD?tta“d. The second index, DI2;, only takes non-zero values
for events with below-average rainfall and below-average CDDS#", the category that
Yu and Babcock omit. Constructing these two indices separately allows us to test their
respective statistical significance in the yield regressions.
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Table 2. Summary statistics of observations in the sample

Variables N Mean S.D Min Max

Rice area (1,000 ha) 6,996 122.49 141.65 0.09 956.63
Rice irrigated area (1,000 ha) 6,996 74.97 103.22 0.00 663.70
Rice yield (t/ha) 6,996 1.63 0.95 0.01 478
Proportion of cereal area under rice production 6,996 0.36 0.29 0.00 1.00
Rural population density (by gross cereal area) 6,995 3.40 1.67 0.62 13.68
Fertilizer (t/ha) 6,996 71.45 67.50 0.00 614.49
Cumulative rainfall (mm) (June-September) 6,996 755.38 417.48 28.89 4,557.98
Cooling degree days (CDD, June-September) 6,996 100.36 48.07 2.70 274.88
Babcock-Yu index, June-September 6,996 0.25 0.66 0.00 8.53
DI1 (Drought index-type 1 events) 6,996 0.15 0.25 0.00 1.00
DI2 (Drought index-type 2 events) 6,996 0.05 0.10 0.00 0.54

Notes: Rural population density is calculated by dividing total rural population by gross cropped area. Our cooling degree-
days measure is calculated based on average daily district temperature in the months of June-September for the period
1956-2009.

Our indices are increasing in temperature but decreasing in rainfall and reflect that
both higher temperatures and lower rainfall are expected to contribute to drought sever-
ity. A maximum value of one is obtained for the most severe droughts, and is only
possible for the restricted set of drought events considered by Yu and Babcock. The
similarity of their index to our own is illustrated in online appendix table Al, which
shows the correlation coefficients and the Spearman correlation coefficient. As expected,
our index DI1 is highly correlated with Yu-Babcock, displaying a correlation coeffi-
cient of 0.787 and a Spearman correlation coefficient in excess of 0.99. Our second
index DI2, on the other hand, has a negative correlation coefficient with a correla-
tion coefficient of —0.189 and a Spearman coefficient of —0.363. Since Yu-Babcock
is invariant with a value of zero for these events, this result is also as anticipated. In
addition, these two indices differ in terms of their maximum values. While the maxi-
mum value for Type 1 droughts is one (which occurs when the hottest year is also the
year with the lowest rainfall), the maximum value of events in which both rainfall and
CDD are below-average is 0.54 (see table 2). These two maximum values capture the
fact that a combination of above-average CDD with below-average rainfall is likely to
lead to a more severe drought than below-average CDD combined with below-average
rainfall.

Figure 3 shows how our index values change over time for all districts. There are
clear spikes in the values of the index for a number of All-India Drought Years. The
years 2002 and 2009 are associated with the largest deviations in rainfall. Similarly, 1972,
1979 and 1987 are also considered years with particularly high deviations and our index
rises in these years. Throughout the 1990s, however, it is striking that, despite relatively
modest deviations of rainfall from trend, our index still records high values. One possible
explanation for this could be rising land-surface air temperatures over time (Pai et al.,
2013).
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Figure 3. Average droughtindex value.

4. Impact of drought on rice productivity

To investigate drought impacts on aggregate rice productivity at the district level,
we obtain agricultural data from the ICRISAT Meso-level Database.® For the period
1966-2009, this dataset contains detailed agricultural and socioeconomic information
(ICRISAT, 2012). Data are available for annual crop production and area under crop
production for a range of crops, for most districts. Focusing on rice, we create a bal-
anced panel, which implies that, of the 311 districts available in the dataset only 159 are
used in our empirical analysis due to missing data for irrigated rice area (see map in
online appendix figure Al). Rice yield is estimated by dividing total rice production by
total rice area. Table 2 summarizes the variables used in our analysis.

To model the relationship between rice yield and our drought index, we estimate the
following fixed-effects model®:

In(yit) = ot + y1 + 8t X t+ 82 x £* + B1gDligg + ﬂquIﬁq + B3gDlig x ¢
+ B4gDLiy X t+ BsgDlig X propirtiy + BegDI;, x propirriye + €ir,  (3)

where for district i in year ¢: In(y;;) denotes the natural logarithm of rice yield; o; and y;
represent the district and year fixed effects, respectively; and 8;; and §; are the coeffi-
cients on the district-specific linear and quadratic trends, respectively. Quadratic terms
are also included for the following variables, to account for potential nonlinearities
in the relationship between drought type and yield. First, the coefficients associated
with a type q (i.e., Type 1 - above-average CDD, or Type 2 - below-average CDD)

8Since 1966, a number of districts have split into smaller districts. To maintain spatial consistency over
time, district splits are dealt with by returning split districts to their ‘parent’ districts as of 1966.

9We prefer a fixed-effects model over a pooled ordinary least squares because it captures time-invariant
heterogeneity. Also, a Hausman test rejected a random-effects model in favor of a fixed-effects model.
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drought index, which captures the marginal impact of a type g drought, are denoted
P14 and Bay. Coefficients B3, and B4y capture the interaction between drought type and
time, £, while the coefficients 5,4 and g, capture the interaction between drought type
and the proportion of rice area under irrigation. Finally, €;; represents the error term.
Consistent with Yu and Babcock (2010) and Birthal et al. (2015), we do not include addi-
tional controls in our main specifications. This is also the norm in the climate impacts
literature.

4.1 Regression results

We run aregression of the natural logarithm of yield on a set of district-specific quadratic
trends and the drought indices. Specifically, we estimate the model in (3), in both log-
levels and levels. First, we include only Type 1 drought events (columns 1 and 3 in
table 3). Second, we estimate separate coefficients for Type 1 and Type 2 drought events
(columns 2 and 4 in table 3).

Table 3 highlights two results.!? First, at mean drought intensity (the average for all
events with non-zero index values), both drought types have significant and negative
effects when considered separately. Thus, Type 2 events have large and statistically sig-
nificant, negative impacts on rice yield. Second, we find that at means of all variables,
Type 2 droughts have a higher marginal effect on yield. However, as will be shown in
the next section, the overall effects on yield and associated economic costs are higher for
Type 1 droughts. This is because the index value of Type 2 droughts is typically around
half of the index value of Type 1 droughts.!! Although both excess heat and reduced
moisture have negative impacts on production, reduced rainfall carries greater weight
in the Type 2 index than in the Type 1 index, explaining the greater marginal effect. Val-
ues of CDD are, by definition, higher in the latter than in the former. As a result, yields
are likely to respond (more) negatively to changes in the Type 2 index than in the Type 1
index.

The differences in impacts between Type 1 and Type 2 are tested into two ways. First,
the confidence intervals of the marginal effects at means for the two drought types are
shown in table 3 (see rows ‘95 per cent CI’). The DI2 marginal effect (evaluated at means
of all variables) is outside the 95 per cent CI of the DI1 marginal effect (again at means of
all variables) for the levels specification and it is just marginally inside the 90 per cent CI
for the log-levels specification. Second, we tested whether all the DI1 coefficients (and
interactions) are jointly different from all the DI2 coefficients (and their interactions)
(see online appendix table A3). For the log-levels specification, the F-test was rejected at
the 10 per cent level. For the levels specification, the hypothesis that the coefficients are
equal could not be rejected. This may be due to the large number of interactions included
in the model.

19The R? (within, between and overall) are estimated for three different regressions and are shown in
online appendix table A2: district and year fixed effects; district and year fixed effects plus a district-specific
quadratic trend; and all the variables included in table 3. These results suggest that trends have a high
explanatory power (overall R? increases from 0.168 to 0.645 (levels) and 0.164 to 0.22 (log-levels) following
their inclusion). The results also suggest that adding the remaining variables (irrigation, drought indices
and their interactions) leads to an improvement in the explanatory power of the model (overall R? increases
from 0.645 to 0.775 (levels) and from 0.22 to 0.446 (log-levels)).

1A value of 0.5 in our Type 2 index represents approximately the same rainfall deficiency as a value of
one in our Type 1 index, which helps explain larger marginal impacts.
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Table 3. Full sample results

Levels Log-levels
1 2 3 4
Variables Type 1 only Type 1 and 2 Type 1 only Type 1 and 2
Drought index (type 1) —0.352*** —0.450*** —0.656*** —0.828***
(0.114) (0.118) (0.189) (0.200)
Drought index (type 1) 0.119 0.201 0.09 0.234
(0.172) (0.175) (0.296) (0.299)
Drought index (type 1) x time 0.009** 0.009** 0.007* 0.006
(0.004) (0.004) (0.004) (0.004)
Drought index —0.013** —0.012* —0.003 —0.002
(type 1)% x time (0.007) (0.006) (0.006) (0.006)
Drought index 0.079 0.088 0.552*** 0.698***
(type 1) x Irrigation (0.125) (0.132) (0.190) (0.202)
Drought index —0.028 —0.044 —0.203 —0.322
(type 1)? x irrigation (0.169) (0.173) (0.256) (0.261)
Drought index (type 2) —0.750** —1.185***
(0.342) (0.336)
Drought index (type 2)? 1.314 1.912
(1.166) (1.204)
Drought index (type 2) x time 0.007 0.016
(0.011) (0.010)
Drought index —0.033 —0.073**
(type 2)2 x time (0.034) (0.035)
Drought index 0.43 0.602*
(type 2) x Irrigation (0.327) (0.316)
Drought index —1.461 0.047
(type 2)? x irrigation (1.117) (1.155)
Irrigation (prop) 0.735*** 0.757*** 0.428*** 0.451***
(0.162) (0.161) (0.125) (0.124)
Irrigation (prop)? —0.256** —0.266*** —0.158** —0.194**
(0.100) (0.100) (0.076) (0.077)
Constant 0.786*** 0.810*** —0.293*** —0.254***
(0.064) (0.063) (0.047) (0.047)
Marginal elasticity DI1 —0.293*** —0.305*** —0.283*** —0.294***
(at DI1 =0.493)
95% Cl (—0.37,—0.22) (—0.38,—0.23) (—0.38,—0.18)  (—0.39, —0.20)
Marginal elasticity DI2 —0.462*** —0.375***
(at DI2=10.207)
95% Cl (—0.65, —0.28) (—0.54, —0.21)
Time trends X X X
District fixed effects X X X X
Year fixed effects X X X
(continued)
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Table 3. Continued

Levels Log-levels
1 2 3 4
Variables Type 1 only Type 1 and 2 Type 1 only Type 1 and 2
N 6,996 6,996 6,996 6,996
Number of districts 159 159 159 159
R? a 0.725 0.729 0.600 0.611
R*w 0.739 0.744 0.621 0.632

Notes: Values in parentheses denote clustered standard errors at the district level. *, ** and *** denote statistical
significance at the 10%, 5% and 1% level, respectively. Time trends denote quadratic district-specific trends.

Table 4. Levels specification: marginal elasticities (irrigation) proportion of area irrigated

Type 1 only Types 1 and 2 (sep.)

Variable Value Type 1 Type 1 Type 2

Irrigated area (%) 0 —0.32*** —0.33*** —0.36***
Irrigated area (%) 20 —0.31*** —0.32*** —0.40***
Irrigated area (%) 40 —0.30*** —0.31*** —0.43***
Irrigated area (%) 60 —0.29*** —0.30*** —0.47***
Irrigated area (%) 80 —0.28*** —0.30*** —0.50***
Irrigated area (%) 100 —0.27*** —0.29*** —0.54***

Notes: *** denotes statistical significance at the 1% level. For both types of events, marginal effects are computed at the
mean value when affected (D11 = 0.493 and DI2 =0.207).

The estimated change in marginal effects by irrigation and over time are presented,
respectively, in tables 4 and 5 for the levels specifications. The marginal effects for the
log-levels specifications are shown in online appendix tables A4 and A5.

From table 4, the levels specification results suggest that absolute drought impacts
either remain fairly constant (Type 1) or increase (Type 2) as the proportion of rice area
under irrigation rises. Yet, as a proportion of total yield, the log-levels specification sug-
gests that marginal impacts decrease substantially as the proportion of rice area under
irrigation increases (see online appendix table A4). This can be explained by the fact
that yields in irrigated areas tend to be higher and, even if losses remain constant or
increase moderately in absolute terms, yield increases from improved irrigation imply a
fall in losses as a proportion of the total. Our results also suggest that, as a proportion
of the total, increases in the proportion of rice area under irrigation reduce the marginal
impact more when considering Type 2 droughts compared with Type 1 droughts. With
increasing proportion of rice area under irrigation (above 95 per cent irrigated), impacts
of Type 2 droughts (at mean intensity) are not significantly different from zero (at the 5
per cent level). The same does not apply for Type 1 droughts: even when the proportion
of rice area under irrigation is very high, we still find statistically significant effects on
yields. This suggests that irrigation seems to be an effective strategy at substituting for
water deficiency, but less effective at mitigating the combined effects of heat and water
deficiency.
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Table 5. Levels specification: marginal elasticities (time)

Type 1only Types 1 and 2 (sep.)

Variable Value Type 1 Type 1 Type 2

Year 1966 —0.21*** —0.23*** —0.31*

Year 1970 —0.22*** —0.24*** —0.34**
Year 1974 —0.24*** —0.26*** —0.37***
Year 1978 —0.26*** —0.27*** —0.40***
Year 1982 —0.27*** —0.29*** —0.42***
Year 1986 —0.29*** —0.30*** —0.45***
Year 1990 —0.30%** —0.31*** —0.48***
Year 1994 —0.32%** —0.33*** —0.51***
Year 1998 —0.33*** —0.34*** —0.53***
Year 2002 —0.35*** —0.36*** —0.56***
Year 2006 —0.36*** —0.37*** —0.59***
Year 2010 —0.38*** —0.38*** —0.62***

Notes: *, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively. For both types of events,
marginal effects are computed at the mean value when affected (DI1 = 0.493 and DI2 = 0.207).

From table 5, the results over time suggest that absolute yield losses attributed to
drought have increased. As a proportion of total production, the log-levels specifica-
tion in online appendix table A5 shows that losses follow a different pattern depending
on the type of drought.!? Type 1 drought impacts as a proportion of the total have fallen
over time whereas Type 2 impacts have increased. Two potential explanations for this
result can be derived from our data and are summarized in figure 4.

First, our results could be driven by trends in the composition of Type 1 and Type 2
events, with the former increasingly driven by cumulative heat over the growing season
and the latter by rainfall deficiency. Figure 4a shows the ratio of normalized CDD to
normalized rainfall deficiency. A higher value indicates a higher contribution of CDD
relative to rainfall in our index. The plotted linear trend in figure 4a suggests that the
composition of the two types of drought has followed different patterns over time,
with Type 1 droughts increasingly driven by CDD and Type 2 droughts increasingly
driven by rainfall deficiency. As shown in figure 4b, this change in composition is not
captured by the index value, which has followed very similar trends. However, should
rainfall deficiency and CDD increases be associated with different impacts, the change
in composition could partially explain the increase in impacts over time for Type 2
droughts.

Second, Type 2 droughts seem to be increasingly preceded by dry years, which could
increase the impact of this type of drought, turning what we have defined in this study

12 An F-test, of differences in the DI1 and DI2 trends shows that, for the log-level estimation, equality of
the trend coefficients was rejected at the 5 per cent level, which is not the case for the levels specification
(see online appendix table A3). However, in the case of the levels specifications, the marginal effect of Type 2
droughts evaluated at the mean of the drought index (and all other covariates) at different points in time is
often outside the 95 per cent confidence interval of the marginal effect for the Type 1 drought evaluated at
its mean and at the same point in time.
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Figure 4. Ratio of temperature to rainfall and drought intensity following dry years. (a) Ratio of temperature to rainfall over time; (b) Drought intensity over time (affected only);
(c) Average proportion of dry events following a dry year, by type; (d) Average index value following a dry year, by type (affected only).

Notes: All figure panels use a bandwidth of 2 for the local polynomial. For panels (a), (b) and (d), the left y-axis refers to values for type 1 events whereas the y-axis on the right-hand
side shows values for type 2 events. Panel (a) plots the ratio of the normalized cooling-degree days over the normalized negative cumulative rainfall for all events where the index is
positive. A lower value of this ratio implies that the contribution of temperature to the drought index is lower. Panel (b) plots the changes in the index values over time for affected
districts. Panel (c) plots the proportion of drought-affected districts if either index was positive the preceding year. Finally, panel (d) plots the index value if the preceding year was
characterized by a positive index value.
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as a meteorological drought into a potential hydrological drought. Figure 4c plots the
proportion of affected districts (by drought type) in a given year, conditional on the
previous year being drier than average (i.e., either a Type 1 or Type 2 drought). This
figure shows contrasting trends for Type 1 and Type 2 events, with the proportion of the
former declining slightly while the proportion of the latter follows an increasing trend.
Figure 4d, which plots the average intensity of droughts (by type) if preceded by a drier-
than-average year, also suggests that the intensity of Type 2 droughts increased at a faster
rate than that of Type 1 droughts.!?

Supporting evidence that lagged dry events might be associated with larger drought
impacts is given by Shah and Kishore (2009), who argue that in years of below-average
precipitation, more groundwater tends to be extracted to compensate for rainfall defi-
ciency and minimize production losses. However, the extent to which losses can be
minimized depends on the availability of groundwater. For example, 2002-2003 was an
exceptionally dry period preceded by two moderately dry years, which put additional
pressure on groundwater resources. These resources had not sufficiently recovered by
2002-2003, thus limiting their capacity to minimize production losses.

5. Estimating yield and economic losses

We estimate yield impacts and economic costs by running simple simulations using our
estimated regressions in table 3 (see appendix B). Column 1 shows the predicted impacts
of Type 1 droughts when Type 2 droughts are excluded (i.e., using results from columns
1 and 3 in table 3) and columns 2-4 show the impacts of both types of drought (i.e., using
results from columns 2 and 4 in table 3). Specifically, we estimate the: (i) average yield
loss for an affected district over the sample period; (ii) average total production loss for
an affected district over the sample period; (iii) average value of production loss for an
affected district; (iv) average yearly production loss across all the Indian districts in our
sample; and (v) the average yearly cost of predicted production losses across sampled
districts. A summary of estimates is presented in table 6.

From table 6, we note that, despite a higher estimated coefficient, total yield and eco-
nomic losses from Type 2 droughts are smaller than those from Type 1 droughts. This
is due to the index values for Type 2 droughts being substantially lower (approximately
half) in affected districts. Depending on the specification used, we estimate the range
of average yield loss per district at 130-155 kg/ha (table 6, column 2) and 84-121 kg/ha
(table 6, column 3) for Type 1 and Type 2 droughts, respectively. These smaller impacts
on yield translate into lower total economic costs. We estimate that, in a given year, the
total economic cost of a Type 1 drought ranges, on average, between US$224-265 mil-
lion (table 6, column 2),'* whereas this falls to US$121-185 million for a Type 2 drought
(table 6, column 3). We note that the estimated impact of Type 1 droughts increases
when Type 2 droughts are included. This is due to the fact that, when Type 2 droughts
are excluded, they are part of the ‘no drought’ counterfactual, which is likely to bias the
Type 1 drought impacts downwards.

13We also test whether the differences in trends for panels (a)-(d) in figure 4 are statistically different.
They are statistically significant (at the 1 per cent levels) for panels (a) and (c), but not for panels (b) and
(d).

4Crop prices in Indian rupees are converted into US$ using the average monthly exchange rate obtained
from http://www.x-rates.com/average/?from=USD\&to=INR\&amount=1\&year=2008. More details on
how prices are computed are available in online appendix B.
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Table 6. Cost estimates

Main
1 2 3 4

Typel(only) Typel(sep.) Type2(sep.) 2types (sep.)

Log-levels
Av. yield loss (district) (t/ha) 0.122 0.155 0.121 0.139
Av. production loss (district) (1,000t) 14.328 18.594 15.379 17.122
Av. production cost (district) (mil USD) 4.291 5.568 4.606 5.128
Av. yearly total production loss (1,000 t) 682.218 885.338 618.652 1,503.990
Av. yearly total cost (mil USD) 204.306 265.135 185.270 450.405
Levels
Av. yield loss (district) (t/ha) 0.104 0.130 0.084 0.109
Av. production loss (district) (1,000t) 12.601 15.839 10.128 13.221
Av. production cost (district) (mil USD) 3.774 4.743 3.033 3.959
Av. yearly total production loss (1,000 t) 597.707 749.146 405.792 1,154.938
Av. yearly total cost (mil USD) 178.997 224.349 121.524 345.873

Notes: Rice prices use the 2008 prices converted into US$ using the average monthly exchange rate for 2008. All numbers
were rounded to two decimal places. The results presented in column 4 are simply the aggregation of the results presented
in columns 2 and 3.

Omitting Type 2 droughts can lead to a lower estimate of Type 1 drought impacts.
These effects are quantifiably large as we illustrate by comparing the first two columns
of table 6 for the full sample. Average yield losses are estimated to be approximately
25-27 per cent higher (from 104-122 kg/ha to 130-155kg/ha) when Type 2 droughts
are included. These estimates have a substantial effect on the estimated average annual
cost. This ranges from US$179-204 million (table 6, column 1) when Type 2 droughts are
omitted compared to US$224-265 million (table 6, column 2) when they are included,
which represents a 25-30 per cent increase. Thus, if estimating the economic cost of
Type 1 droughts without accounting for Type 2 droughts, the average yearly total costs
of drought would approximate US$179-204 million. Including Type 2 droughts raises
this total cost by 121-124 per cent to US$402-450 million (table 6, column 4). Overall,
both specifications suggest that Type 2 droughts are responsible for about 35-40 per cent
of the total ex-post economic value of yield losses.

5.1 Forecasting accuracy

To test the forecasting accuracy of our index, an out-of-sample prediction on yield (lev-
els) is undertaken using: (1) the DI1 and DI2 index (separately); (2) the normalized
Yu-Babcock index (DI1); (3) the combined DI1 and DI2 index (DI12); (4) a rainfall-only
index (proportion of rainfall against the long-term average for years below normal); and
(5) a CDD only index. We estimate out-of-sample accuracy by estimating the models up
to 2000 and forecasting yield from 2001 to 2006.'° The year 2000 was chosen as a cut-off
period as the 2001-2006 period is notoriously difficult to predict; many districts were

15We performed the same exercise for different cut-off years and results do not change substantially.
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affected by drought so the results can be seen as a lower-bound in terms of forecasting
accuracy.® All the statistics used to evaluate the forecast accuracy are bootstrapped (100
repetitions), which gives an indication of the sensitivity of the results (see also online
appendix C).

The results are shown in online appendix table A8 in which we also report four indica-
tors of forecast accuracy, namely the Mean Absolute Error (MAE), the Root Mean Square
Error (RMSE) and the proportion of false negatives (FN) and positives (FP). We define
false positives as cases where the observed yield was not 10 per cent below normal!” yield
(drought), but our model predicted yields lower than 10 per cent below normal. Con-
versely, false negatives are defined as cases where observed yields are lower than 10 per
cent below normal, but the model predicts yields above this level.

Overall, the separate indices (DI1 and DI2) and the combined index (DI12) perform
better than other indices in all metrics (online appendix table A8). The FP and FN rates
are approximately 16 and 24 per cent, respectively. Also, while the DI12 model performs
better than alternative indices, the difference in performance is not statistically different
and the MAE remains large (above 500 kg/ha). This is mainly due to the fact that the
estimated model was not primarily conceived for forecasting. In online appendix C, we
show how forecasting performance can be improved with some very minor alterations
in terms of the chosen specification; online appendix table A10 shows the results of these
alternative specifications.

6. Discussion

Overall, three main findings emerge from our analysis. First, we show that two types
of dry event, defined according to whether they have an above- or below-average value
of CDD, have significant impacts on rice productivity in India. A consideration of the
latter type — Type 2 - is shown to be critical, especially in a setting where there has been a
clear increase in the number of such events in recent years. If an assessment of economic
impacts is performed solely based on Type 1 droughts alone, i.e., those considered by
Birthal et al. (2015), approximately half of all potential dry events would be overlooked.
Our results strongly suggest that Type 2 events have had quite a severe impact on rice
yields.

Second, the impacts are ameliorated differently when rice is irrigated. Specifically,
absolute losses increase with the proportion of rice area under irrigation as a result of
higher yields, although they decline as a proportion of total yield. We also find that irri-
gation seems to be more effective at reducing drought-induced yield losses from Type 2
droughts than Type 1 droughts. This suggests that the potential effects of irrigation in
mitigating drought-induced impacts of climate change hinges on drought typology.

Third, there is some evidence that marginal impacts over time differ depending
on drought type. Overall, absolute yield losses have either remained fairly constant or
increased over time. As a proportion of yield, Type 1 drought losses have become smaller
while Type 2 losses have risen. We attribute this partially to the fact that Type 2 droughts
have become increasingly severe over time and have increasingly been preceded by dry
years, which may have accentuated the impacts of this type of drought.

The economic value of production losses attributable to Type 2 droughts is calculated
to be approximately 70 per cent of the value of losses attributable to Type 1 droughts.

1Forecasting performance is better for years other than the cut-off period.
7Normal yield is defined as the median yield for the five years preceding the cut-off.
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Also, the omission of Type 2 droughts underestimates the economic value of production
losses caused by to Type 1 droughts, by around 27 per cent. While we acknowledge that
our back-of-the envelope estimates are based on a number of assumptions regarding
prices and so forth, they do suggest that we have found sufficient empirical evidence
and an economic rationale to justify the inclusion of Type 2 droughts, both in ex-post
analyses of drought impact and in forecasts of impact.

We acknowledge that our index has a number of technical limitations. First, similar
to any index based on relative values, our index may have limited transferability because
index values change when the minimum and maximum values change over time. Thus
its values might not be easily comparable across different regions, e.g., dry versus humid
areas. Second, the normalization process is bounded between 0 and 1. If a given district
has a very large outlier in a given year but records lower values in other years, then this
would indicate a low value in the drought index thus masking what might have been a
severe drought year. The third potential weakness arises from the multiplicative nature
of the index. Whenever temperature is close to 0, this can lead to a very low value of
the drought index despite very deficient rainfall, an issue that also applies to Yu and
Babcock’s index. Fourth, similar to their index, our index does not take into account
intra-seasonal deficiencies in rainfall, which have been shown to have important impacts
on agricultural productivity'® (e.g., Fishman, 2016). Finally, similar to most drought
indices, our index does not take into account (rare) multi-year droughts because this
would require an index with ‘memory’ that takes into account soil moisture conditions.
That said, since drought in India is mainly driven by variation in the annual monsoon,
we argue that using an annual measure of monsoon rainfall is of greater relevance when
estimating drought impact in our setting.

6.1 Behavioral responses to drought

Our empirical analysis precludes a consideration of the ex-ante and ex-post behav-
ioral responses to drought (Oviedo and Moroz, 2014). Previous research has shown
that farmers often engage in lower-risk-lower-return activities as strategies to cope with
anticipated weather shocks, e.g., the adoption of less-profitable crop portfolios less sen-
sitive to rainfall deviations (Rosenzweig and Wolpin, 1993), field scattering (Goland,
1993) and the adoption of low-risk-low-return crops (Dercon, 2008). Such strategies
have been shown to have large negative impacts on profits and capital stock growth.
Similarly, ex-post responses to drought have been shown to have negative impacts, e.g.,
a disinvestment in productive assets (Rosenzweig and Wolpin, 1993), a slowdown in the
post-drought asset recovery process (Jodha, 1978), as well as effects on human capital
(Shah and Steinberg, 2017).

In our particular context, we might expect a reduction in rice areas in anticipation or
as a result of a drought. Higher perceived drought risk may drive higher levels of diversi-
fication, and hence potential yield losses from rice specialization. Divesting in productive
inputs (seeds, livestock) as a result of a previous drought is another type of behavioral
response that is not captured in our data. The implication is that our cost estimates,
which are only based on yield losses, are likely to represent an underestimate of the true
economic cost of drought’s impact on rice yield in India.

¥However, we show that when we include a monthly index for different months during the cropping
season, our main results still hold (see online appendix tables A6 and A7).
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6.2 Policy implications

In 2016, the IMD officially stopped using the word ‘drought’ as part of a policy decision
to move away from the use of terms it did not consider to have much scientific precision
(Koshy and Vasudeva, 2016). An All India Drought Year was changed to a ‘Deficient
Year’ while an All India Severe Drought Year became a ‘Large Deficient Year’. Yet, these
events are still defined according to rainfall shortfall and the proportion of area affected,
as described in section 3. The declaration of droughts remains the prerogative of India’s
States and, while a rainfall shortfall combined with area affected allows a State to declare
an ‘agricultural’ and ‘meteorological’ drought, this gives no indication of the impact on
yield.

Our index covers all events defined as ‘Deficient Years’ by the IMD. Since it incor-
porates the impact of temperature as well as rainfall shortfalls on productivity, it could
complement the existing efforts of Indian policy makers. It could also be adopted in
other settings given its simplicity, reproducibility, and flexibility, e.g., it can be bro-
ken into ‘bins’ or adapted to other quadrants of interest. Since our index is based on
readily-available, climactic data, it has the potential to be used as an input in the design
of weather-based index insurance.

The results derived from application of our index have general implications for pol-
icy. We show that different water-stress, heat-stress combinations have different impacts
on yield. Thus, the future impacts of rising temperatures driven by climate change may
depend not only on the frequency and intensity of drought but also on the composi-
tion of drought, in terms of the relative importance of heat and water stress. This is of
particular relevance in drought-prone areas.

Shaping the appropriate policy response to drought, particularly with respect to the
costs of mitigation as well as climate adaptation in the agricultural sector, often involves
the application of cost-benefit analysis (e.g., Mechler et al., 2008). In general, this and
other economic modelling approaches, e.g., general equilibrium models, rely upon esti-
mates of drought impacts on production (e.g., Pauw et al., 2011; World Meteorological
Organization and Global Water Partnership, 2017). Yet, if such models focus solely on
events where the value of CDD is above average, then this is likely to lead to a down-
ward bias in the predicted economic benefits, by both reducing the potential gains from
mitigation (since the gains from mitigation depend on the size of the impacts) and
adaptation, hence lowering the cost of inaction.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/81355770X2000011X.
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