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Abstract

In this paper we consider time-changed models of population evolution X/ (1) =
X(HT (1)), where X is a counting process and H f is a subordinator with Laplace
exponent f. In the case where X is a pure birth process, we study the form of the
distribution, the intertimes between successive jumps, and the condition of explosion
(also in the case of killed subordinators). We also investigate the case where X represents
a death process (linear or sublinear) and study the extinction probabilities as a function
of the initial population size ng. Finally, the subordinated linear birth—death process is
considered. Special attention is devoted to the case where birth and death rates coincide;
the sojourn times are also analysed.
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1. Introduction

Birth and death processes can be applied in the modelling of many dynamical systems
such as cosmic showers, fragmentation processes, queueing systems, epidemics, population
growth, and aftershocks in earthquakes. The time-changed version of such processes has
also been analysed since it is useful to describe the dynamics of various systems when the
underlying environmental conditions randomly change. For example, the fractional birth and
death processes, studied in Orsingher and Polito [10]-[12], [14], are time-changed processes
where the distribution of the time is related to the fractional diffusion equations. We refer the
reader to Cahoy and Polito [4], [5] for some applications and simulations.

In this paper we consider the case where the random time is a subordinator. Actually,
subordinated Markov processes have been extensively studied since the 1950s. The case of
birth and death processes merits, however, a further investigation and this is our aim in this paper.
‘We consider here compositions of point processes X (¢), ¢t > 0, with an arbitrary subordinator
H/ (1) related to the Bernstein functions f (for the theory of subordinators, we refer the reader
to [1]). We denote such processes as X/ (t) = X(H/(t)). The general form of f is

f(x)=oc+,3x+/oo(1—e_“)v(ds), a>0,8=>0, (1.1)
0
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where v is the Lévy measure satisfying

foo(s A Dv(ds) < oco. (1.2)
0

In this paper we refer to the « = S = 0 case, unless explicitly stated. The structure of
the paper is as follows. In Section 2 we treat the subordinated nonlinear birth process, in
Section 3 we deal with the subordinated linear and sublinear death processes, and in Section 4
we analyse the linear birth—death process, with particular attention to the case where birth and
death rates coincide. In all three cases, we compute directly the state probabilities by means of
the composition formula

P{X/ (1) =k} = /OO P{X(s) = kYP{H' (¢) € ds}.
0

Despite most of the subordinators not possessing an explicit form for the probability density
function, the distribution of X(H 7 (1)) always presents a closed form in terms of the Laplace
exponent f. We also study the transition probabilities, both for finite and infinitesimal time
intervals. We emphasise that the subordinated point processes have a fundamental difference
with respect to the classical ones in that they perform upward or downward jumps of arbitrary
size. For infinitesimal time intervals, we provide a direct and simple proof of the following
fact:

[e.e]

P/t +dn) =k | X/ (1) =r) = dt/ P{X(s) = k | %(0) = r}v(ds), (1.3)
0

which is related to Bochner subordination (see [15]).

The first case taken into account is that of a nonlinear birth process with birth rates Ag, k > 1,
which is denoted by N (). The subordinated process N T (#) does not explode if and only if
the following condition is fulfilled:

=1
Y low
=i M

This is the same condition of nonexplosion holding for the classical case. Such a condition
ceases to hold if we consider a Lévy exponent with ¢ # 0, which is related to the so-called
killed subordinator. In this case, indeed, the process N f (t) can explode in a finite time, even
if N (¢) does not; more precisely

PN/ (1) =00} =1—e .

We note that &/ (r) can be regarded as a process where upward jumps are separated by
exponentially distributed time intervals Y} such that

P{Yk > 1 I e/vf(Tk,I) = r} — e_f()‘r)t,

where Ty_ is the instant of the (k — 1)th jump.

In Section 3 we study the subordinated linear and sublinear death processes, that we respec-
tively denote by M/ (t) and M/ (¢), with an initial number of components equal to ng. We
emphasise that in the sublinear case the annihilation is initially slower, then accelerates when
few survivors remain. So despite M/ (1) and M/ (r) presenting different state probabilities, we
observe that the extinction probabilities coincide and we prove that they decrease for increasing
values of ng.
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In Section 4, the subordinated linear birth—death process L/ (¢) is considered. If the birth and
death rates coincide and H/ is a stable subordinator, we compute the mean sojourn time in each
state and find, in some particular cases, the distribution of the intertimes between successive
jumps. We finally study the probability density of the sojourn times by giving a sketch of the
derivation of their Laplace transforms.

2. Subordinated nonlinear birth process

In this section we consider the process N F(t) = N(H7 (1)), where W is a nonlinear birth
process with one progenitor and rates Ax, k > 1, and H/ (¢) is a subordinator independent from
N (). It is well known that the state probabilities of N (¢) are

1 _)lml

— k
]_[ Z © k> 1
PIN@) =k | NO) =1} = i — 1 1igtm (A= Am)

e M, k=1.

The subordinated process &/ () thus possesses the following distribution:

PN @)=k | N (0) =1} /Oo P{N(s) =k | N(0) = 1}P{H’ (¢) € ds}
0
et/ Om)

1_[ Z , k>1,
Hl 11¢m()¥l m) (2-1)
_ff()tl)’ k=1.

The distribution (2.1) can be easily generalised to the case of r progenitors and is given by

r+k—1 r+k e*lf()»m)

’ k 01
PN (t)=r+k | N () =r} = l_[ Z T35 (= Am) ” (2.2)

j=r l r,l#£m
e ), k=0.

Note that &/ (¢) is indeed a well-defined process. This holds because (2.2) are well-defined
Markovian transition functions, which allow us to write all the finite-dimensional distributions
and this ensures the existence of a Markovian process in view of the Kolmogorov theorem.
Moreover, N/ (1) is time-homogeneous and (2.2) permits us to write

r+k—1 r+k dlf()»m)

[T * Z : . k>0,
PN/ (t+dty=r+k | N @) =r) = i ,’tl#m(xl—xm) (2.3)

1 —dif(A), k=0.

To find an alternative expression for the transition probabilities we need the following lemma.

Lemma 2.1. Forany sequence of k+1 distinct positive numbers Ay, Ay+1 - - - Ar+k the following

relationship holds:
r+k

1
Crk = =0. (2.4)
mZ:, T = Am)
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Proof. The proof follows as a consequence of (2.2) by letting + — 0. An alternative proof
can be obtained by suitably adapting the calculation of [10, Theorem 2.1]. ]

We are now able to state the following theorem.

Theorem 2.1. For k > r the transition probability takes the form
o0
PN/t +dn)y =k | N (1) =r) = dt/ P{N(s) =k | N(0) = r}v(ds). (2.5)
0

Proof. By repeatedly using both (2.4) and representation (1.1) of the Bernstein functions f,
we have

r+k—1 r+k

- dtf ()‘m)
l_[ Z r+k

1 r, 175m0¥l — Am)

PN G +dD) =k | N () =r)

r+k—1 r+k

S (m)
—dr l—[ Z r+k
j =r

l rl;ém()“l —Am)

+k

00 r+k 1 r 1— e—)»ms
—dt / v(ds)
fﬂﬂw—m>

00 r+k 1 r+k o—hms
— dt / (ds). (2.6)
k
=r lr+rl;tm()‘l — Am)

In light of (2.4), the integrand in (2.6) is O (s) for s — 0. Recalling (1.2), this ensures the
convergence of (2.6), and the proof is thus complete. O

Remark 2.1. For the sake of completeness, we observe that in the k = r case, we have
PNt +dD)y=r | N @) =r}=1—dif(Ar)
o0
=1- dz/ (1 —e *)v(ds)
0
o0
=1- dt/ (1 =P{N(s)=r | NO) =r}v(ds).
0

Remark 2.2. The subordinated nonlinear birth process performs jumps of arbitrary height as
does the subordinated Poisson process; see, for example, [13]. Thus, in view of the Markovian
property, we can write the governing equations for the state probabilities

pl ) =PN (1) =k | NT(0) = 1).
For k > 1, we have
oo k=1 —AmS

<ol (r)——f(xk)p,{(r>+2prf " / % Z c v(ds),
] =r

A N PO

while for k = 1,

d
P 0 =—fGp] @).
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Remark 2.3. The process & (H/ (1)) presents positive and integer-valued jumps occurring at
random times T4, T3, ..., T,. The interarrival times Y1, Y, ..., Y, are defined as

Yo =T — Ti—1.
It is easy to prove that
P(Ye >t | N (Tjp) =r} = /O,

This can be justified by considering that in the time intervals [T 1, Tr—1 4], no new offspring
appears in the population and thus, by (2.3), we have

PYi >t | N (o) =r) =PNt+Ti) =7 | N (Thy) =r) =e /O

2.1. Condition of explosion for the subordinated nonlinear birth process
We note that the explosion of the process N ! (), t > 0, in a finite time is avoided if and
only if
To=Y1+12+  + Yoo =00,
where Y;, j > 1, are the intertimes between successive jumps; see [7, p. 252]. For the nonlinear
classical process, we have
Ee T = Ee™ Xi=1Yi

n
= fim, [ ] B
j=1
n
)\'.
— lim ]_[ J
n—00 il 1+)\j

ﬁ 1
i L+ 1/A;
1
T+ a4

So if Z?‘;l 1/A; = oo, we have e Teo = ( almost surely, i.e. Too = o0o. Therefore, for the
subordinated nonlinear birth process, we have

PN/ (1) < o0} = foo ZP{N(s) = k)P{H' (1) € ds}
0 =1

0
=f P{H/(t) eds} =1 forallt > 0.
0

Instead, if Z?’;l 1/xj < oo, we obtain > ;o P{N(s) =k} < oo, and this implies that
P{NT () < o0} < 1.
We can now consider the case of killed subordinators F8(t), defined as

H'(t), t<T,

Jfg(t):{ .

)
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where T ~ Exp(a) and H/ (1) is an ordinary subordinator related to the function f(x) =
fooo(l — e ")v(ds). It is well known that F€8(¢) is related to a Bernstein function

gx) =a+ f(x).

In this case, even if Z?‘;l 1/ ; = oo, the probability of explosion for & f (1) is positive and
equal to
PN () =00} =1 —e"2.

This can be proven by observing that
P{NT (1) < 00} = / ZIF’{N(S) = k)P{H/ (1) € ds}

:/ P{H' (1) € ds}
0

o
= / e MPH (1) € ds} =0
0
— efat*f(u)tmzo

— e*O(t.

If, instead, Z  1/0; < 0o, wehave ) 72 | P{N (s) = k} < 1 and thus, a fortiori, P{NT (1) <
oo} < e ¥,
2.2. Subordinated linear birth process

The subordinated Yule—Furry process N/ (r) with one initial progenitor possesses the fol-
lowing distribution:

pl(6) = / h e (1 — e IPH (1) € ds)

k—1

/Oo hs Z( ; 1)(—1)fe—“fIP>{Hf(t) € ds}

J=0
. i <k 1)
J
()
Of course, this is obtainable from the distribution A/ (7) by assuming that A j = Aj. For an

application of the Yule—Furry process, see, for example, [6]. We now compute the factorial
moments of the subordinated linear birth process. The probability generating function is

OO .
(—1)/ f e MFDPIHS (1) € ds)
0

)J —tfG(+D)

Glu,t) = Zuk /Oo e M1 — e IPHS (1) € ds).
k=1 0
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The rth-order factorial moments are

r

G’ (u, 1)]u=1

ou”

= Zk(k — 1D tk=r+1) /Ooe—“(l — e IP(HS (1) € ds)
k=r 0

= Zk(k —1Dtk—r+1) /ooe’“(l —e Mk —e Y TIP(HT (1) € ds),
k=r 0

and since
o0 o0
dr d 1 r!
k—r _ k _ _
Y ktk—1) -k —r+ 11— p)T = (—1)’dpr dYa-pt= (—I)FW; = AT
k=r k=0
we have

r

ou”

o
Gu, H)|y1 = r!/ M (1 —e ™Y IPHT (1) € ds}
0

r—1 00
=7 Z (r; 1) (—1)’“/O e MM=NPIHT (1) € ds)
m=0

r—1
r—1 -
— _1y"e—tf (hm=r))
r;( " )( D™ )
m=

By f(—x), x > 0 we mean the extended Bernstein function having representation

f(=x) = /00(1 —e™v(ds), x>0, 2.7
0

provided that the integral in (2.7) is convergent. In particular, we infer that
EW/ (1) =e P, var(W/ (1) = 2e7/ 72 — e/ (R _ 72/ (1),

For a stable subordinator, i.e. with Lévy measure v(ds) = (as“"_l/ I'l—aw))ds,a € (0, 1),
all the factorial moments are infinite. Instead, for a tempered stable subordinator where v(ds) =
(ae’eys’“’l/ I'(l —a))ds,a € (0, 1) and 6 > 0, only the factorial moments of order » such
that r < 6/A are finite. If we then consider the gamma subordinator with v(ds) = (e7*%/s) ds,
only the factorial moments of order r such that r < o/A are finite.

2.3. Fractional subordinated nonlinear birth process

The fractional nonlinear birth process has state probabilities p; (¢) solving the fractional
differential equation

d"pL(t)
ﬁ = —Mppt) + M1pp_ (1, ve©, 1), k>1
with initial condition
1, k=1
v O — ’ ’
e =90 o1
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The state probabilities are (see [11])

k-1 ok Ey (o)
pv(t):]P){Nv(t):k | e/vv(o):l}z A v, m ’ v e 1),
k /1:11 ! mzzl H;C:l,l¢m()“l — Am)

where

sm(vn) r’~Lexp(—rn!/Vt)
U 1( nt ) 2
V4 2rvVcos(vr) + 1
is the Mittag—Leffler function; see Haubold et al. [8, Equation (7.3)]. So the subordinated
nonlinear fractional birth process has distribution

P{N”(Hf(r» =k| N"0) =1}

a P~ exp(—tf (rap"))

l_[ 1 sm(vn)/
j=1  m= 11_[1 Ligm A — ) T r2v 4 2rv cos(vm) + 1

For further readings on fractional point processes consult, for example, [9] and [16].

3. Subordinated death processes

‘We now consider the process M f(t) = M(H/ (1)), where M is a linear death process with g
progenitors. The state probabilities are

oo
PMT (1) =k | MF(0) =no} = / <r;<0>e“k"(l —e My ~kpH T (1) € ds)
0
0\ "= (no — k i [ j
= <k°> > ( 0 )(—1)1/ e WKHIDSPIH T (1) € ds)
=0~ 0
no—k —k ‘ )
= (”ko) Z (noj ) (_1)Je*lf(lik+w)7 0 < k < ny.
Jj=0
In particular, the extinction probability is
no no
P(M/ (1) =0 | M7 (0) = ng} = <”0> (—1)ie /) =1 4 (n0> (—1)d e~/ (i)

and converges to 1 exponentially fast with rate f(u).

Remark 3.1. We observe that the extinction probability is a decreasing function of ng for any
choice of the subordinator H/ (¢). This can be shown by observing that

P{M7 (1) =0 | M7 (0) = no} —P{M/ (1) =0 | M7 (0) =no — 1}

no no—1
— 2 (”0> (—1)Je 1) _ 2 (”0 - 1) (—1) et/ )
J J
j=1

j=1
no—1
> (".0 _11> (—1)fe D) 4 (~1ye=tf )
i
j=1
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no
— no— 1 (_1)je—tf(uj)
j—1
j=1

no
- <”0 - 1) (— 1)l e~ (WG+1)
0

oo o—1
- _/ <”°J_ 1) (=) e sHUTDPIH T (1) € ds)
0

=— /Ooe"”(l — e My~ Iprgf(r) € ds)
< 0. !
This permits us also to establish the following upper bound which is valid for all values of ng:
PMT ) =0 M) =no} <PMT()=0| M O)=1}=1—e /W,
We also infer that
P{M/ (1) =0 | M7 (0) = no} = P{M/ (1) =0 | M/ (0) = no — 1}

1 : .
— —P{M (1) =1 | M/ (0) =ng} forall k < ny.
no
Remark 3.2. The probability generating function of the subordinated linear death process is
0 ,
G(u,t) = / (ue ™ +1—e #)YOP{H/ (1) € ds}.
0

We now compute the factorial moments of order r for the process M f(#). Thus,

EM! ()M (1) = YMT (1) = 2) - (M7 (1) — r + 1))

0 ar
- f S e ™ 41— e M), _P{H' (1) € ds}
0 u

=no(ng—Dmo—2)---(ng—r+1) fwe_“rSP{Hf(t) € ds)
0
no(no — D(ng —2) - - - (ng — r + e~/ 10

=r! (no)e_tf(’”) for r < ny.

r
In particular, we extract the expressions
EM (1) = npe~"F @, varM/ (1) = nge=" ) — pge @) 4 26110 _ 262 (),
The variance can be also be obtained as

varM/ (1) = E{var(M (H' (1)) | H' (1))} + var(E(M(H' (1)) | H (1))}

= E(nge 'O (1 — e ' 0)) 4 var(nge H' )

— nge W) _ poet G | 2=t G _ 2217 G0),
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Remark 3.3. The transition probabilities

r

PM (tg+1) =k | MT (1) = r} = (;)

(’ - )(_ 1)J =t (ak-+iaf)
=0~/
permit us to write, for a small time interval [z, r + dr),

PMT(tg+dt) =k | MT (1) = r}
—k

7\ r—k . .
= < > ( . )(—1)’(1 —dtf (uk + wj))
k P AN

—k .
" )(—D’f(uk + 1)

r= k) (—=1)J / (1— e*(MkJrM')S)v(ds)
0

r ‘°° =k
=dt( )/ ( . )(—l)je”jse“kxv(ds)
k) Jo 4 J

j=0
—dr / <r>(1 — e Hsy kg miks (g
0o \k
:dt/ooIP’{M(s):k | M(0) =r}v(ds), 0<k<r<ny. 3.1
0

It follows that the subordinated death process decreases with downwards jumps of arbitrary
size. Equation (3.1) is a special case of (1.3) for the linear death process.

Remark 3.4. If M/ (1)) = r, the probability that the number of individuals does not change
during a time interval of length ¢ is

PM (tg+1)=r | M (19) =r) = e, (3.2)

As a consequence, the random time between two successive jumps has exponential distribution
with rate f(ur), i.e.

T, ~ Exp(f (ur)).

From (3.2), we also have
PM (¢t +dty=r | MT(t) =r) =1 —ditf(ur).

Remark 3.5. In view of (3.1), we can write the governing equations for the transition proba-
bilities p] (1) = P{M/ (1) = k | Mf(0) = ng} for 0 < k < ng as

d ng 00 /o ‘
Sl 0 ==plOf o+ Y pl@ /0 (2)(1—e‘*“‘)/‘ke—“k‘vv(dw.

j=k+1
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3.1. The subordinated sublinear death process

In the sublinear death process, we have, for 0 < k < no,
P{M(t +dt) =k — 1| M(t) =k, M(0) = no} = u(ng — k + 1)de + o(dr)

so that the probability that a particle disappears in [¢, t 4+ d¢) is proportional to the number of
deaths occurred in [0, ¢). It is well known that

e M1 —e Mym—k k=12 ... ng

P{M(r) = k | M(0) = no} = {(1 _ o-riypo, o

So the probability law of the subordinated process immediately follows as

no—k no—k
Z(O. )(—We—’f‘“(f“”, k=1.....no,
J

P{M/ (1) = k | M7 (0) = ng} = "jO

n
3 (’:’) (—1)ketf k), k=0.

k=0

The extinction probability is a decreasing function of ng as in the sublinear death process.
Furthermore, we observe that the extinction probabilities for the subordinated linear and
sublinear death processes coincide.

4. Subordinated linear birth—death processes

In this section we consider the linear birth and death process L(¢) with one progenitor at the
time Hf(t). We recall that, for k > 1 (see Bailey [2, p. 90]),

(= /L)ze_()‘_“)t()»(l _ e—(A—u)t))k_l
(A — pe~G—mwryk+l s A>p,
- L (=)l (1 — ekl
P{L(t) =k | LO)=1}= Py =i Ca<n
()Lt)kfl
—k+1’ A= ",
(14 Ar)

while the extinction probabilities have the form

I‘L — Meit(kiu)
pRpTrem R
_ —t(u—2)
P{L6)=0|LO)=1}=qK~ZHK — )
A — Me_t(ﬂ_k) ’ ’
A L
T+ K
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We now study the subordinated process Lf(t) = L(H'(r)). When A # u, after a series
expansion, we easily obtain

P{L' )=k | LT (0) =1}

A=\ 1k e\ k—1\ e

AT K © Y QD)

<A>l§<l)(A ;}<> e . A> o,
(56 296G

B 0 0 p ! 0

k—1 k—1
x Z(_l)f( . >e—tf((u—?»)(l+r+1))7 A<,
r=0

WK

Il
=}

provided that k£ > 1. Moreover, the extinction probabilities have the following form:

w1\ e Gmom) L, K
~” —tf(A—pym ~” A
(X (5) ) e r

P{L’ (t) = 0} = m=te .
1— <MT_A> Z(&) e~/ =m) 5
m=1 H
Similarly to the classical process, we have
E, A >,
lim P(Lf (1) =0} = | *
—00
I, A<upu.

4.1. Processes with equal birth and death rates

We now concentrate on the A = pu case, which leads to some interesting results. The
extinction probability is given by

AS
1+ As
o0

1 .
S f
=1 /0 P @) € ds)

00 ) o]
=1- / P{H/ (1) € ds} f dwe ¥ se™v
0 0

P{L/&)=0| LT 0)=1}= /OO P{H’ (1) € ds}
0

OO ~
=1-— / dwe et/ Ow) 4.1
0

We note that lim;_, oo ]P’{Lf(t) =0 LS 0) = 1} = 1 as in the classical case. From (4.1) we
infer that the distribution of the extinction time Tof =inf{r > 0: L/ () = 0} has the following
form:

P(T{ edr}

o
/ e FOaw)e W gy,
dt 0
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We now observe that all the state probabilities of the process L(¢) depend on the extinction
probability (see [11])

( )\Z‘)k_l
(1 + Ar)ktl

( 1)k 1)\'1{ 1 dk A
k! dak 14 At

( l)k lkk 1 dk
=  aF 7 (1 —P{L(z) = 0}). (4.2)

P{L@#) =k | L) =1} = (k=1)

Hence, the state probabilities of L/ (¢) can be written as, for k > 1,

( 1)k 1Xk 1 dk

P{LY (1) =k | LT (0) =1} = [ / m(l —P{L(s) = ODP{H' (1) € ds}]
0

k! d)J‘
-1 kfl)hkfl dk
= %—[Ml —P(LS (1) = O))]
1 k I)Lk 1 dk 00
el PY / dwe Ve S Ow) | (4.3)
k! R

4.2. Transition probabilities

To compute the transition probabilities of L/ (r), we recall that the linear birth—death process
with r progenitors has the following probability law (see [2, p. 94, Equation (8.47)]):

min(r,n) .
PILO)=n|LO)=r}= ). (;) (r e 1>a"-’ﬂ”‘j(1 —a— B,

i r—1
where n > 0 and
M(e()‘_“)’ -1 )\(e()»—ll«)f -1
* T e T helGmr — g

In the A = i case, we have

At
lim o = hm B =
= A u—A 1+ At

rdn—j—1\( A ’+"‘211 , M J
<>< r—1 )(H—M) <_1+At)
J r+n —j 1 ] . ¥, r+n—2j+k
()T e ()T

4.4)

so that

P{L#&)=n| L0O)=r}=

%

j=0

One can check that for r = 1 the last equation reduces to

(}»[)"_l

P{L(t)=n | LO) =1} = T

The transition probabilities related to the subordinated process L7 (f) can be written in an
elegant form, as shown in the following theorem.
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Theorem 4.1. In the subordinated linear birth—death process LY (1), when A = u, n >0,
r > 1, n #r, we have

P{L (1 +10) =n | LT (19) = r}

min(r,n) j P\ (rHn—i—1\(i\ux (_1)r+n—lkr+n+k—2j
= 2
Z Z(])( r—1 )(k) (r+n-2j+k—-1!

j=0 k=0
dr+n—2j+k—l 1 1 o0 _
- |Z_Z —w,—tf(Aw)
X TV |:)L 7 fo dwe™"e i| 4.5)

Proof. By subordination, we have

PL/ &) =n| L) =r}= /OOIP{L(S) =n | L(0) = r}P{H/ (t) € ds}
0

min(r,n) j . .
3 Z +n—j—1

<r>(r n—{ )(£>( 2)k
i=0 k=0 J r

J

00 As r+n—2j+k
P{H(t) e ds}{ —— .
X/o {H() € S}<1+As>

To compute the last integral, we preliminarily observe that

dm 1 m m 1
—_— =-D"m!'s" ——
dam 1+ As (1 4 As)m+1
and, consequently,
A mo(=pmlgum gnl
A )y DT , (4.6)
1+ As (m—1! damr=114xs

So we have
P(L(t) =n | LT (0) =7}

min(r,n) Jj P\ (rHn—j—1\ (i (_1)r+n—1kr+n—2j+k
= 2
Z Z(])( r—1 )(k) r+n—=2j+k—-1)!

j=0 k=0

dr+n—2j+k—1 oo s 7
X rn—2jk—1 /(; 1+ASP{H (t) € ds},

where, by using (4.1), we write

1+ As A I+ As

1 © .
=- 1—/ dwe Ve /)
A 0

and the desired result immediately follows. ]

/OO s P{Hf(t)eds}zl/oo Y s (1) e ds)
0 0
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Remark 4.1. For a small time interval d¢, the quantity in square brackets in (4.5) can be written
as

l - l /OO dwe ™1 — dtf (Aw)) = dz‘l /OO dwe™ /00 p(ds)(1 — e™v%)
0 A Jo 0

AA
© s
=dtf v(ds) .
0 1+)LS

Then by using (4.6) and (4.4), (4.5) reduces to

[e.e]

P{L' (to+dt) =n | LT (1y) =k} = drf v(ds)P{L(s) = n | L(0) = k},
0

thus proving (1.3) for subordinated birth—death processes.

Remark 4.2. If L/(0) = 1, from (4.3) it follows that the probability that the number of
individuals does not change during a time interval of length dz is

P{Lfd)=1|LT0)=1}=1 —dti<,\/ dwewf(kw)>.
a\" Jy

Thus, the waiting time for the first jump, i.e.
Ty =inf{t > 0: LT (1) # 1)

has the following distribution:

P{T) >t} = exp(—t%(k /(;OO dwe_wf(kw))).

For example, in the case when H F(#) is a stable subordinator with index & € (0, 1), T has an
exponential distribution with parameter A*T" (o + 2).

4.3. Mean sojourn times

Let Vi (), k > 1, be the total amount of time that the process L(¢) spends in the state k up
to time ¢, i.e.

t
Vi (1) =f0 1;(L(s))ds,

where 14 (-) is the indicator function of the state k. The mean sojourn time up to time 7 is given
by

t
Evk(z)=/ P{L(s) = k | L(0) = 1} ds.
0

By means of (4.2), we have

t
IEVk(t)z/ P{L(s) =k | L(0) = 1} ds
0

(_1)1{—1)\’/{—1 dk t
ZTWO([_/O ]P’{L(s):O}ds))
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(_1)/{—1)\/{—1 dk /t As
= —— — [ Al — ds
k! dak o 1+As

(—l)k_l)nk_l dk

1 a Y
VAN EYY;

and the mean asymptotic sojourn time is therefore given by

1
EVi(00) = o7 4.7)

In view of (4.3), for the sojourn time ka () of the subordinated process L/ (1), we have

t
EV/ (1) =/0 P(L' (s) =k | LY (0) = 1}ds

-1 kfl)\kfl dk 00
LGV L [ e
k! ark " Jo

1 _ tf(Aw):|
o)

and the mean asymptotic sojourn time is given by
. -1 k*lkkfl dk [e'e) 1
BV (o0 = St Sl [ awe .
k! dxk [ Jo fGaw)

It is possible to obtain an explicit expression for IEka (c0) in the case of a stable subordinator,
when f(x) = x% o € (0, 1), i.e.

¥ B (_l)k_l)"k_ld_kl: /oo —w i|
EV; (oo)_—k! O A A dwe Tayge
_EnEREITA - df o,
- k! dak
_1yk—19k—1 _
- )Lk! T (1 a)—a)(ma = 1) (= e+ DA
_T-a)l@+h
N kI T (o)A
— w fork > 1. 4.8)
')\ *

In the o = % case, by using the duplication equation for the gamma function and the Stirling
formula, the quantity in (4.8) can be estimated for large values of k in the following way:

r(/2+k  Tra/227#rewn 1

f
EV/ (c0) = = o~
k SN k! /AT (k) Ak
which is somehow related to (4.7). We finally note that
1 f 1
<EV{(00) < ——7——— forallk > 1,

(a4 k)I'(x)A> (1 —a)'(x)Ae

since

1
B(l—a,k —
(a+k)< (1—-« +ot)<1_a
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4.4. On the distribution of the sojourn times

Let L kf () be a linear birth—death process with k progenitors. We now study the distribution
of the sojourn time

t
Vi(t) = /0 1oL () ds,

which represents the total amount of time that the process spends in the state k up to time 7.
We now define the Laplace transform

ri(y) =/ e V'P(L] (1) = k}dr.
0

The hitting time
vl = inflw > 0: Vi(w) > 1}

is such that
o 1 (o) 00 f
]E/ e Ve gy =E/ e 7 dVi(1) =E/ e k(L] (1)) dt = re(p).
0 0 0

By [3, Proposition 3.17, Chapter V], we have

1
Eexp(—y V(1) = eXp<—tm>. 49)

Now we resort to the fact that
P{Vi(t) > x} =PV, '(x) <t}
and, thus, we can write

P{Vi(r) edx} 0 ! -1
LR _B_x/o P{V, (x) € dw}.

dx
Therefore, we have
1 o0 d o0 t
— e V'P{Vi(t) e dx}dr = ——/ dte*}”/ ]P’{Vk*l(x) € dw}
dx 0 dx 0 0
d o o0
- dw / dre 'P{V N (x) € dw)
dx 0 w
1d [* _ 1
=——— dwe ""P{V, " (x) € dw}
y dx Jo

1d ( 1 )
———exp| —x
y dx P ri(y)

= 1 exp(—x 1 )
yre(y) re(y)

If 7 (0) < oo, from (4.9) it emerges that P{ Vk_1 (t) < oo} < 1; so the sample paths of Vi (¢)
become constant after a random time with positive probability. This is related to the fact that
the subordinated birth and death process extinguishes with probability 1 in a finite time when
A= U.
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We finally observe that in the k = 1 case, by (4.3) we have

ri(y) = /OO e V'P{LY (1) = k}dr = 4 [A /Oo dwe_w;]
0 da 0 y+ fOw) ]

provided that the Fubini theorem holds.
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