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An analytical model is presented for sound radiation from a semi-infinite unflanged
annular duct. The duct carries a jet which issues into a uniform mean flow while an
inner cylindrical centre body extends downstream from the duct exit. This geometrical
arrangement forms an idealized representation of a turbofan exhaust where noise
propagates along the annular bypass duct, refracts through the external bypass
stream and radiates to the far field. The instability wave of the vortex sheet and its
interaction with the acoustic field are accounted for in an exact way in the current
solution. Efficient numerical procedures are presented for evaluating near-field and
far-field solutions, and these are used as the basis for a parametric study to illustrate
the effect of varying the hub–tip ratio, and the ratio of jet velocity to external flow
velocity. Since the ‘Kutta’ condition can be turned on and off in the current solution,
this capability is used to assess the effect of vortex shedding on noise radiation.
Far-field directivity patterns are presented for single modes and also for a multi-mode
‘broadband’ source model in which all cut-on modes are assumed to be present
with equal modal power. Good agreement is found between analytical solutions and
experimental data. Near-field pressure maps of the acoustic and instability portions
of the solution are generated for selected tones.

1. Introduction
The analytic solution reported in this paper forms a simple model for the radiation

of fan noise from the bypass duct of a turbofan aeroengine. It offers an idealized
solution for this problem and acts as an exact reference solution against which more
comprehensive methods can be assessed. Aft radiated fan noise has become a critical
noise source in modern high bypass ratio (HBR) turbofan engines, eclipsing jet
mixing as the dominant noise source at high engine power settings. While satisfactory
computational schemes exist for predicting forward radiated fan noise, the prediction
and treatment of aft fan noise has received less attention and is less well understood.
It presents a more challenging task for computational aeroacoustics (CAA) owing
to the presence of the shear layer which separates the bypass stream from the free
field. The correct treatment of refraction through this layer and of the hydrodynamic
instabilities which arise within it present practical problems for which robust numerical
solutions have yet to be demonstrated. While the probable future for aft fan noise
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prediction lies in the development of appropriate numerical schemes which can deal
accurately not only with the shear layer, but also with non-uniform mean flows and
real nacelle geometries, idealized solutions such as the one to be presented here are
useful, both as a basis for simple parametric studies and as benchmark solutions
for subsequent numerical treatments. The current solution describes the sound field
radiated from a semi-infinite axisymmetric circular or annular duct which carries a
subsonic jet. In the annular case, a cylindrical centre body extends downstream from
the duct exit, forming a simple analogue for the after-body of a turbofan engine. The
solution which is presented here, although it applies only to an idealized geometry,
contains the essential elements of more realistic configurations.

The first of these is simply wave scattering by the duct lip and the centre body.
While analytical solutions for radiation from a flanged circular or annular duct are
reasonably straightforward, the problem of an unflanged duct is more difficult since
it involves mixed and semi-infinite boundary conditions on the duct wall and in the
fluid. Levine & Schwinger (1948) derived an analytical solution for the case of a
semi-infinite circular duct in the absence of flow by using the Wiener–Hopf method
which provides a systematic approach for this class of problem. The key step in
this method is the factorization of the so-called Wiener–Hopf kernel, but in many
cases there is no analytical factorization. Explicit expressions can be obtained for the
analogous two-dimensional problem (Aublin 1996), but these are not available for the
axisymmetric case. Much has been published, however, on various approximations
(high or low frequency, small Strouhal number, etc.) and several schemes have been
proposed to evaluate the factorization numerically (Ramakrishnan 1982; Rienstra
1984; Cho 1996).

The presence of mean flow in the free stream and in the duct modifies in a subtle
way the physics of the problem, even when the flow velocity is the same in the two
regions. The convective effect of the mean flow alters the general behaviour of the
waves and the singularity at the lip of the duct requires particular attention. For an
inlet problem (the fluid flows into the duct) the pressure is singular, but integrable, at
the leading edge. For an outlet problem (the fluid flows out of the duct) a vortex sheet
exists at the continuation of the duct. This is produced by the shedding of vorticity
in the vicinity of the trailing edge, the amount of shed vorticity being given by the
Kutta condition. Carrier (1956) was the first to consider this effect for a uniform mean
flow. Homicz & Lordi (1975) derived expressions by applying a Lorentz transform to
the solution for the no-flow case, applying it to the pressure and velocity potential
equations for the exhaust and intake cases, respectively. By comparing the incident
and radiated energy, Rienstra (1984) showed that the interaction between the acoustic
field and the vortex sheet is complex. Depending on the parameters, the latter can
either absorb energy from, or add energy to, the acoustic field. Furthermore, Cargill
(1982a, b) considered the problem for low or high frequencies, whereas Rienstra (1983)
studied the limit for small Strouhal numbers.

A further complication arises when the mean flow velocities in the jet and in the
surrounding fluid are different. Acoustic waves are then refracted by the velocity
discontinuity across the vortex sheet, and the radiated energy is deflected away from
the jet to give an acoustic ‘cone of silence’ in the jet direction. In addition, the
velocity discontinuity introduces a convective instability, i.e. the Kelvin–Helmholtz
instability of the vortex sheet, which grows exponentially in the streamwise direction.
In this situation, particular care should be taken to obtain solutions which satisfy the
causality condition. Jones and Morgan have devoted several papers to the stability
of vortex sheets and proposed a systematic method for deriving causal solutions
(see Jones & Morgan 1972; Jones 1973a, b, 1975a, b, 1977; Morgan 1974, 1975).
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Crighton & Leppington (1974) and Morgan (1974) have studied the radiation of
sound through a vortex sheet emanating from a semi-infinite flat plate and have
shown that the plate couples the instability wave with the acoustic field so that it is
not possible to remove the instability without modifying the acoustic field. The most
general solution to date is that of Munt who considered the problem of a circular jet
pipe and studied the effect of various parameters on far-field directivity and reflection
coefficients (Munt 1977, 1990).

Taylor, Crighton & Cargill (1993) considered combustion noise radiating from a
buried nozzle, i.e. coaxial jet pipes with the outer duct extending beyond the inner
duct. The combustion noise was described as a plane wave originating from the inner
pipe, and vortex shedding was modelled by the presence of vortex sheets separating the
inner, outer and ambient flows. Taylor et al. (1993) derived an asymptotic solution
in the low-frequency limit by assuming that the nozzle lips only interact through
travelling plane waves.

All of the references cited above describe theoretical studies. Several experimental
investigations have also been carried out, see, for instance, Alfredson & Davies (1970),
Plumblee & Dean (1973), Schlinker (1977), Bhattacharya (1980) and Bento Coelho
(1980).

An important aspect addressed in the present work, but not dealt with in previous
studies, is the effect of a centre body extending beyond the jet pipe. This is important
in turbofan bypass applications where the after-body may have a significant effect
on the noise radiated from the bypass duct. By using the Wiener–Hopf technique,
Rienstra (1984) derived the general solution for a semi-infinite duct with an infinite
centre body for the case of uniform flow across the jet and bypass stream. This solution
is extended in the current article to include a bypass shear layer. Alternatively, the
current solution can be regarded as an extension of the solution of Munt (1977)
which includes a shear layer, but not a centre body.

The first aim of the present work is simply to derive an exact solution which
includes both variable jet and free-stream velocities and a centre body. The Wiener–
Hopf approach is used, building on the work of both Munt (1977) and Rienstra (1984).

The second aim of this paper is to formulate robust and efficient numerical
procedures for evaluating the above solution so that it can be implemented at realistic
frequencies and Mach numbers to obtain estimates of radiated sound power for
practical turbofan operating conditions. These generally involve quite high frequencies
(ka values in the range 0–60 for a modern HBR engine) and subsonic Mach numbers
in the range 0–0.8 at the duct exit.

The layout of this paper is as follows. The hypotheses and basic equations of the
problem are set out in § 2. In § 3, the Wiener–Hopf method is used to derive the general
solution for the diffracted acoustic field together with the far-field approximation
and the reflection coefficients at the duct termination. Results are presented in § 4.
The general analysis is presented for the case of annular duct with a centre body. The
particular case of a hollow duct is treated where necessary as a special case. The
practical implementation and numerical evaluation of the solution is described in
Appendix A.

2. Description of the problem
Consider a cylindrical duct with annular cross-section (see figure 1). The outer wall

of the duct is semi-infinite (z < 0) of radius R0 and zero thickness. The centre body
is infinite in the axial direction and of radius R1. Both surfaces of the duct, inner
and outer, are rigid and impervious. The duct contains a uniform axial mean flow of
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Figure 1. A sketch of the annular duct.

density ρj , velocity vj and speed of sound cj . In the outer region r > R0, the ambient
flow is axial and uniform of density ρ0, velocity v0 and speed of sound c0. The jet
emanating from the duct exit is separated from the ambient flow by a vortex sheet
(z > 0 and r = R0). In what follows, the mean flow is said to be non-uniform when
the jet properties (ρj , cj , vj ) differ from that of the ambient flow (ρ0, c0, v0) although
the flow profile is constant in each region.

All of the variables of the problem are made dimensionless by using the outer duct
radius R0 and the ambient flow properties ρ0 and c0 as reference values. Both in
the jet and the ambient flow, the disturbances are considered to be linear and purely
acoustic (i.e. irrotational). Except at the vortex sheet, the jet and ambient flow do
not carry hydrodynamic disturbances. The acoustic solution is therefore described
by a velocity potential φ which satisfies convected wave equations in the jet and the
ambient flow: i.e. (

∂

∂t
+ M0

∂

∂z

)2

φ − �φ = 0, r > 1, (2.1)

C2
1

(
∂

∂t
+ M1

∂

∂z

)2

φ − �φ = 0, h < r < 1, (2.2)

where M0 = v0/c0 and M1 = vj/c0 are Mach numbers of the ambient flow and the jet,
respectively (note however that M1 is not the local Mach number since it is defined in
terms of the sound speed in the free stream). The ratio of the sound speeds and the
hub–tip ratio (i.e. the ratio of the inner to outer duct radius) are denoted C1 = c0/cj ,
and h =R1/R0, respectively.

The acoustic pressure p, velocity v and density ρ are given by:

p = −
(

∂φ

∂t
+ M0

∂φ

∂z

)
, v = ∇φ, ρ = p, r > 1, (2.3)

p = −D1

(
∂φ

∂t
+ M1

∂φ

∂z

)
, v = ∇φ, ρ = pC2

1 , h < r < 1, (2.4)

where D1 = ρj/ρ0 is the ratio of the jet and ambient densities. The duct walls are
rigid so we have:

∂φ

∂r
(h, θ, z) = 0, ∀z,

∂φ

∂r
(1−, θ, z) =

∂φ

∂r
(1+, θ, z) = 0, z � 0. (2.5)

The interactions of the acoustic fields on both sides of the vortex layer are described
by two continuity conditions. The kinematic condition states that the normal particle
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displacement w is continuous across the vortex sheet. Since the normal acoustic
velocity is the material derivative of the normal particle displacement, the velocity
potential φ is related to w by(

∂

∂t
+ M0

∂

∂z

)
w(θ, z) =

∂φ

∂r
(1+, θ, z), z > 0, (2.6)(

∂

∂t
+ M1

∂

∂z

)
w(θ, z) =

∂φ

∂r
(1−, θ, z), z > 0. (2.7)

For an inviscid fluid, the dynamic condition implies that the pressure is continuous
across the vortex sheet: p(1+, θ, z) =p(1−, θ, z). By using equations (2.3)–(2.4), this
condition is written in terms of the velocity potential:(

∂

∂t
+ M0

∂

∂z

)
φ(1+, θ, z, t) = D1

(
∂

∂t
+ M1

∂

∂z

)
φ(1−, θ, z, t), z > 0. (2.8)

2.1. Incident wave

Now consider time-harmonic problems, with a exp(−iωt) dependence. Inside the duct,
the acoustic field can be described as a sum of left- and right-propagating eigenmodes:

φ(r, z, θ, t) =

+∞∑
m=−∞

+∞∑
n=0

[B−
mn exp(iωµ−

mnz)

+ B+
mn exp(iωµ+

mnz)]Ψmn(r) exp(imθ − iωt), (2.9)

where m and n are the circumferential and radial mode orders. The mode shapes are
given by Ψmn(r) = Y′

m(αmnh)Jm(αmnr) − J′
m(αmnh)Ym(αmnr). The radial wavenumbers

αmn are solutions of the characteristic equation:

Λ(z) = Y′
m(zh)J′

m(z) − J′
m(zh)Y′

m(z) = 0, (2.10)

and the axial wavenumber µ±
mn is related to αmn through the dispersion relation in

the duct:

µ±
mn =

±
√

C2
1 −

(
1 − M2

1C
2
1

)
α2

mn

/
ω2 − M1C

2
1

1 − M2
1C

2
1

.

For the plane waves, we have simply Ψ00 = 1 and µ
±
00 = C1/(M1C1 ± 1).

Since any sound field in the duct is a sum of eigenmodes, we are primarily interested
in the radiated noise produced by a single eigenmode (m,n) propagating in the duct
towards the exit plane and then radiating in the free field. This incident wave is taken
to be

φ0(r, θ, z, t) =

{
0, r > 1,

Ψmn(r) exp(iωµ+
mnz + imθ − iωt), h < r < 1.

(2.11)

This incident wave φ0 satisfies the convected wave equation (2.2) in the jet and
the hard-wall boundary conditions in the duct. Then, we write the acoustic field as
the sum of the incident wave ψ0 and a diffracted field ψ . Since the geometry and
boundary conditions are axisymmetric, the diffracted field retains the same azimuthal
and time dependencies as the incident wave:

φ(r, θ, z, t) = [ψ(r, z) + ψ0(r, z)] exp(imθ − iωt), ψ0(r, z) = Ψmn(r) exp(iωµ+
mnz).

Accordingly, the radial displacement of the vortex sheet is written w(θ, z, t) = ξ (z)
exp(imθ − iωt). In what follows, the harmonic dependence exp(imθ − iωt) will be
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omitted and the variables p, ρ and v will refer to the diffracted part of the acoustic
field. The complex amplitude of the diffracted field ψ is the solution of the following
set of equations:

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2
− m2

r2
ψ −

(
−iω + M0

∂

∂z

)2

ψ = 0, r > 1, (2.12)

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂z2
− m2

r2
ψ − C2

1

(
−iω + M1

∂

∂z

)2

ψ = 0, h < r < 1 ,(2.13)

∂ψ

∂r
(h, z) = 0, ∀z, (2.14a)

∂ψ

∂r
(1−, z) =

∂ψ

∂r
(1+, z) = 0, z � 0, (2.14b)

(
−iω + M0

∂

∂z

)
ξ (z) =

∂ψ

∂r
(1+, z), z > 0, (2.15)

(
−iω + M1

∂

∂z

)
ξ (z) =

∂ψ

∂r
(1−, z), z > 0, (2.16)

(
−iω + M0

∂

∂z

)
ψ(1+, z) = D1

(
−iω + M1

∂

∂z

)
[ψ(1−, z) +ψ0(1

−, z)], z > 0. (2.17)

2.2. Edge conditions

A key aspect of the present problem is to describe correctly the behaviour of the
solution at the lip of the duct (z = 0, r =1) since the acoustic field can be singular
at that point. A first requirement is that the overall force applied by the fluid on
any segment of the duct walls is finite. This means that the pressure near the lip
is integrable and, consequently, that the velocity potential is finite around the lip.
Yet, this requirement is not sufficient to define a unique solution to the problem.
The additional information required to uniquely define the solution is the amount of
vorticity shed from the lip.

When written in terms of the velocity potential, the part of the solution which
describes vortex shedding is discontinuous across the vortex sheet (in fact, φ and
∂φ/∂z are discontinuous, but ∂φ/∂r is continuous). If no vorticity is shed from the
lip, the velocity potential and its derivatives are continuous. It can then be shown that
φ(1, z) =O(z1/2) as z → 0+ which implies that the pressure is singular at the lip. This
assumption obviously applies when the lip is a leading edge (that is, for M0, M1 < 0)
since in that case vorticity shedding is not possible.

On the other hand, we can require that all of the available vorticity is shed from
the lip. This is described by the full Kutta condition which states that the pressure
is finite at the lip. In that case, the velocity is finite and φ(1, z) = O(z3/2) as z → 0+

which implies that the pressure is also finite. This condition is generally used for the
case of a trailing edge (that is, for M0, M1 > 0). However, we must keep in mind that,
in practice, the situation lies somewhere between these two extremes since only a part
of the vorticity is shed from a trailing edge.

2.3. Radiation conditions

The definition of a unique solution also requires that an appropriate radiation
condition is prescribed at infinity to ensure that diffracted waves are radiated away
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from the open end of the duct (i.e. no energy propagates inwards across a far-field
boundary). To ensure that this is the case, we must consider a more general statement
of causality which applies for initial-condition problems, of which the Sommerfeld
condition is a consequence.

Jones and Morgan have discussed the proper way to obtain time-harmonic solutions
which satisfy the causality condition when instability waves are present (see Jones &
Morgan 1972; Jones 1973a, b, 1975a, b, 1977; Morgan 1974, 1975). The mathematical
analysis is carried out using a complex frequency with a positive imaginary part,
that is ω = ωr + iωi = |ω|eiε , 0 � ε � π/2. With ωi sufficiently large, or ε close to π/2,
all waves decay exponentially at infinity, including the instability wave, and it can
be shown that the solution satisfies the causality condition. The solution with a real
frequency is then obtained by taking the limit as ε → 0 and by analytic continuation.
More details of this procedure will be given in § 3.3.3, but at this stage, it is only
necessary to consider ε close to π/2.

3. Wiener–Hopf method
The Wiener–Hopf method is designed to solve problems with mixed and semi-

infinite boundary conditions. For the problem at hand, these are the hard-wall
condition on the outer duct for z < 0 and the continuity conditions (2.15)–(2.17) for
z > 0. We follow here the approach of Jones as presented in Noble’s book (Noble
1958). An introduction to the Wiener–Hopf method can also be found in Crighton
et al. (1992).

3.1. Fourier transforms

We define the half-range Fourier transforms in the axial direction of the velocity
potential ψ:

β−(r, u) =

∫ 0

−∞
ψ(r, z) exp(−iωuz) dz, β+(r, u) =

∫ +∞

0

ψ(r, z) exp(−iωuz) dz,

where ωu is the axial wavenumber. The conventional Fourier transform is denoted
β = β− + β+. The use of this transform to the convected wave equations (2.12)–(2.13)
yields two Bessel equations:

1

r

∂

∂r

(
r
∂β

∂r

)
+

(
ω2λ2

0 − m2

r2

)
β = 0, r > 1, (3.1)

1

r

∂

∂r

(
r
∂β

∂r

)
+

(
ω2λ2

1 − m2

r2

)
β = 0, h < r < 1, (3.2)

where we have introduced the radial wavenumbers λ0 and λ1 which satisfy the
dispersion relations in the ambient flow and the jet, respectively:

λ2
0 = (1 − uM0)

2 − u2, λ2
1 = C2

1 (1 − uM1)
2 − u2. (3.3)

The radial wavenumbers are written λ0 = λ−
0 λ

+
0 and λ1 = λ−

1 λ
+
1 with λ±

0 = [1 −
u(M0 ± 1)]1/2 and λ±

1 = [C1 − u(M1C1 ± 1)]1/2. The principal branches of the square

roots are used so that the branch cuts of λ±
0 go from u

±
0 to ±∞ and the branch cuts of

λ±
1 go from u

±
1 to ±∞ where we have defined u

±
0 = 1/(M0 ± 1) and u

±
1 =C1/(M1C1 ± 1).

The Fourier transform of the hard-wall boundary condition (2.14a) on the centre
body is simply ∂β/∂r(h, u) = 0. To satisfy this boundary condition, we choose to write
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the solution of the Bessel equations (3.1)–(3.2) as follows:

β(r, u) =

{
A(u)H(1)

m (λ0ωr), r > 1,

B(u)[Y′
m(λ1ωh)Jm(λ1ωr) − J′

m(λ1ωh)Ym(λ1ωr)], h < r < 1.
(3.4)

where Jm and Ym are the Bessel and Neumann functions of order m, and H(1)
m = Jm +

iYm is the Hankel function of the first type. The prime denotes the derivative with
respect to the argument.

It is important to describe the regularity of the transform β . To that end, we require
that the diffracted field behaves like axial plane waves when z → ± ∞. It is then
straightforward to show that, in the ambient flow r > 1 the transforms β− and β+ are
regular in the half-planes R−

0 and R+
0 , respectively, and in the jet h< r < 1, β− and β+

are regular in the half planes R−
1 and R+

1 . The half planes R
±
0,1 are defined as follows:

R
±
0 : ±Im(u − u

±
0 ) < ∓ tan(ε)Re(u − u

±
0 ),

R
±
1 : ±Im(u − u

±
1 ) < ∓ tan(ε)Re(u − u

±
1 ).

For all values of r , the transform β is regular in a strip S defined as the intersection
of the four half-planes R

±
0,1. It is important to note that the imaginary parts of λ0ω

and λ1ω are positive in S. And therefore, in (3.4), β decreases as r → +∞.
Furthermore, we introduce the following transforms

F+(u) =

∫ +∞

0

ξ (z) exp(−iωuz) dz, (3.5)

G(u) =

∫ +∞

−∞

[(
−iω + M0

∂

∂z

)
ψ(1+, z) − D1

(
−iω + M1

∂

∂z

)
ψ(1−, z)

]
exp(−iωuz) dz,

(3.6)

where F+ represents the Fourier transform of the vortex sheet displacement ξ , and
is regular in R+. G is the Fourier transform of the pressure jump across the outer
duct wall (for z < 0) and the vortex sheet (for z > 0). The Fourier transforms of
equations (2.15), (2.16) and (2.14) give

−i(1 − uM0)F+(u) = A(u)λ0H
(1)′
m (λ0ω), (3.7)

−i(1 − uM1)F+(u) = B(u)λ1[Y
′
m(λ1ωh)J′

m(λ1ω) − J′
m(λ1ωh)Y′

m(λ1ω)]. (3.8)

And, by making use of (3.4), we obtain:

G(u) = −iω
{
(1 − uM0)A(u)H(1)

m (λ0ω)

− D1(1 − uM1)B(u)[Y′
m(λ1ωh)Jm(λ1ω) − J′

m(λ1ωh)Ym(λ1ω)]
}
. (3.9)

An expression can also be obtained for the half-range transform G+ by using the
continuity of the pressure across the vortex sheet (2.17):

G+(u) = D1Ψmn(1)
1 − µ+

mnM1

µ+
mn − u

. (3.10)

Then, by combining equations (3.7), (3.8) and (3.9) to eliminate A and B , we derive
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the Wiener–Hopf equation:

G(u) = G−(u) + G+(u) = ω
K(u)F+(u)

λ0λ1

, (3.11)

where K is the Wiener–Hopf kernel:

K(u) = D1(1 − uM1)
2λ0

Y′
m(λ1ωh)Jm(λ1ω) − J′

m(λ1ωh)Ym(λ1ω)

Y′
m(λ1ωh)J′

m(λ1ω) − J′
m(λ1ωh)Y′

m(λ1ω)

− (1 − uM0)
2λ1

H(1)
m (λ0ω)

H(1)′
m (λ0ω)

. (3.12)

3.2. Properties of the kernel

The Wiener–Hopf kernel gathers most of the information concerning the problem at
hand and it is worth describing its properties and especially the locations of its poles
and zeros.

A first group of zeros and poles is located close to the line crossing the real axis
at uc = (u+

1 + u−
1 )/2 = M1C

2
1/(M

2
1C

2
1 − 1) at an angle π/2 − ε. The poles are found

when the denominator of the first term in K is zero, that is when Λ(λ1) = 0 which is
precisely the characteristic equation of the infinite annular duct. Therefore, the poles
of K correspond to the acoustic modes of the duct.

Secondly, a group of zeros is more related with the behaviour of the vortex sheet.
Using high-frequency approximations, analytical expressions can be derived for the
location of these zeros (for detailed derivations see Munt 1977). The expressions given
by Munt are complicated, and it turns out to be easier, and physically meaningful, to
consider the phase speed η = u−1. With no speed of sound or density mismatch, that
is with C1 = D1 = 1, we have to consider two zeros u0 and u1 defined by

η0,1 =
M0 + M1

2
± i

2
[1 − (

√
1 + (M1 − M0)2 − 2)2]1/2. (3.13)

For subsonic flows, the second term is always imaginary. Thus, the waves
corresponding to these zeros are moving at the average speed of the two streams (the
jet and ambient flow) while their exponential growth is controlled by the difference
of velocity between the two streams. For a uniform flow, M0 =M1, u0 = u1 = M−1

0 is a
double zero and satisfies the condition Im(λ1) > 0. However, if M0 �= M1, u1 does not
satisfy this condition and only u0 is a genuine zero of the kernel. In the latter case, u0

is located in the lower half of the complex plane and represents the instability wave
of the shear layer which is growing exponentially in the positive z-direction.

With differentiated density or speed of sound, that is for D1 �= 1 or C1 �= 1,
additional zeros may be present on the real axis but will not be described here (see
Munt 1977).

Another useful piece of information about the Wiener–Hopf kernel is its behaviour
for large argument, that is for |u| → ∞. In the strip S, λ1 has a positive imaginary
part so we can use the approximation K(u) � D1(1 − uM1)

2λ0 + (1 − uM0)
2λ1 and it

is clear that K(u) ∼ O(u3) as |u| → ∞ in the strip S. However, in the particular case
of no flow, M0 = M1 = 0, we have K(u) = O(u).

3.3. General solutions

The first step for solving the Wiener–Hopf equation (3.11) is to factor the kernel
K(u) = K+(u)/K−(u) where the split functions K± are regular and non-zero in R±. To
understand the nature of the factorization of the kernel, we can consider the example
of an infinite straight duct. The axial wavenumbers of the eigenmodes, both for
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left- and right-running modes, correspond to zeros or poles of the corresponding
Wiener–Hopf kernel (in this respect, K is similar to the dispersion relation
and the characteristic equation of the problem at hand). Seeking a factorization
K(u) = K+(u)/K−(u) where K± have no pole or zero in R± is equivalent to factoring
the dispersion relation as a product of two distinct dispersion relations so that the
left-running modes are solutions of one dispersion relation and the right-running
modes are solutions of the other. It is necessary to separate left-from right-running
waves because the boundary conditions are different in the negative and positive
z-directions.

As explained in the previous section, with a uniform flow, there is a double zero
u0 corresponding to the vorticity shedding whereas, with a non-uniform flow, u0 is a
simple zero describing the instability wave. So, it is convenient to factor explicitly the
zero at u0:

K(u) =
K̃+(u)

K̃−(u)
(u − u0)

b, (3.14)

where K̃± are regular and non-zero in R±. The exponent b is taken to be 2 for a
uniform flow and 1 otherwise. The radial wavenumbers λ0 and λ1 are jointly factored
using λ±

0 and λ±
1 . Thus, we obtain:

ω
F+(u)K̃+(u)(u − u0)

b

λ+
0 (u)λ+

1 (u)
= λ−

0 λ
−
1 K̃−(u)G−(u) + λ−

0 λ
−
1 K̃−(u)G+(u).

By definition, λ+
0,1 and λ−

0,1 are regular and non-zero in R+ and R−, respectively. Hence,
the left-hand side is regular in R+. Furthermore, since G− is regular in R−, the first
term on the right-hand side is also regular in R−. However, the second term is not
regular in R− since G+ as a simple pole at u =µ+

mn and we have to write:

ω
F+(u)K̃+(u)(u − u0)

b

λ+
0 (u)λ+

1 (u)
+ λ−

0 (µ+
mn)λ

−
1 (µ+

mn)K̃−(µ+
mn)G+(u)

= G+(u)[λ−
0 (u)λ−

1 (u)K̃−(u) − λ−
0 (µ+

mn)λ
−
1 (µ+

mn)K̃−(µ+
mn)]+λ−

0 (u)λ−
1 (u)K̃−(u)G−(u), (3.15)

where the left- and right-hand sides are now regular functions in R+ and R−,
respectively. This identity is satisfied in the strip S. Therefore, by analytic continuation,
equation (3.15) defines a single function E(u) regular on the whole complex u-plane.

Then, we must study the behaviour of E as |u| → ∞. First, note that G+(u) = O(u−1)

and λ±
0,1(u) = O(u1/2) as |u| → ∞ in S. At this stage, three different cases should be

considered.
For an inlet problem, we restrict ourselves to a uniform flow since a non-uniform

mean flow is rather unphysical in this case. We have M1 = M0 < 0 and u0 is a
double zero. Thus, we set b = 2 in (3.14) and, using K(u) = O(u3) as |u| → ∞ in
S, it can be shown that the split functions K̃±(u) behave like u±1/2 when |u| → ∞
(Noble 1958, p. 42). The edge of the duct is a leading edge and the corresponding
condition is ψ(1, z) = O(z1/2) as z → 0+. With equations (2.3), (3.7) and (3.11),
this condition translates into F+(u) = O(u−3/2) and G−(u) = O(u−1/2) as |u| → ∞
in S. It is then straightforward to show that E(u) = O(1) as |u| → ∞ and, by
using the extended form of Liouville’s theorem (Noble 1958, p. 6), E is a constant
and E =E(u0) = λ−

0 (µ+
mn)λ

−
1 (µ+

mn)K̃−(µ+
mn)G+(u0). Therefore, we obtain the following

expression for F+:

F+(u) =
λ−

0 (µ+
mn)λ

−
1 (µ+

mn)K̃−(µ+
mn)λ

+
0 (u)λ+

1 (u)

ω(u − u0)bK̃+(u)
[G+(u0) − G+(u)]. (3.16)
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Acoustic
zeros/poles

Acoustic

(a) (b)

zeros/poles

Hydrodynamic
zero

Γ

Γ

S

ε

ε

Figure 2. Path of integration Γ and locations of ◦, the zeros and •, poles the of the
Wiener–Hopf kernel. The acoustic poles and zeros are close to the dashed line defined by
arg(u − uc) = π/2 − ε. Parameters are ω = 4, M1 = 0.5, M0 = 0.25, D1 =C1 = 1, h = 0. (a) With
ε = π/4, the shaded area is the analytic strip S. (b) With ε → 0. Note the indentation of Γ
around the acoustic zeros and poles and also around the hydrodynamic zero.

For an outlet problem, we first consider a uniform flow. The edge of the duct is
now a trailing edge and the Kutta condition applies: ψ(1, z) = O(z3/2) as z → 0+

which translates into F+(u) = O(u−5/2) and G−(u) = O(u−1) as |u| → ∞ in S. This
yields E(u) = O(u−1) and, with Liouville’s theorem, we have E(u) ≡ 0. Secondly, with
a non-uniform flow, u0 is a simple zero and b = 1. In that case, it can be shown that
K̃± behave like u±1 and E(u) = O(u−1/2) as |u| → ∞ in S, which implies that E is also
identically zero. So for an outlet problem, we obtain

F+(u) = −λ−
0 (µ+

mn)λ
−
1 (µ+

mn)K̃−(µ+
mn)λ

+
0 (u)λ+

1 (u)

ω(u − u0)bK̃+(u)
G+(u). (3.17)

A general expression can be obtained by combining expressions for the inlet and
outlet problems. Following Rienstra (1984), we introduce a complex parameter γ to
describe the amount of shed vorticity:

F+(u) = Ψmn(1)D1(1 − µ+
mnM1)

λ−
0 (µ+

mn)λ
−
1 (µ+

mn)λ
+
0 (u)λ+

1 (u)

ω(u − u0)b(µ+
mn − u0)

K̃−(µ+
mn)

K̃+(u)

(
u − u0

u − µ+
mn

− γ

)
.

(3.18)

The amplitude of γ should remain between 0 and 1. With γ = 0, there is no vortex
shedding and we obtain (3.16). However, in the case γ =1, the solution (3.17) with the
full Kutta condition is obtained and all the available vorticity is shed from the duct
wall. For an inlet problem, γ is necessarily zero since no vortex shedding is possible.
However, for an outlet problem it may be interesting to consider 0 < |γ | < 1 which
represents intermediate situations where a limited part of vorticity is shed.

The transform β is readily obtained by making use of equations (3.4), (3.7) and
(3.8). The diffracted field is then a solution of an inverse Fourier transform where the
path of integration Γ is a line from −∞e−iε to ∞e−iε in the strip S (see figure 2):

ψ(r, z) =
ω

2π

∫
Γ

β(r, u) exp(iωuz) du. (3.19)
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The last step in the derivation is to take the limit ε → 0 and to deform the path
of integration by analytic continuation. For ε close to π/2, the path of integration is
well away from the poles and zeros of the kernel. However, as ε decreases, the zero
of the instability wave should cross Γ ; but this would violate the analytic continuity
so the path of integration is deformed around the zero u0. Thus the instability
wave is included in the solution and it can be shown that the solution is consistent
with the causality condition. As shown in figure 2, the path of integration Γ for
real-valued frequency ω goes from −∞ + 0i to +∞ − 0i, crosses the real axis at
uc = M1C

2
1/(M

2
1C

2
1 − 1) and is indented to include the instability wave. Therefore, the

general solution for the scattered acoustic field is

ψ(r, z) =
ω

2iπ

∫
Γ

(1 − uM0)F+(u)

λ0

T0(r, u) exp(iωuz) du, r > 1, (3.20)

ψ(r, z) =
ω

2iπ

∫
Γ

(1 − uM1)F+(u)

λ1

T1(r, u) exp(iωuz) du, h < r < 1. (3.21)

For the pressure field:

p(r, z) =
ω2

2π

∫
Γ

(1 − uM0)
2F+(u)

λ0

T0(r, u) exp(iωuz) du, r > 1, (3.22)

p(r, z) =
ω2D1

2π

∫
Γ

(1 − uM1)
2F+(u)

λ1

T1(r, u) exp(iωuz) du, h < r < 1, (3.23)

where we have used

T0(r, u) =
H(1)

m (λ0ωr)

H(1)′
m (λ0ω)

, T1(r, u) =
Y′

m(λ1ωh)Jm(λ1ωr) − J′
m(λ1ωh)Ym(λ1ωr)

Y′
m(λ1ωh)J′

m(λ1ω) − J′
m(λ1ωh)Y′

m(λ1ω)
.

For non-uniform flows, the instability wave is described by the simple pole u0 of
F+. The following expression of the instability wave is obtained by taking the residue
of this pole:

ψ(r, z) = ω exp(iωu0z) Res
u→u0

[F+(u)]H(z)

{
(1 − uM0)T0(r, u0)/λ0,

(1 − uM1)T1(r, u0)/λ1,
(3.24)

p(r, z) = iω2 exp(iωu0z) Res
u→u0

[F+(u)]H(z)

{
(1 − uM0)

2T0(r, u0)/λ0,

D1(1 − uM1)
2T1(r, u0)/λ1,

(3.25)

where H is the Heaviside function. The residue of F+ at u0 is

Res
u→u0

[F+(u)] = −γΨmn(1)D1(1 − µ+
mnM1)

λ−
0 (µ+

mn)λ
−
1 (µ+

mn)K̃−(µ+
mn)λ

+
0 (u0)λ

+
1 (u0)

ω(µ+
mn − u0)K̃+(u0)

.

This shows how the parameter γ controls the amplitude of the vorticity shedding.
The numerical evaluation of the solution presented in this section is not

straightforward, the critical issues being the evaluation of the split functions K̃± and
the inverse Fourier transforms (3.20)–(3.23). A detailed description of the numerical
implementation of the model is given in Appendix A.

3.4. Far-field approximation

The directivity pattern far away from the duct termination is a convenient way
to describe the sound radiated out of the duct. This approximation also reduces
significantly the cost of numerical evaluation compared to the general solutions
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(3.20)–(3.23) involving inverse Fourier transforms. The solution in the far field is
obtained by taking the limit ωR → +∞ and by making use of the stationary phase
approximation, details can be found in Rienstra (1984). Both solutions (3.20) and
(3.22) are of the form

q(r, z) =
ω

2π

∫
Γ

Q(u)H(1)
m (λ0ωr) exp(iωuz) du, (3.26)

where q is either the pressure or the velocity potential and Q is easily identified in
(3.20) or (3.22). The solution in the far field is found to be

q(R, Θ) =
Q(us)

πR
(
1 − M2

0 sin2 Θ
)1/2

exp

[
iωRS(Θ) − i(m + 1)

π

2

]
, (3.27)

where we have introduced the spherical coordinates R, Θ defined by z = R cosΘ and
r = R sinΘ . The function S accounts for the wavefront stretching produced by the
ambient flow: S(Θ) = [(1 − M2

0 sin2 Θ)1/2 − M0 cosΘ]/(1 − M2
0 ). The stationary point

us of the integral (3.26) is given by us = (cos Θ̂ − M0)/(1 − M2
0 ) with Θ̂ = tan−1[(1 −

M2
0 )

1/2 tan Θ]. The directivity functions Dp and Dψ for the pressure and velocity
potential are defined as Dp(Θ) = |p|R and Dψ (Θ) = |ψ |R, respectively.

3.5. Reflection coefficients

The derivation of the reflection coefficients used in the present work follows that of
Rienstra (1984) and only the main results are given here. The modal decomposition
of the pressure field inside the duct can be written as follows:

p(r, z, θ, t) =

+∞∑
m=−∞

+∞∑
n=0

[A−
mn exp(iωµ−

mnz) + A+
mn exp(iωµ+

mnz)]Ψmn(r) exp(imθ − iωt),

(3.28)

where A±
mn are the amplitudes of the pressure modes. The reflection coefficients are

then defined as Rmnl = A−
ml/A

+
mn. The incident wave was defined as one single mode

(m, n) with the corresponding velocity potential given by (2.11). Upon using (2.4), we
find A+

mn = iωD1(1 − µ+
mnM1).

The pressure inside the duct is given by (3.23) with z < 0. Evaluating the residues
of the poles of the integrand lying below the integration path Γ yields an expression
similar to the modal decomposition (3.28) and we can identify the pressure mode
amplitudes:

A−
00 =

iωD1(1 − µ−
00M1)

2F+(µ−
00)

C1(1 − h2)
, A−

ml =
iωD1(1 − µ−

mlM1)
2F+(µ−

ml)

Λ′(αml)
[
M1C

2
1 + µ−

ml

(
1 − M2

1C
2
1

)] . (3.29)

3.6. Expressions for a hollow duct

The expressions for a duct with circular cross-section, i.e. without centre body, are
obtained by taking the limit h → 0. The mode shapes of the incident wave (2.11)
and the modal decomposition (2.9) are now written Ψmn(r) = Jm(αmnr) where αmn

is a solution of the characteristic equation Λ(z) = J′
m(z) = 0. The solution (3.4) for

β is β(r, u) = B(u)Jm(λ1ωr) for r < 1, therefore equations (3.8) and (3.9) become,
respectively:

−i(1 − uM1)F+(u) = B(u)λ1J
′
m(λ1ω),

G(u) = −iω[(1 − uM0)A(u)H(1)
m (λ0ω) − D1(1 − uM1)B(u)Jm(λ1ω)].
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The definition (3.12) of the Wiener–Hopf kernel is now:

K(u) = D1(1 − uM1)
2λ0

Jm(λ1ω)

J′
m(λ1ω)

− (1 − uM0)
2λ1

H(1)
m (λ0ω)

H(1)′
m (λ0ω)

. (3.30)

The general solutions (3.20)–(3.25) remain unchanged, but with T1(r, u) =
Jm(λ1ωr)/J′

m(λ1ω). For the reflected pressure mode amplitudes (3.29), we now have
Λ′(αml) = J′′

m(αml) and h = 0.

4. Results
Much of the usefulness of the current model rests upon whether it can be applied

to turbofan exhausts at realistic frequencies and flow conditions. With this in mind,
results are presented for a base set of non-dimensional parameters typical of a modern
turbofan engine at blade passing frequency while operating in the ‘cut-back’ condition.
The hub–tip ratio, jet Mach number and free-stream Mach number are defined as
h =R1/R0 = 0.75, M1 = vj/c0 = 0.45 and M0 = v0/c0 = 0.25, respectively. The density
and speed of sound are uniform, C1 =D1 = 1. The non-dimensional frequency is taken
to be ω = 30. In dimensional terms, this corresponds to ‘ka = 30’ where k is the free-
field wavenumber (= radian frequency/sound speed) and a is the outer radius of the
duct. Initially, the full Kutta condition (γ = 1) is used to describe the vortex shedding
at the trailing edge, i.e. all the available vorticity is shed from the trailing edge.

4.1. Validation

Several checks can be performed to validate the present model.
In the absence of a centre body (h = 0), Munt (1977) has calculated far-field

directivity patterns, mainly for the plane wave mode (0,0) at frequencies up to
ω = 11.7. These published data have been compared to results obtained by the
current procedure and found to be in agreement.

Energy conservation provides another check on the validity of the model; specifically
whether the acoustic power inside the duct is equal to the radiated acoustic power
in the far field. Some care must be taken in making this comparison however.
It is not valid when vortex shedding occurs (γ �= 0) since the vortex sheet then
generates hydrodynamic waves which can either add energy to, or subtract it from
the acoustic field – this issue has been discussed by Rienstra (1981, 1984). The acoustic
power associated with the modal decomposition (2.9) inside the duct can be written
(Goldstein 1976):

P = πω2D1

∑
m

∑
n

Cmn

√
C2

1 −
(
1 − M2

1C
2
1

)
α2

mn

/
ω2

∫ 1

h

|Ψmn(r)|2r dr,

where Cmn = |B+
mn|2 − |B−

mn|2 for cut-on modes and Cmn = B+
mnB

−
mn − B−

mnB
+
mn for cut-off

modes. Furthermore, the acoustic radial intensity IR in the far field can be obtained
from the directivity of the velocity potential:

IR(R, Θ) =
ω2|Dψ (Θ)|2

2R2

√
1 − M2

0 sin2(Θ)
.

The above expressions have been evaluated for the base set of non-dimensional
parameters noted at the beginning of this section, and the radiated acoustic power
and the in-duct power have been found to be the same for cut-on modes when vortex
shedding is absent (γ = 0).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

80
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008037


Sound radiation from annular jet pipes 329

r

z

Centre body

Figure 3. Finite-element mesh used for the comparison with a finite-length after-body.

The ability of the current solution to model scattering by the centre body cannot be
validated by comparison to Munt’s results. This aspect of the solution can, however,
be checked in the absence of flow by comparing the analytic solution to results
obtained from a high-resolution numerical model. A solution of this type has been
computed by using the commercial finite/infinite element code Actran (Free Field
Technologies 2004). The finite element (FE) mesh which was used is shown in figure 3.
Note that the after body is truncated to fit within the FE domain, being terminated
by a conical end cap. Quadratic isoparametric finite elements were used together
with high-order infinite elements to model radiation to the far field. Once again the
comparison is made for the base set of non-dimensional parameters noted at the start
of this section, but with the Mach number set to zero.

Far-field pressure directivity patterns given by the analytical and the numerical
models are compared in figure 4. Results are presented for the (4,0), (17,0) and (24,0)
modes. These are representative of a well cut-on mode, an intermediate mode and
an almost cut-off mode, respectively (recall the mode orders m and n start at 0).
The two predictions are generally in excellent agreement although in the case of the
well cut-on (4,0) mode the directivity pattern exhibits oscillations associated with
diffraction of wave field by the conical end-cap. This effect is not significant for the
other modes since the acoustic energy is scattered away from the axis close to the
duct exit. This leads to an observation that, at this frequency, the infinite centre body
of the analytic solution appears to be a reasonable model for a finite after-body of
the type that might be encountered in real turbofan applications.

4.2. Parametric study

Taking the parameters noted at the start of this section as a ‘baseline’ configuration, a
parametric study is presented to investigate the extent to which the far-field directivity
is sensitive to variations of the external flow velocity, the hub–tip ratio and the degree
of vortex shedding at the duct exit.

4.2.1. The noise source in the duct

Noise propagating in the bypass duct of a turbofan engine contains both tone
and broadband components. The tone component is dominated at higher tip speeds
by rotor-locked harmonics of the blade passage frequency and at lower speeds by a
less well defined sequence of rotor–stator interference tones. The effect of parametric
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Figure 4. Comparison of the pressure directivity patterns in the far field |Dp(Θ)|2 in dB:
Finite-element solutions (solid line); analytical solutions (dashed line). Parameters are h = 0.75,
M0 = M1 = 0, C1 = D1 = 1, γ = 0, ω = 30. (a) Mode (4,0); (b) mode (17,0); (c) mode (24,0).

changes on the radiation of tone noise to the far field will be characterized here by an
analysis of far-field directivity patterns for specific incident modes (m,n) in the duct.
In all instances, the far-field directivity is normalized for unit incident modal power.

The broadband component of the noise in the duct is generated by turbulence
which forms in the boundary layer of each blade and interacts with the trailing
edge and with the stators. This will be represented in the current study by a multi-
mode field in which all cut-on modes are present with equal modal power and the
total incident power is set equal to unity. The pressure directivity pattern in the far
field is obtained by assuming that the modes are uncorrelated and by summing the
corresponding pressure directivity patterns. These must be calculated independently.
For the baseline configuration, there are 149 cut-on modes. By using the symmetry
of positive and negative circumferential mode orders, this reduces to 76 independent
directivity patterns for each set of parameters.

4.2.2. The effect of ambient Mach number

First, consider the effect of varying the external flow velocity. This is done by setting
M0 = 0.0, 0.15, 0.25, 0.35 and 0.45 while holding other baseline parameters constant.
The extreme cases M0 = 0 and M0 = 0.45 then correspond to a static engine test in
which the ambient fluid is at rest, and to a flight condition in which there is no flow
discontinuity at the edge of the jet. Figure 5 shows the directivity patterns of the
pressure for three single tones and for the ‘broadband’ sum of all uncorrelated cut-on
modes. The modes (4,0), (17,1) and (24,1) are chosen to characterize tone sources.
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Figure 5. Pressure directivity patterns in the far field |Dp(Θ)|2 in dB with M0 = 0 (thick solid
line), 0.15 (thick dashed line), 0.25 (thin solid line), 0.35 (thin dashed line) and 0.45 (thin
dot-dashed line). (a) (4,0) mode. (b) (17,1) mode. (c) (24,1) mode. (d) Broadband multi-mode
source. Other parameters are h = 0.75, M1 = 0.45, C1 = D1 = 1, γ = 1, ω =30.

As the Mach number of the ambient stream decreases from M0 = 0.45 to M0 = 0, the
refraction of acoustic waves produced by the velocity mismatch at the vortex sheet
increases and shifts the lobe of the directivity patterns away from the jet axis. A cone
of silence appears between the first lobe and the jet axis where the pressure level
decreases sharply. For the static test case (M0 = 0) this extends for approximately 50◦

from the jet axis.
The directivity patterns for the multi-mode broadband source do not exhibit lobes

since the summation over all the cut-on modes tends to smooth out the minimums
and maximums observed with the directivity patterns of single modes. However, three
different regions can be considered. The aft direction corresponds to the cone of
silence where the pressure level decreases rapidly as the external Mach number M0

is reduced. The peak of acoustic radiation is found at the limit between the cone of
silence and an intermediate region where the pressure increases with decreasing M0, a
refractive effect which deviates more energy towards the intermediate region. Finally,
in the forward arc (from 150◦ to 180◦), a third region exists where the pressure level
decreases with M0, of little practical significance given these levels are 20–30 dB down
on the peak values.

When comparing flight test (M0 = 0.25) and static test (M0 = 0) data, we observe
that the peak of acoustic radiation is increased by approximately 2 dB and moves
forward by approximately 20◦.
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Figure 6. Pressure directivity patterns in the far field |Dp(Θ)|2 in dB with h = 0 (thick solid
line), 0.25 (thick dashed line), 0.5 (thin solid line) and 0.75 (thin dashed line). (a) (4,0) mode.
(b) (17,1) mode. (c) (24,1) mode. (d) Broadband multi-mode source. Other parameters are
M0 = 0.25, M1 = 0.45, C1 = D1 = 1, γ = 1, ω = 30.

4.2.3. The effect of the centre body

We now consider the effect of the centre body by varying the hub–tip ratio from
h =0.75 to h = 0 in steps of 0.25 (figure 6). The upper value corresponds to the base
configuration while the lower value h = 0 corresponds to a hollow circular duct with
no centre body at all. Note that the modes are normalized so that the same amount of
acoustic energy propagates inside the duct irrespective of the size of the centre body.
For low-order modes such as (4,0), reduction of the hub–tip ratio simply causes more
radial modes to propagate and results in a directivity pattern with more lobes. For
higher-order modes, (17.1) and (24,1), this effect is still present, but less pronounced.
In the case of the (24,1) mode, the large reduction in radiated sound and dramatic
change in directivity for h = 0.25 arises because the third radial mode is about to
cut-on and significant reflections occur at the duct exit.

In the case of the equal power broadband source, it is not possible to find a general
trend as the hub–tip ratio varies. For instance, the overall pressure level increases by
3 dB as h changes from 0.75 to 0.5, but then decreases for h = 0.25. Once again this
reflects the fact that, as h varies, the number of cut-on modes as well as their cut-off
ratio changes and the proportion of energy reflected back into the duct is dependent
on the proximity of any modes to their cut-on frequency. The larger pressure levels
observed for the case h = 0.5, for example, can be explained by the fact that, in that
case, fewer modes are close to their cut-off frequencies and so more energy is radiated
in the far field.
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Figure 7. Pressure directivity patterns in the far field |Dp(Θ)|2 in dB with γ = 1 (thick solid

line), 0.5 (thick dashed line), 0 (thin solid line), i (thin dashed line) and eiπ/4 (thin dot-dashed
line). (a) (4,0) mode. (b) (17,1) mode. (c) (24,1) mode. (d) Broadband multi-mode source. Other
parameters are h = 0.75, M0 = 0.25, M1 = 0.45, C1 = D1 = 1, ω = 30.

4.2.4. The effect of shed vorticity – the Kutta condition

Finally, we consider the effect on the radiated sound field of vorticity shed from the
lip of the duct. The amount of shed vorticity is defined by the complex parameter γ .
Results are presented for γ = 1, 0.5 and 0 and for γ = i and eiπ/4. Other parameters
are again held constant. The resulting far-field directivities for tone and broadband
incident fields are shown in figure 7. The extent of vortex shedding is found to have
virtually no effect on the main lobe of the directivity patterns, but is noticeable in the
rear arc where the sound pressure level increases as the amplitude of γ decreases and
as its phase increases. In the case of a broadband multi-mode source, the effect of
varying γ is minimal, less than 1 dB over the whole forward arc. In terms of predicting
the direction and magnitude of the principal radiation lobe, these results suggest that
the effect on the acoustic field of vorticity shed from the lip of the duct is largely
negligible. This is not necessarily true at lower frequencies and indeed Rienstra (1983)
has indicated that at small Strouhal numbers, vortex shedding has a more significant
impact on acoustic radiation.

4.3. Comparisons with experimental data

It is also important to check how the predictions of the analytical model compare with
experimental measurements for a similar configuration. However, in the literature, the
problem of aft fan noise radiation in the presence of a jet and an after-body has
rarely been studied experimentally. A notable exception is the active noise control
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Figure 8. Sound pressure level at 40 ft from the exhaust. Solid line: analytical solution;
Dashed line: experimental data from the ANCF test rig; Dot-dashed line: analytical solution
with a uniform flow.

fan rig (ANCF) developed at NASA Glenn Research Center. The ANCF is a 48
in diameter straight duct with a 16 blade rotor operating in the range of 1500 to
2000 r.p.m. As the diameter of the centre body varies along the duct the hub–tip ratio
varies from 0.3 at the stator plane to 0.5 at the exhaust plane. The ambient air is at
rest and the Mach number inside the duct varies from 0.13 at the inlet to 0.175 at the
exhaust. The spinner extends far beyond the duct exit plane and can be modelled as
an infinite centre body. In-duct measurements were made using a rotating rake system
to determine the mode amplitudes at the inlet and exhaust sections. This set-up is
located in an anechoic chamber where the far-field directivity is measured. Detailed
descriptions of the ANCF test rig can be found in Sutliff et al. (1996a ,b).

Comparisons are made at 2000 r.p.m. with 14 blade vanes. For this configuration,
the interference tone (2,0) is dominant both at the inlet and exhaust planes so only this
mode is included in the analytical solution. Figure 8 compares the experimental and
theoretical sound pressure levels in the far field at 40 ft from the duct exit plane. Good
agreement is observed between predicted and measured solutions in the ‘rear’ arc of the
rig (i.e. θ � π/2, where θ is measured from the exhaust axis) where radiation from the
bypass duct is the dominant contributor. This holds both for the directivity and
the absolute level. In the ‘forward’ arc (θ > π/2 ), noise radiated from the rig intake
dominates the overall sound field, and the comparison with predicted aft radiated
noise is no longer appropriate. The correspondence in the rear arc indicates, however,
that the analytical model captures well the physics of the sound radiation through
the exhaust stream.

Also given in figure 8 is the sound pressure level computed in the far field with a
uniform mean flow (the ambient flow is the same as the jet). The low Mach number
jet is found to have a significant effect on the directivity since the change in the mean
flow shifts the directivity peak by approximately 15◦. This illustrates how crucial it
is to account for the refraction effect of the shear layer in order to obtain accurate
predictions.
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4.4. Near-field solutions

The numerical procedures for evaluating the solution which are detailed in
Appendix A are sufficiently efficient to be used to determine field values at an
adequate number of near-field points to permit the construction of near-field contour
maps of the acoustic pressure. By using the techniques described in Appendix A, this
can be done at modest computational cost, that is to say, minutes rather than hours
of process time on a single 32 bit PC processor. The results of such a computation are
shown in figures 9 and 10. In figure 9, the real part of the near field pressure is shown
for the acoustic portion of the solution calculated for the three representative tones
which have been used in the parametric study, i.e. modes (4,0), (17,1) and (24,1). The
pressure fields corresponding to the instability solution for the same incident modes
are shown in figure 10. The full solution (not shown) is obtained by superimposing
the two contributions. Note that the dynamic continuity condition – equation (2.8) –
holds at the vortex sheet, and the pressure fields are therefore continuous even when
vorticity is shed from the trailing edge. The velocity potential, which has not been
plotted here, is, however, discontinuous across the vortex sheet when γ �= 0.

Turning to the acoustic fields themselves, it can be seen that the near-field solutions
strongly differ from the far-field directivity patterns given in figure 5, the diffraction
effect being less significant in the near field. Also, the reflection of waves inside the
duct from its open end is clearly visible, particularly for modes (17,1) and (24,1) which
are less well cut-on.

The instability waves given in figure 10 emanate from the trailing edge and grow
exponentially in the streamwise direction. However, their amplitude decreases expo-
nentially as we move away from the vortex sheet. The combination of these two effects
means that the instability solution is confined in a type of double conical zone around
the cylindrical vortex sheet. Beyond this region, the amplitude of the instability solu-
tion is negligible. The angular span of this zone in a generating plane through the axis
of the jet, is defined by an angle Θ�, where Θ� is given by tan Θ� = −Im(u0)/Im(λ0).
This result is obtained by using the asymptotic form of the Hankel function in the
expression (3.25) for the instability wave. This yields a factor exp[iω(u0z + λ0r)] in
(3.25) and the angle Θ� represents the direction where u0z + λ0r is real.

However, it should be emphasized that the exponential growth of the instability
wave far away from the trailing edge is not realistic, being an artefact of the linear
theory used in the model. In practice, the growth of instability waves in the vortex
sheet is rapidly saturated by nonlinear effects which subsequently produce vortices.
This results in the growth of the mixing layer downstream of the trailing edge which
is not described in the present model.

5. Conclusion
The model presented in this paper is capable of providing far-field directivity

patterns, reflection coefficients and near-field solutions for the radiation of acoustic
waves from an annular jet pipe. The model incorporates the interactions of the
acoustic field with the vortex sheet as well as the presence of an infinite centre body.
It is exact within the limits of linear theory. It serves as an idealized model for the
sound radiated from the bypass duct of a turbofan engine and has been used in
this mode to predict the far-field directivity patterns for single tones and multi-mode
sources for frequency, geometry and flow parameters characteristic of a modern HBR
engine at maximum power. These results demonstrate the effect of the external flow,
hub–tip ratio and vortex shedding on sound radiation. The latter effect, in particular,
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Figure 9. Real part of the acoustic pressure field in the near field. (a) Mode (4,0); (b) mode
(17,1); (c) mode (24,1). Parameters are h = 0.75, M0 = 0.25, M1 = 0.45, C1 = D1 = 1, γ = 1,
ω =30.

is found to have little impact on the peak of acoustic radiation, suggesting that
vorticity shedding may be ignored if we are only concerned with the direction and
magnitude of the maximum radiation lobe.
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Figure 10. Real part of the pressure field for the instability wave in the near field. (a)
Mode (4,0); (b) mode (17,1); (c) mode (24,1). Parameters are h = 0.75, M0 = 0.25, M1 = 0.45,
C1 =D1 = 1, γ = 1, ω = 30.

An original feature of the present model is that it is able to evaluate the exact
solutions in the near field. Therefore, it is well suited as a general benchmark problem
for computational aero-acoustics (CAA). This aspect of the solution has not been

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

80
37

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005008037


338 G. Gabard and R. J. Astley

emphasized in this paper. It is worth noting, however, that it embodies many of the
challenging features that must be faced by CAA codes, and deals with them without
approximation. These include scattering by rigid surfaces, radiation to the far field,
refraction through a mixing layer and the presence of instability waves (Gabard,
Astley & Tahar 2005).

An obvious extension to the current model which has not been considered at this
stage, but which could be investigated in the future, is its reformulation to include
inner and outer jets with a view to modelling the acoustic radiation through co-
axial jets. However, according to the work by Taylor et al. (1993) on buried nozzles,
deriving a solution for coaxial jets is difficult since it involves the factorization of
matrix Wiener–Hopf kernels.

The present work was conducted at the Institute of Sound and Vibration
Research (Southampton, UK) in the framework of the European Doctorate in
Sound and Vibration Studies under the Marie Curie Fellowship Scheme. The authors
acknowledge E. Envia of NASA Glenn Research Center for providing experimental
data from the ANCF test rig. The authors have also benefited from useful discussions
with S. W. Rienstra, P. Joseph and B. J. Tester. The Actran simulations presented in
this paper were carried out by L. de Mercato.

Appendix A. Numerical methods
A.1. Evaluation of the split functions

The major difficulty in solving the Wiener–Hopf equation (3.11) is to find split
functions K̃± such that K̃+(u)/K̃−(u) = K(u)/(u − u0)

b and with K̃± regular and
non-zero in R±. We only need to consider the evaluation of K̃+(u), since we have
K̃−(u) = K̃+(u)(u − u0)

b/K(u).
For simple problems, it is possible to find analytical expressions for K̃± and

Noble (1958) contains many examples of problems where an explicit factorization of
the kernel is amenable. This is not the case for the problem at hand, and the split
function is evaluated using the following general factorization formula:

log K̃+(u) =
−1

2iπ

∫
C

log[K(ζ )/(ζ − u0)
b]

ζ − u
dζ, (A 1)

where the path of integration C goes from −∞e−iε to +∞e−iε in the strip S, crosses
the real axis at uc and lies above u. As ε → 0, the width of the strip S is going to
zero and S is located above the negative real axis and below the positive real axis.
Unlike the path of integration Γ for the inverse Fourier transform (3.19), the path C

does not need to be indented around the zero u0 of K since K̃± are split functions of
K(u)/(u − u0)

b which does not have a zero at u0.
First, we should note that it is not clear whether the integral in (A 1) should con-

verge. To obtain convergence, the boundary of the integral should be sent to infinity
simultaneously and, for numerical purposes, it is convenient to fold the integration on
a semi-infinite contour going from uc to +∞ − 0i. By using ζ = uc − v for Re(ζ ) < uc

and ζ = uc + v for Re(ζ ) > uc, we can write

log K̃+(u) =
−1

2iπ

∫ +∞−0i

0

{
log[K(uc − v)/(uc − v − u0)

b]

uc − v − u

+
log[K(uc + v)/(uc + v − u0)

b]

uc + v − u

}
dv. (A 2)
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uc

∆u

ε

Figure 11. Contours of integration for the numerical evaluation of the split function K+: the
original path C+ from u = − ∞ + 0i to +∞ − 0i (dashed line), the folded path from u = uc to
+∞ − 0i (solid line) and the deformed path from u = uc to +∞ − 0i (dot-dashed line).

Furthermore, several zeros and poles of the kernel lie on the real axis between the
branch cuts. So, when the contour of integration is in this region of the complex plane,
the integrand exhibits steep variations which make the numerical evaluation of the
integral expensive. To avoid this problem and accelerate the numerical integrations,
Rienstra (1984) proposed to deform the contour so that it lies as far as possible from
these poles and zeros on the real axis. The deformed contour is shown in figure 11 and
is made of a parabola from v = 0 to �u − iε and then a straight line from v = �u − iε
to +∞ − iε. The parabola is chosen to be

v(κ) = κ + i

(
�u − ε

�u2
κ2 − κ

)
.

The use of the deformed contour leads to a significant reduction of the time for
the numerical evaluation (a factor of 3–4 has been observed). For the numerical
evaluation, the upper boundary of the integral is taken to be a large value, A say, so
that the remaining part of the integral (from A to +∞) is negligible. Finally, for K̃+,
we have to check that u is below the contour of integration. If this is not the case,
we have to add the contribution of the pole corresponding to ζ = u in (A 1).

Also, the location of the zero u0 is required to evaluate equation (A 1). It is obtained
with standard algorithms for solving nonlinear equations with an initial guess given
by the high-frequency approximation (3.13).

A.2. Evaluation of the kernel

As explained in the previous section, we must evaluate the kernel (3.12) or (3.30)
for a large range of parameter u in the complex plane and some difficulties may be
encountered for the following terms

Y1 =
H(1)

m (λ0ω)

H(1)′
m (λ0ω)

, Y2 =
Jm(λ1ω)

J′
m(λ1ω)

, Y3 =
Y′

m(λ1ωh)Jm(λ1ω) − J′
m(λ1ωh)Ym(λ1ω)

Y′
m(λ1ωh)J′

m(λ1ω) − J′
m(λ1ωh)Y′

m(λ1ω)
. (A 3)

The derivatives of the Bessel, Neumann and Hankel functions are evaluated using the
standard expression X′

m(z) = [Xm−1(z) − Xm+1(z)]/2 where Xm is either Jm, Ym or H(1)
m .

The first problem concerns only Y3 for which the cross-product of derivatives
accumulates round-off error. If we use the relation Ym = iJm − iH(1)

m , we can rearrange
the term Y3 as follows

Y3 =
H(1)′

m (λ1ωh)Jm(λ1ω) − J′
m(λ1ωh)H(1)

m (λ1ω)

H(1)′
m (λ1ωh)J′

m(λ1ω) − J′
m(λ1ωh)H(1)′

m (λ1ω)
.
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It turns out that this expressions is less sensitive to round-off error and it can be
traced back to the fact that the derivative of the Hankel function is never zero (it is
always complex).

Another major issue is that for arguments z with large imaginary part, the Bessel
functions behave like exp(|Im(z)|) and the Hankel functions behave like exp(iz). Thus,
the magnitude of these functions is either very large or very small and these values
may exceed the numerical accuracy. It is then necessary to use scaled functions: Jm is
scaled by exp(−|Im(z)|) and H(1)

m by exp(−iz). However, for very large arguments, we
may still encounter problems due to round-off errors, especially for the denominator
of Y1, Y2 and Y3. It is then necessary to resort to asymptotic forms for large magnitude
of λ0ω and λ1ω:

Y1 � i − 4im2 − 8λ0ω

3 + 4m2 − 8iλ0ω
, Y2 � i, Y3 � i.

A.3. Inverse Fourier transform

Evaluating the inverse Fourier transforms (3.20)–(3.23) is expensive since it requires
the evaluation of the split function K̃+ at a series of points distributed on the contour
Γ . The number of points should be large to achieve a reasonable accuracy with
standard quadrature schemes.

A way of reducing the number of points is to deform the contour Γ in a way
similar to C so that K̃+ is smooth on Γ . By doing so, it is possible to evaluate the split
function on a reduced number of points. Then, the pressure and velocity potential
for given coordinates (r, z) are computed using quadrature formulae to evaluate the
integrals in (3.20)–(3.23). It should be noted that the values of the split function on
the contour Γ have to be evaluated only once, the inverse transforms can then be
computed for different sets of points.

The contour Γ is chosen to be similar to that described for the evaluation of
split functions (see § A.1). However, the contours C and Γ should not overlap.
Furthermore, we should note that the wavenumber u will have an imaginary part
along Γ . If the quadrature scheme is inaccurate, the solution contains spurious terms
exp(iωuz) which are exponentially growing since the wavenumber u is complex. In
theory, the contributions of these terms cancel each other, but they may remain if the
integrals are not accurately evaluated.
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