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We present a general simulation approach for fluid–solid interactions based on the
fully Eulerian reference map technique. The approach permits the modelling of
one or more finitely deformable continuum solid bodies interacting with a fluid
and with each other. A key advantage of this approach is its ease of use, as the
solid and fluid are discretized on the same fixed grid, which greatly simplifies the
coupling between the phases. We use the method to study a number of illustrative
examples involving an incompressible Navier–Stokes fluid interacting with multiple
neo-Hookean solids. Our method has several useful features including the ability to
model solids with sharp corners and the ability to model actuated solids. The latter
permits the simulation of active media such as swimmers, which we demonstrate.
The method is validated favourably in the flag-flapping geometry, for which a number
of experimental, numerical and analytical studies have been performed. We extend
the flapping analysis beyond the thin-flag limit, revealing an additional destabilization
mechanism to induce flapping.

Key words: computational methods, Navier–Stokes equations

1. Introduction
Fluid–structure interaction (FSI) problems highlight a natural dichotomy in the

simulation approaches for solids and fluids, where fluid problems tend to be solved
using Eulerian-frame methods (Chorin 1967; Hirt, Amsden & Cook 1974; Versteeg &
Malalasekera 1995; Tannehill, Anderson & Pletcher 1997) and solids with Lagrangian
approaches (Zienkiewicz & Taylor 1967; Sulsky, Chen & Schreyer 1994; Hoover
2006; Belytschko et al. 2013). An FSI simulation method must therefore bridge the
gap between these two perspectives. For example, one set of FSI approaches treats
both fluid and solid phases in a Lagrangian frame, with a finite-element representation
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in the solid and an adaptive Lagrangian mesh in the fluid (Rugonyi & Bathe 2001;
Bathe 2007; Froehle & Persson 2015), or with both phases treated with a mesh-free
approach (Rabczuk et al. 2010). An alternative methodology is to treat the fluid on
a fixed Eulerian mesh and the solid with Lagrangian points, such as the family of
immersed boundary methods developed by Peskin (1972a,b, 1977, 2002), which have
been extensively used to simulate membranes (Griffith et al. 2009; Fai et al. 2013),
and obstacles (Coquerelle & Cottet 2008; Gazzola et al. 2011; Engels et al. 2015)
via Brinkman volume penalization.

A fully Eulerian method whereby fluid and solid are both computed on a fixed grid
has its advantages. Computation time benefits arise from both phases being treated
on a single fixed background grid. The handling of multiple objects interacting
or of topological changes to objects can be done with level set fields (Osher &
Sethian 1988; Sethian 1999; Osher & Fedkiw 2003) rather than requiring complex
on-the-fly Lagrangian remeshing. In addition, certain common conditions such as
incompressibility are easier to implement in an Eulerian form. Lastly, fixed-grid
approaches are well suited to numerical analysis, such as a von Neumann stability
analysis (LeVeque 2007).

The key challenge for a fully Eulerian FSI method is to develop an Eulerian
description of the solid. In a small-strain limit, this can be achieved by writing the
equations of linear elasticity in rate form, referred to as hypoelasticity (Truesdell
1955), which has formed the basis of several numerical techniques (Udaykumar et al.
2003; Rycroft & Gibou 2012; Rycroft, Sui & Bouchbinder 2015). However, here,
our aim is to develop a large-deformation description of the solid, the more general
approach in solid mechanics (Gurtin, Fried & Anand 2010; Belytschko et al. 2013).
This has attracted interest over the past three decades, with a variety of different
approaches being explored in the literature, such as the conservative first-order
method of Plohr & Sharp (1988), the deformation gradient-based method of Liu &
Walkington (2001) and the initial point set (IPS) method of Dunne (2006). See § 2.2
for further references and a comprehensive discussion.

In recent years, we have contributed to this field by developing an Eulerian-frame
solid simulation approach called the reference map technique (RMT) (Kamrin 2008;
Kamrin & Nave 2009; Kamrin, Rycroft & Nave 2012; Valkov, Rycroft & Kamrin
2015), which is based on tracking the reference map field – i.e. where material
started from – as the primary simulation variable on the Eulerian grid. The reference
map field allows the finite deformation of the solid to be computed, from which the
material stress is calculated according to a prescribed nonlinear constitutive law. This
approach has shown the ability to simulate basic FSI and separately cover a span
of desirable features. However, a single implementation covering all needed features
for robust physical simulation – e.g. (i) numerical stability, (ii) good convergence
properties for fluid and solid phases and (iii) desirable physical traits such as the
ability to model incompressible materials, objects with sharp corners and activated
media – has been lacking and non-trivial to produce. In this paper we present such
a method and provide a variety of physical simulations using it, which extend our
understanding of certain FSI problems.

To represent incompressible solids and fluids we have reformulated the numerical
discretization using the projection method framework of Chorin (1967, 1968). In this
method, to integrate the velocity field forward by a time step, an intermediate velocity
field is computed where the incompressibility constraint is temporarily relaxed. After
this, a Poisson problem is solved for the pressure, which is used to project the
velocity to be divergence free. The method has been extensively developed since
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Chorin’s original work (Brown, Cortez & Minion 2001). Here, we consider a modern
second-order implementation developed by Almgren, Bell and coworkers (Bell, Colella
& Glaz 1989; Puckett et al. 1997; Almgren et al. 1998). The implementation uses the
discretization of Colella (1990) for accurately calculating advective terms. It employs
the approximate projection approach of Almgren, Bell & Szymczak (1996) based
on a finite-element discretization. The implementation was subsequently extended
to two-phase flows using a level set method (Sussman et al. 1999), which was
used to simulate an inkjet printer nozzle (Yu, Sakai & Sethian 2003, 2007). In our
approach we deliberately keep the fluid component of the simulation to match this
existing implementation, to emphasize that the reference map technique does not
require any special treatment of the fluid. However, we show that the discretization
techniques can be generalized to simulate solids via the RMT, and we find that
the advective discretization is especially well suited to simulating the reference map
update equations in a fashion more accurate than the approach of Valkov et al. (2015).

The projection method removes the Courant–Friedrichs–Lewy (CFL) condition
(Courant, Friedrichs & Lewy 1967) associated with pressure waves. This makes
it possible to simulate a wide variety of problems in an intermediate Reynolds
number regime (and potentially for high Reynolds problems should an adaptive
background grid be used). Following Valkov et al. (2015), the level set field
representing interface(s) is not explicitly updated, but is tied to where the boundary
should be in the reference map field. However, here we switch to a regression-based
extrapolation method, which is more stable, simpler and allows shapes with corners
to be considered. Two physically motivated examples of a flexible rotor and a paddle
are presented, and a variety of convergence and performance tests are provided in
appendices B, C, D and E. Our numerical tests show that the method is first-order
accurate for a typical fluid–solid simulation, with the interface being the largest
source of error. With respect to the L2 norm, second-order accuracy is achieved for a
fluid-only discretization, and for a solid-only discretization with specific choices for
numerical damping.

With the properties of the method established, we consider the flag-flapping stability
problem, which has been studied extensively (Zhang et al. 2000; Watanabe et al.
2002; Zhu & Peskin 2002; Connell & Yue 2007). We can quantitatively reproduce
the phase plot of stability for a thin flag (Connell & Yue 2007) with very good
accuracy for Reynolds numbers below 1000, and reasonably good accuracy for
Reynolds numbers above 1000. Our method also makes it possible to simulate flags
with substantial thickness, which show a different instability mechanism due to vortex
shedding from the tip. The transition between the thin- and thick-flag behaviours is
captured and studied with our method. We also augment the approach to allow
internal actuation of the solid bodies. With this addition, the method is well suited to
biolocomotion problems and we show an example of this by modelling a jellyfish-like
swimmer. Another advantage of the method is the ability to perform many-body
contact problems quickly but in a fashion that accurately balances momentum. We
demonstrate this approach with two examples of many objects of various sizes and
densities settling under gravity. All computer code to generate the results in this
paper is released as open source software (appendix F).

2. Theory
2.1. Overview of the reference map technique

We begin by considering the solid material, which we model using the large-
deformation hyperelastic framework (Lubliner 2008; Gurtin et al. 2010). As shown
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X Mapping χ (X, t)

Initial undeformed
configuration

(a) (b)

Deformed configuration
at time t

Blur zone, |ƒ| < Ó

Fluid, ƒ > 0

Solid, ƒ < 0

Global
velocity

field, √(x, t)

Solid reference
map, ≈(x, t)

FIGURE 1. (a) Overview of the hyperelastic framework, whereby an initially undeformed
solid with reference coordinate system X undergoes a time-dependent mapping χ(X, t)
to its current configuration at time t. (b) Overview of the reference map technique for
simulating fluid–structure interaction on a fixed background grid. The sign of the level set
function φ(x, t) demarcates the solid and fluid phases. The blur zone, used to transition
from solid to fluid stress, is defined as the region where |φ|< ε.

in figure 1(a), we introduce an undeformed reference configuration for the solid at
time t= 0 with coordinate system X. We then consider a time-dependent map χ(X, t)
from the undeformed configuration to the deformed state in the physical frame at
time t. The deformation gradient tensor is defined as

F =
∂χ

∂X
, (2.1)

and represents how an infinitesimal element of the solid has been deformed and
rotated. From here, a constitutive law

σs = f (F , ζ ) (2.2)

can be used to calculate the Cauchy stress σs in the physical frame, where ζ represents
any internal state variables such as plastic deformation. The material velocity v(x, t)
then satisfies

ρ

(
∂v

∂t
+ (v · ∇)v

)
=∇ · σ , (2.3)

where σ =σs in this case, ρ=ρs/(det F ) and ρs is the solid density in the undeformed
configuration.

The most commonly used approach to simulate hyperelastic solids is to introduce a
deforming mesh on the solid, and then solve for the nodal displacements, from which
(2.1) can be used to compute the stress (Belytschko et al. 2013). However, here we
take an alternative approach of introducing the reference map field in the physical
frame ξ(x, t) that represents the inverse mapping of χ . The field is initialized as
ξ(x, 0)= x, and satisfies the advection equation

∂ξ

∂t
+ (v · ∇)ξ = 0. (2.4)

The deformation gradient tensor is computed from the reference map field according
to

F =

(
∂ξ

∂x

)−1

, (2.5)
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from which the Cauchy stress is evaluated. Equations (2.2), (2.3), (2.4) and (2.5) then
form a minimal system of equations for finite-strain hyperelasticity in an Eulerian
frame. The reference map ξ(x, t) and velocity v(x, t) can be represented on a
fixed grid. At each time step, equations (2.5) and (2.2) can be used to evaluate the
Cauchy stress, after which (2.3) and (2.4) can be integrated forward in time. So
far, this prescription is general, and could be solved using a variety of discretization
approaches such as a finite-difference method, finite-volume method or a discontinuous
Galerkin method.

2.2. Other related approaches
The reference map is a standard definition in solid mechanics (Gurtin et al. 2010),
and it has been used in problems of inverse design (Govindjee & Mihalic 1996;
Fachinotti, Cardona & Jetteur 2008), but it is not widely employed as a primary
simulation variable in the physical frame. Fixed-grid approaches by Plohr & Sharp
(1988), Trangenstein & Colella (1991) and Liu & Walkington (2001) have been
developed that use the deformation gradient tensor F as a primary simulation variable.
Takagi and coworkers have developed a related approach based on using the left
Cauchy–Green deformation tensor B = FF T as the primary simulation variable since
this quantity features in many constitutive laws (Sugiyama et al. 2011; Takagi et al.
2011; Ii et al. 2012). Methods based on F and B have the advantage of requiring a
single spatial derivative to compute acceleration, whereas our approach requires two,
in (2.5) and (2.3). However, the reference map contains additional information for
locating the boundary and has fewer components to store. Using F requires that a
gauge constraint is imposed to ensure that it remains a valid gradient of a material
mapping.

Cottet, Maitre & Milcent (2008) and Maitre et al. (2009) independently developed
simulation approaches using the reference map, and stated its potential to be used as
part of a general fluid–structure simulation. Further work by Milcent & Maitre (2016)
simulated an immersed interface with full membrane elasticity. Bellotti & Theillard
(2019) coupled the reference map to the level set method for improved tracking of
interfaces in two-phase flow simulation.

The IPS method of Dunne (2006) is closely related to our approach. The IPS
method is based on using finite elements to track the solid displacements u as the
primary simulation variable. However, the reference map field (referred to by Dunne
as the set of initial positions) emerges as part of the computational procedure, via the
relationship u= x− ξ . The IPS method has been developed further (Dunne, Rannacher
& Richter 2010; Richter 2013; Wick 2013), and has the advantage that the Eulerian
field u can be used to track the deformation of the fluid–structure interface, in a
similar manner to the approach we discuss in § 3.2.

2.3. Incompressible fluid–structure interaction
In this paper we employ the reference map technique to simulate incompressible
fluid–structure interactions. We shall use the terms τ , τs and τf to refer only to the
deviatoric part of the stress, as the pressure field is now deformation independent and
separately calculated. We make use of a globally defined velocity field v(x, t) that
satisfies the incompressibility constraint

∇ · v = 0. (2.6)

We consider a solid immersed within the fluid, and introduce a level set function
φ(x, t) (Sethian 1999; Osher & Fedkiw 2003) that is the signed distance to the
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solid–fluid interface with the convention that φ < 0 in the solid and φ > 0 in the fluid.
The reference map ξ(x, t) is defined within the solid region only.

Let the fluid have density ρf and dynamic viscosity µf . The fluid stress deviator at
any gridpoint is given by

τf =µf (∇v + (∇v)T). (2.7)

Kinematic viscosity is defined as νf =µf /ρf . The deviatoric stress is then defined as
a smooth transition between the fluid and solid stresses,

τ = τs +Hε(φ)(τf − τs), (2.8)

where

Hε(φ)=


0 if φ 6−ε,
1
2

(
1+

φ

ε
+

1
π

sin
πφ

ε

)
if |φ|< ε,

1 if φ > ε,

(2.9)

is a smoothed Heaviside function with a transition region of width 2ε. Here we use a
twice-differentiable form for Hε that has been employed in previous studies (Sussman,
Smereka & Osher 1994; Sussman et al. 1999; Yu et al. 2003, 2007). For more details
on the choice of ε and the precise form of Hε, see appendix D. In order to calculate
τ it is necessary to smoothly extend ξ in the region 0<φ < ε, which is done using
extrapolation methods that will be described in the following section. The density is
also defined as a smooth transition between the solid and fluid, as

ρ = ρs +Hε(φ)(ρf − ρs). (2.10)

Formally, our limit of interest is when ε→ 0, when there is a sharp interface between
the fluid and solid. In our numerical method, we choose ε to scale proportionally
with the grid spacing, and thus we approach this limit as the simulation resolution
is increased.

3. Numerical method
The numerical procedure is based on the projection method of Chorin (1967,

1968) for solving the incompressible Navier–Stokes equations. Specifically, we
consider a modern second-order method described by Almgren et al. (1998) that
is especially effective at dealing with advection, and incorporates a number of
algorithmic advancements from Chorin’s original treatment.

The simulation domain is a rectangle of size W by H, and is divided into an M×N
grid of rectangular cells of size hx by hy. Following the work of Colella (1990), the
velocity, the reference map and the level set are held at cell centres and are indexed
as vi,j, ξi,j and φi,j, respectively, for i= 0, . . . ,M− 1 and j= 0, . . . ,N − 1 (figure 2a).
The components of the velocity field are written as v = (u, v). Pressures are held at
cell corners and are indexed as pi,j for i= 0, . . . ,M and j= 0, . . . ,N. In addition, the
grid is padded by two layers of cells in each direction whose values are populated to
enforce different boundary conditions.

Superscripts are used to denote time steps. To advance the simulation forward from
time step n to n+ 1 with interval 1t, the following procedure is used. The reference
map field is updated using

ξ n+1
− ξ n

1t
=−[(v · ∇)ξ ]n+1/2 (3.1)
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hx

hy

(a) (b)

pi, j+1
pi+1, j+1

pi+1, j pi, j

√i, j, ≈i, j
(ƒi,j)

√i,j+1/2,

√i-1/2,j,
≈i-1/2,j

√i+1/2, j, ≈i+ 1/2, j

√i,j-1/2, ≈i, j-1/2

≈i,j+1/2

FIGURE 2. (a) Arrangement of the fields within a simulation grid cell. The reference map
ξi,j, velocity vi,j and level set field φi,j are held at the cell centre, while the pressure is
held at the cell corners. The level set field is bracketed to emphasize that it is not time
evolved independently, but is instead derived from the reference map. (b) Arrangement of
the edge velocities and reference maps that are computed at the half-time step to evaluate
the advective terms.

and an intermediate velocity v∗ is computed using

v∗ − vn

1t
=−[(v · ∇)v]n+1/2

+
1

ρ(φn+1/2)
∇ · [τ (ξ n+1/2, vn)]. (3.2)

Here, the advective derivatives [(v · ∇)ξ ]n+1/2 and [(v · ∇)v]n+1/2 are evaluated at the
middle of the time step using a second-order explicit Godunov scheme, described in
§ 3.1. Once the advective derivatives are evaluated, equation (3.1) allows ξ n+1 to be
computed. This allows the time-centred reference map to be defined as ξ n+1/2

= (ξ n
+

ξ n+1)/2 after which v∗ is computed using (3.2). From here, the Poisson problem for
pressure is evaluated using

∇ · v∗ =∇ ·

(
1t

ρ(φn+1/2)
∇pn+1

)
. (3.3)

Following Almgren et al. (1996) and Puckett et al. (1997), equation (3.3) is solved
using a finite-element formulation, described in § 3.4. After this, the velocity is
projected to be divergence free using

vn+1
= v∗ −

1t
ρ(φn+1/2)

∇pn+1, (3.4)

where the gradient of pn+1 is evaluated using a second-order centred difference
formula.

3.1. Advective terms
To evaluate the advective terms appearing in (3.1) and (3.2), a second-order explicit
Godunov scheme is used. The same scheme is applied to both the velocity v and
reference map ξ . Throughout this section, we denote a to be a generic scalar
component of either of these two fields. We also refer the reader to recent work
by Jain & Mani (2017), which introduces an alternative numerical treatment for
reference map advection.
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3.1.1. Godunov upwinding
To begin, the gradients of the reference map and velocity at each cell centre

are evaluated using the fourth-order monotonicity-limited scheme of Colella (1985)
described in § A.1. Once the gradients are calculated at the centre of each cell,
edge-centred velocities and reference maps are created at t + 1t/2 using Taylor
expansions to each of the four edges, which are indexed using half-integers as shown
in figure 2(b). As an example, an extrapolation of the reference map to a vertical
edge from the left (with superscript L) is given by

ξ
L,n+1/2
i+1/2,j = ξ n

i,j +
1t
2
(∂tξ)

n
i,j +

hx

2
(∂xξ)

n
i,j

= ξi,j +
1
2
(hx − un

i,j1t)ξ n
x,i,j −

1t
2
(ṽξy)

n
i,j, (3.5)

where (2.4) has been substituted for the ξt derivative. The extrapolation of the velocity
from the left to this edge is

v
L,n+1/2
i+1/2,j = vn

i,j +
1t
2

vn
t,i,j +

hx

2
vn

x,i,j

= vn
i,j +

1
2
(hx − un

i,j1t)vn
x,i,j −

1t
2
(ṽvy)

n
i,j −

1t
2

an
i,j, (3.6)

where (2.3) has been substituted to replace the vn
t,i,j term, and an

i,j is defined according
to

an
i,j =

[
−

1
ρ(φ)
∇p+

1
ρ(φ)
∇ · τ

]n

i,j

. (3.7)

Equivalent procedures are used to compute extrapolations from the right, down and
up with superscripts R, D and U, respectively. To ensure tangential stability the terms
with tildes in (3.5) and (3.6) are computed differently using the procedure in § A.2.
After this procedure, each edge has velocities and reference maps from the two cells
that adjoin it, and a Godunov upwinding procedure is used to select which values to
use. On the vertical edge at (i+ 1/2, j),

an+1/2
i+1/2,j =


aL,n+1/2

i+1/2,j if uL,n+1/2
i+1/2,j > 0 and uL,n+1/2

i+1/2,j + uR,n+1/2
i+1/2,j > 0,

aR,n+1/2
i+1/2,j if uR,n+1/2

i+1/2,j < 0 and uL,n+1/2
i+1/2,j + uR,n+1/2

i+1/2,j < 0,

F(aL,n+1/2
i+1/2,j , aR,n+1/2

i+1/2,j ) otherwise,

(3.8)

where a is a generic component. Thus if the velocity field points rightward then
the components are taken from the left cell, and if the velocity field points leftward
then the components are taken from the right cell. The function F is used when
the two velocities are ambiguous. For the horizontal velocity F(β, γ )= 0 (Case A),
and for all other components F(β, γ ) = (β + γ )/2 (Case B). On an edge where a
velocity boundary condition is applied (e.g. a no-slip condition) the corresponding
edge velocity is set to exactly match the condition. In this paper we restrict to cases
of localized solid objects that do not extend to the boundary and thus we do not
apply special boundary condition treatment for edge reference map fields.
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3.1.2. Marker-and-cell (MAC) projection
The edge velocities calculated in § 3.1.1 may not be precisely divergence free. We

therefore apply an intermediate MAC projection step to ensure that the discrete flux
entering any grid cell is exactly zero. Let ve be the edge velocities, and let q be a
cell-centred scalar field. We aim to make

ve −
1
ρ
∇q (3.9)

divergence free. Taking the divergence of (3.9) yields

∇ ·

(
1
ρ
∇q
)
=∇ · ve, (3.10)

which is discretized as

1
h2

x

(
qi+1,j − qi,j

ρi+1/2,j
−

qi,j − qi−1,j

ρi−1/2,j

)
+

1
h2

y

(
qi,j+1 − qi,j

ρi,j+1/2
−

qi,j − qi,j−1

ρi,j−1/2

)
=

ui+1/2,j − ui−1/2,j

hx
+
vi,j+1/2 − vi,j−1/2

hy
. (3.11)

Edge-based densities appearing in this equation are computed via linear interpolation
from the two adjacent grid cells. At boundaries where a velocity boundary condition is
applied, any derivative on the left-hand side of (3.11) is omitted if it contains q values
that are out of range. If a pressure condition is applied, then a Dirichlet condition of
q=1t p/2 is applied, where the factor of two arises because the edge velocities are
time centred.

Equation (3.11) results in a large linear system Aq=b where A is a sparse matrix, b
is the source term and q is a vector of the components qi,j, which we solve using the
geometric multigrid method with a standard V-cycle iteration (Demmel 1997). Since
the q field typically varies smoothly in time, the initial guess for the multigrid method
is computed as a linear interpolation from the previous two time steps. Multigrid
V-cycles are performed until the root mean squared (r.m.s.) element in the residual
vector r = Aq − b reaches a required tolerance TMAC. We assume that velocities and
densities are within several orders of magnitude of unity. Then an appropriate scale
for an element of the residual is rs = 4(h−2

x + h−2
y )1t, and a tolerance of TMAC =

104rsεm is used, where εm is the machine epsilon for double precision floating point
arithmetic. Once the tolerance level is reached, one further V-cycle is performed to
further improve accuracy. See appendices C and F for more details on the multigrid
code library and performance.

3.1.3. Evaluation of the derivative
Once the MAC projection has been performed the time-centred advective terms for

the velocity and reference maps are evaluated as

[(v · ∇)a]n+1/2
i,j =

un+1/2
i+1/2,j + un+1/2

i−1/2,j

2
an+1/2

i+1/2,j − an+1/2
i−1/2,j

hx

+
v

n+1/2
i,j+1/2 + v

n+1/2
i,j−1/2

2
an+1/2

i,j+1/2 − an+1/2
i,j−1/2

hy
, (3.12)

where a is a generic field component.
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3.2. Level set update and reference map extrapolation
The simulation makes use of a cell-centred level set function φi,j for tracking the fluid–
solid boundary. The level set routine is stored in a narrow band of points of width 2φW
surrounding the interface (Sethian 1999; Rycroft & Gibou 2012) that is chosen to be
large enough to contain the entire blur zone and perform finite-difference calculations
at all points in this region. The level set is used to extrapolate the reference map
fields in the narrow band, and to calculate the mixing of stress and density according
to (2.8) and (2.10), respectively. Unlike typical applications of the level set method,
the φ field is not explicitly updated, but is instead continually given by the reference
map field using the procedure first described by Valkov et al. (2015).

3.2.1. Level set construction
For a given shape, define a continuous function of the reference map φ0(ξ) such that

φ0 < 0 for reference map values in the solid, φ0 > 0 for reference map values outside
the solid and φ0 = 0 on the interface. During the time step, the reference map field
ξ n+1 is computed inside the solid using (3.1), from which the half-time-step reference
map is defined as ξ n+1/2

= (ξ n
+ ξ n+1)/2. Both fields are extended into the narrow

band fluid region using the extrapolation methods described in § 3.2.2.
To construct the new level set function φn+1/2, an auxiliary function ψn+1/2 is first

computed in the narrow band such that ψn+1/2
= φ0(ξ

n+1/2). The zero contour of
ψn+1/2 will lie at the fluid–solid interface, but this function itself may not satisfy the
signed-distance property. To recover the signed-distance property, the level set φn+1/2

is constructed from ψn+1/2 using the reinitialization procedure described by Rycroft
& Gibou (2012). This procedure first considers points (i, j) that straddle the interface,
so that one of their orthogonal neighbours has a ψn+1/2 value of an opposite sign.
Each straddling point is considered. The bicubic interpolant ψn+1/2

c is computed, and
the modified Newton–Raphson approach of Chopp (2001, 2009) is used to find the
shortest distance vector ∆x from each straddling point to the interface ψn+1/2

c (x)= 0,
after which the level set function is initialized to ±|∆x|. In extremely rare cases the
root-finding method can fail, in which case the routine falls back on the first-order
method described by Sethian (1999). For further details, see the paper by Rycroft &
Gibou (2012).

With the straddling points of φn+1/2 now initialized, the remaining points are filled
in using the second-order fast marching method of Sethian (1999). In the fluid, the
positive φn+1/2 values are computed in order of increasing value, until reaching a
cutoff φW that defines the width of the narrow band. The same procedure is used to
fill in the negative φn+1/2 values in the solid, until reaching a cutoff −φW . After this
procedure, the level set function is now a signed-distance function inside the narrow
band. Note that these routines work reliably even if the function ψn+1/2 has a loss of
regularity as some points: since the entire φn+1/2 field is directly constructed, there is
no possibility for instabilities to grow over time, as can happen in update procedures
that use partial differential equations (PDEs). Identical methods are used to construct
φn+1 from ξ n+1.

3.2.2. Extrapolation
During the construction of the level set function, a list of fluid grid points sorted

in order of increasing value, 0 < φ1 < φ2 < · · · is constructed, which is used for
extrapolating the reference map ξ from the solid into the fluid narrow band. Previous
approaches to do this have employed PDE-based methods by defining a normal vector
n=∇φ and extrapolating outwards from the object in the direction of n (Aslam 2004;
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Rycroft & Gibou 2012). While these methods are well suited to mathematical analysis,
they require considerable bookkeeping for performing the finite-difference calculations
of φ and ξ due to the fields only existing at certain grid locations. In previous work
we have found this to be a source of difficulty (Valkov et al. 2015).

In the current work, we make use of the following alternative extrapolation
procedure. Consider the points in increasing order of φ value. For a particular
point (i, j) at physical location xi,j:

(i) Set r= 3.
(ii) Use least-squares regression to fit a linear map ξlm(x) = Ax + By + C using all

available reference map values at (i′, j′) such that |i− i′|6 r, |j− j′|6 r. Weight
each value in the regression according to φi,j − φi′,j′ .

(iii) If the linear map is degenerate then increment r and return to Step 2. Otherwise,
continue.

(iv) Set ξi,j = ξlm(xi,j).

This procedure is simpler than the PDE-based methods since it does not require
extensive bookkeeping. Since the method uses all available values in a neighbourhood,
this repeated averaging results in substantial blurring if the extrapolation is continued
far away from the interface. However, here, only values near the interface are required,
and the averaging is beneficial, serving to damp out high-frequency modes that could
be the source of instability. In Step 3, degeneracies occur only when the available
points are colinear, in which case there is insufficient information to determine the
linear map. In this case, Step 4 causes the algorithm to retry using more neighbouring
points.

The approach described here makes it possible to simulate objects with sharp
corners. The reference map is smoothly defined within the object, and using the
above procedure allows it to be smoothly extended into the fluid domain from which
solid stresses in the blur zone can be computed. The function φ0(ξ) that defines the
object boundary need not be smooth itself, and can describe a shape with corners.
(The IPS method of Dunne (2006) has a similar capability to handle corners, although
it is based on a harmonic continuation of the solid velocity, which is used to update
the solid displacement field u, from which the boundary can be located by examining
u− x.)

3.3. Computation of stress
In order to evaluate the stress divergence terms that appear in (3.2) and (3.7), the
stresses are first computed on the edges of each grid cell. The stress term in (3.7) is
computed as

∇ · [τ (ξ n)] =
[τx]

n
i+1/2,j − [τx]

n
i−1/2,j

hx
+
[τy]

n
i,j+1/2 − [τy]

n
i,j−1/2

hy
, (3.13)

where τx = (τxx, τxy) and τy = (τxy, τyy) are the components acting on the vertical and
horizontal edges, respectively.

3.3.1. Solid stress
To begin, the components of the Jacobian are computed using the second-order

finite-difference formulae(
∂ξ

∂x

)
i−1/2,j

=
ξi,j − ξi−1,j

hx
,

(
∂ξ

∂y

)
i−1/2,j

=
ξi,j+1 + ξi−1,j+1 − ξi,j−1 − ξi−1,j−1

4hy
(3.14a,b)
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after which the deformation gradient is evaluated as

F i−1/2,j =

((
∂ξ

∂x

)
i−1/2,j

)−1

. (3.15)

From here, any constitutive law τs = f (F ) could be used to evaluate the deviatoric
stress, τs. In the current work, we employ the plane-strain incompressible neo-
Hookean law,

τs = f (F )=G(FF T
−

1
3 1(tr FF T

+ 1)), (3.16)

where G is the small-strain shear modulus.

3.3.2. Fluid stress
To evaluate the fluid stress, the gradients of the velocity on vertical edges are

computed as (
∂v

∂x

)
i−1/2,j

=
vi,j − vi−1,j

hx
, (3.17)(

∂v

∂y

)
i−1/2,j

=
vi,j+1 + vi−1,j+1 − vi,j−1 − vi−1,j−1

4hy
. (3.18)

Equivalent stencils are used to compute velocity gradients on horizontal edges, after
which the fluid stress is given by

τf =µf (∇v + (∇v)T), (3.19)

where µf is the viscosity. Equation (3.19) is our standard approach for computing
the fluid stress. However, we have also investigated a simplified calculation. Since
∇ · v = 0, it follows that in the bulk of the fluid, the second term in (3.19) has zero
contribution to ∇ · τf . Hence an alternative formula is

τ
(simp)
f =µf∇v. (3.20)

This formula only requires evaluating the simpler stencil in (3.17). However,
equation (3.20) is not strictly valid in the blur zone since taking the divergence
in (2.8) results in a non-zero contribution from the second term of (3.19).

Once all edge stresses are computed, the divergence is computed using

[∇ · τ ]i,j =
τi+1/2,j − τi−1/2,j

hx
+

τi,j+1/2 − τi,j−1/2

hy
. (3.21)

3.4. Finite-element projection
To solve the Poisson problem in (3.3), we make use of a finite-element formulation.
The pressure is comprised of piecewise bilinear elements, and the velocity and density
are piecewise constant on the grid cells. For a given pressure element ψ the weak
formulation of (3.3) is

−

∫
Ω

v∗ · ∇ψ dx dy+
∫
Ω

1t
ρ(φn+1/2)

∇pn+1
· ∇ψ dx dy=−

∫
Γ1

ψvBC
· n dS, (3.22)
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where Γ1 is the section of the boundary where inflow and outflow conditions are
prescribed. Consider a particular bilinear element function ψ located at a pressure
point pi,j in the bulk of the domain. The first term of (3.22) is

hy(u∗i,j + u∗i,j−1 − u∗i−1,j − u∗i−1,j−1)

2
+

hx(v
∗

i,j − v
∗

i,j−1 + v
∗

i−1,j − v
∗

i−1,j−1)

2
. (3.23)

For the constant-density case when 1t/ρ can be taken out as a prefactor, the second
term of (3.22) is

λapi,j + λb(pi−1,j + pi+1,j)+ λc(pi,j−1 + pi,j+1)+ λd

∑
k=±1
l=±1

pi+k,j+l, (3.24)

where

λa =
4(h2

x + h2
y)

3hxhy
, λb =

−2h2
y + h2

x

3hxhy
, λc =

−2h2
x + h2

y

3hxhy
, λd =

−h2
x − h2

y

6hxhy
. (3.25a−d)

The expression in (3.24) can be generalized for the case of non-constant density.
Dirichlet conditions on pressure may also be imposed as essential boundary conditions
(Johnson 2009). The resultant linear system is solved using the same multigrid library
introduced in § 3.1.2 using an error tolerance of TFEM = λa104εm. In cases where no
Dirichlet conditions are used, the pressure field is projected at each step so that it
has zero mean.

3.5. Parameter choices and stability
Our test cases involve four physical parameters: solid shear modulus G, solid density
ρs, fluid viscosity µf and fluid density ρf . In the solid, the shear wave speed is
cs =
√

G/ρs. The CFL condition requires that the simulation time step be less than
or equal to

1tI = cs min{hx, hy} =

√
G
ρs

min{hx, hy}. (3.26)

In addition, performing a von Neumann stability analysis shows that the time step
must be less than or equal to

1tII =
ρf

2µf (h−2
x + h−2

y )
(3.27)

in order to resolve the viscous fluid stress. Inside the solid, we find that simulating
stress using only equation (3.16) results in an instability – this should be expected
since we are effectively solving a hyperbolic system using centred finite differences.
To rectify this, we incorporate an extra small artificial viscous stress inside the solid.
Based on dimensional considerations, the artificial viscosity should satisfy

µe = κeρscs max{hx, hy}, (3.28)

where κe is a dimensionless constant. In addition, we also find that artificial viscosity
is useful in the fluid–solid transition region. We therefore define the extra viscous
stress as

τe(x)=µe[(1−H(φ(x)))+ q(1− εH′(φ(x)))]∇v, (3.29)
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where q is a dimensionless constant. Based on a variety of tests, we use q = 1 and
κe= 0.4 throughout the paper. Since the purpose of this extra stress is to stabilize the
numerical system, we employ the simpler form of fluid stress given in (3.20). Since
µe scales linearly with grid spacing, and the simpler fluid stress only introduces a
discrepancy in the blur zone, any errors that are introduced will reduce to zero as the
grid is refined. The corresponding time-step restriction is

1tIII =
ρs

2µe(1+ q)(h−2
x + h−2

y )
. (3.30)

With these definitions in place, the simulation time step 1t is chosen to be smaller
than the minimum of the three conditions in (3.26), (3.27) and (3.30), so that

1t=min{αpad1tI, αpad1tII, βpad1tIII}. (3.31)

Here, αpad and βpad are padding factors that are smaller than one. For this paper we
use αpad = 0.4 and βpad = 0.8, so that the restrictions arising from the two physical
stresses (I and II) are applied more stringently than the one for the artificial stress
(III). Note that in the limit as hx, hy→ 0, the artificial viscosity vanishes.

4. Results
Since our purpose is to demonstrate the numerical method as opposed to apply it

to a specific problem, we make use of non-dimensionalized quantities for all of the
results that we present. To connect the results to reality, the simulation parameters and
output can be multiplied by appropriate length, time and mass scales. Our results also
focus on the case of equal grid spacing, hx = hy = h.

4.1. A spinning flexible rotor
The first example demonstrates our method’s ability to handle sharp solid corners
within a non-trivial FSI setting. It consists of a spinning flexible regular seven-pointed
star that is centred on the origin and has vertices at (L cos (2πk/7), L sin (2πk/7)) for
k ∈ Z, with length scale L = 0.62, density ρs = 3 and shear modulus G = 24. The
resolution is 800 × 800, the simulation domain is [−1, 1)2 and periodic boundary
conditions are used. The fluid and rotor are initially stationary. The region r = |x|
< 0.16 is used as a pivot. To excite the fluid, the pivot is rotated with an oscillatory
motion with angle θ(t) = π(1 − cos t). This is done by applying an external tether
force to the pivot region of

f teth(x)=KtethHε(r− rteth)(x− Rθ(t)ξ(x)), (4.1)

where rteth = 0.16 and Rθ(t) is a rotation matrix with angle θ(t). The spring constant
is set to Kteth = 10−2ρs1t−2, which ensures that the natural frequency of the tether
satisfies the time-step restriction imposed by the method. The fluid has density ρf = 1
and viscosity µf = 10−3. The r.m.s. angular velocity of the rotor is ωrms = π/2, and
hence a characteristic tip velocity is ωrmsL. Hence, we define the Reynolds number for
this simulation as

Re=
ρf L(ωrmsL)

µf
≈ 600. (4.2)

The simulation was run from t= 0 to t= 4π using 16 threads on a Linux computer
with dual 10-core 2.2 GHz Intel Xeon E5-2630 processors. For the given parameters,
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FIGURE 3. Snapshots of vorticity ω in a simulation of a flexible seven-pointed rotor being
spun with an oscillatory motion in a fluid. The thick black line marks the fluid–structure
interface. The thin dashed lines are contours of the components of the reference map and
indicate how the rotor has deformed. The dark blue dotted circle shows the pivot region.
Simulation parameters are (ρf , µf , ρs,G)= (1, 10−3, 3, 24).

the time step of 1t= 1.105× 10−4 was determined by the extra viscous stress in the
solid. Simulation output was saved at regular intervals of π/150. The total wall clock
time for the simulation was 6.53 h. A total of 114 000 time steps were performed,
with each taking 206 ms to compute. A substantial fraction of the computation time
is spent performing the two linear solves. The MAC projections take on average 13.75
V-cycles and require 43.1 ms per time step. The finite-element projections take on
average 11.91 V-cycles and require 48.1 ms per time step.

Snapshots of vorticity ω = 1
2(∂xv − ∂yu) in the simulation are shown in figure 3.

The vorticity is computed on each grid cell corner, using centred finite differences
of the velocities in the four adjoining grid cells. As the star begins to rotate,
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each point deforms clockwise, and vortices are shed from the points, which are
visible at t = 4π/15. By t = π, the rotor is stationary, and the points are now
deformed anti-clockwise due to the angular deceleration. As time progresses, the
disturbance to the fluid becomes larger. By t = 2π, the rotational symmetry of the
fluid flow is lost, due to interactions across the periodic boundaries, which break the
sevenfold symmetry. By t = 4π, after two complete cycles of the oscillatory motion,
there are vortices present throughout the fluid. Supplemental Movie 1 available at
https://doi.org/10.1017/jfm.2020.353 shows the complete simulation. To visualize the
fluid motion, the movie also shows a number of tracers with trajectories x(t). The
tracers are initialized at random positions in the fluid and are updated using the
ordinary differential equation

dx
dt
= vbic(x(t)), (4.3)

where vbic is the bicubic interpolation of the velocity field, and the time integration is
performed using the second-order improved Euler method (Süli & Mayers 2003).

4.2. Flag flapping
Besides numerical convergence, as a test of the robustness of our approach and
its accuracy across Reynolds numbers, we consider the example of flag flapping, a
problem that has been studied extensively from experimental, numerical and analytical
perspectives (Zhang et al. 2000; Watanabe et al. 2002; Zhu & Peskin 2002; Connell
& Yue 2007). Following the problem description and notation of Connell & Yue
(2007), we introduce a thin filament of length L, thickness h � L, density ρs
and Young’s Modulus E, clamped at its left endpoint and submerged in fluid of
kinematic viscosity νf and density ρf , flowing rightward with speed V at infinity. (For
consistency with Connell & Yue (2007) we fully adhere to their notation. However, we
draw attention to the reader that h (filament thickness) has a different meaning than
h (grid spacing) used in all other sections. Furthermore, µ (mass ratio) is distinct
from µf (dynamic viscosity).) Three dimensionless numbers can be introduced to
study the dynamical behaviour of the filament: the mass ratio µ= ρsh/ρf L, Reynolds
number Re = VL/νf and non-dimensional bending rigidity KB = EI/(ρf V2L3). Unlike
the previous numerical approaches that consider the filament to be a one-dimensional
beam, our method uses a true continuum solid formulation so we can consider cases
beyond the thin filament limit, such as a thick flag for which the parameter h does
not necessarily satisfy h� L.

We first seek to determine if our method correctly captures the transition of the
filament dynamics from stable to flapping in the limit of a thin filament. We consider
a filament with L= 1, h= 0.05, KB = 0.001, in a fluid of density ρf = 1. To set KB,
we use the fact that in the linear elastic regime E= 3G, and the moment of inertia is
I = h3/12. We vary ρs and νf in order to test a range of µ and Re. The simulation
domain is set to be a [−1, 5] × [−1, 1) rectangle with assigned rightward velocity
of speed V = 1 on the left boundary, vanishing pressure on the right boundary and
periodic boundary conditions on the top and bottom boundaries. We use a 1824× 608
grid to represent the domain. The filament is modelled as a rectangle 0 < x < 1,
−h/2< y< h/2 with semicircular end caps. The filament is anchored at (0, 0) using
the tethering methodology described in § 4.1, with θ(t) = 0 and rteth = h/4 in this
case. We track the filament tip by introducing a tracer x(t) that starts from (1, 0)
and is integrated according to (4.3). To prevent integration errors building up over
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time, the position of the tracer is periodically reset to satisfy ξbic(x(t))= (1, 0) using
a Newton–Raphson root-finding method, where ξbic is the bicubic interpolant of the
reference map field. The results of this section are based upon 556 simulations with
different parameters that were run on a variety of Linux and Apple servers at Harvard
University and the Lawrence Berkeley National Laboratory. Depending on parameters
and computer speed, each simulation took approximately 3–12 days using 4–6 threads.
Simulations with smaller Re generally take longer, since resolving the fluid viscosity
requires a smaller time step.

To systematically evaluate the behaviour of the filament, we store the perpendicular
tip deflection y(t) over the interval t∈ [120, 160]. Since the typical filament oscillation
period is approximately 1.7, the simulations correspond to almost one hundred
complete oscillations, and hence the interval [120, 160] is sufficient for the oscillation
amplitude to reach a steady state. The normalized Fourier transform is given by

ỹ(k)=
1

40

∫ 160

120
eikty(t) dt. (4.4)

The maximum Fourier amplitude is given by

A= max
k∈[0.1,50]

|ỹ(k)|. (4.5)

Typically the oscillation frequency is 2π/1.7 ≈ 4, and the range of k in (4.5) is
chosen to broadly cover the possible values. If A ≈ 0 the filament is in the stable
(no-flapping) regime and otherwise the filament is flapping, with A serving as a scalar
measure of the amplitude of the dominant flapping mode. Since our initial conditions
are symmetric, the breakage of symmetry occurs due to numerical noise introduced
by the multigrid solver, on the scale of the parameters TMAC and TFEM introduced
previously. We also investigated explicitly breaking symmetry by applying an initial
perturbation to the perpendicular velocity in the filament tip, but the calculations of
A were insensitive to this. Connell & Yue (2007) proposed an analytical formula for
the stable-to-flapping transition line

µ=
1.3Re−1/2

+KB4π2

1− 0.65Re−1/22π− 0.5KB8π3
. (4.6)

Connell & Yue (2007) validated this equation numerically using a direct fluid–filament
coupling procedure, a procedure that itself was validated against experiments
(Zhang et al. 2000; Watanabe et al. 2002). The above formula is obtained without
consideration of certain effects, such as possible variations of tension along the flag
and the presence of global lift forces attempting to realign the flag with the flow,
although methods to include these phenomena exist in certain limits (Argentina &
Mahadevan 2005). In figure 4 we show the behaviour of A from our numerical
simulations together with the analytical phase boundary above. For Reynolds numbers
below 1000, there is very good agreement between the locus where A goes non-zero
and the analytical curve. When Re > 1000 the transition predicted by the simulation
happens at a slightly higher µ than predicted by (4.6). The most likely explanation
for this is that numerical diffusion from the fluid advection effectively increases the
fluid viscosity. However, other factors such as the finite domain size, the extensibility
of the filament and the non-zero h may also play a role.

The behavioural switch from stable to flapping is also quite evident in the long-time
flow fields, shown in figure 5. Small values of µ and KB result in stable behaviour,
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FIGURE 4. Plot showing the steady-state oscillation amplitude A of a thin flag with
aspect ratio 20 and bending rigidity KB = 0.001, as a function of the Reynolds number
Re and mass ratio µ. The colours shown are based on a bilinear interpolation of a
two-dimensional grid of simulations. The axis ticks show the sampled values of Re and
µ, with more simulations being performed in parameter ranges of interest. The thin
dotted lines are contours at spacings of (n/50)2 for n ∈ N. The thick solid line is the
stable-to-flapping transition formula, equation (4.6) of Connell & Yue (2007).

characterized by a straight filament and fluid flow that is symmetric about the filament
axis (figure 5a). Upon crossing the transition, periodic undulatory filament motions
develop with a fluid vortex street shed from the filament (figure 5b). Increasing Re
and µ even further reveals a chaotic filamentary motion, which was also observed
by Connell & Yue (2007) (figure 5c, Supplemental Movie 2). The chaotic regime
coincides with a drop in A shown in the top right of figure 4 because the tip
deflection no longer has a clear single dominant oscillatory mode. Because the
filament is modelled as a thin continuum body of isotropic elastic media as opposed
to an inextensible beam, we observe filament extension in the initial moments of the
simulation as the imposed fluid flow applies a net rightward traction.

We explore the importance of aspect ratio by introducing R= h/L as an independent
dimensionless group. We observe that as one departs from the R � 1 regime,
adherence to (4.6) is diminished. In figure 6 we show results for R−1

= 10 and 5.
In general, thick flags have a smaller stable domain than would be predicted by the
thin-filament limit. We can explain this effect at least in part with bluff-body dynamics.
When R is non-negligible, the thickness of the flag allows the solid geometry to act
as a bluff body over which the fluid is driven to flow. Flow over a fixed cylinder
of diameter D undergoes a transition from a laminar flow to a periodic vortex street
as DV/νf grows beyond ∼ 50 (Lienhard 1966). In our case, the flag thickness acts
like D, and once a vortex street is induced off the bluff back end of the flag, the
oscillatory force it induces necessitates flapping. We reiterate that this physical source
of oscillatory forcing emerges only when flags are thick enough to act as a bluff body.
Consistent with this expectation, when Vh/νf = Re × R > 50 we see only flapping
states for any choice of µ or Re. Figures 7(a) and 7(b) show simulation snapshots
of bulky flags with low and high mass ratios, respectively. Simulations of these two
cases are shown in Supplemental Movie 3 and Supplemental Movie 4, respectively.
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FIGURE 5. Simulations of a thin flexible flag anchored at (0, 0) in a fluid with mean
velocity v = (1, 0), at t = 160. The flag has an aspect ratio of 20. Three simulations
with different parameters are shown: (a) stable with (µ, KB, Re) = (0.04, 0.001, 400),
(b) limit-cycle flapping with (µ,KB,Re)= (0.16, 0.001, 1400) and (c) chaotic flapping with
(µ,KB,Re)= (0.32, 0.001, 3000). The thick black lines mark the fluid–structure interfaces.
The thin dashed lines are contours of the components of the reference map and indicate
how the flags deform. The small dark blue circles show the anchored regions. The colours
show vorticity, using the same scale as figure 3.

4.3. Tests for a range of elastic modulus

To demonstrate that the method works across a wide range of shear moduli, we
consider a piston-like geometry where a flexible paddle is pushed through a fluid-filled
cavity. The domain is −1 6 x 6 1 and 0 6 y 6 5 and no-slip boundary conditions are
used on all sides. The grid size is 160 × 400, the fluid density is ρf = 1, the fluid
viscosity is µf = 10−3 and the solid density is ρs = 2.

A rectangular flexible paddle of width 1.6 and height 0.4 is initially centred at
(0, 0.4). The displacement of the paddle is prescribed in a circular region of radius
0.15 centred on (0.6, yp(t)), using the same tethering procedure as in (4.1). The
simulation is run for a duration of T = 20, and the circular region moves vertically
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FIGURE 6. Plot showing the steady-state oscillation amplitude A as a function of the
Reynolds number Re and mass ratio µ, for (a) flags with KB = 0.002 and aspect ratio
10, and (b) flags with KB = 0.004 and aspect ratio 5. The colours shown are based on a
bilinear interpolation of a two-dimensional grid of simulations, using the same scale as
figure 4. The axis ticks show the sampled values of Re and µ, with more simulations
being performed in parameter ranges of interest. The thin dotted lines are contour at
spacings of (n/50)2 for n∈N. The thick solid line in (a) is the stable-to-flapping transition
formula for thin flags, equation (4.6) of Connell & Yue (2007). For (b), the formula is
out of range and the entire parameter space is in the stable region.

according to yp(t)= 0.4+ 4.2Y(t/T) where

Y(τ )=

{
4τ 2(3− 4τ) for t< 1

2 ,

1 for t > 1
2 .

(4.7)

Hence, for 06 t< 10, the paddle is dragged through the fluid, and for 106 t 6 20 the
circular region is stationary and the paddle equilibrates.

Simulations are run using shear moduli from G = 1 to G = 107, following the
standard choices for time step and extra solid viscosity described in the main text.
Figure 8 shows a sequence of snapshots of pressure in the simulation with G= 100.
As the paddle is pushed through the cavity, it is bent downward due to the pressure
of the fluid. Vortices are shed from the paddle tip, creating regions of low pressure
visible at t = 10 and t = 20. Figure 9 shows a sequence of snapshots at t = 6.6 for
the full range of shear moduli. For G= 1 and G= 10 the paddle deforms so strongly
that there is little pressure build-up in the upper part of the domain. However, for
G > 103 the pressure build-up is large, and fluid must push through the thin gaps on
either side of the paddle. For G= 107, the paddle becomes near rigid, so that the fluid
flow becomes almost symmetric even though the paddle’s motion is only prescribed
on the right side. In these simulations the time step is set by the limit from the extra
solid viscous term (3.30). The total number of time steps scales according to

√
G and

thus the simulation for G= 107 takes approximately 3100 times more computational
resources than that for G= 1.
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FIGURE 7. Simulations of a thick flexible flag anchored at (0, 0) in a fluid with mean
velocity v = (1, 0), at t = 160. The flag has an aspect ratio of 5. Two simulations with
different parameters are shown: (a) vortex shedding with (µ,KB, Re)= (0.04, 0.004, 750)
and (b) limit-cycle flapping with (µ, KB, Re) = (0.28, 0.004, 750). The thick black lines
mark the fluid–structure interfaces. The thin dashed lines are contours of the components
of the reference map and indicate how the flags deform. The dark blue dotted circles show
the anchored regions. The colours show vorticity, using the same scale as figure 3.

4.4. Solid actuation
The method also admits a simple approach for simulating actuated solids. This feature
allows one to assign time-dependent internal deformations to subregions of a solid,
which is useful for modelling active media such as swimmers. Unlike the tethering
approach used in § 4.1, which assigns the full motion of a region by adding an
external body force in that region, here what is done is to add extra internal stresses
to achieve a desired shape change in a subdomain, without adding net external force.
To actuate a particular (Lagrangian) solid region, Ba, one writes the desired actuated
deformation gradient F a(X ∈ Ba, t), which can then be equivalently expressed in
Eulerian frame as F a(X= ξa(x∈ ba, t), t) for ba the image of Ba in the Eulerian frame.
At any point x∈ ba, the constitutive relation is adjusted by replacing all references to
F (x, t) with F (x, t)F a(x, t)−1. In an isotropic hyperelastic system, for example, this
effectively distorts the region’s rest configuration to the distortional state given by
F a. If at any moment in time a configuration of the actuated domain differs from
the intended actuated configuration, a stress given by f (F (x, t)F a(x, t)−1) emerges
that moves the system toward the actuated deformation (where f is defined from
(3.16)). One could in principle assign a stiffer response in the actuated domain if a
faster conformation is desired, but we have found it to be sufficient to use the same
underlying hyperelastic constitutive model in the actuated and passive subregions of
the solid. This approach is similar to the multiplicative Kröner–Lee decomposition
used in plasticity (Kröner 1960; Lee 1969), where a tensorial state variable F p is
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FIGURE 8. Snapshots of pressure p for a simulation where a flexible paddle is pushed
through a fluid-filled cavity. The paddle has shear modulus G= 100 and is anchored on its
right end. The thick black line marks the fluid–structure interface. The thin dashed lines
are contours of the components of the reference map and indicate how the paddle deforms.
The dark blue dotted circle shows the region of prescribed displacement. Simulation
parameters are (ρf , µf , ρs)= (1, 10−3, 2).

introduced and the elastic deformation gradient, which produces the stress, is given
by FF−1

p . But unlike F p, which evolves under a constitutive flow rule, here we assign
F a(x, t) directly.

A similar, albeit reduced-dimensional approach has been used to model muscle
contraction in swimming lampreys and other narrow-body swimmers. Tytell et al.
(2010), simulated a lamprey swimming in a two-dimensional (2-D) geometry. The
lamprey is modelled with three connected parallel filaments, the outer two of
which obey a one-dimensional viscoelastic model with an additional user-defined
contractile stress (McMillen, Williams & Holmes 2008). Actuated bending of the
lamprey occurs through asymmetric contraction of the filaments. An alternative
approach, as used by Gazzola, Argentina & Mahadevan (2015) and Patel, Bhalla
& Patankar (2018), involves direct assignation of an external bending moment on
the swimmer cross-section, which in a stiff limit equates to directly assigning the
swimmer shape through time. The approach we describe above could be seen as a
2-D (or potentially 3-D) generalization of approaches like these, permitting possibly
more through-thickness spatial variation in actuation. The implementation shown
here could be made more realistic by including dissipation within the swimmer,
neuro-muscular signalling, and contractile-only forcing as was done by Tytell et al.
(2010), McMillen et al. (2008) and Patel et al. (2018).

As an example, we consider a flapping swimmer (figure 10, Supplemental Movie 5).
The swimmer is a rectangle of width W = 0.5 and height H= 0.052 with circular end
caps, initially centred on (0,−0.8), which we choose to be the location of the origin.
We choose the actuated domain, Ba, to be a centred subregion within the swimmer,
comprising a rectangle of width 0.28 and height 0.042 with circular end caps.
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FIGURE 9. Snapshots of pressure p at time t= 6.6, in a sequence of simulations where
flexible paddles with different shear moduli G are pushed through a fluid-filled cavity.
The paddles are anchored on its right end. The thick black lines mark the fluid–structure
interfaces. The thin dashed lines are contours of the components of the reference map
and indicate how the paddles deform. The dark blue dotted circles show the regions of
prescribed displacement. The colours show pressure using the same scale as figure 8.
Simulation parameters are (ρf , µf , ρs)= (1, 10−3, 2).

The following actuation is applied:

F a(X, t)=
(

e−α(X,t) 0
0 eα(X,t)

)
, (4.8)

where
α(X, t)=−λXyHε(−d) sin8 ωt=−λξy(x, t)Hε(−d) sin8 ωt (4.9)

and d is the signed distance from the Eulerian boundary of ba. By blurring the
boundary of the actuated domain under Hε(−d), it should be noted material positioned
up to ε away from the true boundary of ba will receive some actuation stress. The
parameters used in the simulation are ω = 2π/8, ε = 2.5hx, and λ = (log 2.2)/0.021.
Thus the maximum stretch on the top boundary is 2.2. The simulation uses a
1200 × 1200 grid in [−1.5, 1.5)2 with periodic boundary conditions. The densities,
dynamic viscosity, and solid shear modulus are (ρf , µf , ρs,G)= (1, 5× 10−4, 4, 10).

By actuating the flapper in this fashion, the Lagrangian domain Ba, which comprises
roughly half the area of the body, is forced to bend periodically in time. The
unactuated portion of the swimmer remains passive and flaps as an elastic body in
response to be being conjoined to the actuated region. The swimming flapper achieves
a Reynolds numbers of Re = Vmax

solid W/νf ∼ 200. Its ability to translate its centre of
mass by swimming evidences that this example is not near zero Reynolds number;
vortex shedding can be seen for each flap.

4.5. Multi-body contact
Since the reference map technique does not employ moving meshes, it is particularly
well suited to problems involving many objects coming into contact. This capability
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FIGURE 10. Six successive snapshots of the flapping swimmer (Re≈ 200), with colours
showing vorticity ω. A subregion within the solid body is actuated to bend periodically
and the remaining solid is passive. The motion induces the flapping body to swim. The
thick black line marks the fluid–structure interface. The thin dashed lines are contours of
the components of the reference map and indicate how the swimmer deforms. Simulation
parameters are (ρf , µf , ρs,G)= (1, 5× 10−4, 4, 10).

would be useful for a variety of problems, such as studying colloidal mixtures with
soft, deformable particles.

To generalize the method to N objects, we introduce independent reference maps
ξ (1), ξ (2), . . . , ξ (N) with the ‘( j)’ suffix being used to denote any quantity associated
with object j. For the purposes of exposition, we assume each field is defined as a
separate globally defined function that is extrapolated separately, although in reality
each reference map only need be defined in a local neighbourhood of each object.
Each reference map is updated using (3.1). For a given ξ ( j), the solid stress τ ( j)

s is
computed using the methods of § 3.3.

When two or more objects come together, their blur zones may overlap, and thus
it is necessary to generalize the definition of global stress that was given in (2.8). At
a given point, define λ( j)

= 1−Hε(φ
( j)) to be the solid fraction of object j. Then the
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stress is given by

τ =



τf +
∑

i

λ(i)(τ (i)s − τf ) if
∑

i

λ(i) 6 1,∑
i

λ(i)τ (i)s∑
i

λ(i)
if
∑

i

λ(i) > 1.
(4.10)

If only one object is present, this definition exactly matches (2.8). If several objects
are present, then they each contribute to the global stress, with the fluid stress filling
any unassigned fraction. In rare situations (e.g. three objects meeting at a point) the
solid fractions may total more than one. In this case, τ is taken as a weighted average
of the solid stresses, and the fluid stress does not contribute at all. The global density
field is defined using the same mixing procedure as in (4.10).

In our tests, we have found that independently updating N reference maps and
computing a global stress according to (4.10) is sufficient to perform multi-body
simulations. However, since the simulation employs a single globally defined velocity
field, it becomes problematic when shapes become very close together, since it is hard
for them to separate as they move according to the same underlying velocity. Similar
behaviour has been noted in the literature on the immersed boundary method (Lim
& Peskin 2012; Krishnan, Shaqfeh & Iaccarino 2017), which also employs a single
global velocity field for the movement of structures. To rectify this, we introduce a
small contact stress (in addition to the stress of (4.10)) when the blur zones of two
objects overlap, which penalizes the interfaces from becoming too close together. We
first define a contact force function of

f (x)=


1
2

(
1−

x
ε

)
if x< ε,

0 if x > ε.
(4.11)

Now, consider the stress calculation at an edge that is within the blur zones of two or
more solids. Consider a pair of the solids (i) and ( j). Using finite differences, compute
a unit normal vector

n=
∇(φ(i) − φ( j))

‖∇(φ(i) − φ( j))‖2
, (4.12)

where ‖ · ‖2 denotes the Euclidean norm. The contact stress is defined as

τcol =−ηmin{ f (φ(i)), f (φ( j))}(G(i)
+G( j))(n⊗ n− 1

2 1), (4.13)

where η = 4 is a dimensionless constant, the G(i) are object-dependent shear moduli,
and the 1 term is included to make the stress trace free. In the rare case where the
edge is within three or more solid blur zones, the calculation is repeated for each pair,
and each contribution τcol is added to the global stress.

These collision stress terms induce forces that push apart objects when they become
close. Formulating the collision interaction as an additional stress is advantageous
since it immediately ensures that total momentum of the entire simulation is
numerically conserved. The method is not sensitive to the exact functional form
of f in (4.11). An alternative formulation is to directly use the transition function,
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FIGURE 11. Snapshots of vorticity ω in a simulation of 42 squares sedimenting in a fluid-
filled box. The thick black lines mark the fluid–structure interfaces. The thin dashed lines
are contours of the components of the reference map defined in each object and indicate
how the squares deform. Simulation parameters are (ρf , µf , ρs,G, g)= (1, 10−3, 3, 2, 1.5).

f (α)= 1− Hε(α), but we find that the faster growth of the function in (4.11) when
α becomes smaller than ε yields better results in our test cases.

Figure 11 shows snapshots from a multi-body simulation in a non-periodic box
[−1, 1]2 using a resolution of 1280 × 1280 with fluid density ρf = 1 and dynamic
viscosity µf = 10−3. Forty-two squares with shear modulus G= 2 and density ρs = 3
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are inserted at random positions in the box, with side lengths chosen uniformly over
the range [0.1, 0.4]. Any squares that lie within a distance of 0.1 of another square
are rejected, and are chosen again. At t= 0, each square is set to initially spin with
angular velocity chosen uniformly from the range [−5, 5]. A gravitational acceleration
of g= 1.5 in the negative y direction is applied, so that the squares sediment at the
bottom of the box. The full simulation is shown in Supplemental Movie 6.

A benefit of the reference map technique is that it can handle both neutrally
buoyant solids, and solids that are lighter than the surrounding fluid, without any
modification. To demonstrate this, we consider a second multi-body example with
75 solids made of rectangles of length 0.44, thickness 0.044 and rounded end caps,
all of which are initially vertically aligned. The solid densities are randomly chosen
uniformly over the range [0.4, 1.6] and a gravitational acceleration of g = 1 in the
negative y direction is applied. A simulation grid of 640× 1280 is used on the domain
x ∈ [−0.75, 0.75], y ∈ [−1.5, 1.5], the dynamic viscosity is µf = 2 × 10−3, the shear
modulus is G = 1.3, and the fluid density is ρf = 1. Figure 12 shows snapshots of
the density, the deviation of pressure from the background gradient due to gravity on
the fluid p′ = p+ ρf gy, and the vorticity at five time points. In the particular random
sample chosen, the average rod density is ρ̄s ≈ 0.904. Thus the average density in
the simulation is slightly lower than ρf and hence there is a small positive gradient
in p′ in the y direction at t = 0. The solids separate into two families, with solids
with ρs < ρf rising to the top of the domain, and solids with ρs > ρf sinking to the
bottom of the domain. While most rods have separated out by t = 40, it takes a
long time for the separation process to fully complete, since several rods are close to
neutrally buoyant and the reduced gravity they experience is small. By t = 120, all
rods have completely separated into two families although there is still some residual
movement visible. The density field, pressure deviation field, and vorticity field of
the full simulation are shown in Supplemental Movie 7, Supplemental Movie 8, and
Supplemental Movie 9, respectively.

5. Conclusion

Herein, we have presented a robustly accurate, yet straightforward to implement,
reference map technique, which has allowed us to study a variety of FSI problems
using a single background grid. It augments the multi-phase fluid framework of
Almgren, Bell and coworkers (Bell et al. 1989; Puckett et al. 1997; Almgren et al.
1998) by allowing general finite-deformation solid models to be coupled directly
to a fluid. In doing so, it maintains a number of the advantages of working on a
fixed Eulerian grid that are enjoyed in fluid simulation methods. The practicality
and usefulness of this approach is demonstrated in various tests. It is shown to
capture the flapping phase diagram for thin flags and the transition from thin- to
thick-flag behaviours, which highlights the role of new mechanisms to initiate flapping.
Additional physics, such as actuation of solids, is straightforward to implement with
a user-described actuated deformation gradient. This capability is used to model a
swimming object with realistic internal driving. The ability to model objects with
sharp corners is typically a challenge in Eulerian approaches, but here it can be done
by exploiting the reference map field near the edge of the object. We also present
an improved contact algorithm, which we use to simulate situations with many soft
interacting objects submerged in a fluid.

There are a number of future directions. One of clearest applications is in
biomechanics, with the simulation of systems of many interacting, actuated cells.
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FIGURE 12. Snapshots of (a) density ρ, (b) pressure deviation p′ = p + ρf gy and (c)
vorticity ω in a simulation of 75 flexible rods of variable density ρs ∈ [0.4,1.6] rearranging
in a fluid-filled box. The thick black lines mark the fluid–structure interfaces. Simulation
parameters are (ρf , µf ,G, g)= (1, 2× 10−3, 1.3, 1). The plot of p′ at t= 0 is based upon
taking a small time step of 1t= 10−6 and computing pressure based on the finite-element
projection.

We also foresee modelling solids beyond hyperelasticity, such as plasticity, thermal
material models and growth. These modifications can be done through the inclusion
of new state variables in the solid and/or the addition of a heat diffusion equation;
there are clear advantages to implementing thermal diffusion in the Eulerian frame.
Beyond extensions to three dimensions, there are opportunities to use the approach
for dimensionally reduced models such as membranes and shells by restricting the
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reference map to a lower dimensional set. Regarding contact modelling, the reference
map field could be used to instruct formulations for more advanced contact problems,
including friction and self-contact. Lastly, it is a major goal to extend the approach
to allow for non-persistent material boundary sets, as occurs in fracture. It may be
possible to represent crack surfaces through intersecting level set fields and to couple
this capability with physical traction–separation relations to generate new surface
material as cracks advance.
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Appendix A. Additional numerical details
A.1. Monotonicity-limited derivative

The gradients of the reference map and velocity appearing in (3.5) are computed using
the fourth-order monotonicity-limited scheme of Colella (1985). For the derivative of
a generic component ai,j in the x direction, finite differences

Dc(a)i,j = (ai+1,j − ai−1,j)/2, D+(a)i,j = ai+1,j − ai,j, D−(a)i,j = ai,j − ai−1,j (A 1a−c)

are introduced, from which the limiting slope is defined as

δlim(a)i,j =

{
2×min(|D−(a)i,j|, |D+(a)i,j|) if D−(a)i,jD+(a)i,j > 0,
0 otherwise.

(A 2)

The second-order limited slope is then

δf (a)i,j =min(|Dc(a)i,j|, δlim(a)i,j)× sign(Dc(a)i,j) (A 3)

from which the fourth-order monotonicity limited derivative is defined as

δ4(a)i,j =min
(
|8Dc(a)i,j − δf (a)i+1,j − δf (a)i−1,j|

6
, δlim(a)i,j

)
×

sign(Dc(a)i,j)
hx

. (A 4)

The y-derivative is evaluated similarly.
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A.2. Tangential derivatives
To ensure stability, the tangential derivatives appearing in (3.5) and (3.6) are computed
using

(ṽξy)
n
i,j =

ṽadv
i,j−1/2 + ṽ

adv
i,j+1/2

2
ξ̃i,j+1/2 − ξ̃i,j−1/2

hy
, (A 5)

(ṽvy)
n
i,j =

ṽadv
i,j−1/2 + ṽ

adv
i,j+1/2

2
ṽi,j+1/2 − ṽi,j−1/2

hy
, (A 6)

where the terms with tildes are computed using a preliminary Godunov upwinding
step where stress, pressure and tangential derivatives are neglected (Yu et al. 2003).
Extrapolations to a vertical edge from the left are given by

ξ̃
L,n+1/2
i+1/2,j = ξi,j +

1
2(hx − un

i,j1t)ξ n
x,i,j, (A 7)

ṽ
L,n+1/2
i+1/2,j = vn

i,j +
1
2(hx − un

i,j1t)vn
x,i,j, (A 8)

and with extrapolations to the other edges given similarly. On each edge, with the
selection procedure of (3.8) is used, with Case A used for ṽ

adv
= (ũadv, ṽadv) and

Case B used for ξ̃ and ṽ.

Appendix B. Tests of convergence and accuracy
B.1. Overview of the test configurations

To study the accuracy of the numerical method, we performed a convergence test in
the periodic domain [−1, 1)2 using an initial incompressible velocity field of

v(x, 0)=
5∑

k=0

(−1)kvvor

(
x−
−5+ 2k

6
, y−

−5+ 2k
6

, 2(k+ 1)
)
, (B 1)

where
vvor(x, λ)= (− sin πy, cos πx)e−λ(2−cos πx−cos πy). (B 2)

This velocity field is designed to have features with a variety of length scales. We
simulated up to t = 0.5, used a shear modulus of G = 1, a fluid density of ρf = 1,
and employed the standard choices for extra viscosity and time-step selection. Using
the same initial velocity field, we ran tests using (i) fluid only, (ii) solid only, (iii) a
circle of radius 0.6 centred on (−0.1, 0) and (iv) a square of side length 1.2 centred
on (−0.1, 0). We examined the effect of viscosity and the fluid/solid density ratio.

The configurations of eight different tests are shown in table 1. In our tests, we
also considered two different models for the scaling of the extra viscosity. Our primary
tests A–F follow § 3.5 and choose it to scale linearly with the grid size. This procedure
is consistent with standard numerical schemes; for example, in the second-order Lax–
Wendroff method (Lax & Wendroff 1960; LeVeque 2002) the stabilizing diffusive term
scales linearly with the grid spacing. However, we also considered alternative tests C’
and F’, whereby the extra viscosity is viewed as a physical dissipation within the solid
and is therefore held constant rather than scaling with the grid spacing. It is chosen
based on the 360× 360 grid and then held constant for the higher-resolution grids.
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Test State µf ρs CEV v, L2 v, L1 v, L∞ p, L2

A Fluid only 10−3 — No 1.92 (1.00) 1.94 (1.00) 1.92 (1.00) 2.00 (1.00)
B Fluid only 4× 10−3 — No 1.98 (1.00) 1.99 (1.00) 1.98 (1.00) 2.00 (1.00)
C Solid only 10−3 1 No 0.96 (1.00) 0.97 (1.00) 0.94 (1.00) 0.96 (1.00)
C’ Solid only 10−3 1 Yes 2.13 (0.72) 2.16 (0.79) 1.20 (0.00) 1.98 (0.93)
D Square 10−3 1 No 1.31 (1.00) 1.20 (0.91) 0.77 (0.65) 0.59 (0.94)
E Circle 10−3 3 No 1.32 (1.00) 1.27 (1.00) 1.40 (1.00) 0.47 (0.95)
F Circle 10−3 1 No 1.29 (0.99) 1.28 (1.00) 1.55 (0.05) 0.61 (0.88)
F’ Circle 10−3 1 Yes 1.04 (0.99) 1.08 (0.97) 0.88 (1.00) 0.55 (0.93)

TABLE 1. Details of the eight convergence tests that were performed with model problem
described in the text. Tests C’ and F’ were performed using constant extra viscosity
(CEV) whereby the extra viscosity was held constant at the standard value for the
lowest-resolution grid, 360 × 360, as opposed to scaling linearly with the grid spacing.
The last four columns give the exponents of convergence for velocity v and pressure p
under different Lq norms, based on a linear fit of the three-parameter error model of
(B 9) that incorporates a Richardson extrapolation correction. The proportion of Richardson
extrapolation correction is shown in italics in brackets.

Due to the complexity of the governing equations, it is near impossible to
write down an analytical solution to compare against for any test configuration.
We therefore performed reference simulations using a 5040 × 5040 grid. For
each test, we then ran a suite of coarser simulations using N × N grids where
N ∈ {2520, 1680, 1260, 1008, 840, 720, 630, 560, 504, 420, 360} to compare against the
reference results. Since each N divides evenly into 5040, the grid squares of these
coarse simulations align with the reference simulations.

We calculated normalized error measures with respect to Lq norms

Ep
q =

(
1
A

∫
Ω

|pref (x)− pcoa(x)|q d x
)1/q

, Ev
q =

(
1
A

∫
Ω

‖vref (x)− vcoa(x)‖
q
2 d x

)1/q

,

(B 3a,b)
where A= 4 is the area of the domain, and the ‘ref ’ and ‘coa’ subscripts refer to the
reference and coarse simulation fields, respectively. The integral is calculated using
a direct sum over the field values in the coarser simulation grid. The pressure field
is cell cornered, and hence each coarse gridpoint exactly coincides with a reference
gridpoint. The velocity field is cell centred, so some coarse gridpoints may not align
with a reference gridpoint, in which case the reference value is computed using
bilinear interpolation. The errors associated with this interpolation are O(h3) and are
small compared to the errors to be measured.

Figure 13 shows plots of the difference in velocity fields between the reference
simulation and the simulation on the coarsest grid, for six of the convergence tests
at t = 0.5. The colours in the panels are normalized differently, with differences for
tests A and C’ being much smaller than those for the other tests that are shown. In
the fluid-only test A, the largest errors are present on the diagonal line x= y, where
the initial vortices are located. Some higher errors are visible on thin curved lines,
which is a consequence of the switching between cases in the advection discretization.
Test C shows the errors for the solid-only simulation, which are about two orders of
magnitude larger than test A. In test C’ where the extra viscosity is held fixed, the
additional dissipation allows a closer match to be achieved. Tests D, F and F’ show
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FIGURE 13. Differences between the velocity fields in the reference simulation (using a
5040× 5040 grid) and the coarsest simulation (using a 360× 360 grid). Plots are shown
at t = 0.5 for six of the convergence tests. The colours in each panel are normalized
differently by a maximum value V . The thick black lines mark the fluid–structure
interfaces. The thin dashed lines are contours of the components of the reference map.
Simulation parameters are (ρf , µf , ρs,G)= (1, 10−3, 1, 1).

that the largest errors are all near the fluid–solid interface. Unlike models C and C’,
there is limited difference between models F and F’, since the errors near the interface
dominate.

B.2. Calculating convergence rates

Figure 14 shows convergence plots for the velocity in the L2, L1 and L∞ norms, plus
the pressure in the L2 norm; our discussion focuses on velocity, since the pressure can
be viewed as a Lagrange multiplier enforcing the incompressibility constraint. If the
method is of order s, and the reference solution is treated as exact, then the errors
scale according to

Ea
q(h)≈ Bhs, (B 4)

for some constant B where a is either p or v. However, in reality the reference solution
will not be exact. In particular, one could apply Richardson extrapolation (Richardson
1911; Hairer, Nørsett & Wanner 1993; Heath 2002) and propose that the numerical
solution has a Taylor series in h, so the leading-order error term is of the form hs.
Specifically, let f (h) ∈ C1(Ω) be a representation of a component (u, v or p) of the
numerical solution computed with grid spacing h so that it agrees with the numerical
values at the grid points, and smoothly interpolates between them. Then

f (h)= f0 + f1hs
+O(hs+1), (B 5)
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FIGURE 14. Plots showing the accuracy of the solutions for different grid sizes h for the
eight convergence tests given in table 1. Accuracy is computed with respect to reference
solutions on a 5040× 5040 grid. Four accuracy measures are shown: the velocity in the
L2, L1 and L∞ norms, and the pressure in the L2 norm. The symbols correspond to the
computed errors with (B 3) and the lines correspond to the fitted three-parameter error
model using (B 9).

for some smooth functions f0, f1 ∈ C1(Ω). Under this assumption the error scales
according to

Ea
q(h)= B(hs

− hs
ref )+O(hs+1). (B 6)

However, for the current method, equation (B 5) is not precisely true, since there
are several steps in the numerical method are not Taylor expandable to higher order.
The advective terms in the discretization rely on discrete switching between different
cases, which manifests as the lines of higher error in tests A and C’ in figure 13.
When a grid point leaves the solid, the ξ switches from a time-integrated value to an
extrapolated value, causing a small, discrete jump in the field, potentially contributing
to errors near the boundary.

From figure 13 it is apparent that most of the errors in the domain are smooth, and
regular. We therefore propose a model whereby the simulation domain is split into
ΩT where the Richardson error model, equation (B 6), is applied, and ΩS where the
original error model, equation (B 4), is applied. This leads to a three-parameter error
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model
Ea

q(h)= B(hs
− αhs

ref )+O(hs+1), (B 7)

where α ∈ [0, 1] is the proportion of the Richardson error correction. Taking the
logarithm of (B 7) yields

log Ea
q =C+ s log h log

(
1− α

hs
ref

hs

)
, (B 8)

where C = log B ∈ R. Define X = log href , and let (xk, yk) be pairs (log h, log Ea
q(h))

for each lower resolution that was considered. Then s, C and α may be determined
by solving the constrained nonlinear least squares problem

φ(C, s, α)=
∑

k

(C+ sxk log(1− αes(X−xk))− yk)
2. (B 9)

Equation (B 9) fits all 32 data sets in figure 14 accurately, and the Richardson term
correctly captures how most data sets curve downwards. The convergence rates, and
proportion of Richardson correction are shown in table 1. The fluid-only tests, A and
B, are the most accurate, exhibiting clear second-order convergence across all metrics.
Results for the solid-only test C are less accurate with error measures on the scale of
10−3, and a convergence rate of one is seen across all four metrics in table 1. This is
due to the linear scaling of the extra viscosity, which effectively results in changing
the physical parameters as the grid spacing changes, approaching the limit of a non-
dissipative process as h→ 0. In test C’ where the extra viscosity is held fixed, and
the physical parameters remain the same, a convergence rate of two is achieved in the
L1 and L2 norms. Thus second-order accuracy of the solid discretization is achieved,
but only for the case where damping is a fixed physical parameter. It remains an open
question to find a second-order discretization for a perfectly non-dissipative solid.

The remaining tests, D, E, F and F’ all involve fluid–structure interaction. In the
L1 and L2 norms, the convergence rate is approximately 1.3 for tests D, E and F, and
1.0 for test F’. As seen in figure 13 the largest deviations occur at the fluid–structure
interface. Since the blur zone is defined in terms of grid points, its width shrinks at
higher resolution. This involves altering the underlying equations over a region of size
O(h), and results in a lower rate of convergence. However, since the fluid and solid
discretizations are independently second order, is likely that an alternative boundary
treatment – perhaps using a sharp interface approach (Gibou & Fedkiw 2005; Francois
et al. 2006) – could yield improved results. Test E shows that a fluid–solid density
ratio has little effect on the convergence rate. Test D shows that the square geometry
does not affect the convergence rate in the L2 and L1 norms, but results in a lower
convergence rate in the L∞ norm due to localized effects at the corners.

Appendix C. Performance tests over a range of resolutions
The simulations that are shown in the main text make use of high resolution to

ensure accurate results. Here, we demonstrate that the method can work over a wide
range of resolutions, and we examine its performance. We consider a three-pronged
object whose boundary is described in polar coordinates by

r(θ)= R
1+ α3 cos 3θ + α6 cos 6θ

1+ α3 + α6
. (C 1)
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FIGURE 15. Snapshots of vorticity ω in a simulation of three-pronged rotor being spun
with an oscillatory motion in a fluid. The thick black line marks the fluid–structure
interface. The thin dashed lines are contours of the components of the reference map and
indicate how the rotor has deformed. The dark blue dotted circle shows the pivot region.
Simulation parameters are (ρf , µf , ρs,G)= (1, 10−2, 3, 48).

The simulation domain is |x| 6 1, |y| 6 1 and no-slip boundary conditions are used
on all sides. An N × N grid is used. Parameters of ρf = 1, ρs = 3, µf = 10−2, G =
48 are used, and the simulation duration is T = 4π. The shape is parameterized with
(R, α3, α6)= (0.8, 0.5, 0.125). The shape is rotated via a pivot centred at the origin
of radius 0.2, whose angle is set to

θ(t)=

{
π(1− cos t) if t< 2π,

0 if t > 2π,
(C 2)

following the same pinning method as in (4.1) with a stiffness constant of Kteth =

10−1ρs1t−2. The r.m.s. angular velocity for T ∈[0,2π] is ωrms=π/2, Hence, we define
the Reynolds number to be

Re=
ρf R(ωrmsR)

µf
≈ 100. (C 3)

Figure 15 shows a snapshot of vorticity for six different time points for an
intermediate resolution of N = 240. Since the viscosity is higher by a factor of
ten from the example in § 4.1, fewer vortices are visible. Figure 16 shows snapshots
at T = 4π/3 for a range of resolutions from N = 20 to N = 1280. At lower resolution,
the accuracy of the solid deformation and the fluid flow is reduced, but the flow is
qualitatively similar, and the simulation runs successfully.

Figure 17(a) shows a comparison of wall clock times for a Linux computer with
dual 10-core 2.2 GHz Intel Xeon E5-2630 processors. The total simulation time
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FIGURE 16. Snapshots of vorticity ω in the three-pronged rotor simulation at time t =
4π/3 using an N×N computational grid for six different values of N. The thick black line
marks the fluid–structure interface. The thin dashed lines are contours of the components
of the reference map and indicate how the rotor has deformed. The colours use the same
scale as in figure 15. The dark blue dotted circle shows the pivot region. Simulation
parameters are (ρf , µf , ρs,G)= (1, 10−2, 3, 48).

varies over a large range, from 8.1 s for N = 20 to 67.7 h for N = 800 when using
a single thread. Using multiple threads creates a substantial speedup, reducing the
time for N = 800 to 20.9 h for four threads and 9.4 h for 16 threads; these times
correspond to parallel efficiencies of 80.1 % and 44.9 %, respectively. Some parts of
the simulation (e.g. the extrapolation routine) are not threaded, and contribute to this
loss of efficiency.

Figure 17(b) shows the time-step restrictions due to the liquid viscosity, the shear
wave CFL condition and the extra solid viscosity. For small grid sizes, the time step
is set by the extra solid viscosity, but for n > 640 the fluid viscosity provides the
strongest restriction. Because of this, the total work scales like N3 for most of the data
in figure 17(a), but will eventually transition to N4 once the fluid viscosity becomes
important.

A large fraction of the computation time is spent solving the two linear systems for
the marker-and-cell projection (§ 3.1.2) and the finite-element projection (§ 3.4). These
are solved using a C++/OpenMP multigrid library (appendix F). The library works on
any grid size, and uses a hierarchy of grids where the grid dimensions are halved at
each successive level. On very small grids, it is inefficient to use threads due to the
performance overhead of thread initialization. Because of this, the library self-tunes
prior to use to determine the grid level at which to enable threading. Figure 17(c)
shows the average number of V-cycles that are performed to reach the required error
tolerances, showing that there is limited variation as N changes. Figure 17(d) shows
the time required to perform a V-cycle as a function of N. As expected the single-
threaded times scale like N2, proportional to the degrees of freedom. For N 6 100
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FIGURE 17. Performance of the simulation code for the three-pronged rotor in appendix C
when run on simulations with different N ×N grids. (a) Total wall-clock (WC) time as a
function of N for different numbers of threads. (b) The three time-step restrictions based
on the shear wave speed, extra viscosity and fluid viscosity as a function of N. (c) The
average number of V-cycles required to solve the marker-and-cell (MAC) linear system
and the finite-element method (FEM) linear system as a function of N. (d) The wall-clock
time for performing a single V-cycle on different grid sizes, using one and sixteen threads,
as a function of N.

the time for 16 threads is similar to the single-threaded performance, since the grids
are not large enough for threading to be enabled. However, for large grids, threading
results in more than a 10× speedup. Across all simulation sizes and thread numbers,
the MAC and finite-element linear systems each take between 20 %–30 % of the total
computation time.

Appendix D. Effect of the blur zone
As described in § 2, the numerical method uses a transition region of width 2ε to

blur between the fluid and solid stresses at an interface. The form of the blurring
function is given by (2.9) based on previous studies (Sussman et al. 1994, 1999; Yu
et al. 2003, 2007), and throughout the paper we use ε = 2.5h. Here, we explore the
effect of the blur zone width, by running the three-pronged rotor of appendix C using
different values of ε.

Figure 18 shows close-ups of the vorticity field for four different values of ε at
t = 2π. At this time point, the clockwise motion of the rotor is arrested, which
causes momentarily large shear stresses. If ε = 0, so that there is a hard transition
between fluid and solid stress, then this creates numerical noise in the vorticity field
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FIGURE 18. Close-ups of vorticity ω the three-pronged rotor simulation at t= 2π using
a 240× 240 grid for varying values of the blur zone half-width, ε. The thick black line
marks the fluid–structure interface. The thin dashed lines are contours of the components
of the reference map and indicate how the rotor has deformed. The colours use the
same scale as in figure 15. The dark blue dotted quarter-circle shows the pivot regions.
Simulation parameters are (ρf , µf , ρs,G)= (1, 10−2, 3, 48).

near the interfaces. Since vorticity is based on first derivatives, the variations in the
underlying velocity field are smaller. In these simulations the tethering force (4.1) is
also smoothed using the same value of ε, and hence numerical noise is also visible
at the edge of the pivot region. Despite the noise, the simulation with ε = 0 runs
adequately. As ε increases the noise at the interface is progressively blurred out.
Figure 19(a) shows a plot of the maximum vorticity field in the simulation over time
for differing values of blur zone width, highlighting the trade-off between additional
noise for small ε, and excessive blurring for large ε. Our default value of 2.5h is an
acceptable compromise between the two limits.

The precise form of smoothed delta and Heaviside functions has been studied in the
literature, and we also considered the delta function studied by Tornberg & Engquist
(2003, 2004) where

δalt
ε (φ)=max

{
0,

1
ε
−
|φ|

ε2

}
. (D 1)

Equation (D 1) satisfies several discrete moment conditions (Beyer & LeVeque 1992)
and has better convergence properties for some problems. We calculated an associated
Heaviside function using integration, and ran a variant of convergence test F from
appendix B. The measured convergence exponents are within ±0.03 of the original
test. Hence, for the current method, errors at the boundary are dominated by other
processes, such as extrapolation. Designing better smoothing and extrapolation is an
interesting avenue for further study.

Appendix E. Volume conservation

Since the reference map field represents an incompressible solid, the determinant
of the deformation gradient J = det F should remain equal to unity throughout
the simulation, but in the numerical scheme this property will only be maintained
approximately. This issue is encountered in other incompressible fluid–structure
interaction approaches, such as the immersed boundary method where the Lagrangian
description of the solid is updated from the fluid velocity and may experience
volumetric changes over time (Wang, Zhang & Liu 2009; Griffith 2012; Vadala-Roth
et al. 2020).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

35
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.353


Incompressible reference map technique 898 A9-39

0
5

10
15
20
25
30
35
40(a)

(b)

t
0 π/2 π 3π/2 2π 5π/2 3π 7π/2

Ó = 0
Ó = 0.5h
Ó = 1.5h
Ó = 2.5h
Ó = 4.5h
Ó = 8.5h

4π

1/2400
1/800
1/400‖J

 -
 1

‖ 2
‖ø

‖ ∞

1/200

1/100

3/200 N = 160
N = 240
N = 240, no MAC
N = 640

FIGURE 19. (a) Plots of the maximum value of vorticity field as a function of time, in
the three-pronged rotor simulations using six different values of the blur zone half-width ε.
(b) Plots of the difference in the Jacobian J from unity in the solid for the three-pronged
rotor simulations for several N × N grids. A nonlinear square root scale is used on the
vertical axis to account for the substantially larger differences in J for the simulation
without the MAC projection.

To investigate the magnitude of volumetric deviations, we simulate the three-
pronged rotor of appendix C and compute the field J − 1. The field is evaluated on
all cell corners in the interior of the solid, where the bilinear interpolation of φ is
negative. Calculating J requires the gradient of the reference map, which is computed
at each cell corner using centred finite differences of the four adjoining cell-centred
reference map fields, some of which may be based on extrapolation.

Figure 20 shows snapshots of J − 1 for several simulation configurations. The top
row shows three snapshots on a 240 × 240 grid. Small volumetric deviations of the
order of 10−2 are visible and are concentrated near the fluid–solid interface, and at
the edge of the pivot region. Figure 19(b) shows a plot of ‖J − 1‖2 as a function of
time. The volumetric deviations grow rapidly up to t=π/4 but then remain relatively
stable; in particular, for t > 2π when the pivot stops rotating, ‖J − 1‖2 tends to a
constant value. The volumetric deviations have the expected dependence on resolution:
as shown in figures 19 and 20 the errors are larger for N = 160 and smaller for
N = 640. The values of ‖J − 1‖2 at t = 4π scale approximately like h1.1, consistent
with the convergence rates in table 1. We find that the MAC projection substantially
improves the volume conservation of the reference map: switching off the projection
results in larger deviations overall, plus a tendency for them to grow once the pivot
stops rotating (figure 19). This can cause considerable errors near the pivot, as shown
in the bottom right panel of figure 20.

Appendix F. Computer code
All results in this paper were created using a custom C++ code that uses OpenMP

for multithreading. The code is released as an open source software package,
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FIGURE 20. Snapshots of volumetric change in the solid, J − 1, in several simulations
of the three-pronged rotor on N ×N grids. The thick black line marks the fluid–structure
interface. The thin dashed lines are contours of the components of the reference map and
indicate how the rotor has deformed. The dark red dotted circle shows the pivot region.
The bottom right panel is from a simulation where the MAC projection is switched off.
Simulation parameters are (ρf , µf , ρs,G)= (1, 10−2, 3, 48).

IncRMT, via a GitHub repository at https://github.com/chr1shr/incrmt. As discussed
in appendix C, a large fraction of the computation time is spent solving the MAC
projection and finite-element projection to enforce incompressibility. This is done
using the Templated Geometric Multigrid library, which is available on GitHub at
https://github.com/chr1shr/tgmg.
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