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We relate the so-called powercone models of mixed non-deterministic and probabilistic

choice proposed by Tix, Keimel, Plotkin, Mislove, Ouaknine, Worrell, Morgan and McIver,

to our own models of previsions. Under suitable topological assumptions, we show that they

are isomorphic. We rely on Keimel’s cone-theoretic variants of the classical Hahn–Banach

separation theorems, using functional analytic methods, and on the Schröder–Simpson

Theorem.

1. Introduction

Consider the question of giving semantics to a programming language with mixed choice,

i.e., with two interacting forms of choice, non-deterministic and probabilistic. For example,

probabilistic choice can be the result of random coin flips, while non-deterministic choice

can be the result of interaction with an environment, which decides which option to take

in our place.

We shall be especially interested in domain-theoretic models, where the space of all

choices over a directed complete poset (dcpo) of values is itself a dcpo.

Models of only one form of choice have been known for a long time. For non-

deterministic choice, the best known models are the Hoare powerdomain of angelic

non-determinism, the Smyth powerdomain of demonic non-determinism and the Plotkin

powerdomain of erratic non-determinism, see Abramsky and Jung (1994, Section 6.2)

or Gierz et al. (2003, Section IV.8): there, choices are represented as certain sets of

values, from which the environment may choose. For probabilistic choice, a natural

model is the Jones–Plotkin model of continuous valuations (Jones 1990), where choices

are represented as objects akin to (sub)probability distributions over the set of possible

values, called continuous valuations.

Several denotational models of mixed choice were proposed in the past. Let us list some

of them:

1. In the powercone models, choices are modelled as certain sets E of continuous valuations.

These sets are, in particular, convex, meaning that aν + (1 − a)ν ′ is in E for all ν, ν ′ ∈ E

and a ∈ [0, 1]. Choice proceeds by picking a valuation ν from the set E, then drawing

a value v at random according to ν. The probability that v may fall in some set U

is supν∈E ν(U), while the probability that it must fall in U is infν∈E ν(U). Such models
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were proposed and studied by Mislove (2000), by Tix (1999) and Tix et al. (2009) and

by McIver and Morgan (2001).

2. In the prevision models, choices are modeled as certain second-order functionals F ,

called previsions. They represent directly the probability that a value v may fall in

U, or must fall in U, depending on the kind of prevision, as F(χU), where χU is the

characteristic function of U. These were proposed by the author in Goubault-Larrecq

(2007), and also underlie the (generalized) predicate transformer semantics of Keimel

and Plotkin (2009) or of Morgan et al. (1996).

3. The models of indexed valuations (Varacca 2003, 2002) are alternate models for mere

probabilistic choice. They combine well with angelic non-determinism, yielding models

akin to the powercone models, except that we do not require the sets of indexed

valuations/continuous random variables to be convex. Categorically, the combination

is obtained via a distributivity law between monads.

4. The monad coproduct models of Lüth (1997), once instantiated to the monads of non-

blocking non-deterministic and probabilistic choice (Ghani and Uustalu 2004), also

yield a model of mixed choice, which the latter authors argue is close to Varacca’s.

Our goal is to relate the first two, and to show that, under mild assumptions, they are

isomorphic. We have already announced this result in Goubault-Larrecq (2008). The

proof was complex and was limited to continuous dcpos. Similar isomorphisms were

proved, with the general aim of giving generalized predicate transformer semantics to

powercone models, by Keimel and Plotkin (2009), again for continuous dcpos, and for

unbounded continuous valuations, not (sub)probability valuations†. We generalize these

results to much larger classes of topological spaces, using more streamlined and more

general arguments than in Goubault-Larrecq (2008).

The basic idea is simple. There is a map r from the powercone model, which maps

any set E of continuous valuations to F = r(E), defined by F(h) = supν∈E
∫
x
h(x)dν (in

the angelic case; replace sup by inf in the demonic case). One needs to show that it is

continuous, and that it has a continuous inverse.

Our approach is typical of convex analysis. By a form of the Riesz representation

theorem, which we shall make explicit below, there is an isomorphism between continuous

valuations ν and linear previsions, i.e., previsions F such that F(a.h+(1 −a).h′) = aF(h)+

(1 − a)F(h′) for all a ∈ [0, 1]: define F(h) as
∫
x
h(x)dν. It is useful to imagine such linear

previsions by drawing the curve y = F(h), where h serves as x-coordinate, and convincing

oneself that such curves should be straight lines. Modulo this isomorphism, r maps a set E

of linear previsions (the straight lines in Figure 1) to its pointwise sup, shown as a fat curve.

This fat curve is always convex (meaning that F(a.h+(1 − a).h′) � aF(h)+ (1 − a)F(h′) for

all a ∈ [0, 1]), and will be our (angelic) prevision r(E). Conversely, given any convex, fat

curve F , the set of straight lines below it form a convex set of linear previsions E = s(F).

† While we were preparing the final version of this document, Klaus Keimel informed me of a newer paper

by the same authors (Keimel and Plotkin 2015), which, among other things, also deals with probability and

subprobability valuations, relying on a novel notion of Kegelspitze.
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Fig. 1. Convex hulls.

Showing that s is a right inverse to r, i.e., that r(s(F)) = F is essentially the Hahn–

Banach theorem (or the corresponding variant in our setting). The difficult part will be

to show that s takes its values in the right space, and that it is continuous.

1.1. Outline

We present all needed domain-theoretic, topological and cone-theoretic notions in Sec-

tion 2. This is a fairly long section, and our only excuse is that we have tried to

make the paper as self-contained as possible. Section 3 exhibits our prevision models

as retracts of spaces of certain sets (closed, compact or lenses) of certain continuous

valuations (unbounded, subprobability, probability). The only difference that these sets

exhibit compared to powercones is that we are not requiring them to be convex. The

existence of these retractions has a certain number of interesting consequences, which we

also list there. Finally, using the Schröder–Simpson Theorem, we establish the desired

isomorphisms in Section 4. We conclude in Section 5.

2. Preliminaries

We refer the reader to Gierz et al. (2003), Abramsky and Jung (1994) and Mislove (1998)

for background on domain theory and topology. We shall write x ∈ X �→ f(x) for the

function that maps every element x of some space X to the value f(x), sometimes omitting

mention of the space X.

2.1. Domain theory

A set with a partial ordering � is a poset . We write ↑E for {y ∈ X | ∃x ∈ E · x � y},
↓E = {y ∈ X | ∃x ∈ E · y � x}. A dcpo is a poset in which every directed family (xi)i∈I
has a least upper bound (a.k.a., supremum or sup) supi∈I xi. Symmetrically, we call inf

(or infimum) any greatest lower bound. A family (xi)i∈I is directed iff it is non-empty, and

any two elements have an upper bound in the family. Any poset can be equipped with

the Scott topology , whose opens are the upward closed sets U such that whenever (xi)i∈I
is a directed family that has a least upper bound in U, then some xi is in U already. A

dcpo X is pointed iff it has a least element, which we shall always write ⊥.
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Given a poset X, we shall write Xσ for X seen as a topological space, equipped with its

Scott topology.

We shall always consider R
+, or R+ = R

+ ∪ {+∞}, as posets, and implicit endow them

with the Scott topology of their ordering �. We shall still write R
+
σ or R+

σ to make this

fact clear. The opens of R
+ in its Scott topology are the intervals (r,+∞), r ∈ R

+, together

with R
+ and �. Those of [0, 1] are �, [0, 1], and (r, 1], r ∈ [0, 1). Those of R+ are �, R+,

and (r,+∞], r ∈ R
+.

Given two dcpos X and Y , a map f : X → Y is Scott-continuous iff it is monotonic

and f(supi∈I xi) = supi∈I f(xi) for every directed family (xi)i∈I in X.

We write [X → Y ] for the space of all Scott-continuous maps from X to Y , for two

dcpos X and Y . This is again a dcpo, with the pointwise ordering.

The way-below relation  on a poset X is defined by x  y iff, for every directed

family (zi)i∈I that has a least upper bound z such that y � z, then x � zi for some i ∈ I

already. We also say that x approximates y. Note that x  y implies x � y, and that

x′ � x  y � y′ implies x′  y′. However,  is not reflexive or irreflexive in general.

Write ↑↑E = {y ∈ X | ∃x ∈ E · x  y}, ↓↓E = {y ∈ X | ∃x ∈ E · y  x}. X is continuous

iff, for every x ∈ X, ↓↓x is a directed family, and has x as least upper bound. A basis is a

subset B of X such that any element x ∈ X is the least upper bound of a directed family

of elements way-below x in B. Then, X is continuous if and only if it has a basis, and in

this case X itself is the largest basis.

In a continuous poset with basis B, interpolation holds: if x1, . . . , xn are finitely many

elements way-below x, then there is a b ∈ B such that x1, . . . , xn are way-below b, and

b  x. (See for example (Mislove 1998, Section 4.2).) In this case, the Scott opens are

exactly the unions of sets of the form ↑↑b, b ∈ B.

2.2. Topology

A topology O on a set X is a collection of subsets of X, called the opens , such that any

union and any finite intersection of opens is open. The interior of a subset A of X is the

largest open included in A. A closed subset is the complement of an open subset. The

closure cl(A) of A is the smallest closed subset containing A. An open neighbourhood U

of a point x is merely an open subset that contains x.

A topology O1 is finer than O2 if and only if it contains all opens of O2. We also say

that O2 is coarser than O1.

A base B (not a basis) of O is a collection of opens such that every open is a union

of elements of the base. Equivalently, a family B of opens is a base iff for every x ∈ X,

for every open U containing x, there is a V ∈ B such that x ∈ V ⊆ U. A subbase of O
is a collection of opens such that the finite intersections of elements of the subbase form

a base; equivalently, the coarsest topology containing the elements of the subbase is O,

and then we say that O is generated by the subbase.

The specialization preorder of a space X is defined by x � y if and only if for every

open subset U of X that contains x, U also contains y. For every subbase B of the

topology of X, it is equivalent to say that x � y if and only if every U ∈ B that contains

x also contains y. The specialization preorder of a dcpo X, with ordering �, in its Scott
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topology, is �. A topological space is T0 if and only if � is a partial ordering, not

just a preorder. A subset A of X is saturated if and only if it is upward-closed in the

specialization preorder �.

A map f from X to Y is continuous if and only if f−1(V ) is open in X for every open

subset V of Y . The characteristic function χA : X → R+
σ of a subset A of X, defined as

mapping every x ∈ A to 1 and every x �∈ A to 0, is continuous if and only if A is open

in X. When X and Y are posets in their Scott topology, f : X → Y is continuous if and

only if it is Scott-continuous.

A subset K of a topological space X is compact if and only if every open cover of K

has a finite subcover. The image f[K] of any compact subset of X by any continuous

map f : X → Y is compact in Y . A homeomorphism is a bijective continuous map whose

inverse is also continuous.

The product of two topological spaces X, Y is the set X×Y with the product topology,

which is the coarsest that makes the projection maps π1 : X×Y → X and π2 : X×Y → Y

continuous. Equivalently, a base of this topology is given by the open rectangles U × V ,

where U is open in X and V is open in Y .

If X and Y are posets, viewed as topological spaces in their Scott topology, then there is

some ambiguity about the notation X×Y . We might indeed see the latter as a topological

product, with the just mentioned product topology, or as a product of two posets, with

the Scott topology of the product ordering. In general, the Scott topology on the poset

product is strictly finer than the product topology. This difficulty vanishes when X and

Y are continuous posets: indeed, in this case the product poset is continuous as well, and

a base of the Scott topology in the product is given by the subsets of the form ↑↑(x × y),

which are also open in the product topology, as they coincide with ↑↑x× ↑↑y.
A topological space X is locally compact if and only if for every x ∈ X, for every open

subset U of X containing X, there is a compact subset K ⊆ U whose interior contains x.

Then, we can require K to be saturated as well, replacing K by its upward closure. In a

locally compact space, every open subset U is the union of the directed family of all open

subsets V such that V ⊆ Q ⊆ U for some compact saturated subset Q. A refinement of

this is the notion of a core-compact space, which is by definition a space whose lattice of

open subsets is a continuous dcpo. We shall agree to write � for the way-below relation

on the lattice of open sets of a space. Every locally compact space is core-compact, in

which V � U if and only if V ⊆ Q ⊆ U for some compact saturated subset Q.

Every continuous poset is locally compact, since whenever x ∈ U, U open, there is an

y ∈ U such that y  x, so that we can take K = ↑ y, and V = ↑↑y.
A topological space X is well-filtered if and only if for every filtered family (Qi)i∈I of

compact saturated subsets of X whose intersection is contained in some open subset U,

Qi ⊆ U for some i ∈ I already. (A family of subsets is filtered if and only if it is directed

in the reverse inclusion ordering ⊇.) Every sober space is well filtered (Gierz et al. 2003,

Theorem II-1.21), and every continuous dcpo is sober in its Scott topology (Gierz et al.

2003, Corollary II-1.12). (We will not define sober spaces, but see the paragraph on Stone

duality below.)

There are several topologies one can put on the space [X → Y ] of continuous maps

from X to Y , and more generally on any space Z of continuous maps from X to Y .
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Looking at Z , resp., [X → Y ], as a subspace of the product Y X (i.e., the space of all

maps from X to Y ), we obtain the topology of pointwise convergence. This is also the

coarsest topology that makes all the maps f �→ f(x) continuous, for each x ∈ X. We

write [X → Y ]p for [X → Y ] with the topology of pointwise convergence. Note that if

Z ⊆ [X → Y ], then the topology of pointwise convergence on Z is also the subspace

topology from [X → Y ]p.

When Y is R+
σ or R

+
σ , a subbasis of open sets of [X → Y ]p is given by the subsets

[x > r] = {f ∈ [X → Y ] | f(x) > r}, x ∈ X, r ∈ R
+. Note that the latter are Scott

open. In particular, the Scott topology on [X → R+
σ] is always finer than the topology

of pointwise convergence.

2.3. Coherence

A space X is coherent if and only if the intersection of any two compact saturated subsets

is again compact.

A related notion is the following. Say the way-below relation  on a lattice is

multiplicative (see Abramsky and Jung (1994, Definition 7.2.18) or Gierz et al. (2003,

Proposition I.4.7)) if and only if for all x, y1, y2 with x  y1 and x  y2, we have

x  inf(y1, y2). We have called core-coherent those spaces X such that the way-below

relation � was multiplicative on the lattice of open subsets of X (Goubault-Larrecq 2010,

Comment before Definition 5.8).

It is easy to see that every locally compact, coherent space is (core-compact and)

core-coherent. Indeed, assume V � U1, V � U2. By local compactness, there are compact

saturated subsets Q1, Q2 such that V ⊆ Q1 ⊆ U1, V ⊆ Q2 ⊆ U2. Then, V ⊆ Q1 ∩ Q2 ⊆
U1 ∩ U2. Since X is coherent, Q1 ∩ Q2 is compact. So V � U1 ∩ U2. In fact, one can

check that the sober, core-compact and core-coherent spaces are exactly the sober, locally

compact and coherent spaces (Abramsky and Jung 1994, Theorem 7.2.19).

2.4. Stable compactness

A space that is sober, locally compact and coherent is called stably locally compact. It is

stably compact iff stably locally compact and compact. An equivalent definition of a stably

locally compact space is a space that is T0, locally compact, well-filtered and coherent.

Stably compact spaces were first studied in Nachbin (1965), see also Gierz et al.

(2003, Section VI-6), or Alvarez-Manilla et al. (2004, Section 2). They enjoy the following

property, called de Groot duality. Let Xd be X, topologized by taking as opens the

complements of compact saturated subsets of X. Then, Xd is stably compact again,

and Xdd = X. Moreover, the specialization ordering of Xd is �, the opposite of the

specialization ordering of X.

The patch topology on a stably compact space A is the coarsest topology finer than

those of A and Ad, i.e., it is generated by the opens of A and the complements of compact

saturated subsets of A. Write Apatch for A with its patch topology: this is a compact T2

space, and the specialization ordering � on A has a closed graph in Apatch ×Apatch, making

(Apatch,�) a compact pospace Nachbin (1965). We shall be specially interested in A = R+
σ;
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then, Apatch is merely R+ with its ordinary T2 topology generated by the intervals (a, b),

[0, b), and (a,+∞]. We shall also use the fact that any product of stably compact spaces

is stably compact, and the patch operation commutes with product (Alvarez-Manilla

et al. 2004, Proposition 14). So R+
C

σ is stably compact, and (R+
C

σ )patch is the compact T2

space R+
C
.

We agree to prefix with ‘patch-’ any concept relative to patch topologies. For example,

a patch-closed subset of A is a closed subset of Apatch, and a patch-continuous map from

A to B is a continuous map from Apatch to Bpatch.

2.5. Stone duality

There is a functor O from the category of topological spaces to the opposite of the category

of frames (certain complete lattices), defined by the following: for every topological space

X, O(X) is the frame of its open subsets, and for every continuous map f : X → Y , O(f)

is the frame homomorphism that maps every V ∈ O(Y ) to f−1(V ) ∈ O(X). This functor

has a right adjoint pt, which maps every frame to its set of completely prime filters, with

the so-called hull-kernel topology. For details, see Abramsky and Jung (1994, Section 7)

or Gierz et al. (2003, Section V-5).

This adjunction establishes a correspondence between properties of spaces X and

properties of frames L. For example, X is core-compact if and only if O(X) is continuous,

X is core-coherent if and only if the way-below relation on O(X) is multiplicative and X

is compact if and only if the top element of O(X) is finite, i.e., way-below itself.

Going the other way around, pt(L) is always a sober space. (In fact, it is legitimate to

call sober any topological space that is homeomorphic to one of this form.) For every

topological space X, the fact that pt is right adjoint to O entails that pt(O(X)) obeys the

following universal property: there is a continuous map ηX from X to pt(O(X)) (namely,

the unit of the adjunction), and every continuous map f from X to any given sober space

Y extends to a unique continuous map f! from pt(O(X)) to Y , in the sense that f!◦ηX = f.

A space obeying that universal property is called a sobrification S(X) of X. Sobrification

S is left adjoint to the forgetful functor from sober spaces to topological spaces; in other

words, S(X) is a free sober space above X. In particular, all the sobrifications of X are

naturally isomorphic.

If L is a continuous frame, then pt(L) is a locally compact, sober space (Abramsky and

Jung 1994, Theorem 7.2.16). Equivalently, it is locally compact, T0, and well filtered (Gierz

et al. 2003, Theorem II-1.21). It follows that if X is core-compact, then its sobrification is

locally compact, T0 and well filtered.

If L is arithmetic, i.e., is a continuous frame with a multiplicative way-below relation,

then pt(L) is stably locally compact (Abramsky and Jung 1994, Theorem 7.2.19). So the

sobrification of a core-compact, core-coherent space is stably locally compact. Similarly,

the sobrification of a compact, core-compact and core-coherent space is stably compact.

For any topological space X, X and its sobrification S(X) ∼= pt(O(X)) have isomorphic

lattices of open subsets. This informally states that any construction, any property that

can be expressed in terms of opens will apply to both.

One easy consequence, which we shall use in Section 3.3, is the following.
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Lemma 2.1. The function ! that maps h ∈ [X → R+
σ] to h! ∈ [S(X) → R+

σ] is an

order-isomorphism, a homeomorphism when the function spaces are equipped with their

Scott topologies, and is natural in X.

Proof. R+
σ is sober, hence h! is well defined. Since S is left adjoint to the forgetful

functor U from sober spaces to topological spaces, the correspondence between morphisms

h : X → U(R+
σ) and morphisms h! : S(X) → R+

σ is bijective, and is natural in X. Both

! and its inverse h′ �→ h′ ◦ ηX are monotonic, and therefore define an order-isomorphism,

hence an isomorphism of spaces with their Scott topologies. (To show that ! is monotonic,

consider f � g, and realize that sup(f!, g!) is a continuous map that extends sup(f, g) = g,

hence must coincide with g! by uniqueness of extensions.)

2.6. Cones

A cone C is an additive commutative monoid with a scalar multiplication by elements

of R
+, satisfying laws similar to those of vector spaces. Precisely, a cone C is endowed

with an addition + : C × C → C , a zero element 0 ∈ C , and a scalar multiplication

· : R
+ × C → C such that

(x+ y) + z = x+ (y + z) x+ y = y + x x+ 0 = x

(rs) · x = r · (s · x) 1 · x = x 0 · x = 0

r · (x+ y) = r · x+ r · y (r + s) · x = r · x+ s · x.

An ordered cone is a cone with a partial ordering that makes + and · monotonic. Similarly,

a topological cone is a cone equipped with a T0 topology that makes + and · continuous,

where R
+ is equipped with its Scott topology. In a semitopological cone, we only

require + and · to be separately continuous, not jointly continuous.

An important example of semitopological cone is given by the ordered cones in

which + and · are Scott-continuous (the s-cones), in particular by Tix, Keimel and

Plotkin’s d-cones (Tix et al. 2009), which are additionally required to be dcpos. As noticed

by Keimel (2008, Remark before Proposition 6.3), an s-cone C may fail to be a topological

cone, unless C is a continuous cone, i.e., an ordered cone that is continuous as a poset, and

where + and · are Scott-continuous. In that case, the product of the Scott topologies is the

Scott topology of the product ordering, and separate continuity implies joint continuity.

The most important cone we shall deal with is the ordered cone [X → R+
σ] of all

continuous maps from X to R+
σ . With its Scott topology, it is a semitopological cone.

It is a topological cone if X is core-compact, since it is a continuous dcpo in that case,

as a special case of Gierz et al. (2003, Theorem II-4.7). In previous work, we were using

the subcone 〈X → R
+
σ 〉 of all bounded continuous maps from X to R

+
σ . This is again a

semitopological cone that happens to be topological when X is core-compact.

A subset Z of a topological cone C is convex iff r · x + (1 − r) · y is in Z whenever

x, y ∈ Z and 0 � r � 1. C is itself locally convex iff every point has a basis of convex

open neighbourhoods, i.e., whenever x ∈ U, U open in C , then there is a convex open V

such that x ∈ V ⊆ U.

This is the notion of local convexity used by Keimel (2008). Beware that there are

others, such as Heckmann’s (Heckmann 1996), which are inequivalent.
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Every continuous cone C is locally convex; this is a special case of Keimel (2008,

Lemma 6.12). The argument, due to J. Lawson, is as follows: let x be a point in some

open subset U of C , then there is a point x1  x that is also in U, hence also an x2  x1

that is again in U, and continuing this way we have a chain . . .  xn  . . .  x2  x1  x

of points of U. Now let V =
⋃
n∈N ↑↑xn: V is clearly open, x ∈ V ⊆ U, and V is also

convex because V =
⋃
n∈N ↑ xn, as one can easily check.

We have already noticed that, given a core-compact space X, [X → R+
σ] is a continuous

d-cone. Therefore, [X → R+
σ]σ is a locally convex topological cone in that case.

A map f : C → R+ is positively homogeneous iff f(r · x) = rf(x) for all x ∈ C and

r ∈ R
+. It is additive (resp. superadditive, resp. subadditive) iff f(x + y) = f(x) + f(y)

(resp. f(x + y) � f(x) + f(y), resp. f(x + y) � f(x) + f(y)) for all x, y ∈ C . It is linear

(resp. superlinear , resp. sublinear) iff it is both positively homogeneous and additive

(resp. superadditive, resp. subadditive). Every pointwise supremum of sublinear maps is

sublinear, and every pointwise infimum of superlinear maps is superlinear.

One of the key results in the theory of cones is Keimel’s Sandwich Theorem (Keimel

2008, Theorem 8.2), an analogue of the Hahn–Banach Theorem: in a semitopological

cone C , given a continuous superlinear map q : C → R+ and a sublinear map p : C → R+

such that q � p, there is a continuous linear map Λ: C → R+ such that q � Λ � p. Note

that p need not be continuous or even monotonic for this to hold. This is a feature we

shall make use of in the proof of Lemma 3.16, allowing us to dispense with an assumption

of coherence.

Another construction we shall use is the lower Minkowski functional MA of a non-empty

closed subset A of a topological cone C (this was called FA in Keimel (2008, Section 7),

but this would conflict with some of our own notations). This is defined by

MA(x) = inf{b > 0 | (1/b) · x ∈ A}, (1)

where we agree that the infimum is equal to +∞ if no b exists such that (1/b) · x ∈ A.

MA is continuous (Keimel 2008, Proposition 7.3 (a)), superlinear if and only if C � A is

convex and sublinear if and only if A is convex (Keimel 2008, Lemma 7.5).

Using this, Keimel’s Sandwich Theorem immediately implies the following Separation

Theorem (Keimel 2008, Theorem 9.1): in a semitopological cone C , for every convex

non-empty subset A and every convex open subset U such that A ∩ U = �, there is a

continuous linear map Λ: C → R+
σ such that Λ(x) � 1 for every x ∈ A and Λ(x) > 1

for every x ∈ U. We shall also use the following Strict Separation Theorem (Keimel 2008,

Theorem 10.5): in a locally convex semitopological cone C , for every compact convex

subset Q and every non-empty closed convex subset A such that Q ∩ A = �, there is a

continuous linear map Λ: C → R+
σ and a real number r > 1 such that Λ(x) � r for

every x ∈ Q, and Λ(x) � 1 for every x ∈ A.

2.7. Valuations, previsions, forks

A valuation on a topological space X is a map ν from the lattice O(X) of open subsets

of X to R+ that is strict (ν(�) = 0), monotonic (if U ⊆ V then ν(U) � ν(V )), and

modular (ν(U ∪V )+ ν(U∩V ) = ν(U)+ ν(V )). A valuation is continuous if and only if it is
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Scott-continuous, i.e., for every directed family (Ui)i∈I of opens, ν(
⋃
i∈I Ui) = supi∈I ν(Ui).

It is subnormalized iff ν(X) � 1, and normalized iff ν(X) = 1. A normalized continuous

valuation is a continuous probability valuation.

Given any continuous map h : X → R+, one can define the integral
∫
x∈X h(x)dν of h

with respect to ν in various equivalent ways. One is by using a Choquet-type formula

(Tix 1995, Section 4.1):
∫
x∈X h(x)dν is defined as

∫ +∞
0 ν(h−1(t,+∞])dt, where the latter is

a Riemann integral, which is well defined since the integrated function is non-increasing.

Letting F(h) =
∫
x∈X h(x)dν, one realizes that F is linear and Scott-continuous on the cone

[X → R+
σ] (Tix 1995, Lemma 4.2).

In particular, F also defines a linear Scott-continuous map from the cone 〈X → R
+
σ 〉

to R+. Such functionals were called (continuous) linear previsions in Goubault-Larrecq

(2007), except that they were not allowed to take the value +∞. Conversely, any linear

Scott-continuous map F from 〈X → R
+
σ 〉 to R+ extends to a unique linear Scott-continuous

map from [X → R+
σ] to R+, by F(h) = supa∈R+ F(min(h, a)) for example.

In general, call prevision on X any positively homogeneous, Scott-continuous map F

from [X → R+
σ] to R+. A prevision is Hoare (or lower) if and only if it is sublinear, and

is Smyth (or upper) if and only if it is superlinear. We say that F is subnormalized (resp.,

normalized ) iff F(1 + h) � 1 + F(h) (resp., =) for every h ∈ [X → R
+
σ ]. These conditions

simplify to F(1) � 1 (resp., F(1) = 1) in the case of linear previsions, but we shall need

the more general form when F is not linear.

It is easy to see that the posets V(X) of all continuous valuations on X (ordered

by ν � ν ′ iff ν(U) � ν ′(U) for every open U) and PP(X) of all linear previsions on X

(ordered by F � G iff F(h) � G(h) for every h ∈ [X → R+
σ]) are isomorphic. This is the

variant of the Riesz representation theorem that we mentioned in the introduction. In one

direction, we obtain F from ν by F(h) =
∫
x∈X h(x)dν, and conversely we obtain ν from

F by letting ν(U) = F(χU). (For example, this is a special case of Tix (1995, Satz 4.16).)

This isomorphism maps (sub)normalized continuous valuations to (sub)normalized linear

previsions and conversely.

To handle the mixture of probabilistic and erratic non-determinism, we rely on forks

(Goubault-Larrecq 2007). A fork on X is by definition a pair (F−, F+) of a Smyth

prevision F− and a Hoare prevision F+ satisfying Walley’s condition:

F−(h+ h′) � F−(h) + F+(h′) � F+(h+ h′)

for all h, h′ ∈ [X → R+
σ]. (This condition was independently discovered by Keimel and

Plotkin (2009).) By taking h′ = 0, or h = 0, this in particular implies that F− � F+. A

fork (F−, F+) is (sub)normalized if and only if both F− and F+ are.

Using some notation that we introduced in Goubault-Larrecq (2015b), write PAP(X) for

the set of all Hoare previsions on X (A for angelic non-determinism, P for probabilistic

choice), PDP(X) for the set of all Smyth previsions on X. Write P
1
AP(X) for the set of

normalized Hoare previsions, P
�1
AP (X) for the set of subnormalized Hoare previsions, and

similarly for Smyth (subscript DP) and linear (subscript P) previsions. In any case, the

weak topology on any of these spaces Y is generated by subbasic open sets, which we

write uniformly as [h > r], and are defined as those F ∈ Y such that F(h) > r, where h

ranges over [X → R+
σ] and r over R

+. The specialization ordering of the weak topology
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is pointwise: F � F ′ iff F(h) � F(h′) for every h ∈ [X → R+
σ]. We use a wk subscript, e.g.,

P
�1
AP wk(X), to refer to a space in its weak topology. Since [h > r] = [1/r.h > 1] when r �= 0,

and [h > 0] =
⋃
r>0[h > r], note that the subsets of the form [h > 1], h ∈ [X → R+

σ]

form a smaller subbase.

Similarly, write PADP(X) for the set of all forks on X (A for angelic, D for demonic,

and P for probabilistic), and P
�1
ADP(X), P

1
ADP(X) for their subsets of subnormalized, resp.

normalized, forks. On each, define the weak topology as the subspace topology induced

from the larger space PDP wk(X) × PAP wk(X). It is easy to see that a subbase of the weak

topology is composed of two kinds of open subsets: [h > b]−, defined as {(F−, F+) |
F−(h) > b}, and [h > b]+, defined as {(F−, F+) | F+(h) > b}, where h ∈ [X → R+

σ],

b ∈ R
+. The specialization ordering of spaces of forks is the product ordering � × �,

where � denotes the pointwise ordering on previsions. As usual, we adjoin a subscript

‘wk’ to denote spaces of forks with the weak topology.

Throughout, we shall use the convention of writing P
•
AP wk(X), P

•
DP wk(X), etc. • is either

the empty superscript, ‘� 1,’ or ‘1.’ This will allow us to factor some notation. Later, we

shall also use this scheme for maps s•AP, s
•
DP, and so forth.

3. Retracting powercones onto previsions

Given a topological space X, let

— the Hoare powerdomain H(X) be the set of all closed, non-empty subsets of X;

— the Smyth powerdomain Q(X) be the set of all compact saturated, non-empty subsets

of X;

— the Plotkin powerdomain P�(X) be the set of all lenses of X; a lens L is a non-empty

subset of X that can be written as the intersection of a compact saturated subset Q

and a closed subset F of X. A canonical form is obtained by taking Q = ↑L and

F = cl(L).

H(X) is the traditional model for so-called angelic non-determinism. We write HV (X) for

H(X) with its lower Vietoris topology, generated by subbasic open sets �V = {C ∈ H(X) |
C ∩ V �= �}, where V ranges over the open subsets of X. Its specialization ordering

is inclusion ⊆, and we shall also consider H(X) as a dcpo in this ordering. The Scott

topology is always finer than the lower Vietoris topology, and coincides with it when X is

a continuous dcpo in its Scott topology (Schalk 1993, Section 6.3.3).

Q(X) is the traditional model for so-called demonic non-determinism. We write QV (X)

for Q(X) with its upper Vietoris topology, generated by basic open sets �V = {Q ∈ Q(X) |
Q ⊆ V }, where V ranges over the open subsets of X. Its specialization ordering is reverse

inclusion ⊇. When X is T0, well filtered, and locally compact, Q(X) is a continuous dcpo,

and the Scott and upper Vietoris topologies coincide (Schalk 1993, Section 7.3.4).

P�(X) is the traditional model for erratic non-determinism. Write P�V (X) for P�(X)

with its Vietoris topology, generated by subbasic open sets �V = {L ∈ P�(X) | L ⊆ V }
and �V = {L ∈ P�(X) | L ∩ V �= �}. Its specialization ordering is the topological

Egli-Milner ordering �EM, defined by L �EM L′ iff ↑L ⊇ ↑L′ and cl(L) ⊆ cl(L′).

https://doi.org/10.1017/S0960129515000547 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000547


Isomorphisms 1043

When X is a semitopological cone C , it makes sense to consider the subsets Hcvx(C),

Qcvx(C), P�cvx(C) of those elements of H(C), Q(C), P�(C) respectively that are convex. We

again equip them with their respective (lower, upper, plain) Vietoris topologies, yielding

spaces which we write with a V subscript, and which happen to be subspaces of HV (C),

QV (C), P�V (C), respectively. Their specialization orderings are as for their non-convex

variants, and again give rise to Scott topologies. But beware that the Scott topologies on

the latter may fail to be subspace topologies.

We now define formally the maps that we named r and s in the introduction. They

come in three flavours, angelic, demonic and erratic, but we shall ignore the erratic forms

for now. Since continuous valuations are isomorphic to spaces of linear of previsions, we

reason with the latter; this is what we shall really need in proofs.

Definition 3.1. Let X be a topological space. For every non-empty set E of linear previsions

on X, let rAP(E) : [X → R+
σ] → R+ (resp., rDP(E)) map h to supG∈E G(h) (resp., inf).

Conversely, for every Hoare prevision (resp., subnormalized, normalized) F on X, let

sAP(F) (resp., s�1
AP (F), s1AP(F)) be the set of all linear previsions (resp., subnormalized,

normalized) G such that G � F . For every Smyth prevision (resp., subnormalized,

normalized) F on X, let sDP(F) (resp., s�1
DP (F), s1DP(F)) be the set of all linear previsions

(resp., subnormalized, normalized) G such that F � G.

Our aim in this section is to show that the various matching pairs of maps r and s form

retractions onto the adequate spaces. A retraction of X onto Y is a pair of two continuous

maps r : X → Y (also called, somewhat ambiguously, a retraction) and s : Y → X (called

the associated section) such that r ◦ s = idY .

Some of our retractions will have the extra property that s ◦ r � idX , meaning that

s is left-adjoint to r. We shall call such retraction embedding-projection pair, following

a domain-theoretic tradition (Abramsky and Jung 1994, Definition 3.1.15); r is the

projection, and s is the embedding. Accordingly, we shall say that X projects onto Y

through r in that situation. There is also a dual situation where idX � s ◦ r instead,

meaning that s is right-adjoint to r. In that case, we shall say that X coprojects onto Y

through r, that the latter is a coprojection, and that s is the associated coembedding.

We start with the angelic case. We shall deal with the demonic case in Section 3.2, and

with the erratic case in Section 3.3.

3.1. The retraction in the angelic case

Our aim in this section is to prove that if X is a topological space such that [X → R+
σ]σ

is locally convex, then r•
AP and s•

AP form a retraction. Note that the assumption holds as

soon as X is locally compact, or, more generally, core-compact.

We proceed through a series of lemmata. The first one is clear.

Lemma 3.2. Let X be a topological space. For every C ∈ HV (P•
P wk(X)), rAP(C) = (h ∈

[X → R+
σ] �→ supG∈C G(h)) is an element of P

•
AP(X).

For clarity, write [h > b]AP or [h > b]P for the subbasic open subset [h > b], depending

whether in a space of Hoare previsions or of linear previsions.
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Lemma 3.3. Let X be a topological space. The map rAP is continuous from HV (P•
P wk(X))

to P
•
AP wk(X).

Proof. The inverse image of the subbasic open [h > b]AP ⊆ P
•
AP wk(X) by rAP is �[h > b]P,

hence is open in HV (P•
Pwk(X)).

The following Lemma is very similar to Lemma 5.8 of Keimel and Plotkin (2009), and

has a similar proof.

Lemma 3.4. Let X be a topological space such that [X → R+
σ]σ is locally convex, and

F be an element of P
•
AP(X). For every h ∈ [X → R+

σ], and every real number r > 0 such

that F(h) > r, there is a G ∈ P
•
P(X) with G � F and G(h) > r.

Proof. Since F is continuous, F−1(r,+∞] is open, and contains h. Using local convexity,

there is a convex open subset U containing h such that F(h′) > r for every h′ ∈ U.

Let q : C → R+ be defined by q(h′) = rMA(h
′) where A = C � U. MA is the lower

Minkowski functional of A, see equation (1) in the Cones subsection of Section 2. Since

A is non-empty, closed and its complement is convex, q is continuous and superlinear.

Moreover, q � F: for every h′ ∈ C , we observe that for every b > 0 such that b < MA(h
′),

(1/b) ·h′ cannot be in A by the definition of MA, hence is in U; so F((1/b) ·h′) > r, whence

F(h′) > br; taking sups over b, F(h′) � rMA(h
′) = q(h′).

So we can apply Keimel’s Sandwich Theorem and conclude that there is a continuous

linear map G such that q � G � F .

We claim that G(h) = F(h), which will certainly imply G(h) > r. The inequality G(h) �
F(h) is clear. Conversely, G(h) � q(h) = rMA(h) = r inf{b > 0 | F((1/b) · h) � r} = F(h).

This holds even if F(h0) = +∞, the important thing being that r is real and non-zero.

When • is ‘� 1,’ then G(1) � F(1) � 1, so G is in P
�1
P (X). When • is ‘1,’ additionally,

q(1) = r inf{b > 0 | F(1/b) � r} = 1, whence G(1) = 1. In any case, G is in P
•
P(X).

Lemma 3.5. Let X be a topological space such that [X → R+
σ]σ is locally convex. Then,

rAP ◦ s•
AP is the identity map on P

•
AP wk(X).

Proof. We must show that for every F ∈ PAP(X), for every h ∈ [X → R+
σ], F(h) =

supG∈P
•
P(X),G�F G(h). The inequality F(h) � supG∈P

•
P wk(X),G�F G(h) follows directly from

Lemma 3.4, while the converse inequality is obvious.

Lemma 3.6. Let X be a topological space such that [X → R+
σ]σ is locally convex. For

every F ∈ P
•
AP wk(X), s•

AP(F) = {G ∈ P
•
P(X) | G � F} is a closed subset of P

•
P wk(X).

Proof. Consider any G �∈ s•AP(F). There is an h ∈ [X → R+
σ] such that G(h) > F(h).

Then, [h > r] (where r = F(h)) is an open neighbourhood of G that does not meet s•AP(F).

So the complement of s•
AP(F) is open.

Lemma 3.7. Let X be a topological space such that [X → R+
σ]σ is locally convex. For

every F ∈ P
•
AP wk(X), s•

AP(F) = {G ∈ P
•
P(X) | G � F} is an element of HV (P•

P wk(X)).
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Proof. It is closed by Lemma 3.6. When • is the empty superscript or ‘� 1,’ s•
AP(F) is

non-empty since it contains the zero prevision. When • is ‘1,’ non-emptiness follows from

Lemma 3.4 with h = 1, and taking r = 0 for example.

The fact that s•
AP is continuous is the most complicated result of this section. One of

the needed ingredients is von Neumann’s original minimax theorem (von Neumann 1928).

That theorem was vastly generalized since then, and in numerous ways, but the original

form will be sufficient to us:

Lemma 3.8 (Von Neumann’s minimax). For each n ∈ N , let Δn be the set of n-tuples of

non-negative real numbers (a1, a2, . . . , an) such that
∑n

i=1 ai = 1. For every n × m matrix

M with real entries,

min
�α∈Δm

max
�β∈Δn

�βtM�α = max
�β∈Δn

min
�α∈Δm

�βtM�α.

Note that an implicit fact in that lemma, hidden in the notation min, max, is that the

suprema over �β and the infima over �α are attained. This is a consequence of the fact

that Δm and Δn are compact, and that multiplication by M is continuous. For that, it is

important that M has real-valued entries, and in particular, not +∞.

Lemma 3.9. Let X be a topological space such that [X → R+
σ]σ is locally convex. Then,

s•
AP is continuous from P

•
AP wk(X) to HV (P•

P wk(X)).

Proof. Among the subbases of the weak topology on P
•
P(X), one is given by subsets of

the form [h > b]P, h ∈ [X → R+
σ], b ∈ R

+. Since [h > 0]P =
⋃
r>0[h > r]P, we may restrict

to b �= 0. When b �= 0, [h > b]P = [h/b > 1]P, so another subbase is given by the subsets

of the form [h > 1]P. Finally, since h is the directed supremum of the maps min(h, r),

r ∈ R
+, we can even restrict h to be bounded.

Since � commutes with unions, a subbase of the topology of HV (P•
P wk(X)) is then given

by the subsets of the form �W , where W is a finite intersection
⋂m
i=1[hi > 1]P, where each

hi is continuous and bounded. Moreover, we may require m > 0.

We must show that the inverse image of �W by s•
AP, where W is as above, is open in

P
•
AP wk(X). Let F be an arbitrary element of s•

AP
−1(�W ). By definition, there is an element

G ∈ P
•
P wk(X) such that G � F and G ∈

⋂m
i=1[hi > 1]P.

Fix a positive real number ε such that G(hi) > 1 + ε for every i, 1 � i � m. We claim

that we can find a finite set A of m-tuples of non-negative real numbers�a = (a1, a2, . . . , am)

such that
⋂
�a∈A[

∑m
i=1 aihi > (1 + ε)

∑m
i=1 ai]AP is an open neighbourhood of F included in

s•
AP

−1(�W ).

To this end, we shall define A as the set of m-tuples of non-negative real numbers

�a = (a1, a2, . . . , am) such that 0 <
∑m

i=1 ai � 1 and each ai is an integer multiple of 1/N, for

some fixed, large enough natural number N. Taking N so that m
N
< ε

1+ε
will be enough

for our purposes.

The fact that F is in
⋂
�a∈A[

∑m
i=1 aihi > (1 + ε)

∑m
i=1 ai]AP is obvious. For every �a ∈ A,

F(
∑m

i=1 aihi) � G(
∑m

i=1 aihi) =
∑m

i=1 aiG(hi), and this is larger than or equal to (1 +

ε)
∑m

i=1 ai. To show that it is strictly larger, recall that some ai is non-zero, since 0 <∑m
i=1 ai.
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To show that
⋂
�a∈A[

∑m
i=1 aihi > (1 + ε)

∑m
i=1 ai]AP is included in s•

AP
−1(�W ) is more

technical. The main observation is the following:

Fact A. For every positively homogeneous map Φ: [X → R+
σ] → R+

σ such that

Φ(
∑m

i=1 aihi) > (1 + ε)
∑m

i=1 ai for every �a ∈ A, it holds that Φ(
∑m

i=1 αihi) > 1 for every

�α ∈ Δm.

This fact is proved by elementary computation. Fix�α ∈ Δm, and let ai =
1
N

�Nαi� be the

largest multiple of 1/N below αi, for each i. Notice that 1
1+ε

<
∑m

i=1 ai � 1; the inequality

on the left follows from the consideration that ai > αi − 1/N, and m
N
< 1 − 1

1+ε
= ε

1+ε
,

remembering that
∑m

i=1 αi = 1. In particular, �a = (a1, a2, . . . , am) is in A, so Φ(
∑m

i=1 aihi) >

(1 + ε)
∑m

i=1 ai. Since αi � ai for each i, Φ(
∑m

i=1 αihi) � Φ(
∑m

i=1 aihi) > (1 + ε)
∑m

i=1 ai, and

we have just seen that the latter is strictly greater than 1.

Now consider any element F ′ of
⋂
�a∈A[

∑m
i=1 aihi > (1 + ε)

∑m
i=1 ai]AP. By Lemma 3.5,

F ′ is a pointwise supremum of elements of P
•
P wk(X). Write this supremum as a directed

supremum of finite suprema, and observe that
⋂
�a∈A[

∑m
i=1 aihi > (1 + ε)

∑m
i=1 ai]AP is Scott

open. As a consequence, it contains one of the finite suprema, viz., there are finitely many

elements G′
1, G

′
2, . . . , G

′
n of P

•
P wk(X) below F ′ such that, for every �a ∈ A, there is a j,

1 � j � n, such that
∑m

i=1 aiG
′
j(hi) > (1 + ε)

∑m
i=1 ai. We can even take G′

j bounded in the

sense that G′
j(1) < +∞: this is clear when • is ‘� 1’ or ‘1,’ otherwise we use (Heckmann

1996, Theorem 4.2), which says that every linear prevision on X is a directed supremum

of bounded linear previsions, allowing us to replace each G′
j by a bounded linear prevision

whose value on hi is close enough to G′
j(hi).

For every �a ∈ A, there is a j such that
∑m

i=1 aiG
′
j(hi) > (1 + ε)

∑m
i=1 ai, so trivially,

there is a �β ∈ Δn such that
∑

1�i�m
1�j�n

aiβjG
′
j(hi) > (1 + ε)

∑m
i=1 ai. Applying Fact A to

Φ = sup�β∈Δn

∑n
j=1 βjG

′
j , we obtain that for every�α ∈ Δm, sup�β∈Δn

∑n
j=1 βjG

′
j(

∑m
i=1 αihi) > 1,

so
∑

1�i�m
1�j�n

αiβjG
′
j(hi) > 1 for some �β ∈ Δn. Since G′

j is bounded, and hi is bounded too,

G′
j(hi) < +∞, so M = (G′

j(hi))1�j�n
1�i�m

is a matrix of real numbers. Rephrasing what we have

just obtained, for every �α ∈ Δm, there is a �β ∈ Δn such that �βtM�α > 1. In particular (and

using the fact that infima are attained) min�α∈Δm max�β∈Δn
�βtM�α > 1. By von Neumann’s

minimax theorem (Lemma 3.8), max�β∈Δn
min�α∈Δm

�βtM�α > 1. Therefore, there is a tuple

�β ∈ Δn such that, for every �α ∈ Δm,
∑

1�i�m
1�j�n

αiβjG
′
j(hi) > 1. Take G′ =

∑n
j=1 βjG

′
j . Since

∑n
j=1 βj = 1, G′ is in P

•
P(X), and G′ � F ′. Also, we have just proved that

∑m
i=1 αiG

′(hi) >

1 for every �α ∈ Δm, in particular, G′ is in
⋂m
i=1[hi > 1]P. Therefore, F ′ is, indeed,

in s•
AP

−1(�W ).

Lemma 3.10. Let X be a topological space. For every C ∈ HV (P•
P wk(X)), C ⊆ s•

AP(r
•
AP(C)).

Proof. That amounts to checking that for every G ∈ C , G(h) � supG′∈C G
′(h), which is

obvious.

We sum up these results in the following proposition.

Proposition 3.11. Let • be the empty superscript, ‘� 1,’ or ‘1,’
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Let X be a topological space. Then, rAP is a continuous map from HV (P•
P wk(X)) to

P
•
AP wk(X), and s•

AP ◦ r•
AP is above the identity.

If [X → R+
σ]σ is locally convex, then s•

AP is a continuous map from P
•
AP wk(X) to

HV (P•
P wk(X)) such that rAP ◦ s•

AP equals the identity.

Recall that a coembedding-coprojection pair is a pair of continuous maps s, r, such

that r ◦ s = id and id � s ◦ r.

Corollary 3.12 (HV (P•
P wk(X)) coprojects onto P

•
AP wk(X)). Let • be the empty superscript,

‘� 1,’ or ‘1.’ Let X be a topological space such that [X → R+
σ]σ is locally convex, for

example, a locally compact space, or more generally, a core-compact space.

Then, s•
AP and rAP together define an coembedding-coprojection pair of HV (P•

P wk(X))

onto P
•
AP wk(X).

3.2. The retraction in the demonic case

In the demonic cases, we have defined rDP(Q)(h) as infG∈Q G(h). We shall be interested in

cases where Q is in a Smyth powerdomain. We can then say more:

Lemma 3.13. The map rDP, once restricted to the Smyth powerdomain of some space of

linear previsions, is defined by rDP(Q)(h) = minG∈Q G(h).

Proof. The evaluation map G �→ G(h) is continuous from the given space of linear

previsions to R+
σ , by the very definition of the weak topology. Such continuous maps are

called lower semicontinuous real maps in the mathematical literature, and it is standard

that lower semicontinuous real maps attain their infimum on every compact set.

We wish to show that rDP, sDP forms a retraction. We again progress through a series of

lemmata. In each, • may be the empty subscript, ‘� 1,’ or ‘1.’

We use a similar proof as sketched in Goubault-Larrecq (2008) to show that rDP ◦ s•
DP is

the identity map (for whichever superscripts •). An additional trick allows us to dispense

with an assumption of stable compactness, in Lemma 3.16 below.

Lemma 3.14. Let X be a topological space. Then, rDP is a map from QV (P•
P wk(X)) to

P
•
DP wk(X).

Proof. Let Q ∈ QV (P•
P wk(X)). Writing F(h) for rDP(Q)(h) = minG∈Q G(h), we must

show that F is a Smyth prevision. Clearly, F is positively homogeneous, monotonic and

superlinear. It is also subnormalized in case • is ‘� 1’ and normalized when • is ‘1.’ It

remains to show that F is Scott-continuous. This follows from the fact that the pointwise

infimum of a compact family of lower semicontinuous functions is lower semicontinuous

Keimel (1984). For completeness, here is a short argument. For any directed family (hi)i∈I
with supremum h, we must show that F(h) � supi∈I F(hi), since the other inequality stems

from monotonicity. If that were not the case, let b = supi∈I F(hi), so that F(h) > b. The

open subsets [hi > b], i ∈ I , form a directed open cover of Q, since for every G ∈ Q,

supi∈I G(hi) = G(h) � F(h) > b. By compactness, Q ⊆ [hi > b] for some i, whence

F(hi) = minG∈Q G(hi) > b, contradiction.
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Lemma 3.15. Let X be a topological space. Then, rDP is a continuous map from

QV (P•
P wk(X)) to P

•
DP wk(X).

Proof. For clarity, write [h > b]DP or [h > b]P for the subbasic open subset [h > b],

depending whether in a space of Smyth previsions or of linear previsions.

The inverse image of the subbasic open [h > b]DP ⊆ P
•
DP wk(X) by rDP is {Q ∈

QV (P•
P wk(X)) | minG∈Q G(h) > b} = {Q ∈ QV (P•

P wk(X)) | ∀G ∈ Q · G(h) > b} (that

this is a min, and not just an inf, is important here) = �[h > b]P. This is open in

QV (P•
P(X)). Therefore, rDP is continuous.

To show that s•
DP maps Smyth previsions to compact saturated subsets of linear

previsions, we shall use the following piece of logic.

Let A be a fixed stably compact space. (This will be R+
σ in our case.) Let T be a set.

A patch-continuous inequality on T ,A is any formula of the form:

f( (t1), . . . , (tm)) �̇ g( (t′1), . . . , (t′n)),

where f and g are patch-continuous maps from Am to A and from An to A respectively,

and t1, . . . , tm, t′1, . . . , t′n are m + n fixed elements of T . E holds at α : T → A iff

f(α(t1), . . . , α(tm)) � g(α(t′1), . . . , α(t
′
n)), where � is the specialization quasi-ordering of A. A

patch-continuous system Σ on T ,A is a set of patch-continuous inequalities on T ,A, and

Σ holds at α : T → A if every element of Σ holds at α. By convention, we shall allow

equations a
.
= b in such systems, and agree that they stand for the pair of inequalities

a �̇ b and b �̇ a. Then, the set [Σ] of maps α : T → A such that Σ holds at α is

patch-closed in AT , and in particular stably compact. This is (Goubault-Larrecq 2010,

Proposition 5.5), but also a fairly simple exercise.

Lemma 3.16. Let X be a topological space. For every F ∈ P
•
DP wk(X), s•

DP(F) is a compact

saturated subset of P
•
P wk(X).

Proof. Recall that s•
DP maps every F ∈ P

•
DP(X) to the set of all G ∈ P

•
P(X) such that

G � F .

Let Y • be the space of all linear, monotonic maps from C = [X → R+
σ] to R+ that

are subnormalized if • is ‘� 1,’ and normalized if • is ‘1.’ Compared to P
•
P(X), we are

no longer requiring Scott-continuity. Equip Y • with the weak topology, which is again

generated by subbasic open sets [h > b]Y , defined as {α ∈ Y | α(h) > b}. Y • is then a

subspace of the space R+
C

σ with its product topology, and P
•
P(X) is a subspace of Y •.

Now Y • is [Σ•], where Σ• is the set of (polynomial, hence patch-continuous) inequalities:

— (ah)
.
= a (h), for all a ∈ R

+, h ∈ C (positive homogeneity);

— (h+ h′)
.
= (h) + (h′) for all h, h′ ∈ C (additivity);

— (h)�̇ (h′) for all h, h′ ∈ C with h � h′ (monotonicity);

— if • is ‘� 1,’ (a+ h) �̇ a+ (h) for all a ∈ R
+, h ∈ C;

— if • is ‘1,’ (a+ h)
.
= a+ (h) for all a ∈ R

+, h ∈ C .

So Y • is a patch-closed subset of R+
C

σ , and a stably compact space.

Consider the set s(F) of all α ∈ Y • such that α � F , meaning α(h) � F(h) for every

h ∈ C . This is again patch-closed in R+
C

σ (consider Σ• plus the inequalities F(h)�̇ (h)),
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hence also in Y •. Note that s(F) is almost s•
DP(F): the latter is the subset of those elements

of s(F) that are Scott-continuous maps.

At this point, the natural next move would be to show that s•DP(F) arises as a retract

of s(F), and conclude that s(F) is (stably) compact, using the fact that every retract of

a stably compact space is stably compact. This idea was pioneered by Jung (2004), and

taken again in Goubault-Larrecq (2010). But this requires X to be stably compact, and

does not use the fact that F is superlinear and Scott-continuous. We use a different

argument.

Note that s(F) is upward closed. But the patch-closed upward closed subsets of

a stably compact space are exactly its compact saturated subsets (Gierz et al. 2003,

Theorem VI.6.18 (3)), so s(F) is compact saturated in Y •.

To show that s•
DP(F) is compact saturated in P

•
DP(X), we shall appeal to Alexander’s

Subbase Lemma (Kelley 1955, Theorem 5.6), which states that in a space X with subbase

A, a subset K is compact if and only if one can extract a finite subcover from every cover

of K consisting of elements of A. In our case, assume s•DP(F) is included in a union of

open subsets
⋃
i∈I [hi > bi]. We wish to show that there is a finite subset J of I such that

s•
DP(F) ⊆

⋃
i∈J[hi > bi]. We do it by contraposition: we assume that s•

DP(F) �⊆
⋃
i∈J[hi > bi]

for any J , namely, we assume that for every finite subset J of I , there is a GJ ∈ s•
DP(F)

such that GJ(hi) � bi for every i ∈ J; and we build an element G of s•
DP(F) such that

G(hi) � bi for every i ∈ I . Note that, for every finite J , F � GJ , so GJ is in s(F).

We claim that there is an α ∈ s(F) such that α(hi) � bi for every i ∈ I . Otherwise, every

α ∈ s(F) would be in some [hi > bi]Y , i ∈ I . Since s(F) is compact in Y •, there would be

a finite subset J of I such that s(F) ⊆
⋃
i∈J[hi > bi]Y . In particular, GJ ∈

⋃
i∈J[hi > bi]Y ,

contradicting the fact that GJ(hi) � bi for every i ∈ J .

Since α is linear, it is in particular sublinear. Since α ∈ s(F), we have F � α. So we

can apply Keimel’s Sandwich Theorem on the semitopological cone C = [X → R+
σ]σ:

there is a continuous linear map G such that F � G � α. (Yes, we are using Keimel’s

Sandwich Theorem only to buy continuity. It is crucial that the larger map, α here, need

not be continuous to apply this theorem.) When • is ‘� 1,’ α(1) � 1 implies that G is

subnormalized, and when • is ‘1,’ this together with F(1) = 1 implies that G is normalized.

So G is in P
•
P wk(X). Also, since F � G, G is in s•

DP(F). Finally, G(hi) � bi for every i ∈ I ,

because G � α.

The most difficult part now is the following lemma, which will be used in particular to

show that s•
DP is well defined.

Lemma 3.17. Let X be a topological space, F ∈ P
•
DP(X), and h0 ∈ [X → R+

σ]. Then there

is a G ∈ P
•
P wk(X) such that F � G and F(h0) = G(h0).

Proof. If F is the constant 0 prevision, this is clear. Indeed, first, • cannot be ‘1’ in this

case (since we must have F(1) = 1 for example). Then, we can take G to be the constant

0 prevision again. So assume F is not constantly 0.

Write C for [X → R+
σ]. Let c be the smallest non-negative real number such that

F(a + h) � ac + F(h) for every a ∈ R
+ and h ∈ C , if one exists, and +∞ otherwise.

Notice that if • is ‘� 1,’ then c � 1. If • is ‘1,’ then c = 1, as one sees by taking
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a = 1, h = 0. We also note that c > 0, in any case. Indeed, if c = 0, then we would

have F(a + h) � F(h), hence F(a + h) = F(h) for all a, h, in particular F(a) = 0 for

every a ∈ R
+ (taking h = 0). Since F is Scott-continuous, for every h ∈ [X → R+

σ],

F(h) = supa∈R+ F(min(h, a)) � supa∈R+ F(a) = 0, contradicting the fact that F is not

constantly 0.

For every real λ > 0, let Aλ be the closed convex hull of the pair of points {λ/c, h0}
in C , where we write λ/c for the constant function with value λ/c. By (Keimel 2008,

Lemma 4.10 (a)), Aλ is the closure of the convex hull Hλ = {aλ/c+ (1 − a)h0 | a ∈ [0, 1]}
of {λ/c, h0}. Define pλ : C → R+ by pλ(h) = λMAλ (h). (Notice that this makes sense only

for λ > 0: this is undefined when λ = 0 if MAλ(h) = +∞. As before, MAλ is the lower

Minkowski functional, see equation (1) in the Cones subsection of Section 2.) Since Aλ
is non-empty, closed and convex, pλ is continuous and sublinear for every λ > 0. Let

p(h) = infλ>F(h0) pλ(h). It may fail to be continuous, but we don’t need p to be continuous

to apply Keimel’s Sandwich Theorem.

We shall see below that p is sublinear. (Beware that an infimum of sublinear maps

is not in general sublinear.) Before we prove this, we notice that whenever 0 < λ � μ:

(∗) for every h ∈ C , for every r > 0 such that (1/r) · h ∈ Hμ, there is an r′ > 0 such

that (1/r′) · h ∈ Hλ and r′λ � rμ. Indeed, by assumption (1/r) · h = aμ/c + (1 − a)h0

for some a ∈ [0, 1], i.e., h = raμ/c + r(1 − a)h0. Let r′ = raμ
λ

+ r(1 − a). We have

r′λ = raμ + r(1 − a)λ � rμ. Moreover, letting a′ = raμ
r′λ , we check that 1 − a′ = r(1−a)

r′ , so

that h = r′a′λ/c+ r′(1 − a′)h0, and in particular (1/r′) · h = a′λ/c+ (1 − a′)h0 is in Hλ. This

finishes the proof of (∗). In turn, (∗) implies that for every r > 0, for every h ∈ C such

that (1/r) · h ∈ Hμ,

pλ(h) = λMAλ (h) = λ inf{r′ > 0 | (1/r′) · h ∈ Aλ}
� λ inf{r′ > 0 | (1/r′) · h ∈ Hλ} (since Hλ ⊆ Aλ)

� rμ (since we can pick r′ so that r′λ � rμ).

So Hμ is included in the set of those maps (1/r) · h such that pλ(h) � rμ, i.e., in

r · p−1
λ ([0, rμ]) = p−1

λ [0, μ]. Since the latter is closed (pλ is continuous), Aμ is also included

in this set. So, working backwards, we obtain that for every h ∈ C , for every r > 0 such

that (1/r) · h ∈ Aμ, pλ(h) � rμ. Taking infima over r, pλ(h) � pμ(h). We have proved that

pλ was a monotonic function of λ.

It follows that the family (pλ)λ>F(h0) is a chain. In particular, (pλ)λ>F(h0) is filtered,

i.e., directed in the opposite ordering �. Since addition commutes with filtered infima,

p(h) + p(h′) = infλ>F(h0)[pλ(h) + pλ(h
′)] � infλ>F(h0) pλ(h+ h′) = p(h+ h′), using the fact that

pλ is sublinear. So p is subadditive, and it follows easily that it is sublinear.

For every λ > 0, since λ/c is in Aλ, MAλ(λ/c) � 1, so pλ(λ/c) � λ. Since pλ is positively

homogeneous and λ > 0, pλ(1) � c. It follows that p(1) � c, a fact we shall need later.

Since h0 is in Aλ, MAλ(h0) � 1, so pλ(h0) � λ. Taking infs over λ > F(h0), it follows that

p(h0) � F(h0), another fact we shall need later.

For every λ > F(h0), for all r > 0 and h ∈ C such that (1/r) · h ∈ Hλ, write (1/r) · h as

aλ/c+(1−a)h0, a ∈ [0, 1]. If c �= +∞, then F(h) = rF(aλ/c+(1−a)h0) � r(aλ+(1−a)F(h0))

(by definition of c) � r(aλ + (1 − a)λ) = λr. If c = +∞, then F(h) = rF((1 − a)h0) �
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rF(h0) � λr. Taking infs over r, F(h) � λMAλ(h) = pλ(h). So, taking infs over λ > F(h0),

F(h) � p(h). So F � p.

So we can apply Keimel’s Sandwich Theorem: there is a continuous linear map G such

that F � G � p. Also, G(1) � p(1), and we have seen that p(1) � c, and that c � 1

whenever • is ‘� 1’ or ‘1’: so, in these cases, G(1) � 1, implying that G is subnormalized.

If • is ‘1,’ additionally, F(1) = 1, so G(1) = 1 and G is normalized. In any case, G is in

P
•
P wk(X).

We have also seen that p(h0) � F(h0). Since also F(h0) � G(h0) � p(h0), G(h0) = F(h0),

and we are done.

Lemma 3.18. LetX be a topological space. Then, s•
DP is a map from P

•
DP(X) to QV (P•

P wk(X)).

Proof. For every F ∈ P
•
DP(X), s•

DP(F) is compact saturated by Lemma 3.16. Lemma 3.17

implies that it is non-empty.

Lemma 3.19. Let X be a topological space. Then, rDP ◦s•
DP is the identity map on P

•
DP wk(X).

Proof. We must show that for every F ∈ P
•
DP(X), for every h ∈ [X → R+

σ], F(h) =

minG∈P
•
P wk(X),F�G G(h). The difficult part is to show that F(h) � minG∈P

•
P wk(X),F�G G(h) for

every h, and this is a direct consequence of Lemma 3.17, taking h0 = h.

Lemma 3.20. Let X be a topological space. Then, s•
DP is a continuous map from P

•
DP(X)

to QV (P•
P wk(X)).

Proof. As we already mentioned in the proof of Lemma 3.9, every open subset V of

P
•
P wk(X) can be written

⋃
i∈I

⋂
j∈Ji Vij , where each Vij is of the form [h > 1]P, h ∈ [X →

R+
σ], and each Ji is finite. We can also write this as the directed union, over all finite

subsets I ′ of I , of
⋃
i∈I ′

⋂
j∈Ji Vij . Now we can distribute unions over intersections, and

write V as a directed union of finite intersections of finite unions of subsets of the form

[h > b]P. It is easy to check that � distributes over directed unions (using the fact that

the elements of a Smyth powerdomain are compact, and that from every open cover of

a compact subset K by a directed family, one can extract a single element of the family

containing K), and over finite intersections. It follows that a subbase of the topology on

QV (P•
P wk(X)) is given by the subsets of the form �W with W =

⋃m
i=1[hi > 1]P, Ui open

in X.

To show that s•
DP is continuous, we fix such an open W , and we claim that s•

DP
−1(�W )

is open in the weak topology. It will be easier to show that its complement D is closed.

Observe that F is in D if and only if there is a linear prevision G such that F � G, and

for every i, 1 � i � m, G(hi) � 1.

Case 1: • is neither ‘� 1’ nor ‘1.’ We claim that D is the intersection of the complements

of the subbasic weak opens [
∑m

i=1 aihi > 1]DP over all m-tuples of non-negative real

numbers a1, . . . , am, such that
∑m

i=1 ai = 1, which will prove the claim. Clearly D is

included in this intersection: if F � G, G is linear, and G(hi) � 1 for every i, then

F(
∑m

i=1 aihi) � G(
∑m

i=1 aihi) �
∑m

i=1 ai = 1. Conversely, let F ∈ PDP(X) be such that

F(
∑m

i=1 aihi) � 1 for all a1, . . . , am ∈ R
+ such that

∑m
i=1 ai = 1, and let us show that F is
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in D. Define p(h) as inf{
∑m

i=1 ai | a1, . . . , am ∈ R
+,

∑m
i=1 aihi � h}. This is easily seen to be

a sublinear map such that F � p. By Keimel’s Sandwich Theorem, there is a continuous

linear map G between F and p. By taking ai = 1 and aj = 0 for all j �= i, we see that

p(hi) � 1, whence G(hi) � 1 for every i, 1 � i � m. So F is in D. This is all we need to

show that D is closed in the weak topology, hence that s•
DP is weakly continuous.

Case 2: • is ‘� 1’ or ‘1.’ Underlining the changes, we claim that D is the intersection of

the complements of the subbasic weak opens [a0 +
∑m

i=1 aihi > 1]DP over all (m+ 1)-tuples

of non-negative real numbers a0, a1, . . . , am such that
∑m

i=0 ai = 1, which will prove the

claim. Clearly, D is included in this intersection: if F � G, G is linear and subnormalized,

and G(hi) � 1 for every i, then F(a0+
∑m

i=1 aihi) � G(a0+
∑m

i=1 aihi)� a0+
∑m

i=1 ai = 1.

Conversely, let F ∈ PDP(X) be such that F(a0+
∑m

i=1 aihi) � a0+
∑m

i=1 ai for all a1, . . . , am ∈
R

+ such that
∑m

i=0 ai = 1, and let us show that F is in D. Define p(h) as inf{a0+
∑m

i=1 ai |
a0,a1, . . . , am ∈ R

+, a0+
∑m

i=1 aihi � h}. This is a sublinear map such that F � p. By Keimel’s

Sandwich Theorem, there is a continuous linear map G between F and p. Additionally,

since G(1) � p(1) and p(1) � 1 (take a0 = 1, ai = 0 for i �= 0), G is subnormalized;

if in addition • is ‘1,’ then F(1) = 1, so F(1) � G(1), so G is normalized. In any case,

G is in P
•
P wk(X). By taking ai = 1 and aj = 0 for all j �= i, we see that p(hi) � 1, whence

G(hi) � 1 for every i, 1 � i � m. So F is in D. This is all we need to show that D is closed

in the weak topology, hence that s•DP is continuous.

Lemma 3.21. Let X be a topological space. For every Q ∈ QV (P•
P wk(X)), Q ⊆ s•

DP(r
•
DP(Q)).

Proof. For every G ∈ Q, G(h) � infG′∈Q G
′(h).

We sum up the above results as follows. More than a retraction, we now have a

projection, by Lemma 3.21: remember that the ordering on Smyth powerdomains is

reverse inclusion ⊇, so s•
DP ◦ r•

DP is below the identity.

Proposition 3.22 (QV (P•
P wk(X)) projects onto P

•
DP wk(X)). Let • be the empty superscript,

‘� 1,’ or ‘1.’ Let X be a topological space. Then, rDP defines a projection of QV (P•
P wk(X))

onto P
•
DP wk(X), with associated embedding s•

DP.

3.3. The retraction in the erratic case

In the erratic cases, recall that a fork (F−, F+) is a pair of a Smyth prevision F− and of

a Hoare prevision F+ satisfying Walley’s condition.

Definition 3.23. Let X be a topological space. For every non-empty set E of linear

previsions on X, let rADP(E) : ([X → R+
σ] → R+)2 be (rDP(E), rAP(E)).

Conversely, for every (subnormalized, normalized) fork (F−, F+) on X, let sADP(F
−, F+)

(resp., s�1
ADP(F

−, F+), s1ADP(F
−, F+)) be the set of all (subnormalized, normalized) linear

previsions G such that F− � G � F+.

So s•
ADP(F

−, F+) = s•
DP(F

−) ∩ s•
AP(F

+), whatever the superscript •. We shall now prove that

rADP, s
•
ADP form a retraction, once again.
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This will require not only that C = [X → R+
σ]σ be locally convex, as in the Hoare cases,

but also that that addition on C be almost open. Following Keimel (2008, Definition 4.6),

we say that addition is almost open on a semitopological cone if and only if ↑(U + V ) is

open for every pair of open subsets U, V of C .

For every monotonic map q from C to R+, there is a (pointwise) largest continuous

map q̌ less than or equal to q: q̌(h) is the least upper bound of all real numbers r such

that h is in the interior of q−1(r,+∞]. When C is almost open, and q is superlinear, q̌ is

again superlinear (Keimel 2008, Lemma 5.7). This will be our main new ingredient.

There is a canonical situation in which all the above assumptions are satisfied:

Lemma 3.24. Let X be a core-compact, core-coherent space (for example, a stably locally

compact space). Then, [X → R+
σ]σ is a locally convex topological cone in which addition

is almost open.

Proof. Since X is core-compact, we already know that [X → R+
σ]σ is a locally convex

topological cone. [X → R+
σ] is a continuous d-cone, too, and in that case, the fact that

addition is almost open is equivalent to the property that the way-below relation  on

C is additive, namely, f  f′ and g  g′ together imply f + g  f′ + g′ (Keimel 2008,

Lemma 6.14).

The space Y = S(X) is stably locally compact, and Proposition 2.28 of Tix et al. (2009)

then states that  is additive on [Y → R+
σ]. By Lemma 2.1,  is also additive on the

homeomorphic space [X → R+
σ], which allows us to conclude. (Note that core-coherence

is required here. Using the same sobrification trick, Proposition 2.29 of Tix et al. (2009)

says that if X is core-compact, and  is additive on [X → R+
σ], then X must in fact be

core-coherent.)

Lemma 3.25. Let X be a compact space. For every a ∈ [0, 1), aχX  χX in [X → R+
σ],

hence ↑↑aχX is an open neighbourhood of χX in [X → R+
σ].

Proof. Let (fi)i∈I be a directed family of continuous maps such that supi∈I fi � χX .

So (supi∈I fi)
−1(a,+∞] =

⋃
i∈I f

−1
i (a,+∞] contains the compact set X. Since the union is

directed, X ⊆ f−1
i (a,+∞] for some i ∈ I , proving the claim.

Lemma 3.26. Let X be a topological space. Then, rADP is a continuous map from

P�V (P•
P wk(X)) to P

•
ADP wk(X).

Proof. We check that rADP(L) satisfies Walley’s condition for every lens L. Let (F−, F+) =

rADP(L). Then, F−(h + h′) = infG∈L G(h + h′) = infG∈L(G(h) + G(h′)) � infG∈L(G(h) +

supG∈L G(h′)) = infG∈L G(h) + supG∈L G(h′) (since L is non-empty) = F−(h) + F+(h′). We

prove F−(h) + F+(h′) � F+(h + h′) similarly. That rADP(L) is then a fork, and that rADP is

continuous, then follows from Lemmas 3.3 and 3.15.

Lemma 3.27. Let X be a topological space. Then, s•
ADP is a map from P

•
ADP(X) to

P�V (P•
P wk(X)).

Proof. We check that s•
ADP(F

−, F+) is non-empty for every (subnormalized, normalized)

fork (F−, F+), i.e., that there is a (subnormalized, normalized) linear prevision G such
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that F− � G � F+: this is a trivial consequence of Keimel’s Sandwich Theorem on the

semitopological cone C = [X → R+
σ]. Then, s•

ADP(F
−, F+) = s•

DP(F
−) ∩ s•

AP(F
+) is a lens, by

Lemmas 3.6 and 3.16.

Before we continue, we establish two consequences of Walley’s condition. Those are

akin to the Main Lemma (Lemma 5.1) of Keimel and Plotkin (2009).

Lemma 3.28. Let X be a topological space, and (F−, F+) ∈ P
•
ADP(X). For every G′ ∈ P

•
P(X)

such that F− � G′, there is a G ∈ P
•
P(X) such that F− � G � F+ and G � G′.

Proof. Write C for [X → R+
σ]. Let p(h) = inf h1 ,h2∈C

h�h1+h2

(F+(h1)+G
′(h2)). This is a sublinear

map, notably, subadditivity is proved as follows:

p(h) + p(h′) = inf
h1 ,h2 ,h

′
1 ,h

′
2∈C

h�h1+h2

h′�h′
1+h

′
2

(F+(h1) + F+(h′
1) + G′(h2) + G′(h′

2))

� inf
h1 ,h2 ,h

′
1 ,h

′
2∈C

h�h1+h2

h′�h′
1+h

′
2

(F+(h1 + h′
1) + G′(h2 + h′

2))

� inf
h′′

1 ,h
′′
2∈C

h+h′�h′′+h′′
2

(F+(h′′
1) + G′(h′′

2)) = p(h+ h′).

Note also that p � F+ (take h1 = h, h2 = 0) and p � G′ (take h1 = 0, h2 = h). We check

that F− � p, i.e., that for all h1, h2 ∈ C such that h � h1 +h2, F
−(h) � F+(h1)+G

′(h2). This

is by Walley’s condition, since F−(h) � F−(h1 + h2) � F+(h1) + F−(h2), and F− � G′. By

Keimel’s Sandwich Theorem, there is a continuous linear map G such that F− � G � p.

When • is ‘� 1,’ G(1) � p(1) � F+(1) � 1, so G is subnormalized, and when • is

‘1,’ p(1) � F−(1) = 1, so G is normalized. In any case, G is in P
•
P(X). Moreover,

F− � G � p � F+, and G � p � G′.

Lemma 3.29. Let X be a topological space such that [X → R+
σ]σ is locally convex and

has an almost open addition map. Assume that X is also compact in case • is ‘1.’ Let

(F−, F+) ∈ P
•
ADP(X). For every G′ ∈ P

•
P(X) such that G′ � F+, there is a G ∈ P

•
P(X) such

that F− � G � F+ and G′ � G.

Proof. Write again C for [X → R+
σ]. Let q1(h) be defined as sup h1 ,h2∈C

h1+h2�h
(F−(h1)+G

′(h2)).

By an argument similar to the one we used in the proof of Lemma 3.28 on p, q1 is

superlinear, and F− � q1, G
′ � q1. Moreover, we check that q1 � F+, i.e., that for all

h1, h2 ∈ C such that h1 + h2 � h, F−(h1) + G′(h2) � F+(h): this is by Walley’s condition

again, since F+(h) � F+(h1 + h2) � F−(h1) + F+(h2) � F−(h1) + G′(h2).

However, to apply Keimel’s Sandwich Theorem to q1 and F+, we would need q1

to be continuous. Instead, consider q̌1. We have already noted that, since addition on

[X → R+
σ]σ is almost open, q̌1 is not only continuous, but also superlinear (Keimel

2008, Lemma 5.7). Since q̌1 is the largest Scott-continuous map below q1, and F−, G′ are

Scott-continuous and below q1, we also have F− � q̌1, G
′ � q̌1. Since q̌1 � q1 � F+, we
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can now apply Keimel’s Sandwich Theorem, and obtain a linear prevision G such that

q̌1 � G � F+.

If • is ‘� 1,’ then G(1) � F+(1) � 1, so G is subnormalized. If • is ‘1,’ remember that we

have assumed that X was also compact. By Lemma 3.25, ↑↑aχX is an open neighbourhood

of χX for every a ∈ [0, 1). We check that is is included in q−1
1 (r,+∞] for every r < a: for

every h ∈ ↑↑aχX , q1(h) � q1(aχX) � F−(aχX) = a > r. In particular, for every r ∈ [0, 1),

we have just shown that χX is in the interior of q−1
1 (r,+∞] (pick any a ∈ (r, 1)). Since

q̌1(1) = q̌1(χX) is the least upper bound of all real numbers r with that property, q̌1(1) � 1.

Since G(1) � q̌1(1), G is normalized in the ‘1’ case. To sum up, whatever • is, G is in

P
•
P(X).

Finally, F− � q̌1 � G � F+, and G′ � q̌1 � G.

Lemma 3.30. Let X be a topological space such that [X → R+
σ]σ is locally convex and

has an almost open addition map. Assume that X is also compact in case • is ‘1.’ Then,

s•
ADP is a continuous map from P

•
ADP wk(X) to P�V (P•

P wk(X)).

Proof. For every open subset V of P
•
P wk(X), s•

ADP
−1(�V ) is the set of (subnormalized,

normalized) forks (F−, F+) such that every G ∈ P
•
P(X) such that F− � G � F+ is

in V . We claim that this is exactly π−1
1 (s•

DP
−1(�V )), where π1 is first projection. The

inclusion π−1
1 (s•

DP
−1(�V )) ⊆ s•

ADP
−1(�V ) is trivial. Conversely, for every element (F−, F+)

of s•
ADP

−1(�V ), we must show that every G′ ∈ P
•
P(X) such that F− � G′ is in V . By

Lemma 3.28, one can find G ∈ P
•
P(X) such that F− � G � F+ and G � G′. In particular,

since (F−, F+) is in s•
ADP

−1(�V ), G is in V . Since V is upward closed, G′ is also in V .

For every open subset V of P
•
P wk(X), s•

ADP
−1(�V ) is the set of (subnormalized, normal-

ized) forks (F−, F+) such that there is a G ∈ P
•
P(X) such that F− � G � F+ that is also

in V . We claim that this is exactly π−1
2 (s•

DP
−1(�V )), where π2 is second projection. The

inclusion s•
ADP

−1(�V ) ⊆ π−1
2 (s•

DP
−1(�V )) is trivial. Conversely, for every element (F−, F+)

of π−1
2 (s•

DP
−1(�V )), i.e., such that there is a G′ ∈ V with G′ � F+, we must show that there

is a G ∈ V such that F− � G � F+. We use Lemma 3.29 to this end: this yields such a G,

since V is upward closed.

To sum up, we have shown that both s•
ADP

−1(�V ) = π−1
1 (s•

DP
−1(�V )) and s•

ADP
−1(�V ) =

π−1
2 (s•

DP
−1(�V )) are open, so s•

ADP is continuous.

Lemma 3.31. Let X be topological space such that [X → R+
σ]σ is locally convex and

has an almost open addition map. Assume that X is also compact in case • is ‘1.’ Then,

rADP ◦ s•
ADP is the identity map on P

•
ADP wk(X).

Proof. For every (subnormalized, normalized) fork (F−, F+), let L = s•
ADP(F

−, F+). One

may write L as Q∩F , where Q = s•DP(F
−), and F = s•

AP(F
+), and by Propositions 3.22 and

3.11, rDP(Q) = F−, rAP(F) = F+. To show that rADP(s
•
ADP(F

−, F+)) = (F−, F+), we must show

that rDP(L) = F− and rAP(L) = F+.

Since L ⊆ Q, using the definition of rDP (Definition 3.1), rDP(L) � F−. Since rDP(Q) = F−

(and using Lemma 3.13), for every h ∈ C , there is a G′ ∈ Q such that G′(h) = F−(h). By

definition of Q, F− � G′. By Lemma 3.28, there is a G ∈ P
•
P(X) such that F− � G � F+

(i.e., such that G ∈ L) and G � G′. So rDP(L)(h) � G(h) � G′(h) = F−(h). It follows that

rDP(L) � F−, hence rDP(L) = F−.

https://doi.org/10.1017/S0960129515000547 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000547


J. Goubault-Larrecq 1056

Since L ⊆ F , using the definition of rAP, rAP(L) � F+. Since rAP(F) = F+, for every

h ∈ C , and for every real number r < F+(h), there is a G′ ∈ F such that G′(h) � r. By

definition of F , G′ � F+. By Lemma 3.29, there is a G ∈ P
•
P(X) such that F− � G � F+

(i.e., such that G ∈ L) and G′ � G. So rAP(L)(h) � G(h) � G′(h) � r. Taking sups over r,

rAP(L)(h) � F+(h). So rAP(L) � F+, whence rAP(L) = F+, and we are done.

We sum up these results as follows.

Proposition 3.32 (P�V (P•
P wk(X)) retracts onto P

•
ADP wk(X)). Let • be the empty superscript,

‘� 1,’ or ‘1.’ Let X be a topological space such that [X → R+
σ]σ is locally convex and

has an almost open addition map, for example a stably locally compact space, or more

generally, a core-compact, core-coherent space. Assume also that X is compact in case •
is ‘1.’

Then, rADP defines a retraction of P�V (P•
P wk(X)) onto P

•
ADP wk(X), with associated

section s•
ADP.

3.4. Domain-theoretic consequences

The focus in domain theory is on Scott topologies rather than on weak topologies.

But Scott-continuity quickly follows provided we use the following result (Goubault-

Larrecq 2012b, Lemma 3.8): for every quasi-monotone convergence space Z , and every

T0 topological space Z ′, every continuous map from Z to Z ′ is continuous from Zσ to Z ′
σ .

Here, Zσ is Z with the Scott topology of its specialization preorder, and a quasi-monotone

convergence space is a space where this topology is finer than the original one on Z . The

specialization ordering of any space of previsions with the weak topology is the pointwise

ordering �, and each of these spaces is quasi-monotone convergence, because [h > r]

is Scott open. So, given any space of previsions Z , Zσ is just the same space with the

Scott topology of its ordering. Similarly for spaces of forks. Also, QV (Y )σ = Q(Y ) and

HV (Y )σ = H(Y ). To stress that we are using Scott-continuity, call a Scott retraction any

retraction between posets equipped with their Scott topologies.

Applying this reasoning to Proposition 3.11, we obtain the following:

Proposition 3.33. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a core-compact

space. Then, rAP defines a Scott retraction of H(P•
P wk(X)) onto P

•
AP(X), with associated

section s•
AP. Moreover, rAP ◦ sAP � id.

Applying this reasoning to Proposition 3.22, we obtain:

Proposition 3.34. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a topological

space. Then rDP defines a Scott retraction of Q(P•
P wk(X)) onto P

•
DP(X), with associated

section s•
DP. Moreover rDP ◦ sDP � id.

Applying it to Proposition 3.32, finally, we obtain the following:

Proposition 3.35. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a core-compact,

core-coherent space (and compact if • is ‘1”). Then, rADP defines a Scott retraction of

P�(P•
P wk(X)) onto P

•
ADP(X), with associated section s•

ADP.
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There is still a bit of the weak topology lying around in the latter three propositions,

in the various spaces P
•
P wk(X) of linear previsions involved.

The Scott topology is finer than the weak topology on any space of previsions. Up to

the canonical isomorphism between P
•
P(X) and V•(X) (for whichever superscript •), the

Kirch–Tix Theorem states that, whenever X is a continuous dcpo, the Scott and weak

topologies coincide on PP(X) (Tix 1995, Satz 4.10), and on P
�1
P (X) (Kirch 1993, Satz 8.6).

Given a poset X, let X⊥ be X plus a fresh bottom element ⊥, below all points of X.

By a trick due to Edalat (Edalat 1995, Section 3), the spaces V1(X⊥) of all normalized

continuous valuations on X⊥ and V�1(X) of all subnormalized continuous valuations on X

are order-isomorphic, and also homeomorphic in their weak topologies. (For ν ∈ V1(X⊥),

define a subnormalized valuation on X by considering ν restricted to the opens contained

in X. Conversely, for ν ∈ V�1(X), define ν ′ ∈ V1(X⊥) by ν ′(U) = ν(U) if U is open in

X, and ν ′(X⊥) = 1.) It follows that, on pointed continuous dcpos, that is, on continuous

dcpos that we can write as X⊥ for some, necessarily continuous, dcpo X, the Scott and

weak topologies also coincide on P
1
P(X).

Every continuous dcpo is locally compact, and every pointed poset is compact in its

Scott topology. We therefore obtain the following purely domain-theoretic statements

(all spaces come with their Scott topologies) from Proposition 3.33, Proposition 3.34 and

Proposition 3.35 respectively.

Proposition 3.36. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a continuous

dcpo (and pointed if • is ‘1’). Then, rAP defines a Scott retraction (even a coembedding-

coprojection pair) of H(P•
P(X)) onto P

•
AP(X), with associated section s•

AP.

Proposition 3.37. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a continuous dcpo.

Then, rDP defines a Scott retraction (even an embedding-projection pair) of Q(P•
P(X)) onto

P
•
DP(X), with associated section s•

DP.

Proposition 3.38. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a coherent,

continuous dcpo (and pointed if • is ‘1’). Then, rADP defines a Scott retraction of P�(P•
P(X))

onto P
•
ADP(X), with associated section s•

ADP.

Let us draw a few domain-theoretic consequences of the above results. All of these will

state that, under suitable conditions, spaces of Smyth, resp. Hoare previsions, and of forks

are continuous dcpos, with natural bases; and that the Scott and the weak topologies will

coincide on such spaces.

When X is a continuous dcpo, V(X) is a continuous dcpo, with a basis of simple

valuations, i.e., valuations of the form
∑n

i=1 aiδxi , where ai ∈ R
+, xi ∈ X (Gierz et al.

2003, Theorem IV.9.16). This is an extension of Jones’ original theorem, that V�1(X)

is a continuous dcpo, with a basis of subnormalized simple valuations (Jones 1990,

Chapter 5). Using Edalat’s trick, we obtain a similar result for V1(X) and normalized

simple valuations, provided X is also pointed. Notice that the isomorphism with linear

previsions yields bases of PP(X) (resp., P
�1
P (X), P

1
P(X)) consisting of simple linear previsions

(resp., subnormalized, normalized) of the form h �→
∑n

i=1 aih(xi).

In turn, if Y is a continuous dcpo, with basis B, then H(Y ) is a continuous dcpo, too,

and a basis is given by the subsets of the form ↓E, where E is a finite non-empty subset of
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B. (See Gierz et al. (2003, Corollary IV.8.7), which does not mention the basis explicitly,

or Abramsky and Jung (1994, Theorem 6.2.10, Item 1), which does, but in less explicit a

form; in the latter case, one should also note that our version of the Hoare powerdomain

coincides with theirs, by their own Theorem 6.2.13.) Now, for any retraction r : D → E,

where D is a continuous dcpo, E is also a continuous dcpo, and a basis of E is given

by the image under r of a basis of D (Abramsky and Jung 1994, Lemma 3.1.3). Using

Proposition 3.36, we obtain the following:

Proposition 3.39. Let X be a continuous dcpo. Then, PAP(X) (resp., P
�1
AP (X)) is a continuous

dcpo, with basis given by the finite non-empty sups of simple (resp., and subnormalized)

linear previsions:

h �→ m
max
i=1

ni∑
j=1

aijh(xij),

where m � 1 (resp., and
∑ni

j=1 aij � 1 for every i).

If X is a pointed continuous dcpo, then P
1
AP(X) is a pointed continuous dcpo, with

basis given by the finite sups of simple normalized previsions (i.e.,
∑ni

j=1 aij = 1 for every

i). The least element is h �→ h(⊥), where ⊥ is the least element of X.

Recall that, when Y is a continuous dcpo, then the Scott and the lower Vietoris topologies

coincide on H(Y ) (Schalk 1993, Section 6.3.3). In particular, under the assumptions of

Proposition 3.39, H(PP(X)) = HV (PP(X)) = HV (PP wk(X)) (by the Kirch–Tix Theorem),

and similarly in the subnormalized and normalized cases.

Now, every section is a topological embedding. Under the same assumptions as above,

Propositions 3.11 and 3.36 imply that PAP wk(X) and PAP(X) both embed into the same

space H(PP(X)) = HV (PP wk(X)). Hence, they have the same topology:

Proposition 3.40. Let X be a continuous dcpo. The Scott topology coincides with the

weak topology on PAP(X), on P
�1
AP (X); also on P

1
AP(X) if X is additionally assumed to be

pointed.

Similarly, if Y is a continuous dcpo with basis B, then Q(Y ) is a continuous dcpo,

with basis given by the subsets of the form ↑E, E a finite and non-empty subset of B

(Abramsky and Jung 1994, Theorem 6.2.10, Item 2) (and our Smyth powerdomain is the

same as theirs, by their Theorem 6.2.14).

Proposition 3.41. Let X be a continuous dcpo. Then, PDP(X) (resp., P
�1
DP (X)) is a continuous

dcpo, with basis given by the finite non-empty infs of simple (resp., and subnormalized)

linear previsions:

h �→
m

min
i=1

ni∑
j=1

aijh(xij),

where m � 1 (resp., and
∑ni

j=1 aij � 1 for every i).

If X is a pointed continuous dcpo, then P
1
DP(X) is a pointed continuous dcpo, with basis

given by the finite mins of simple normalized previsions (i.e.,
∑ni

j=1 aij = 1 for every i).

The least element is h �→ h(⊥), where ⊥ is the least element of X.
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The Scott and the upper Vietoris topologies coincide on Q(Y ) on every T0, well-filtered,

locally compact space (Schalk 1993, Section 7.3.4), in particular on every continuous dcpo

Y . By the same argument as for Proposition 3.40:

Proposition 3.42. Let X be a continuous dcpo. The Scott topology coincides with the

weak topology on PDP(X), on P
�1
DP (X); also on P

1
DP(X) is X is additionally assumed to be

pointed.

When Y is a continuous, coherent dcpo with basis B, then P�(Y ) is again a continuous

dcpo, with basis given by the subsets of the form ↑E∩↓E, E a finite and non-empty subset

of B. This is Theorem 6.2.3 of Abramsky and Jung (1994), together with Theorem 6.2.22,

which states that our Plotkin powerdomain is the same as theirs.

Proposition 3.43. Let X be a continuous, coherent dcpo. Then PADP(X) (resp., P
�1
ADP(X)) is

a continuous dcpo, with basis given by the simple (resp., and subnormalized) forks of the

form: ⎛
⎝h �→

m

min
i=1

ni∑
j=1

aijh(xij), h �→ m
max
i=1

ni∑
j=1

aijh(xij)

⎞
⎠ ,

where m � 1 (resp., and
∑ni

j=1 aij � 1 for every i).

If X is a pointed continuous, coherent dcpo, then P
1
ADP(X) is a pointed continuous dcpo,

with basis the simple normalized forks (i.e.,
∑ni

j=1 aij = 1 for every i). The least element is

(h �→ h(⊥), h �→ h(⊥)), where ⊥ is the least element of X.

We conclude this section with a result similar to Propositions 3.40 and 3.42. This time,

we use the fact that the way-below relation P� on P�(Y ), when Y is a continuous,

coherent dcpo, if given by L P� L
′ iff ↑L Q ↑L′ and cl(L) H cl(L′) (Abramsky

and Jung 1994, Section 6.2.1); so our subbasic Scott open subsets are {L′ ∈ P�(Y ) | L′ ⊆
↑↑E and L′ ∩ ↓↓E ′ �= �} = �↑↑E ∩

⋂
y∈E ′ �↓↓y, where E and E ′ are finite and non-empty.

Since they are all open in the Vietoris topology, the Scott and Vietoris topologies coincide

on P�(Y ). As before, we use the fact that our spaces of forks with the weak and the Scott

topologies are subspaces of the same space to conclude:

Proposition 3.44. Let X be a continuous, coherent dcpo. The Scott topology coincides

with the weak topology on PADP(X), on P
�1
ADP(X); also on P

1
ADP(X) is X is additionally

assumed to be pointed.

4. The isomorphisms

Let • be the empty superscript, or ‘� 1,’ or ‘1,’ depending on the case. When [X → R+
σ]σ

is locally convex, we know that rAP ◦ s•
AP is the identity map, where rAP : HV (P•

P wk(X)) →
P

•
AP wk(X) and s•

AP : P
•
AP wk(X) → HV (P•

P wk(X)) (Corollary 3.12).

Now write Hcvx
V (D) for the subspace of HV (D) consisting of convex closed, non-empty,

subsets of D = P
•
AP wk(X), and similarly Hcvx(D) is the underlying poset, with the inclusion

ordering. Note that although P
•
AP wk(X) is not a cone (when • is ‘� 1’ or ‘1’), convexity

makes sense. We also write Qcvx
V (D), Qcvx(D), P�cvx(D), P�cvxV (D) with the obvious meaning.
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Clearly, for every F ∈ P
•
AP wk(X), s•

AP(F) = {G ∈ D | G � F} is convex, and similarly for

s•
DP(F) = {G ∈ D | F � G} and s•

ADP(F
−, F+) = {G ∈ D | F− � G � F+}. So s•

AP corestricts

to a continuous map from P
•
AP wk(X) to Hcvx

V (P•
P wk(X)), and similarly for s•

DP and s•
ADP. We

wish to show that this is a homeomorphism, with inverse the corresponding restriction of

rAP to Hcvx
V (P•

P wk(X)), resp., of rDP to Qcvx
V ((P•

P wk(X)), resp., of rADP to P�cvxV ((P•
P wk(X)).

4.1. The case of unbounded previsions

The case where • is the empty superscript, i.e., where general previsions are considered,

was already dealt with in Keimel and Plotkin (2009, Section 6.1). We improve on their

result, which required X to be a continuous dcpo. The general plan of the proof is the

same.

The key to the generalization is the following Schröder–Simpson Theorem.

Theorem 4.1 (Schröder–Simpson). Let X be a topological space. For every continuous

linear map ψ from V(X) to R+
σ (resp., from PP wk(X) to R+

σ), there is a unique continuous

map h : X → R+
σ such that, for every ν ∈ V(X), ψ(ν) =

∫
x∈X h(x)dν (resp., for every

G ∈ PP wk(X), ψ(G) = G(h)).

The converse direction, that given a unique continuous map h : X → R+
σ , the map

G �→ G(h) is continuous and linear from PP wk(X) to R+
σ , is obvious.

Theorem 4.1 is due to Schröder and Simpson. It was announced at the end of the

presentation (Schröder and Simpson 2006), and a full proof was given in another talk

(Schröder and Simpson 2009). Another proof was discovered by Keimel, who stresses the

role of Hahn–Banach-like extension theorems in quasi-uniform cones (Keimel 2012). A

short, elementary proof of this theorem can be found in Goubault-Larrecq (2015a).

Lemma 4.2. Let X be a topological space. For all A,B ∈ Hcvx(PP wk(X)), if rAP(A) � rAP(B)

then A ⊆ B.

Proof. Assume A �⊆ B, so there is a G ∈ A that is not in B. PP wk(X) is a locally convex

topological cone, since every subbasic open set [h > b] is convex. Therefore, there is a

convex open subset U containing G that does not intersect B. By the Separation Theorem

(Keimel 2008, Theorem 9.1), there is a continuous linear map Λ: C → R+ such that

Λ(G′) � 1 for every G′ ∈ B, and Λ(G′) > 1 for every G′ ∈ U; in particular, Λ(G) > 1. By

the Schröder–Simpson Theorem, Λ is the map G′ �→ G′(h) for some h ∈ [X → R+
σ]. So

Λ(G′) = G′(h) � 1 for every G′ ∈ B, which implies that rAP(B) � 1. And Λ(G) = G(h) > 1,

which implies that rAP(A) > 1, contradiction.

Proposition 4.3. Let X be a topological space such that [X → R+
σ]σ is locally con-

vex, for example, a core-compact space. Then, rAP defines a homeomorphism between

Hcvx
V (PP wk(X)) and PAP wk(X) and an order-isomorphism between Hcvx(PP wk(X)) and

PAP(X).

Proof. By Proposition 3.11, rAP is continuous hence monotonic, and rAP ◦ sAP equals the

identity. In particular, rAP is surjective, and Lemma 4.2 implies in particular that it is

injective. So rAP is a bijection, with inverse sAP. Both are continuous, by Proposition 3.11,
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hence define a homeomorphism. The final part follows from the fact that every homeo-

morphism induces an order-isomorphism with respect to the underlying specialization

preorders.

Lemma 4.4. Let X be a topological space. For all Q,Q′ ∈ Qcvx(PP wk(X)), if rDP(Q) � rDP(Q
′)

then Q ⊇ Q′.

Proof. Assume Q �⊇ Q′, so there is a G ∈ Q′ that is not in Q. PP wk(X) is a locally

convex topological cone, and A = ↓G is a closed convex set disjoint from Q. By the

Strict Separation Theorem (Keimel 2008, Theorem 10.5), there is a continuous linear

map Λ: C → R+
σ and a real number r > 1 such that Λ(G′) � r for every G′ ∈ Q, and

Λ(G′) � 1 for every G′ ∈ A. In particular, Λ(G) � 1. By the Schröder–Simpson Theorem,

Λ = Φ(h) for some h ∈ [X → R+
σ], so G(h) � 1, which implies rDP(Q

′)(h) � 1. Also,

rDP(Q)(h) = minG′∈Q G
′(h) = minG′∈Q Λ(G′) � r > 1, contradiction.

Proposition 4.5. Let X be a topological space. Then, rDP defines a homeomorphism

between Qcvx
V (PP wk(X)) and PDP wk(X), and an order-isomorphism between Qcvx(PP wk(X))

and PDP(X).

Proof. Same argument as in Proposition 4.3, using Proposition 3.22 and Lemma 4.4.

Lemma 4.6. Let X be a topological space. For every L ∈ P�(PP wk(X)), rAP(L) = rAP(cl(L)),

and rDP(L) = rDP(↑L).

Proof. Since L ⊆ cl(L), rAP(L)(h) = supG∈L G(h) � rAP(cl(L))(h) for every h ∈ [X →
R+

σ]. Assume the inequality were strict: for some h ∈ [X → R+
σ], there would be a

G ∈ cl(L) such that rAP(L)(h) < G(h). Let b = rAP(L)(h). Then, G is in the open subset

[h > b], and since G ∈ cl(L), [h > b] must meet L. So there is a G′ ∈ L such that G′(h) > b,

which implies rAP(L)(h) > b, contradiction. The second claim is obvious.

Lemma 4.7. Let X be a topological space. For all L,L′ ∈ P�cvx(PP wk(X)), if rADP(L) �
rDP(L

′) then L �EM L′.

Proof. By assumption, rAP(L) � rAP(L
′), and rDP(L) � rDP(L

′). Using Lemmas 4.6, 4.2

and 4.4, we obtain cl(L) ⊆ cl(L′) and ↑L ⊇ ↑L′.

Proposition 4.8. Let X be a topological space such that [X → R+
σ]σ is locally convex and

has an almost open addition map, for example, a stably locally compact space, or more

generally, a core-compact, core-coherent space.

Then, rADP defines a homeomorphism between P�cvxV (PP wk(X)) and PADP wk(X), and an

order-isomorphism between P�cvx(PP wk(X)) and PADP(X).

Proof. Same argument as in Proposition 4.3, using Proposition 3.32 and Lemma 4.7.

4.2. Subnormalized and normalized previsions

The subnormalized and normalized cases reduce to the unbounded case.
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Lemma 4.9. Let • be ‘� 1’ or ‘1.’ Let X be a topological space. For every non-empty

closed subset C of P
•
P wk(X), rAP(C) = rAP(clP(C)), where clP(C) denotes the closure of C in

PP wk(X).

Proof. Since C ⊆ clP(C), for every h ∈ [X → R+
σ], rAP(C)(h) = supG∈C G(h) �

rAP(clP(C))(h). Assume by contradiction that rAP(C)(h) < rAP(clP(C))(h) for some h. Let

a be a real number such that rAP(C)(h) < a < rAP(clP(C))(h). So clP(C) is in r−1
AP [h > a],

which is open in HV (PP wk(X)), since rAP is continuous (Lemma 3.3). Every open subset

of HV (PP wk(X)) is also Scott open, and clP(C) is the least upper bound in H(PP wk(X))

of the directed family of closed subsets of the form ↓P E, where E ranges over the finite

subsets of C . (We write ↓P for downward closure in PP wk(X).) So there is a finite subset E

of C such that ↓P E ∈ r−1
AP [h > a], i.e., such that supG∈E G(h) > a. It follows that there is a

G ∈ E (hence G ∈ C) such that G(h) > a. But rAP(C)(h) = supG∈C G(h) < a, contradiction.

So rAP(C)(h) = rAP(clP(C))(h) for every h.

Lemma 4.10. Let • be ‘� 1’ or ‘1.’ Let X be a topological space. For all C,C ′ ∈
Hcvx(P•

P wk(X)), if rAP(C) � rAP(C
′) then C ⊇ C ′.

Proof. Assume rAP(C) � rAP(C
′). By Lemma 4.9, rAP(clP(C)) � rAP(clP(C

′)). Now clP(C)

and clP(C
′) are closed and non-empty. They are convex, because the closure of any convex

subset of a semitopological cone is convex again (Keimel 2008, Lemma 4.10 (a)). So

Lemma 4.2 applies: clP(C) ⊆ clP(C
′). In particular, C ⊆ clP(C

′). Since C ′ is closed in the

subspace Y = P
•
P wk(X) of Z = PP wk(X), one can write it as Y ∩A for some closed subset

A of Z . Clearly, clP(C
′) ⊆ A, so C ′ = Y ∩ A ⊇ Y ∩ clP(C ′). Since C ⊆ clP(C

′) and C ⊆ Y ,

it follows that C ⊆ C ′.

Theorem 4.11 (Isomorphism, angelic cases). Let • be the empty superscript, ‘� 1’ or ‘1.’

Let X be a topological space such that [X → R+
σ]σ is locally convex, for example, a

core-compact space.

Then, rAP defines a homeomorphism with inverse s•
AP between Hcvx

V (P•
P wk(X)) and

P
•
AP wk(X) and an order-isomorphism between Hcvx(P•

P wk(X)) and P
•
AP(X).

Proof. When • is the empty superscript, this is Proposition 4.3. Otherwise, we use the

same argument as in its proof, replacing Lemma 4.2 by Lemma 4.10. That is, rAP is an

injective retraction, hence an isomorphism.

Corollary 4.12. Let • be the empty superscript, ‘� 1’ or ‘1.’ Let X be a continuous dcpo.

Then, rAP define an isomorphism with inverse s•
AP between Hcvx(P•

P(X)) and P
•
AP(X).

The demonic cases are slightly simpler.

Lemma 4.13. Let • be ‘� 1’ or ‘1.’ Let X be a topological space. For every non-empty

compact saturated subset Q of P
•
P wk(X), rDP(Q) = rDP(↑P Q), where ↑P Q denotes the upward

closure of Q in PP wk(X).

Note that ↑P Q is compact saturated in PP wk(X). Indeed, Q is compact in P
•
P wk(X),

which is a subspace of PP wk(X). In particular, Lemma 3.13 applies, and rDP(↑P Q)(h) =

minG∈↑P Q G(h) for every h.
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Proof. Since Q ⊆ ↑P Q, rDP(↑P Q)(h) � rDP(Q)(h). Conversely, for every G ∈ ↑P Q, there is a

G1 ∈ Q such that G1 � G, so rDP(↑P Q)(h) = minG∈PP wk(X),G1∈Q,G1�G G(h) � minG1∈Q G1(h) =

rDP(Q)(h).

Lemma 4.14. Let • be ‘� 1’ or ‘1.’ Let X be a topological space. For all Q,Q′ ∈
Qcvx(P•

P wk(X)), if rDP(Q) � rDP(Q
′) then Q ⊇ Q′.

Proof. Assume rDP(Q) � rDP(Q
′). By Lemma 4.13, rDP(↑P Q) � rDP(↑P Q′). Now, ↑P Q is

compact saturated, non-empty, and it is easy to see that it is convex, since Q is convex. We

can therefore apply Lemma 4.4 and conclude that ↑P Q ⊇ ↑P Q′. In particular, ↑P Q ⊇ Q′.

So, for every element G′ of Q′, there is a G ∈ Q such that G � G′. But G′ is in P
•
P wk(X)

since in Q′, and Q is upward closed in P
•
P wk(X), so G′ itself is in Q. It follows that Q ⊇ Q′.

Theorem 4.15 (Isomorphism, demonic cases). Let • be the empty superscript, ‘� 1’ or

‘1.’ Let X be a topological space. Then, rDP defines a homeomorphism with inverse s•
DP

between Qcvx
V (P•

P wk(X)) and P
•
DP wk(X), and an order-isomorphism between Qcvx(P•

P wk(X))

and P
•
DP(X).

Proof. When • is the empty superscript, this is Proposition 4.5. Otherwise, we use the

same argument as in its proof, replacing Lemma 4.4 by Lemma 4.14. That is, rDP is an

injective retraction, hence an homeomorphism.

Corollary 4.16. Let • be the empty superscript, ‘� 1’ or ‘1.’ Let X be a continuous dcpo.

Then, rDP defines an isomorphism with inverse s•
DP between Qcvx(P•

P(X)) and P
•
DP(X).

There is nothing left to do to conclude in the erratic cases.

Theorem 4.17 (Isomorphism, erratic cases). Let • be ‘� 1’ or ‘1.’ Let X be a topological

space such that [X → R+
σ]σ is locally convex and has an almost open addition map, for

example a stably locally compact space, or more generally, a core-compact, core-coherent

space. Assume also that X is compact in case • is ‘1.’

Then, rADP defines an homeomorphism with inverse s•
ADP between P�cvxV (P•

P wk(X)) and

P
•
ADP wk(X), and an order-isomorphism between P�cvx(P•

P wk(X)) and P
•
ADP(X).

Proof. The only thing left to prove is that s•ADP(rADP(L)) = L for every L ∈ P�cvx(P•
P wk(X)).

But s•
ADP(rADP(L)) = s•

ADP(rDP(L), rAP(L)) = s•
ADP(rDP(↑L), rAP(cl(L))) (by Lemma 4.6) =

s•
DP(rDP(↑L)) ∩ s•

AP(rAP(cl(L))) = ↑L ∩ cl(L) (by Theorems 4.15 and 4.11) = L.

Corollary 4.18. Let • be the empty superscript, ‘� 1’ or ‘1.’ Let X be a coherent, continuous

dcpo (and pointed if • is ‘1’). Then, rADP defines an isomorphism with inverse s•
ADP between

P�cvx(P•
P(X)) and P

•
ADP(X).

4.3. Hulls

When A is not convex, s•
AP(rAP(A)) cannot be equal to A, since the former is always convex.

Similarly in the demonic cases. It is a natural question to ask what the compositions

s•
AP ◦ rAP, and similar compositions, compute.
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The convex hull conv(A) of a set A in a topological cone (or in a convex subspace) is

the smallest convex set that contains A. This is also the set of linear combinations of the

form ax+ (1 − a)y, where x, y ∈ A, a ∈ [0, 1].

The closed convex hull of a set A in a semitopological cone is the smallest closed

and convex set containing A. This is the closure of the convex hull of A (Keimel 2008,

Lemma 4.10 (a)).

Proposition 4.19. Let X be a topological space such that [X → R+
σ]σ is locally convex,

for example, a core-compact space. Let • be the empty superscript, ‘� 1,’ or ‘1.’

For every non-empty closed subset A of P
•
P wk(X), s•

AP(rAP(A)) is the closed convex hull

cl(conv(A)) of A in P
•
P wk(X).

Proof. By Proposition 3.11, s•
AP(rAP(A)) is non-empty and closed. It is convex, and clearly

contains A. Conversely, for every closed convex subset A′ that contains A, s•
AP(rAP(A)) ⊆

s•
AP(rAP(A

′)) = A′, where the last equality follows from Theorem 4.11. Therefore, s•
AP(rAP(A))

is the smallest closed convex set containing A, namely cl(conv(A)).

Symmetrically, one can define the compact saturated convex hull of a set A as the

smallest compact saturated, convex subset containing A, if it exists. The following shows

that this exists if A is any non-empty compact saturated subset of P
•
P wk(X), in particular.

Proposition 4.20. Let X be a topological space. Let • be the empty superscript, ‘� 1,’

or ‘1.’

For every non-empty compact saturated subset Q of P
•
P wk(X), s•

DP(rDP(Q)) is the compact

saturated convex hull of Q in P
•
P wk(X).

Proof. By Proposition 3.22, s•
DP(rDP(Q)) is compact saturated. It is convex, and clearly

contains Q. If Q′ is any convex, compact saturated superset of Q, then s•
DP(rDP(Q

′)) contains

s•
DP(rDP(Q)). However, s•

DP(rDP(Q
′)) = Q′ since rDP is an isomorphism with inverse s•

DP on

non-empty convex compact saturated sets, by Theorem 4.15; so Q′ contains s•
DP(rDP(Q)).

Proposition 4.21. Let • be the empty superscript, ‘� 1,’ or ‘1.’ Let X be a topological

space such that [X → R+
σ]σ is a locally convex semitopological cone, for example, a

core-compact space.

For every lens L of P
•
P wk(X), s•

ADP(rADP(L)) is a lens, and is the smallest convex lens that

contains L.

Proof. We know that s•
ADP(rADP(L)) = s•

AP(F
+) ∩ s•

DP(F
−) where (F+, F−) = rADP(L). By

Lemma 4.6, F+ = rAP(cl(L)) and F− = rDP(↑L). By Proposition 4.19, s•
AP(F

+) is the

closed convex hull of cl(L), hence also the smallest closed convex subset that contains

L. By Proposition 4.20, s•
DP(F

−) is the compact saturated convex hull of ↑L, hence also

the smallest compact saturated convex subset that contains L. As a consequence, their

intersection is a convex lens.

For the final part of the Proposition, if L′ is any convex lens that contains L, then cl(L′)

contains L, is closed, and is convex (Keimel 2008, Lemma 4.10 (a)), so cl(L′) contains

s•
AP(F

+); also, ↑L′ contains L, is compact saturated and convex, hence contains s•
DP(F

−).

It follows that L′ = cl(L′) ∩ ↑L′ contains s•
AP(F

+) ∩ s•
DP(F

−) = s•
ADP(rADP(L)).
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5. Conclusion

We have proved that, under some natural conditions, the powercone models and the

prevision models of mixed non-deterministic and probabilistic choice coincide. This

involved functional analytic methods that heavily rely on Keimel’s cone-theoretic variants

of the classical Hahn–Banach separation theorems, plus the Schröder–Simpson Theorem.

The demonic cases are the nicest, and require absolutely no assumption on the

underlying topological space X. As should be expected, the erratic cases demand stronger

assumptions. An intermediate case is given by the angelic cases, which require [X → R+
σ]σ

to be locally convex. We know that this is the case when X is locally compact, and more

generally, core-compact, and we do not know of an example of a space X for which

[X → R+
σ]σ would fail to be locally convex. Can we characterize those spaces X for

which [X → R+
σ]σ is locally convex?
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