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A tubular group G is a finite graph of groups with Z
2 vertex groups and Z edge

groups. We characterize residually finite tubular groups: G is residually finite if and
only if its edge groups are separable. Methods are provided to determine if G is
residually finite. When G has a single vertex group an algorithm is given to
determine residual finiteness.
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1. Introduction

A f.g. group G is tubular if it splits as a finite graph of groups with Z edge groups
and Z2 vertex groups. A group G is residually finite if for each nontrivial g ∈ G,
there is a finite quotient of G so that the image of g is nontrivial. The goal of this
paper is to determine which tubular groups are residually finite.

The case where G is a single HNN extension was handled by Andreadakis, Rap-
tis and Varsos [1]. However the full complexity of the situation is not apparent
for a single HNN extension, as residual finiteness coincides with virtual specialness
whereas failure of residual finiteness coincides with a problematic Baumslag–Solitar
subgroup. Kim [12] proved that having isolated cyclic subgroups is a sufficient con-
dition for residual finiteness. In the language of this paper, isolated cyclic subgroups
translate to saying the tubular group is primitive.

1.1. Quick survey of results about tubular groups

Tubular groups form a class of seemingly straightforward groups that are increas-
ingly recognized as a surprisingly rich source of diverse behaviour. Burns, Karass,
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and Solitar gave the first example of a f.g. 3-manifold group that is not subgroup
separable, and their example arises as a tubular group [4]. Croke and Kleiner used
this same tubular group to show that the boundary of a CAT(0) space is not an
invariant of CAT(0) groups [8]. Gersten gave a tubular group as an example of a
free-by-cyclic group that does not act properly and semi-simply on a CAT(0) space
[10]. Wise gave an example of a tubular group that is CAT(0) but not Hopfian
[15]. Brady and Bridson [3] characterized the Dehn functions of snowflake groups,
a subclass of tubular groups, to show that there are f.p. groups with isoperimet-
ric functions nd where d ∈ D is a dense subset of [2,∞]. Gardam and Woodhouse
showed that certain Snowflake groups embed as finite index subgroups of one-
relator groups [9], and Button observed that many of these groups are not residually
finite [6]. Cashen gave a quasi-isometric classification of tubular groups [7]. Wise
gave a criterion for a tubular group to be cubulated [16]. Button showed that if a
tubular group is free-by-cyclic, then it is cubulated [5]. Woodhouse classified which
cubulations are finite dimensional and showed that a tubular group is virtually spe-
cial if and only if it acts freely on a finite dimensional CAT(0) cube complex [17, 18].

1.2. Statement of main result

A f.g. group G is tubular if it splits as a finite graph of groups with Z2 vertex
groups and Z edge groups. A tubular group G is primitive if each edge group is a
maximal cyclic subgroup of its vertex groups, and hence of G. A nontrivial element
(a, b) ∈ Z2 is primitive if gcd(a, b) = 1, that is (a, b) is not a ‘proper power.’

There are two goals to this paper. The first is to characterize which tubular groups
are residually finite, and the second is to provide practical means of deciding the
question. The following theorem, addressing the first goal, is a special case of a
more extensive characterization given in theorem 4.3.

Theorem 1.1. A tubular group is residually finite if and only if it is virtually
primitive.

Although we are unable to settle the question of decidability of residual finiteness
in general, in the motivating case, where G has a single vertex group we are able
to provide the following, which is obtained as a consequence of proposition 7.1 and
lemma 7.4 in § 7.

Theorem 1.2. Let G be a tubular group with a single vertex group. Then there is
an algorithm that decides in finite time if G is residually finite or not.

To address tubular groups in general, we introduce the expansion sequence for a
tubular group, which we motivate in the following subsection.

1.3. Two illustrative examples

The expansion sequence for a tubular group is nontrivial, even in the simple case
of a graph of groups with a single vertex group and two edge groups. Given a tubu-
lar group G = G0 the expansion sequence is a series of homomorphisms. At the
i-th stage of the computation we obtain a tubular group Gi and a homomorphism
Gi−1 → Gi. The sequence G = G0 → G1 → G2 → · · · is the expansion sequence.

https://doi.org/10.1017/prm.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.52


Residually Finite Tubular Groups 2939

We are presented with a dichotomy: either the expansion sequence terminates or it
continues indefinitely, that is to say it is nonterminating. By lemma 5.4, a terminat-
ing expansion sequence is equivalent to G being residually finite. Ideally, we would
like to determine if an expansion sequence is nonterminating after a finite number
of steps. The simplest way to verify this is if the sequence starts repeating itself.
We call such sequences recurrent. Unfortunately, not all nonterminating expansion
sequences are recurrent. See example 5.5. We conjecture however that if a tubular
group is not residually finite, then some subtubular group will have an expansion
sequence that repeats itself.

We give two examples of such computations to illustrate and motivate what will
be happening in this paper.

Example 1.3. The tubular group G below splits over a graph with a single vertex
group and two edge groups. The elements (1, 0) and (0, 1) generate the vertex group
Gv = Z2 and s and t are the stable letters associated to the edge groups.

G = 〈Z × Z, s, t | (1, 0)s = (2, 2), (0, 1)t = (1, 1) 〉
G is not primitive since (2, 2) is not primitive in Gv. Note that t conjugates

a primitive element to a primitive element. We will construct a homomorphism
G → G′ from G to another tubular group G′ with the same underlying graph,
such that vertex and edge groups map injectively, and such that the stable letter s
conjugates a pair of primitive elements in G′. A simple way to do this is to add the
element (1/2, 0) to the vertex group and extend the conjugation by s linearly so that
(1/2, 0) is conjugated to (1, 1). We thus obtain the following new tubular group:

G′ = 〈 1
2Z × Z, s, t | ( 1

2 , 0)s = (1, 1), (0, 1)t = (1, 1)〉.
There is a homomorphism G → G′ that maps (0, 1), (1, 0), s, and t to themselves

in G′. This morphism is the expansion map. As G′ is a primitive tubular group we
say that we have found a primitive target for G, which implies by Theorem 4.3 that
G is residually finite.

Example 1.4. Consider the following tubular group G having a single vertex group
and two edge groups. Note that G is almost identical to the group in example 1.3,
with a slight adjustment to the elements conjugated to (1, 0) and (0, 1).

G = 〈Z × Z, s, t | (1, 0)s = (2, 4), (0, 1)t = (1, 2)〉.
G is not primitive since (2, 4) is not primitive in the vertex group Gv. All other
images of the edge group generators are primitive. As in example 1.3 we will con-
struct an ‘expansion map’ by adding the element (1

2 , 0) to Gv and extending the
conjugation by s linearly so that s conjugates (1

2 , 0) to (1, 2) . We thus obtain the
tubular group G′ below, and obtain a homomorphism G → G′ mapping Z × Z and
s and t identically to themselves.

G′ = 〈 1
2Z × Z, s, t | ( 1

2 , 0)s = (1, 2), (0, 1)t = (1, 2)〉
Unfortunately, G′ is not primitive. Indeed, (1, 2) is no longer primitive since

(1, 2) = 2(1/2, 1). We may then construct another expansion map. This time how-
ever, in order to extend both conjugations linearly we need to include the elements
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(1/4, 0) and (0, 1/2). We thus obtain the tubular group

G′ = 〈 1
4Z × 1

2Z, s, t | ( 1
4 , 0)s = (1

2 , 1), (0, 1
2 )t = (1

2 , 1)〉

and the expansion map G′ → G′′. This time the expansion map has not improved
our situation at all since G′′ is isomorphic to G′. The isomorphism is given by
scaling both (1/4, 0) and (0, 1/2) by 2. Repeating this process yields G′′′ which is
again isomorphic to G′ and therefore we will never arrive at a primitive target. This
situation is a recurrent expansion sequence and by lemma 5.4 it implies that G is
not residually finite.

In examples 1.3 and 1.4, the vertex group is of the form 1/nZ × 1/mZ at each
stage. However, the algorithm generally wanders through groups that are not subdi-
rect products of cyclic groups commensurable with the factors of the initial product
decomposition.

1.4. Structure of this paper

In § 2 we define a range of algebraic constructions that we will use to character-
ize residually finite tubular groups in § 4 and § 3. Section 5 defines the expansion
sequence of a tubular group and provides a general framework for understanding
residual finiteness of tubular groups. Section 6 applies the techniques of § 5 to the
snowflake groups of Brady and Bridson [3], to determine their residual finiteness
and recover a result of Button. Section 7 shows that residual finiteness is decidable
when the tubular group has a single vertex group.

2. Morphisms and primitivity

We now establish the notation used for the splitting of a group G as a graph Γ of
groups. We refer to [2, 13, 14] for full background. For the directed graph Γ, let E
and V denote its sets of edges and vertices. For an edge e ∈ E , let −e and +e denote
its initial and terminal vertices. A graph of groups G is a graph Γ with a vertex group
Gv for each v ∈ V, and an edge group Ge for each e ∈ E , and an accompanying pair of
monomorphisms ϕ±

e : Ge → Ge± of the edge group into the incident vertex groups.
Associated to G is its fundamental group G (see [14]), obtained by a sequence of
amalgamated free products and HNN extensions determined by the graph of groups
data. Alternatively, we will say that the group G splits as a graph of groups over Γ.
Finally, G acts on its associated Bass–Serre tree T , and G\T = Γ, and the conjugacy
classes of vertex and edge stabilizers correspond to the vertex and edge groups.

Definition 2.1. A group G is a tubular group if it splits as a finite graph of groups
with vertex groups isomorphic to Z2 and edge groups isomorphic to Z. We say that
G is a primitive tubular group if the edge groups are embedded by ϕ±

e as maximal
cyclic subgroups in the vertex groups.

Let G and G′ be groups which split over the graphs Γ and Γ′ respectively.
A morphism of graphs of groups is a homomorphism f : G → G′ determined by
a morphism f∗ : Γ → Γ′ of undirected graphs, and homomorphisms fv : Gv →
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G′
v′ and fe : Ge → G′

e′ where v′ = f∗(v) and e′ = f∗(e) such that the following
commutes:

Gv

fv
�� G′

v′

Ge

fe
��

ϕ+
e

��

G′
e′

ϕ′+
e

��

(assuming that v = +e and v′ = +e′). Note that Bass [2] defines a more general
notion of morphism between graphs of groups where edge groups may be ‘twisted’,
but that our definition will suffice for the purposes of this paper.

A rigid morphism f : G → G′ is a morphism such that f∗ is an isomorphism and
each fv and fe is injective.

A tubular group G has a primitive target if there a rigid morphism f : G → G
between tubular groups such that G is primitive. Similarly, a tubular group G has a
primitive domain if there is a rigid morphism f : G → G such that G is a primitive
tubular group.

The following holds by the definitions:

Lemma 2.2. Let G and G′ be tubular groups that split over the same underlying
graph Γ. Suppose that G′

v � Gv and G′
e � Ge and that the edge maps of G′ are

restrictions of the edge maps of G. Then there is a rigid morphism φ : G′ → G
induced by the inclusion maps on the vertex and edge groups.

Definition 2.3 (Local Quotients). Let f : G′ → G be a rigid morphism of tubular
groups with underlying graph Γ. Suppose that for the edge inclusions ϕ′

e : G′
e → G′

v

and ϕe : Ge → Gv we have f ◦ ϕ′
e(G′

e) = ϕe(Ge) ∩ f(G′
v). Note that this equality

always holds when G′ is primitive. Define a group G//G′ that splits over Γ as
follows:

(1) (G//G′)v = Gv/f(G′
v),

(2) (G//G′)e = Ge/f(G′
e),

(3) Attaching maps (G//G′)e → (G//G′)v are projections of Ge → Gv,

(4) There is a morphism q : G → G//G′ that is induced by the quotient maps
Gv → (G//G′)v and Ge → (G//G′)e.

Each map Ge/G′
e → Gv/G′

v is injective, since if g ∈ Ge maps to the identity in
Gv/G′

v then the image of g in Gv lies in f(G′
v). But then g ∈ ϕe(Ge) ∩ f(G′

v) so
f(g) ∈ G′

e by hypothesis. Hence g represents the identity in Ge/G′
e.

Having verified the injectivity of attaching maps of edge groups of G//G′ we see
that the data for G//G′ actually yields a splitting over Γ. The induced morphism
q : G → G//G′ is the local quotient of f . Since the vertex and edge groups of G//G′

are finite groups, the local quotient of f is a virtually free group by [11].
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3. Regulating E-tuples

Let G be a tubular group. Let k = (ke)e∈E be an E-tuple of integers, one for each
edge of G. For each edge group Ge let G

(k)
e = keGe. For each vertex group Gv

let G
(k)
v � Gv be the subgroup generated by the inclusions of the G

(k)
e under the

attaching maps. An E-tuple k is regulating if for each edge e and generator ge ∈ Ge,
the element ϕ±

e (kege) is primitive in G
(k)
±e .

Remark 3.1. Let k be an E-tuple. Then, for any positive integer n, we have that k is
regulating if and only if nk = (nke)e∈E is regulating. So, in searching for regulating
E-tuples, it suffices to consider those k = (ke)e∈E having gcd(ke : e ∈ E) = 1.

Lemma 3.2. Let G be a tubular group. Then G has a primitive domain if and only
if G has a regulating E-tuple.

Proof. Suppose G has a regulating E-tuple k. Extend each G
(k)
v to a rank 2 subgroup

Ḡ
(k)
v of Gv such that G

(k)
v is a maximal subgroup of its rank in Ḡ

(k)
v . The inclusions

G
(k)
e ↪→ Ge and Ḡ

(k)
v ↪→ Gv induce a rigid morphism G(k) → G. Each edge group

G
(k)
e is generated by kege where ge is a generator of Ge. Since ϕ±

e (kege) is primitive
in G

(k)
±e and so in Ḡ

(k)
±e , the image ϕ±

e (G(k)
e ) is a maximal cyclic subgroup of Ḡ

(k)
±e .

Hence G(k) → G is a primitive domain.
Suppose G has a primitive domain G′ → G. Let k = (ke)e∈E be an E-tuple where

ke = [Ge : G′
e]. Then ϕ±

e (G(k)
e ) = ϕ±

e (keGe) = ϕ±
e (G′

e) is a maximal cyclic subgroup
of G′

±e < G±e and so ϕ±
e (G(k)

e ) is a maximal cyclic subgroup of G
(k)
±e < G′

±e. Then
if ge generates Ge then ϕ±

e (kege) generates ϕ±
e (G(k)

e ) and so ϕ±
e (kege) is primitive

in G
(k)
±e . �

4. Scaling morphisms, naive morphisms and primitivity

Given H ∼= Zn and a nonzero rational number α ∈ Q∗, it is natural to define the
group αH, and likewise to define αh when h ∈ H. This is justified by noting that
there is a unique inclusion H ↪→ Qn up to conjugation by GLn(Q).

Let G be a tubular group with underlying graph Γ. Let Ge = 〈ge〉 and
Gv = 〈av, bv〉. For α ∈ Q∗ we define the tubular group αG with underlying graph
Γ as follows: The vertex and edge groups of αG are

αGv = 〈αav, αbv〉 and αGe = 〈αge〉.
Its edge inclusions are determined by linear extension: φ±

e (αge) = αφ±
e (ge).

Note that αG is primitive when G is primitive. The scaling morphism is a rigid
isomorphism G → αG induced by g 
→ αg for each g in a vertex or edge group.

We will also employ the following two rigid morphisms that arise when α = n ∈ N
and α = 1/n respectively: They map each vertex group and edge group to the
obvious copies of itself within the target.

The first naive morphism f : nG → G is defined since nGv � Gv and nGe � Ge

for all vertices v ∈ V and e ∈ E . The inclusions of the vertex and edge groups extend
to a rigid morphism by lemma 2.2.
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The second naive morphism g : G → 1/nG is defined since Gv � 1/nGv and Ge �
1/nGe for all vertices v ∈ V and e ∈ E . The inclusions of the vertex and edge groups
extend to a rigid morphism since edge maps are extended linearly so lemma 2.2
applies.

We emphasize that the scaling morphism G → 1/nG and the second naive mor-
phism G → 1/nG are different for n > 1 even though they have the same domain
and target. The scaling morphism is an isomorphism and restricts to a scaling iso-
morphism on each vertex and edge group. The second naive morphism restricts to
an inclusion of a subgroup on each vertex and edge group. There is likewise a 1/n
scaling isomorphism nG → G which differs from the first naive morphism.

Lemma 4.1. G has a primitive target if and only if G has a primitive domain.

Proof. If G has a primitive target then there is a morphism f : G → G. Let
ne = [Ge : Ge] and nv = [Gv : Gv]. Let n = lcm{ne, nv | e ∈ E , v ∈ V}. Then nG is
also primitive, and there is the naive morphism F : nG → G. It follows from our
choice of n that nGv � Gv � Gv for v ∈ V, and nGe � Ge � Ge for e ∈ E . There-
fore, by lemma 2.2 there is a morphism f : nG → G induced by inclusion of the
edge groups such that f ◦ f gives the inclusion of nGv into Gv for all v ∈ V, and
similarly for all edge groups. Hence G has a primitive domain.

If G has a primitive domain then there is a tubular group G and a morphism
f : G → G. Let me = [Ge : Ge] and mv = [Gv : Gv]. Let m = lcm{ne, nv | e ∈ E , v ∈
V}. Then 1/mG is a primitive tubular group, and there is the naive morphism
F : G → 1/mG. It follows from our choice of m that Gv � Gv � 1/mGv for v ∈ V,
and Ge � Ge � 1/mGe for e ∈ E . Therefore, by lemma 2.2, there is a morphism
f : G → 1/mG induced by the inclusions of edge groups such that f ◦ f gives the
inclusion of Gv into 1/mGv for all v ∈ V, and similarly for all edge groups. Hence
G has a primitive target. �

A subgroup H ⊂ G is separable if H is the intersection of finite index subgroups
of G. The following is well-known:

Lemma 4.2.

(1) The intersection of separable subgroups of G is separable.

(2) A maximal abelian subgroup A � G of a residually finite group is separable.

Proof. Statement (4.2) follows from the definition. Statement (4.2) holds as follows:
If g /∈ A, then there exists a ∈ A such that k = gag−1a−1 �= 1. By residual finiteness,
there is a finite quotient φ : G → G′ such that φ(k) �= 1. Let A′ � G′ be a maximal
abelian subgroup containing φ(A), and note that φ(g) �∈ A′. Then A lies in the finite
index subgroup φ−1(A′), but g /∈ φ−1(A′). �

Theorem 4.3. The following are equivalent:

(1) G is residually finite.

(2) G has a primitive domain.
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(3) G has a primitive target.

(4) G is virtually primitive.

(5) G has separable edge groups.

(6) G has a regulating E-tuple.

Proof. (4.3⇒ 4.3) Each conjugate of a vertex group is a maximal abelian sub-
group, and hence separable by lemma 4.2.(4.2). Each edge group is the intersection
of conjugates of incident vertex groups. Hence the edge group is separable by
lemma 4.2.(4.2).

(4.3⇒ 4.3) By the separability of each edge group Ge, there is a finite index
subgroup Je � G such that Ge � Je and Ge is a direct factor of each of its vertex
groups in Je. Let G′ = ∩eJ

e. Then G′ is primitive.
(4.3⇒ 4.3) Since being virtually residually finite is equivalent to being residually

finite, we will just show that primitive implies residually finite. Let G be a primitive
tubular group. For each n, consider the morphism nG → G and its associated local
quotient qn : G → G//nG. As G//nG is a graph of finite groups, it is virtually free
and hence residually finite. Therefore it suffices to show that for each nontrivial
g ∈ G there exists n such that qn(g) is nontrivial.

Either g is elliptic or g is hyperbolic with respect to the action on the associ-
ated Bass–Serre tree. If g is elliptic we can assume, after conjugation, that g ∈ Gv

regarded as (p, q) ∈ Z2. Choose n > max{|p|, |q|}. Then qn(g) is nontrivial. If g is
hyperbolic, then it has a normal form without any backtrack. We will explain how
to choose n such that qn also has a normal form without any backtrack. Each
potential backtrack is of the form t±1ht∓1 for some stable letter t and h ∈ Gv.
Let Ge be the edge group associated to t, and note that h /∈ Ge. By primitivity,
Gv = Ge × Z ∼= Z2 with (1, 0) the generator of Ge. Since h /∈ Ge, we have h = (p, q)
with q �= 0. Hence, this potential backtrack is not a backtrack whenever n > |q|.
Choosing n to satisfy this condition for each potential backtrack guarantees that
qn(g) is nontrivial.

(4.3⇔ 4.3) This is lemma 4.1.
(4.3⇒ 4.3) Let f : G → G be the primitive domain for G. Let G//G be the asso-

ciated local quotient. If G has an edge group generator ge which has a proper root
1/kge ∈ G, then 1/kge maps to a torsion element in G//G. Note that G//G is vir-
tually free as a graph of finite groups [11]. Let F � G//G be a finite index-free
subgroup, and let G′ � G be the preimage of F in G. As G′ is a finite index sub-
group of G, it will also split as a tubular group over a finite graph Γ′. Finally,
observe that G′ is primitive as any proper root of an edge generator in G′ would
map to a torsion element in G//G.

(4.3⇒ 4.3) Since finite index subgroups of primitive tubular groups are primitive,
there also exists a finite index normal subgroup G′ � G such that G′ is primitive.
The induced splitting of G′ shows that G′ is also tubular, so inclusion of G′ ↪→ G is
a morphism of tubular groups. Let p : Γ′ → Γ be the morphism of graphs associated
to the inclusion. Let v ∈ V. If u′, v′ ∈ p−1(v), then as G′ is a normal subgroup the
vertex groups G′

u′ and G′
v′ have identical images inside Gv. The analogous statement

holds for each edge e ∈ E .
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We construct G from G′ as follows: The vertex group Gv is the image of G′
v′ in

Gv for some and hence any choice v′ ∈ p−1(v). The edge group Ge is the image of
G′

e′ in Ge for some and hence any choice e′ ∈ p−1(e). The edge group inclusions of
G′ determine the edge group inclusions of G. By lemma 2.2 we get a rigid morphism
F : G → G determined by the inclusions of the vertex and edge groups. As G′ is a
primitive tubular group, G is also a primitive tubular group.

(4.3⇔ 4.3) This is lemma 3.2. �

5. The expansion sequences

Let G be a tubular group with underlying graph Γ. For each edge e ∈ E fix a choice
of generator ge of Ge. The degree d±e of an attaching map ϕ±

e is the order of the
torsion factor in G±e/φ±

e (Ge). Let de = lcm{d+
e , d−e }. We refer to the tuple (de)e∈E

as the edge degrees.
Define a tubular group G′ with underlying graph Γ as follows: The edge group

G′
e = 1/deGe and the vertex group G′

v = 〈Gv,Hv〉, where

Hv =
{

1
de

φ+
e (ge) | e ∈ E , +e = v

}
∪

{
1
de

φ−
e (ge) | e ∈ E ,−e = v

}
.

As 1/deφ
+
e (ge) ∈ G′

v, for all e ∈ E such that +e = v, we obtain the edge map
φ′+

e : G′
e → G′

v by extending φ+
e linearly. The inclusions pv : Gv → G′

v and pe :
Ge → G′

e determine a rigid morphism p : G → G′ called the expansion morphism.
An expansion is trivial if it is the identity map. This occurs precisely when G is
primitive.

The following lemma shows that there is a bound on the complexity of the tubular
group produced by the expansion morphism.

Lemma 5.1. Let G be a tubular group and (de)e∈E the edge degrees. Let
� = lcm{de | e ∈ E}. Let G → G′ be the expansion morphism, and (d′e)e∈E be the
edge degrees of G′. Then d′e divides � for all e ∈ E.

Proof. Let v = +e. Let K � Gv be the maximal cyclic subgroup of Gv containing
φ+

e (Ge). Then d+
e is the order of the quotient K/φ+

e (Ge). Let K ′ � G′
v be the

maximal cyclic subgroup of G′
v containing φ′+

e (G′
e). The claim follows by showing

that � is divided by the order of K ′/φ′+
e (G′

e).
First note that K = 〈1/d+

e φ+
e (ge)〉 � 〈1/deφ

+
e (ge)〉 = φ′+

e (G′
e). Second note that

G′
v = 〈Gv, 1/deφ

+
e (ge), . . .〉 � 1/�Gv, so K ′ � 1/�K. Together this implies that K �

φ′+
e (G′

e) � K ′ � 1/�K so the order of K ′/φ′+
e (G′

e) is a factor of �. �

Lemma 5.2. Let p : G → G′ be the expansion map. If G has a primitive target
f : G → G, then f factors as f = p ◦ p for some rigid morphism p : G′ → G.

Proof. The vertex and edge groups of G can be viewed as subgroups of the corre-
sponding vertex and edge groups of both G and G′. We deduce that Ge � G′

e � Ge

as G is primitive, so 1/deGe must be a subgroup of Ge. Similarly, Gv � G′
v � Gv as

the primitivity of G implies that 1/deφ
±
e (ge) must be in Gv for v = ±e. Therefore,

by lemma 2.2 there exists a rigid morphism p : G′ → G such that p ◦ p = f . �
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Lemma 5.3. Let p : G → G′ be an expansion map. Then p(G) = G′.

Proof. Recall that for each edge e ∈ E we fixed a generator ge. We then let d±e be
the degree of the attaching map φ±

e , and de = lcm{d+
e , d−e }. Then G′

e = 1/deGe,
and G′

±e were defined to include the element 1/deφ
±
e (ge), for all incident edges e.

Note that 1/d±e φ±
e (ge) was already an element of G±e, since d±e was the order of

the torsion factor in G±e/φ±
e (Ge). Therefore 1/d±e ge and thus 1/dege will be in the

image of p. It then follows that G′
e is contained in p(G) for all edges e, and therefore

G′
v is contained in p(G) for all v ∈ V. �

An expansion sequence is a sequence of nontrivial expansions

G → G1 → G2 → · · · → Gt → · · ·
The following asserts that a finite expansion sequence is equivalent to residual

finiteness.

Lemma 5.4. If G has a primitive target then any expansion sequence starting with
G has length bounded by

∑
e[Ge : Ge].

Conversely, if the expansion sequence G → · · · → Gt terminates in the sense that
it cannot be extended, then Gt is primitive, and hence G has a primitive target.

Proof. Let f : G → G be a primitive target for G. By lemma 5.2, f factors through
the map G → Gm for each m. Therefore, the sum of the degrees of each edge group
Ge in Ge provides an upper bound on the length of a sequence of edge expansions.

The composition G = G1 → Gt = G yields the converse. For if Gt is not primitive
then de �= 1 for some edge e. Hence there is a nontrivial expansion of Gt. �

The expansion sequence is computable so lemma 5.4 shows that there is an
algorithm which can find a primitive target, should one exist. Specifically, the
algorithm would perform edge expansions until the expansion sequence terminates.
An effective algorithm would also need to identify when G is nonresidually finite.
Suppose that G → G1 → G2 → · · · is a nonterminating expansion sequence. Then
we say the expansion sequence is recurrent if Gi is isomorphic to Gj via some
rigid isomorphism, for some i < j. Therefore if either a terminating or a recur-
rent expansion sequence could be found in finite time, the question of residual
finiteness would be algorithmically decidable. Unfortunately, in general, there are
nonresidually finite tubular groups with nonrecurrent, infinite expansion sequences.

Example 5.5. Let

G = G0 = 〈Z × Z, s, t | s(1, 0)s−1 = (2, 0), t(0, 1)t−1 = (1, 1)〉.
There is a single nonprimitive vector (2, 0) among the relations so the first edge

expansion is given by dividing the first edge group by two to obtain

G1 = 〈 1
2Z × Z, s, t | s( 1

2 , 0)s−1 = (1, 0), t(0, 1)t−1 = (1, 1)〉.
Observe that the elements (0, 1) and (1, 1) remain primitive in 1/2Z × Z, so the

only nonprimitive element in the relations is (1, 0). Therefore the n-th term in the
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expansion sequence is:

Gn = 〈 1
2n Z × Z, s, t | s( 1

2n , 0)s−1 = ( 1
2n−1 , 0), t(0, 1)t−1 = (1, 1)〉

Thus the expansion sequence does not terminate so G is not residually finite. But
Gn �= Gm for n �= m. Indeed, since all maximal rank 2 free abelian groups in Gn

are conjugate to the vertex group 1/2nZ × Z, we can assume that an isomorphism
Gn → Gm sends 1/2nZ × Z to 1/2mZ × Z. Any conjugate of the vertex group in
Gn that nontrivially intersects 1/2nZ × Z does so in a cyclic subgroup 〈(1/2n, 0)〉,
〈(1/2n−1, 0)〉, 〈(0, 1)〉 and 〈(1, 1)〉. Similarly, in Gm nontrivial intersections of conju-
gates of the vertex group intersect 1/2mZ × Z in the cyclic subgroups 〈(1/2m, 0)〉,
〈(1/2m−1, 0)〉, 〈(0, 1)〉 and 〈(1, 1)〉. By identifying Gn

∼= Z2 we can compute the
unsigned intersection numbers of these cyclic subgroups. The unsigned intersection
number of 〈(p, q)〉 and 〈(r, s)〉 is the absolute value of the determinant of the matrix(
p rq s

)
. The unsigned intersection number is invariant up to multiplication by

elements of GL2(Z). So, as any isomorphism Gn → Gm must send conjugates of
vertex groups to conjugates of vertex groups, the unsigned intersection numbers are
an invariant of Gn. The largest intersection number of Gn is 2n and is achieved by
the vectors (0, 1) and (1, 1), which are identified with (0, 1) and (2n, 1) when (Gn)v

is identified with Z2. Therefore Gn is not isomorphic to Gm if n �= m.
Note that if we consider the subtubular group

G′ = G′
0 = 〈Z × Z, s | s(1, 0)s−1 = (2, 0)〉.

Then we can compute that

G′
1 = 〈 1

2Z × Z, s | s( 1
2 , 0)s−1 = (1, 0)〉.

As there is a rigid isomorphism G′
1 → G′ we deduce that G′ is recurrent.

Consideration of examples and computer experiments leads to the following:

Problem 5.6. Does every nonresidually finite tubular group contain a subtubular
group with recurrent expansion sequence?

The following example illustrates that even a terminating expansion sequence
can be arbitrarily long for a fixed graph Γ.

Example 5.7. For each n let G(n) be the tubular group presented by:

〈Z × Z, t | t(1, 0)t−1 = (2, 2n)〉

G(n−1) is isomorphic to the expansion of G(n) which has the following presentation:

〈 1
2Z × Z, t | t( 1

2 , 0)t−1 = (1, 2n−1)〉

We thus have the terminating expansion sequence G(n) → G(n−1) → · · · → G(1) →
G(0). So the expansion sequence of G(n) has length n + 1.
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6. The residually finite snowflake groups

Snowflake groups are the following tubular groups for positive integers p � q:

Gpq = 〈Z2, s, t | (q, 0)s = (p, 1), (q, 0)t = (p,−1)〉

Brady and Bridson showed that Gpq has Dehn function � n2α for α = log2(2p/q)
in [3]. Gardam and Woodhouse showed that many snowflake groups are finite
index subgroups of one-relator groups [9]. This provided examples of nonautomatic
one-relator groups that do not contain Baumslag–Solitar subgroups of the form
BS(m,n) = 〈a, t | (am)t = an〉 with m �= ±n. Subsequently, Button observed that
some of these one-relator groups are CAT(0) but not residually finite and has clas-
sified the residually finite snowflake groups [6]. We now reproduce his classification
using our method.

Theorem 6.1. Gpq is residually finite if and only if q divides 2p.

Proof. If q = 1 then Gpq is a primitive tubular group and hence residually finite by
theorem 4.3. If q > 1 then we perform the expansion map Gpq → G′

pq where each
edge group is divided by q. The vertex group of G′

pq is:
〈(

p

q
,

1
q

)
,

(
p

q
, −1

q

)
, (1, 0), (0, 1)

〉

We swap the components of these generators, scale them by q and set them as
the rows of a matrix below. We obtain a two-element basis by performing integer
row operations to reduce the matrix to Hermite normal form:

⎡
⎢⎢⎣

1 p
−1 p
0 q
q 0

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

1 p
0 2p
0 q
0 −qp

⎤
⎥⎥⎦ →

⎡
⎢⎢⎣

1 p
0 gcd(2p, q)
0 0
0 0

⎤
⎥⎥⎦

Thus G′
pq has the following presentation:

G′
pq =

〈(
gcd(q, 2p)

q
, 0

)
,

(
p

q
,

1
q

)
, s, t

∣∣∣ (1, 0)s =
(

p

q
,

1
q

)
, (1, 0)t =

(
p

q
,
−1
q

)〉
.

If q | 2p then G′
pq is primitive and hence Gpq is residually finite, by lemma 5.4

and theorem 4.3. Otherwise, G′
pq is not primitive and has a nontrivial expansion

map where each edge group is divided by the degree of the torsion factor in
〈(

gcd(q, 2p)
q

, 0
)

,

(
p

q
,

1
q

)〉 /
〈(1, 0)〉 .

Since the vertex group in G′
pq is generated by the elements conjugated by s and t

we deduce that the expansion map G′
pq → G′′

pq is a scaling morphism and therefore
an isomorphism. Thus, the expansion sequence is recurrent if q � 2p and so Gpq is
not residually finite by lemma 5.4 and theorem 4.3. �
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7. Deciding residual finiteness for single vertex group

Let G be a tubular group with a single vertex group Gv. We will show that the
problem of determining the residual finiteness of G is decidable.

Proposition 7.1. Let G be a tubular group with a single vertex group Gv. Assume
that G has at least two edges and that 〈ϕ+

e (Ge), ϕ−
e (Ge)〉 < Gv has rank 2 for every

edge e. Let e1, . . . , en be the edges in the underlying graph of G. Let ui, vi ∈ Gv

correspond to the generators of the cyclic subgroups of Gv conjugated by the stable
letter associated to ei. Let ti ∈ Q>0 be minimal such that tiui ∈ 〈ui+1, vi+1〉, where
the indices are considered modulo n. Let k = (ke)e∈E be given by kei

= ki and write
k = (k1, k2, . . . , kn). If k is regulating then

k =
(

m,m
z1

t1
, . . . ,m

z1z2 · · · zn−1

t1t2 · · · tn−1

)

for some m, z1, z2, . . . , zn ∈ Z for which z1 · · · zn = t1 · · · tn.

Proof. Suppose k is regulating. Then

ki+1ti
ki

kiui = ki+1tiui ∈ ki+1〈ui+1, vi+1〉 � G(k)
v .

Since kiui is primitive in G
(k)
v by the definition of regulating, we deduce that

ki+1ti/ki = zi for some integer zi ∈ Z. Hence ki+1/ki = zi/ti and so

z1 · · · zn

t1 · · · tn =
k2

k1

k3

k2
· · · kn

kn−1

k1

kn
= 1.

Setting m = k1 we recover the claim. �

We apply proposition 7.1 in the following example.

Example 7.2. Let G be the tubular group with the following presentation.

〈Z × Z, s, t | (2,−4)s = (−1,−2), (−6,−6)t = (2, 2)〉

Following proposition 7.1, let u1 = (2,−4), v1 = (−1,−2), u2 = (−6, 6), v2 =
(2, 2), and compute that t1 = 2 and t2 = 4/3. Since t1t2 is not an integer, there
do not exist integers z1 and z2 such that z1z2 = t1t2. Hence, proposition 7.1 implies
that G has no regulating E-tuple. Hence G is not residually finite, by theorem 4.3.

Example 7.3. The snowflake group Gpq is the tubular group presented by
〈
Z2, s, t | (q, 0)s = (p, 1), (q, 0)t = (p,−1)

〉

for positive integers p � q. Following proposition 7.1, let u1 = u2 = (q, 0), v1 =
(p, 1), v2 = (p,−1), and compute that t1 = t2 = 1. Then, by proposition 7.1 and
remark 3.1, there is a regulating E-tuple for Gpq if and only if (k1, k2) = (1, 1) is a
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regulating E-tuple. That is, if and only if (q, 0), (p, 1) and (p,−1) are primitive in
the subgroup H = 〈(q, 0), (p, 1), (p,−1)〉 that they generate. If

r(p,±1) = a(q, 0) + b(p,∓1)

for some r ∈ Q and a, b ∈ Z then r = −b ∈ Z and so (p,±1) is always primitive
in H. On the other hand

r(q, 0) = a(p, 1) + b(p,−1)

holds for some r ∈ Q and a, b ∈ Z if and only if a = b and r = 2p
q a. Hence (q, 0) is

primitive in H if and only if q|2p. Thus we see that Gpq has a regulating E-tuple if
and only if q|2p.

Theorem 1.2 follows from theorem 4.3 and the following lemma.

Lemma 7.4. Let G be a tubular group with a single vertex group Gv. There is an
algorithm which determines if G has a regulating E-tuple.

Proof. The algorithm first checks to see if the images ϕ±
e (Ge) of any edge group Ge

are commensurable but distinct in Gv. In such a case we have ϕ+
e (kege) = qϕ−

e (kege)
for some q ∈ Q − {1} where ge is a generator of Ge. Then the ϕ±

e (kege) cannot both
be primitive in any subgroup of Gv so no E-tuple is regulating and the algorithm
may return a ‘no’ answer.

Henceforth we assume that if ϕ±
e (Ge) are commensurable for some e ∈ E then

they are equal. Let G′ be the subtubular group obtained from G by removing an
edge e for which the ϕ±

e (Ge) are equal. Given a regulating E ′-tuple k′ for G′ we may
obtain a regulating E-tuple k for G as follows. If G

(k′)
v ∩ ϕ±

e (Ge) is trivial then we
obtain k by extending k′ with any ke ∈ Z − {0}. Otherwise, let q ∈ Q>0 be minimal
such that qϕ±

e (Ge) < G
(k′)
v and choose m ∈ Z − {0} such that mq ∈ Z. We obtain

k by extending mk′ = (mk′
e)e∈E′ with ke = mq.

Thus the algorithm discards all edges e for which the ϕ±
e (Ge). If G has a single

edge group Ge then any ke ∈ Z − {0} gives a regulating k and so the algorithm
returns a ‘yes’ answer in this case.

At this point in the algorithm G has at least two edges and for each edge e the
ϕ±

e (Ge) are not commensurable. By proposition 7.1 and remark 3.1, we need to
only consider finitely many integers z1, . . . , zn and m to check if G has a regulat-
ing E-tuple. For each z1, . . . , zn and m we compute the corresponding G

(k)
v and

determine whether the kiui and kivi are primitive in G
(k)
v . �
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