Boundary blow-up elliptic problems with nonlinear gradient terms and singular weights

Zhijun Zhang

School of Mathematics and Informational Science, Yantai University, Yantai, Shandong 264005, People's Republic of China (zhangzj@ytu.edu.cn)

(MS received 24 May 2006; accepted 20 September 2007)

By Karamata regular variation theory, a perturbation method and construction of comparison functions, we show the exact asymptotic behaviour of solutions near the boundary to nonlinear elliptic problems $\Delta u \pm |\nabla u|^q = b(x)g(u), u > 0$ in Ω , $u|_{\partial\Omega} = \infty$, where Ω is a bounded domain with smooth boundary in \mathbb{R}^N , q > 0, $g \in C^1[0,\infty)$ is increasing on $[0,\infty)$, g(0)=0, g' is regularly varying at infinity with positive index ρ and b is non-negative in Ω and is singular on the boundary.

1. Introduction and the main results

The purpose of this paper is to investigate the exact asymptotic behaviour of solutions near the boundary to the following model problems:

$$\Delta u \pm |\nabla u|^q = b(x)q(u), \quad u > 0 \in \Omega, \quad u|_{\partial\Omega} = \infty,$$
 (P₊)

where the last condition means that $u(x) \to +\infty$ as $d(x) = \operatorname{dist}(x, \partial\Omega) \to 0$, and the solution is called 'a large solution' or 'an explosive solution', Ω is a bounded domain with smooth boundary in \mathbb{R}^N , $N \geq 1$, q > 0, g have the properties that

- (g_1) $g \in C^1[0,\infty), g(0) = 0, g$ is increasing on $[0,\infty),$
- (g₂) the Keller-Osserman condition

$$\int_{t}^{\infty} \frac{\mathrm{d}s}{\sqrt{2G(s)}} < \infty \quad \text{for all } t > 0, \quad G(s) = \int_{0}^{s} g(z) \, \mathrm{d}z$$

holds.

and b satisfies the condition

(b₁)
$$b \in C^{\alpha}(\Omega)$$
 for some $\alpha \in (0,1)$ is non-negative in Ω and $\lim_{d(x)\to 0} b(x) = \infty$.

The main feature of this paper is the presence of the three terms: the nonlinear term g(u), which is regularly varying at infinity with index $1 + \rho$, $\rho > 0$, and includes a large class of functions; the nonlinear gradient term $\pm |\nabla u|^q$; and the weight b, which is singular on the boundary, and also includes a large class of functions.

First, let us review the following model:

$$\Delta u = b(x)g(u) \quad \text{in } \Omega, \quad u|_{\partial\Omega} = +\infty.$$
 (P₀)

© 2008 The Royal Society of Edinburgh

The problem (P_0) arises from many branches of mathematics and applied mathematics and has been discussed by many authors and in many contexts (see, for example, [2-14, 18-21, 23-31, 33, 34, 36-38, 41-43, 45, 46]).

Problem (P_0) was studied much earlier for the case in which $b \equiv 1$ on Ω for $g(u) = e^u$. Bieberbach [3] proved that when N = 2 there is one solution $u \in C^2(\Omega)$ satisfying the condition that $|u(x) - \ln(d(x))^{-2}|$ is bounded on Ω . The same result was proved by Rademacher [37] for N = 3. For more general non-decreasing functions g, Keller and Osserman [19, 34] first supplied a necessary and sufficient condition (g_2) for the existence of large solutions to problem (P_0). Later, Loewner and Nirenberg [26] showed that if $g(u) = u^{p_0}$ with $p_0 = (N+2)/(N-2)$, N > 2, then problem (P_0) has a unique positive solution u satisfying

$$\lim_{d(x)\to 0} u(x)(d(x))^{(N-2)/2} = (N(N-2)/4)^{(N-2)/4}.$$

Then, by analysing the corresponding ordinary differential equation and combining it with the maximum principle, Bandle and Marcus [2] established the following results: if g satisfies (g_1) and

(g₃) there exist $\theta > 0$ and $s_0 \ge 1$ such that $g(\xi s) \le \xi^{1+\theta} g(s)$ for all $\xi \in (0,1)$ and $s \ge s_0/\xi$,

then, for any solution u of problem (P_0)

$$\frac{u(x)}{\psi_1(d(x))} \to 1 \quad \text{as } d(x) \to 0, \tag{1.1}$$

where ψ_1 satisfies

$$\int_{\psi_1(t)}^{\infty} \frac{\mathrm{d}s}{\sqrt{2G(s)}} = t \quad \text{for all } t > 0$$
 (1.2)

and, in addition to the conditions given above, q satisfies the condition that

 (g_4) g(s)/s is increasing on $(0, \infty)$,

then problem (P_0) has a unique solution.

Lazer and McKenna [24] showed that if g satisfies (g_1) and

(g₅) there exists $a_1 > 0$ such that g'(s) is non-decreasing for $s \ge a_1$, and

$$\lim_{s \to \infty} \frac{g'(s)}{\sqrt{G(s)}} = \infty,$$

then, for any solution u of problem (P_0) ,

$$u(x) - \psi_1(d(x)) \to 0 \quad \text{as } d(x) \to 0.$$
 (1.3)

Now we introduce a class of functions.

Let Λ denote the set of all positive monotonic functions $k \in L^1(0,\nu) \cap C^1(0,\nu)$ which satisfy

$$\lim_{t \to 0^+} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{K(t)}{k(t)} \right) = C_k \in [0, \infty), \tag{1.4}$$

where

$$K(t) = \int_0^t k(s) \,\mathrm{d}s. \tag{1.5}$$

We note that, for each $k \in \Lambda$, $\lim_{t\to 0^+} K(t)/k(t) = 0$, $C_k \in [0,1]$ if k is non-decreasing and $C_k \geqslant 1$ if k is non-increasing.

Most recently, applying the regular variation theory, which was first introduced and established by Karamata in 1930 and is a basic tool in the stochastic process, and constructing comparison functions, Cîrstea and co-workers [6–9] showed the uniqueness and exact asymptotic behaviour of solutions near the boundary to problem (P_0) . A basic result is that if g satisfies (g_1) and

- (g₆) there exists $\rho > 0$ such that $\lim_{s \to \infty} g'(\xi s)/g'(s) = \xi^{\rho}$ for all $\xi > 0$ and $b \in C^{\alpha}(\bar{\Omega}), b \geqslant 0$ in Ω , and satisfies
- (b₂) $\lim_{d(x)\to 0} b(x)/k^2(d(x)) = c_0 > 0$ for some non-decreasing function $k \in \Lambda$, then any solution u of problem (P_0) satisfies

$$\lim_{d(x)\to 0} \frac{u(x)}{\psi(d(x))} = \xi_0, \tag{1.6}$$

where

$$\xi_0 = \left(\frac{2 + \rho C_k}{c_0(2 + \rho)}\right)^{1/\rho}$$

and $\psi \in C^2(0, a)$, $a \in (0, \nu)$, is defined by

$$\int_{\psi(t)}^{\infty} \frac{\mathrm{d}s}{\sqrt{2G(s)}} = K(t) \quad \text{for all } t \in (0, a).$$
 (1.7)

Zhang [46] considered problem (P_0) for the case $k(t) = t^{\sigma/2}$ with $\sigma > -2$, and Mohammed [33] generalized the above results to non-increasing function $k \in \Lambda$. Now let us return to problem (P_+) .

When $b \equiv 1$ on Ω , Lasry and Lions [22] established the existence, uniqueness and exact asymptotic behaviour of solutions near the boundary to problem (P_{-}) for $g(u) = \lambda u$ with $\lambda > 0$ and q > 1; when $g(u) = u^{p}$, p > 0, by the ordinary differential equation theory and the comparison principle, Bandle and Giarrusso [1] showed the following results:

- (i) if p > 1 or q > 1, then problem (P_+) has one solution in $C^2(\Omega)$, and the same statement is true for problem (P_-) if p > 1 or $1 < q \le 2$;
- (ii) if p > 1 and 0 < q < 2p/(p+1), then every solution u_{\pm} of problem (P_{\pm}) satisfies (1.1), where $\psi_1(t) = (\sqrt{2(p+1)}/(p-1))^{2/(p-1)}t^{-2/(p-1)}$;
- (iii) if 2p/(p+1) < q < p, then, for any solution u_+ of problem (P_+) ,

$$\lim_{d(x)\to 0} u_+(x) \left(\frac{p-q}{q} d(x)\right)^{q/(p-q)} = 1; \tag{1.8}$$

(iv) if $\max\{2p/(p+1), 1\} < q < 2$, then every solution u_- of problem (P_-) satisfies

$$\lim_{d(x)\to 0} u_{-}(x)(2-q)((q-1)d(x))^{(2-q)/(q-1)} = 1; \tag{1.9}$$

(v) if q = 2, then every solution u_{-} of problem (P_{-}) satisfies

$$\lim_{d(x)\to 0} u_{-}(x)/\ln(d(x)) = 1. \tag{1.10}$$

Moreover, Bandle and Giarrusso [1] and Giarrusso [15,16] extended the above results for more general g(u) satisfying

$$\lim_{u \to \infty} \frac{\sqrt{G(u)}}{(g(u))^{1/q}} = c_1 \in [0, \infty].$$

Most recently, Porretta and Véron [35] gave the precise expression of the solution for the case $g(u)=u^p$ with p>0. Zhang [49] generalized the above results in [1, 15, 16] to problem (P_{\pm}) for the case that $b\in C^{\alpha}(\bar{\Omega})$, $b\geqslant 0$ in Ω , and considered problem (P_{\pm}) when $0< q< 2(\rho+1)/(\rho+2)$ and $k(t)=t^{\sigma/2}$ with $\sigma>-2$ [47].

For other existence results of large solutions to elliptic problems with nonlinear gradient terms, see [44, 48, 50] and the references therein.

In this paper, by Karamata regular variation theory, a perturbation method and constructing comparison functions, we reveal that how the singular weights b affect the exact asymptotic behaviour of solutions near the boundary to problems (P_+) .

First let us recall some basic definitions and the properties to Karamata regular variation theory [32, 39, 40].

DEFINITION 1.1. A positive measurable function f defined on $[a, \infty)$, for some a > 0, is called regularly varying at infinity with index ρ , written $f \in RV_{\rho}$, if, for each $\xi > 0$ and some $\rho \in \mathbb{R}$,

$$\lim_{t \to \infty} \frac{f(\xi t)}{f(t)} = \xi^{\rho}.$$
(1.11)

The real number ρ is called the index of regular variation.

In particular, when $\rho = 0$, we have the following.

DEFINITION 1.2. A positive measurable function L defined on $[a, \infty)$, for some a > 0, is called slowly varying at infinity, if, for each $\xi > 0$,

$$\lim_{t \to \infty} \frac{L(\xi t)}{L(t)} = 1. \tag{1.12}$$

It follows by definitions 1.1 and 1.2 that if $f \in RV_{\rho}$ it can be represented in the form

$$f(t) = t^{\rho}L(t). \tag{1.13}$$

LEMMA 1.3 (uniform convergence theorem). If $f \in RV_{\rho}$, then (1.11) (and thus (1.12)) holds uniformly for $\xi \in [a, b]$ with 0 < a < b.

LEMMA 1.4 (representation theorem). The function L is slowly varying at infinity if and only if it may be written in the form

$$L(t) = c(t) \exp\left(\int_{a}^{t} \frac{y(s)}{s} \, \mathrm{d}s\right), \quad u \geqslant a, \tag{1.14}$$

for some a>0, where c(t) and y(t) are measurable and $t\to\infty$, $y(t)\to0$ and $c(t)\to c$, with c>0.

As the corresponding to definitions 1.1 and 1.2, we have the following.

DEFINITION 1.5. A positive measurable function h defined on (0, a), for some a > 0, is called regularly varying at zero with index σ , written $h \in RVZ_{\sigma}$, if, for each $\xi > 0$ and some $\sigma \in \mathbb{R}$,

$$\lim_{t \to 0^+} \frac{h(\xi t)}{h(t)} = \xi^{\sigma}.$$
(1.15)

In particular, when $\sigma = 0$, we have the following.

DEFINITION 1.6. A positive measurable function H defined on (0, a), for some a > 0, is called slowly varying at zero, if for each $\xi > 0$

$$\lim_{t \to 0^+} \frac{H(\xi t)}{H(t)} = 1. \tag{1.16}$$

It follows by definitions 1.5 and 1.6 that if $h \in RVZ_{\sigma}$, then it can be represented in the form

$$h(t) = t^{\sigma} H(t). \tag{1.17}$$

We note that definition 1.1 is equivalent to saying that f(1/t) is regularly varying at zero with index $-\rho$.

Our main results are the following.

THEOREM 1.7. Let g satisfy (g_1) , $g' \in RV_{\rho}$ with $\rho > 1$; let b satisfy (b_1) and let

(b₃) $\lim_{d(x)\to 0} b(x)/k^q(d(x)) = c_q > 0$ for some non-increasing function $k \in \Lambda$.

If $2 \leq q < \rho + 1$, then every solution $u_+ \in C^2(\Omega)$ to problem (P_+) satisfies

$$\lim_{d(x)\to 0} \frac{u_+(x)}{\varphi(K(d(x)))} = c_q^{-1/(\rho - q + 1)},\tag{1.18}$$

where $\varphi \in C^2(0,\infty)$ is uniquely determined by

$$\int_{\varphi(t)}^{\infty} \frac{\mathrm{d}s}{(g(s))^{1/q}} = t \quad \text{for all } t > 0.$$
 (1.19)

Moreover, $\varphi \in RVZ_{-q/(\rho+1-q)}$ and there exists $H \in RVZ_0$ such that

$$\varphi(t) = H(t)t^{-q/(\rho+1-q)}. (1.20)$$

Theorem 1.8. Let g satisfy (g_1) , $g' \in RV_{\rho}$ with $\rho > 0$, let

$$\frac{2(\rho+1)}{\rho+2} < q < \min\{2, \rho+1\},$$

and let b satisfy (b_1) . Suppose that there exists some non-increasing function $k \in C^1(0,\nu)$, $k' \in RVZ_{-\sigma-1}$ with $\sigma \in (0,1)$ and a positive constant c_q such that (b_3) holds. If

$$\frac{\sigma(2-q)}{1-\sigma} < \frac{q(2+\rho) - 2(1+\rho)}{\rho + 1 - q} \quad and \quad \frac{\sigma + 1 + q\sigma}{1-\sigma} < \frac{(q-1)(1+\rho)}{\rho + 1 - q}, \tag{1.21}$$

then the conclusion of theorem 1.7 holds.

THEOREM 1.9. Let g satisfy (g_1) , $g' \in RV_{\rho}$ with $\rho > 0$, let b satisfy (b_1) and

(b₂₁) $\lim_{d(x)\to 0} b(x)/k^2(d(x)) = c_0 > 0$ for some non-increasing $k \in \Lambda$.

If either $0 < q < 2(1+\rho)/(2+\rho)$, or $g(u) = u^{1+\rho}$ with $q = 2(1+\rho)/(2+\rho)$, then every solution $u_{\pm} \in C^2(\Omega)$ to problem (P_{\pm}) satisfies

$$\lim_{d(x)\to 0} \frac{u_{\pm}(x)}{\psi_1(K(d(x)))} = \left(\frac{2+\rho+\rho(C_k-1)}{c_0(2+\rho)}\right)^{1/\rho},\tag{1.22}$$

where $\psi_1 \in C^2(0,a]$ is uniquely determined by (1.2). Moreover, $\psi_1 \in RVZ_{-2/\rho}$, and there exists $H \in RVZ_0$ such that $\psi_1(t) = H(t)t^{-2/\rho}$.

THEOREM 1.10. Let q > 0, let g satisfy (g_1) , (g_2) and $\lim_{u\to\infty} G(u)/(g(u))^{2/q} \in [0,\infty)$, or g satisfy (g_1) , where $(g(u))^{2/q}/u$ is increasing and

$$\int_t^\infty \frac{\mathrm{d}s}{(g(s))^{1/q}} < \infty \quad \text{for all } t > 0, \qquad \lim_{u \to \infty} \frac{G(u)}{(g(u))^{2/q}} \in (0, \infty].$$

If $b \in C^{\alpha}(\Omega)$ is positive in Ω and

(b₄) the linear Poisson's problem

$$-\Delta v = b(x), \quad v > 0, \quad x \in \Omega, \quad v|_{\partial\Omega} = 0$$
 (1.23)

has a unique solution $\bar{v} \in C^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$, then problem (P_+) has at least one solution $u_+ \in C^2(\Omega)$.

REMARK 1.11. By (1.2), we see that the asymptotic behaviour (1.22) of u_{\pm} is independent of $\pm |\nabla u_{\pm}|^q$ when $0 < q < 2(1+\rho)/(2+\rho)$, and so is that when $g(u) = u^{1+\rho}$ with $\rho > 0$ and $q = 2(1+\rho)/(2+\rho)$.

REMARK 1.12. Some basic examples of g which satisfies (g_1) and $g' \in RV_{\rho}$ with $\rho > 0$ are

- (i) $g(u) = u^{\rho+1}$,
- (ii) $q(u) = u^{\rho+1}(\ln(u+1))^{\beta}, \beta > 0$,
- (iii) $g(u) = u^{\rho+1} \arctan u$,

(iv) $g(u) = c_0 u^{\rho+1} \exp\left(\int_0^u \frac{y(s)}{s} ds\right), \quad u \geqslant 0,$

where $c_0 > 0$, $y \in C[0, \infty)$ is non-negative such that $\lim_{s\to 0^+} y(s)/s \in [0, \infty)$ and $\lim_{s\to\infty} y(s) = 0$.

Remark 1.13. Some basic examples of the non-increasing functions in Λ are

- (i) $k \equiv C_0 > 0$, $K(t) = C_0 t$, $C_k = 1$,
- (ii) $k(t) = t^{-\sigma/2}$ with $\sigma \in (0, 2)$,

$$K(t) = \frac{2t^{(2-\sigma)/2}}{2-\sigma}, \quad C_k = \frac{2}{2-\sigma} > 1,$$

- (iii) $k(t) = -\ln t$, $K(t) = t(1 \ln t)$, $C_k = 1$,
- (iv) $k(t) = -\ln t/t^{\sigma}$ with $\sigma \in (0, 1)$,

$$K(t) = \frac{t^{1-\sigma}}{(1-\sigma)^2} (1 - (1-\sigma)\ln t), \quad C_k = \frac{1}{1-\sigma} > 1.$$

At the same time, we note that $k(t) = 1/t(-\ln t)^{\sigma}$ with $\sigma > 1$, $k \in L^1(0,\nu) \cap C^1(0,\nu)$, $K(t) = (\ln t)^{1-\sigma}/(\sigma-1)$, $C_k = +\infty$.

REMARK 1.14. When $g(u) = u^{\rho+1}$, $\rho > 0$, $0 < q < \rho + 1$,

$$\varphi(t) = \left(\frac{q}{\rho + 1 - q}\right)^{q/(\rho + 1 - q)} t^{-q/(\rho + 1 - q)}, \quad t > 0.$$

REMARK 1.15. When $g(u) = u^{\rho+1}$, $\rho > 0$,

$$\psi_1(t) = \left(\frac{2(2+\rho)}{\rho^2}\right)^{1/\rho} t^{-2/\rho}, \quad t > 0.$$

REMARK 1.16. If $2(\rho + 1)/(\rho + 2) < q < 2$, then

$$1 < \frac{(q-1)(1+\rho)}{\rho + 1 - q}.$$

REMARK 1.17 (Zhang [48, theorem 1.2]). Let g satisfy (g_1) and $g(s) \leq C_1 s^{p_1}$ for all $s \in (0, \infty)$ and $g(s) \geq C_2 s^{p_2}$ for large enough s, where $p_1 \geq p_2 > 1$ and C_1, C_2 are positive constants; let $b \in C^{\alpha}(\Omega)$ and b > 0 in Ω , satisfying the following assumption: there exist constants $\gamma_1 \geq \gamma_2 > -2$ such that

$$C_2(d(x))^{\gamma_2} \leqslant b(x) \leqslant C_1(d(x))^{\gamma_1} \quad \text{for all } x \in \Omega.$$
 (1.24)

If

$$1 < q \leqslant \frac{2p_1 + \gamma_1}{p_1 + \gamma_1 + 1},$$

then problem (P_{-}) has at least one solution $u_{-} \in C^{2}(\Omega)$.

REMARK 1.18. If b satisfies (b₁) and $\sup_{x \in \Omega} (d(x))^{2-\sigma} b(x) < \infty$ with $\sigma \in (0,2)$, then (b₄) holds (see [17, ch. 4, theorem 4.3, problems 4.3 and 4.6, pp. 70–71]).

The paper is organized as follows. In § 2 we continue to recall Karamata regular variation theory. In § 3 we prove theorems 1.7–1.9. Finally, we show existence of solutions to problem (P_+) .

2. Some basic definitions and the properties to Karamata regularly varying theory

Let us continue to recall some basic definitions and the properties to Karamata regular variation theory (see [32,39,40]).

Some basic examples of slowly varying functions at infinity are as follows:

(i) every measurable function on $[a, \infty)$ which has a positive limit at infinity;

(ii)
$$L(t) = \prod_{m=1}^{m=n} (\log_m t)^{\alpha_m}, \ \alpha_m \in \mathbb{R};$$

(iii)
$$L(t) = \exp\left(\prod_{m=1}^{m=n} (\log_m t)^{\alpha_m}\right), \ 0 < \alpha_m < 1;$$

(iv)
$$L(t) = \frac{1}{t} \int_{a}^{t} \frac{\mathrm{d}s}{\ln s};$$

(v)
$$L(t) = \exp((\ln t)^{1/3} \cos((\ln t))^{1/3})$$
, where

$$\lim_{t \to \infty} \inf L(t) = 0 \quad \text{and} \quad \limsup_{t \to \infty} L(t) = +\infty;$$

(vi) we have

$$L_1(t) = \frac{1}{t} \int_a^t \frac{L(s) \, \mathrm{d}s}{s},$$

where L is slowly varying at infinity and, in this case,

$$\lim_{t \to \infty} \frac{L_1(t)}{L(t)} = 0.$$

LEMMA 2.1. If the functions L, L_1 are slowly varying at infinity, then

- (i) L^{σ} for every $\sigma \in \mathbb{R}$, $L(t) + L_1(t)$, $L(L_1(t))$ (if $L_1(t) \to \infty$ as $t \to \infty$) are also slowly varying at infinity,
- (ii) for every $\theta > 0$ and $t \to \infty$,

$$t^{\theta}L(t) \to \infty, \quad t^{-\theta}L(t) \to 0,$$
 (2.1)

(iii) for $t \to \infty$, $\ln(L(t))/\ln t \to 0$.

LEMMA 2.2 (asymptotic behaviour). If the function L is slowly varying at infinity, then [32, appendix, proposition 2] for $t \to \infty$,

$$\int_{a}^{t} s^{\beta} L(s) \, ds \cong (\beta + 1)^{-1} t^{1+\beta} L(t) \quad \text{for } \beta > -1,$$
 (2.2)

$$\int_{t}^{\infty} s^{\beta} L(s) \, \mathrm{d}s \cong (-\beta - 1)^{-1} t^{1+\beta} L(t) \quad \text{for } \beta < -1.$$
 (2.3)

Let Ψ be non-decreasing in \mathbb{R} . We define (as in [39]) the inverse of Ψ by

$$\Psi^{\leftarrow}(t) = \inf\{s : \Psi(s) \geqslant t\}. \tag{2.4}$$

Lemma 2.3 (Resnick [39, proposition 0.8]). The following hold:

- (i) if $f_1 \in RV_{\rho_1}, f_2 \in RV_{\rho_2}$, then $f_1 \cdot f_2 \in RV_{\rho_1 + \rho_2}$;
- (ii) if $f_1 \in RV_{\rho_1}$, $f_2 \in RV_{\rho_2}$, where $\lim_{t\to\infty} f_2(t) = \infty$, then $f_1 \circ f_2 \in RV_{\rho_1\rho_2}$;
- (iii) if Ψ is non-decreasing in \mathbb{R} , $\lim_{t\to\infty} \Psi(t) = \infty$, and $\Psi \in RV_{\rho}$ with $\rho \neq 0$, then $\Psi^{\leftarrow} \in RV_{\rho^{-1}}$.

By the above lemmas, we can obtain the following results directly.

LEMMA 2.4 (representation theorem). The function H is slowly varying at zero if and only if it may be written in the form

$$H(t) = c(t) \exp\left(\int_t^a \frac{y(s)}{s} \, \mathrm{d}s\right), \quad 0 < t < a, \tag{2.5}$$

for some a > 0, where c(t) is a bounded measurable function, $y \in C[0, a]$ with y(0) = 0 and, for $t \to 0^+$, $c(t) \to c$ with c > 0.

Lemma 2.5. If the function H is slowly varying at zero, then for every $\theta>0$ and $t\to 0^+$

$$t^{-\theta}H(t) \to \infty, \qquad t^{\theta}H(t) \to 0.$$
 (2.6)

LEMMA 2.6 (asymptotic behaviour). If the function H is slowly varying at zero, then for $t \to 0$ [32, appendix, proposition 2]

$$\int_{0}^{t} s^{\beta} H(s) \, \mathrm{d}s \cong (\beta + 1)^{-1} t^{1+\beta} H(t) \qquad \text{for } \beta > -1, \tag{2.7}$$

$$\int_{t}^{a} s^{\beta} H(s) \, \mathrm{d}s \cong (-\beta - 1)^{-1} t^{1+\beta} H(t) \quad \text{for } \beta < -1.$$
 (2.8)

LEMMA 2.7. If g satisfies (g_1) and $g' \in RV_{\rho}$ with $\rho > 0$, then

- (i) $\lim_{u\to\infty} g'(u) = \lim_{u\to\infty} g(u) = \infty$ and $g \in RV_{\rho+1}$, $G \in RV_{\rho+2}$,
- (ii) g satisfies the Keller-Osserman condition (g_2) and

$$\int_{t}^{\infty} \frac{\mathrm{d}s}{(g(s))^{1/q}} < \infty \quad \text{for all } t > 0$$

provided that $0 < q < \rho + 1$,

$$(iii) \lim_{s\to\infty}\frac{g'(s)}{g(s)}=0, \quad \lim_{s\to\infty}\frac{sg'(s)}{g(s)}=\rho+1, \quad \lim_{s\to\infty}\frac{g'(s)G(s)}{g^2(s)}=\frac{1+\rho}{2+\rho},$$

(iv) when $2(\rho + 1)/(\rho + 2) < q < \rho + 1$ and

$$\theta \in \left[0, \frac{q(\rho+2) - 2(\rho+1)}{\rho + 1 - q}\right), \quad \theta_1 \in \left[0, \frac{(q-1)(\rho+1)}{\rho + 1 - q}\right),$$

$$\lim_{u \to \infty} \frac{g'(u)/(g(u))^{2(q-1)/q}}{(\int_u^{\infty} ds/(g(s))^{1/q})^{\theta}} = 0 \quad and \quad \lim_{u \to \infty} \frac{1/(g(u))^{(q-1)/q}}{(\int_u^{\infty} ds/(g(s))^{1/q})^{\theta_1}} = 0,$$

(v) when $0 < q < 2(1+\rho)/(2+\rho)$,

$$\lim_{u \to \infty} \frac{\left(\int_0^u g(s) \, \mathrm{d}s\right)^{q/2}}{g(u)} = 0,$$

and when $g(u) = u^{1+\rho}$ with $q = 2(1+\rho)/(2+\rho)$,

$$\lim_{u \to \infty} \frac{(G(u))^{q/2}}{q(u)} = (2+\rho)^{-(1+\rho)/(2+\rho)}.$$

Proof. Since g satisfies (g_1) and $g' \in RV_\rho$ with $\rho > 0$, there exists a function L which is slowly varying at infinity such that $g'(t) = t^\rho L(t)$.

- (i) This follows by definition 1.1, l'Hôpital's rule and lemma 2.1.
- (ii) By $G \in RV_{\rho+2}$ with $\rho > 0$, we see that there exists a function L which is slowly varying at infinity such that $G(t) = t^{2+\rho}L(t)$. Since $\rho > 0$, let $\rho_1 \in (0, \frac{1}{2}\rho)$. We see by lemma 2.1 that

$$\lim_{t \to \infty} \frac{G(t)}{t^{2(1+\rho_1)}} = \lim_{t \to \infty} t^{\rho - 2\rho_1} L(t) = \infty,$$

i.e. there exists $T_0 > 0$ such that

$$\frac{G(t)}{t^{2(1+\rho_1)}} > 1, \quad \sqrt{G(t)} > t^{1+\rho_1}, \quad t > T_0.$$

This implies that g satisfies (g_2) . In the same way, we can show that

$$\int_{t}^{\infty} \frac{\mathrm{d}s}{(g(s))^{1/q}} < \infty \quad \text{for all } t > 0,$$

provided that $0 < q < \rho + 1$.

(iii) By $g'(s) = s^{\rho}L(s)$ with $\rho > 0$ and lemma 2.2, we see that, for $t \to 0$,

$$\begin{split} g(t) &= \int_0^t g'(s) \, \mathrm{d}s = \int_0^t s^\rho L(s) \, \mathrm{d}s \cong (\rho+1)^{-1} t^{1+\rho} L(t), \\ G(t) &= \int_0^t g(s) \, \mathrm{d}s = (\rho+1)^{-1} \int_0^t s^{\rho+1} L(s) \, \mathrm{d}s \cong (\rho+1)^{-1} (\rho+2)^{-1} t^{2+\rho} L(t). \end{split}$$

So

$$\lim_{s\to\infty}\frac{g'(s)}{g(s)}=0, \lim_{s\to\infty}\frac{sg'(s)}{g(s)}=\rho+1, \lim_{s\to\infty}\frac{G(s)}{sg(s)}=(2+\rho)^{-1}$$

and

$$\lim_{s \to \infty} \frac{g'(s)G(s)}{g^2(s)} = \lim_{s \to \infty} \frac{sg'(s)}{g(s)} \lim_{s \to \infty} \frac{G(s)}{sg(s)} = \frac{1+\rho}{2+\rho}.$$

(iv) Since

$$q(\rho+2) - 2(\rho+1) - \theta(\rho+1-q) > 0,$$

$$(q-1)(\rho+1) - \theta_1(\rho+1-q) > 0,$$

we see by lemma 2.1 and the proof of (i)-(iii) that

$$\lim_{u \to \infty} \frac{g'(u)/(g(u))^{2(q-1)/q}}{(\int_{u}^{\infty} ds/(g(s))^{1/q})^{\theta}}$$

$$= \frac{(1+\rho)^{2(q-1)/q}}{q} \frac{(1+\rho-q)^{\theta}}{q^{\theta}} \lim_{u \to \infty} \frac{(u^{(q(\rho+2)-2(\rho+1))/q}(L(u))^{(q-2)/q})^{-1}}{u^{-\theta(\rho+1-q)/q}(L_1(u))^{\theta}}$$

$$= \frac{(1+\rho-q)^{\theta}(1+\rho)^{2(q-1)/q}}{q^{1+\theta}}$$

$$\lim_{u \to \infty} (u^{(q(\rho+2)-2(\rho+1)-\theta(\rho+1-q))/q}(L(u))^{(q-2)/q}(L_1(u))^{\theta})^{-1}$$

$$= 0$$

and

$$\lim_{u \to \infty} \frac{1/(g(u))^{(q-1)/q}}{(\int_{u}^{\infty} ds/(g(s))^{1/q})^{\theta_{1}}} \\
= \frac{(1+\rho-q)^{\theta_{1}}}{q^{\theta_{1}}} \lim_{u \to \infty} \frac{(u^{(q-1)(\rho+1)/q}(L(u))^{(q-1)/q})^{-1}}{u^{-\theta_{1}(\rho+1-q)/q}(L_{1}(u))^{\theta_{1}}} \\
= \frac{(1+\rho-q)^{\theta_{1}}}{q^{\theta_{1}}} \lim_{u \to \infty} (u^{((q-1)(\rho+1)-\theta_{1}(\rho+1-q))/q}(L(u))^{(q-1)/q}(L_{1}(u))^{\theta_{1}})^{-1} \\
= 0$$

(v) This follows in the same way.

Lemma 2.8. Let b, k be in theorem 1.7. Then

(i)
$$\lim_{t\to 0^+} k(t) = \infty$$
, $\lim_{t\to 0^+} K(t) = 0$,

(ii)
$$\lim_{t\to 0^+} \frac{K(t)}{k(t)} = 0, \qquad \lim_{t\to 0^+} \frac{k'(t)K(t)}{k^2(t)} = 1 - C_k.$$

1414

Z. Zhang

Proof. Since $k \in \Lambda$ is non-increasing, b satisfies (b_1) and (b_3) , we have

$$\lim_{t \to 0} k(t) = +\infty, \qquad \lim_{t \to 0^+} K(t) = 0,$$

$$\lim_{t \to 0^+} \frac{k'(t)K(t)}{k^2(t)} = 1 - \lim_{t \to 0^+} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{K(t)}{k(t)} \right) = 1 - C_k.$$

LEMMA 2.9. Let $2(\rho+1)/(\rho+2) < q < \min\{2, \rho+1\}$, and b, k be in theorem 1.8. If $\theta > \sigma(2-q)/(1-\sigma)$ and $\theta_1 > (\sigma+1+q\sigma)/(1-\sigma)$, then

(i) $\lim_{t\to 0^+} k'(t) = -\infty$, $\lim_{t\to 0^+} k(t) = \infty$, $\lim_{t\to 0^+} K(t) = 0$,

(ii)
$$\lim_{t\to 0^+} (k(t))^{2-q} (K(t))^{\theta} = 0$$

(iii)
$$\lim_{t\to 0^+} k'(t)(K(t))^{\theta_1}/(k(t))^q = 0$$

Proof. (i) Since $k' \in RVZ_{-\sigma-1}$ with $\sigma \in (0,1)$, there exists a function H which is slowly varying at zero such that $k'(t) = -t^{-\sigma-1}H(t)$. It follows by lemmas 2.5 and 2.6 that

$$\lim_{t\to 0^+} k'(t) = -\infty, \qquad k(t) = -\int_t^a k'(s) \,\mathrm{d}s + k(a) \cong \sigma^{-1} t^{-\sigma} H(t) \quad \text{as } t\to 0^+,$$

and

$$K(t) = \int_0^t k(s) ds \cong (\sigma(1-\sigma))^{-1} t^{1-\sigma} H(t) \text{ as } t \to 0^+.$$

So

$$\lim_{t \to 0^+} k(t) = \infty, \qquad \lim_{t \to 0^+} K(t) = 0.$$

(ii) Since $\theta(1-\sigma)-\sigma(2-q)>0$, we see by lemma 2.5 that

$$\lim_{t \to 0^+} (k(t))^{2-q} (K(t))^{\theta} = \lim_{t \to 0^+} \frac{t^{\theta(1-\sigma)-\sigma(2-q)} (L(t))^{2-q+\theta}}{\sigma^{2-q+\theta} (1-\sigma)^{\theta}} = 0.$$

(iii) We see by $\theta_1(1-\sigma)+q\sigma-\sigma-1>0$ and the proof of (ii) that

$$\lim_{t \to 0^+} \frac{k'(t)(K(t))^{\theta_1}}{(k(t))^q} = \lim_{t \to 0^+} \frac{t^{\theta_1(1-\sigma)+q\sigma-\sigma-1}(L(t))^{1+\theta_1-q}}{\sigma^{\theta_1-q}(1-\sigma)^{\theta_1}} = 0.$$

By the proof of lemma 2.3, we can show the following results.

LEMMA 2.10. If $h_1 \in RVZ_{\rho_1}$, $h_2 \in RVZ_{\rho_2}$ and $\lim_{t\to 0^+} h_2(t) = 0$, then $h_1 \circ h_2 \in RVZ_{\rho_1\rho_2}$.

LEMMA 2.11. Let g_1 and g_2 be positive continuous on $(0, \infty)$, let $g_1 \in RV_{1+\rho}$ with $\rho > 0$ and let [49, lemma 2.4]

$$\int_{t}^{\infty} \frac{\mathrm{d}s}{q_{1}(s)} < \infty \quad \text{for all } t > 0.$$

_

$$\lim_{s\to\infty}\frac{g_1(s)}{g_2(s)}=1\quad and\quad \int_{\varphi_1(t)}^\infty\frac{\mathrm{d}s}{g_1(s)}=\int_{\varphi_2(t)}^\infty\frac{\mathrm{d}s}{g_2(s)}=t\quad for\ all\ t>0,$$

then

$$\lim_{t \to \infty} \frac{\varphi_1(t)}{\varphi_2(t)} = 1.$$

LEMMA 2.12. Under the assumptions in theorems 1.7 and 1.9,

$$\varphi \in RVZ_{-q/(\rho+1-q)}$$
 and $\psi_1 \in RVZ_{-2/\rho}$

Proof. Let

$$f_1(u) = \int_u^\infty \frac{\mathrm{d}s}{(g(s))^{1/q}}, \quad f_{11}(u) = \int_u^\infty \frac{\mathrm{d}s}{\sqrt{2G(s)}}, \quad u > 0.$$

By l'Hôpital's rule, we can easily see that $f_1 \in RV_{-(\rho+1-q)/q}$ and $f_{11} \in RV_{-\rho/2}$. It follows by lemma 2.3 that $\varphi = f_1^{-1} \in RVZ_{-q/(\rho+1-q)}$ and $\psi_1 = f_{11}^{-1} \in RVZ_{-2/\rho}$.

3. The exact asymptotic behaviour

In this section we prove theorems 1.7–1.9. We need the following preliminary considerations.

LEMMA 3.1. Let $2(\rho+1)/\rho+2 < q < \rho+1$, g and φ be as in theorem 1.7. Then

(i)
$$\lim_{t\to 0^+} \varphi(t) = \infty$$
, $\lim_{t\to 0^+} \varphi'(t) = -\infty$,

(ii)
$$\lim_{t \to 0^+} \frac{\varphi''(t)}{(-\varphi'(t))^q} = 0$$
 and $\lim_{t \to 0^+} \frac{\varphi'(t)}{t(-\varphi'(t))^q} = 0$.

Proof. (i) By the definition of φ in (1.19) and a direct calculation, we see that

$$\lim_{t \to 0^+} \varphi(t) = \infty, \qquad \varphi'(t) = -(g(\varphi(t)))^{1/q},$$
$$\varphi''(t) = \frac{1}{q} g'(\varphi(t))(g(\varphi(t)))^{(2-q)/q}, \quad t > 0.$$

It follows by lemma 2.7 that $\lim_{t\to 0^+} \varphi'(t) = -\infty$.

(ii) Since $2(\rho+1)/(\rho+2) < q$, we see by lemma 2.7 that

$$\lim_{t \to 0^+} \frac{\varphi''(t)}{(-\varphi'(t))^q} = \frac{1}{q} \lim_{t \to 0^+} \frac{g'(\varphi(t))(g(\varphi(t)))^{(2-q)/q}}{g(\varphi(t))} = \frac{1}{q} \lim_{u \to \infty} \frac{g'(u)}{(g(u))^{2(q-1)/q}} = 0$$

and

$$\lim_{t \to 0^+} \frac{\varphi'(t)}{t(\varphi'(t))^q} = \lim_{t \to 0^+} \frac{(g(\varphi(t)))^{(1-q)/q}}{\int_{\varphi(t)}^{\infty} \mathrm{d}s/(g(s))^{1/q}} = \lim_{u \to \infty} \frac{(g(u))^{(1-q)/q}}{\int_{u}^{\infty} \mathrm{d}s/(g(s))^{1/q}}$$
$$= \frac{q-1}{q} \lim_{u \to \infty} \frac{g'(u)}{(g(u))^{2(q-1)/q}} = 0.$$

LEMMA 3.2. Let $2(\rho+1)/(\rho+2) < q < \rho+1$, g and φ be as in theorem 1.8, and let

$$\theta \in \left(\frac{\sigma(2-q)}{1-\sigma}, \frac{q(\rho+2)-2(\rho+1)}{\rho+1-q}\right), \qquad \theta_1 \in \left(\frac{\sigma+1+q\sigma}{1-\sigma}, \frac{(q-1)(\rho+1)}{\rho+1-q}\right).$$

Then

$$\lim_{t \to 0^+} \frac{\varphi''(t)}{t^{\theta}(-\varphi'(t))^q} = 0 \quad and \quad \lim_{t \to 0^+} \frac{\varphi'(t)}{t^{\theta_1}(-\varphi'(t))^q} = 0.$$

Proof. By lemma 2.7, we see that

$$\lim_{t \to 0^{+}} \frac{\varphi''(t)}{t^{\theta}(-\varphi'(t))^{q}} = \frac{1}{q} \lim_{t \to 0^{+}} \frac{g'(\varphi(t))/(g(\varphi(t)))^{2(q-1)/q}}{(\int_{\varphi(t)}^{\infty} ds/(g(s))^{1/q})^{\theta}}$$
$$= \frac{1}{q} \lim_{u \to \infty} \frac{g'(u)/(g(u))^{2(2-q)/q}}{(\int_{u}^{\infty} ds/(g(s))^{1/q})^{\theta}} = 0$$

and

$$\lim_{t \to 0^+} \frac{\varphi'(t)}{t^{\theta_1} (-\varphi'(t))^q} = -\lim_{t \to 0^+} \frac{1/(g(\varphi(t)))^{(q-1)/q}}{(\int_{\varphi(t)}^{\infty} \mathrm{d}s/(g(s))^{1/q})^{\theta_1}}$$
$$= \lim_{u \to \infty} \frac{1/(g(u))^{(q-1)/q}}{(\int_{u}^{\infty} \mathrm{d}s/(g(s))^{1/q})^{\theta_1}} = 0.$$

LEMMA 3.3. Let g, k and ψ_1 be as in theorem 1.9.

(i) If $0 < q < 2(1+\rho)/(2+\rho)$, then

$$\lim_{t\to 0^+}\frac{(G(\psi(t)))^{q/2}}{g(\psi(t))}=0\quad and\quad \lim_{t\to 0^+}\frac{\sqrt{2G(\psi(t))}}{tg(\psi(t))}=\frac{\rho}{2+\rho}.$$

(ii) If $g(u) = u^{1+\rho}$, $q = 2(1+\rho)/(2+\rho)$, then

$$\lim_{t \to 0^+} \frac{(G(\psi(t)))^{q/2}}{g(\psi(t))} = (2+\rho)^{-(1+\rho)/(2+\rho)}.$$

Proof. (i) By lemma 2.7, we see that

$$\lim_{t \to 0^+} \frac{(G(\psi(t)))^{q/2}}{g(\psi(t))} = \lim_{u \to \infty} \frac{(\int_0^u g(s) \, \mathrm{d}s)^{q/2}}{g(u)} = 0$$

and

$$\begin{split} \lim_{t\to 0^+} \frac{\sqrt{2G(\psi(t))}}{tg(\psi(t))} &= \lim_{u\to \infty} \frac{\sqrt{2G(u)}/g(u)}{\int_u^\infty \mathrm{d}s/\sqrt{2G(s)}} \\ &= \lim_{u\to \infty} \left(\frac{2g'(u)G(u)}{q^2(u)} - 1\right) = \frac{2(1+\rho)}{2+\rho} - 1 = \frac{\rho}{2+\rho}. \end{split}$$

(ii) This follows by direct calculation. The proof is finished.

LEMMA 3.4 (the comparison principle). Let $\Psi(x, s, \xi)$ satisfy the following two conditions [17, theorem 10.1]:

- (D₁) Ψ is non-increasing in s for each $(x, \xi) \in (\Omega \times \mathbb{R}^N)$;
- (D₂) Ψ is continuously differentiable with respect to the variable ξ in $\Omega \times (0, \infty) \times \mathbb{R}^N$.

If $u, v \in C(\bar{\Omega}) \cap C^2(\Omega)$ satisfy $\Delta u + \Psi(x, u, \nabla u) \geqslant \Delta v + \Psi(x, v, \nabla v)$ in Ω and $u \leqslant v$ on $\partial \Omega$, then $u \leqslant v$ in Ω .

Proof of theorem 1.7. Given an arbitrary $\varepsilon \in (0, \frac{1}{4}c_q)$. Let

$$\xi_0 = \left(\frac{1}{c_q}\right)^{\rho - q + 1}, \qquad \xi_{2\varepsilon} = (c_q - 2\varepsilon)^{-1/(\rho + 1 - q)}, \qquad \xi_{1\varepsilon} = (c_q + 2\varepsilon)^{-1/(\rho + 1 - q)}.$$

It follows that

$$\left(\frac{2}{3}\right)^{1/(\rho+1-q)} \xi_0 < \xi_{1\varepsilon} < \xi_{2\varepsilon} < 2^{1/(\rho+1-q)} \xi_0.$$

For any $\delta > 0$, we define

$$\Omega_{\delta} = \{ x \in \Omega : 0 < d(x) < \delta \}.$$

Since $\partial \Omega \in C^2$, there exists a constant $\delta \in (0, \frac{1}{2}\nu)$ which depends only on Ω such that $d(x) \in C^2(\bar{\Omega}_{2\delta})$ and $|\nabla d| \equiv 1$ on $\Omega_{2\delta}$.

Recalling that

$$\lim_{t \to 0^+} \frac{k^2(t)}{k^q(t)} = \begin{cases} 0 & \text{for } q > 2, \\ 1 & \text{for } q = 2, \end{cases}$$

and

$$\lim_{t \to 0^+} \frac{k'(t)K(t)}{k^q(t)} = \lim_{t \to 0^+} \frac{k'(t)K(t)}{k^2(t)} \lim_{t \to 0^+} \frac{1}{k^{q-2}(t)} = \begin{cases} 0 & \text{for } q > 2, \\ 1 - C_k & \text{for } q = 2, \end{cases}$$

and since k'(t) < 0, $\varphi(t) < 0$ and Z(x) < K(d(x)), we see that

$$\begin{split} \left| \frac{k'(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^q} \right| &= \frac{k'(d(x))K(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{Z(x)(-\varphi'(Z(x)))^q} \frac{Z(x)}{K(d(x))} \\ &< \frac{k'(d(x))K(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{Z(x)(-\varphi'(Z(x)))^q}. \end{split}$$

It follows by (b_3) and lemma 3.1 that

$$\lim_{(d(x),\beta)\to(0,0^+)} \left(\frac{k^2(d(x))}{k^q(d(x))} \frac{\varphi''(Z(x))}{(-\varphi'(Z(x)))^q} + \frac{k'(d(x))K(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{Z(x)(-\varphi'(Z(x)))^q} + \frac{k(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^q} \Delta d(x) \right) = 0$$

and

$$\lim_{\substack{(d(x),\beta)\to(0,0^+)}}\frac{b(x)}{k^q(d(x))}\frac{g(\xi_{2\varepsilon}(\varphi(Z(x))))}{\xi_{2\varepsilon}g(\varphi(Z(x)))}=c_q\xi_{2\varepsilon}^\rho.$$

Note that

$$\xi_{2\varepsilon}^{q-1} - c_q \xi_{2\varepsilon}^{\rho} = \xi_{2\varepsilon}^{q-1} \left(1 - \frac{c_q}{c_q - 2\varepsilon} \right) < 0.$$

Thus, we see that, corresponding to ε , there exists $\delta_{\varepsilon} \in (0, \delta)$ sufficiently small and, letting $\beta \in (0, \delta_{\varepsilon})$ be arbitrary, we define

$$\bar{u}_{\beta} = \xi_{2\varepsilon}\varphi(Z(x)), \quad Z(x) = K(d(x)) - K(\beta), \quad x \in D_{\beta}^{-} = \Omega_{2\delta_{\varepsilon}}/\bar{\Omega}_{\beta},$$

 $\underline{u}_{\beta} = \xi_{1\varepsilon}\varphi(Y(x)), \quad Y(x) = K(d(x)) + K(\beta), \quad x \in D_{\beta}^{+} = \Omega_{2\delta_{\varepsilon}-\beta},$

such that, for $(x, \beta) \in D_{\beta}^{-} \times (0, \delta_{\varepsilon})$,

$$\begin{split} \Delta \bar{u}_{\beta}(x) + |\nabla \bar{u}_{\beta}(x)|^{q} - b(x)g(\bar{u}_{\beta}(x)) \\ &= \xi_{2\varepsilon}k^{2}(d(x))\varphi''((Z(x))) + \xi_{2\varepsilon}k'(d(x))\varphi'(Z(x)) \\ &+ \xi_{2\varepsilon}k(d(x))\varphi'(Z(x))\Delta d(x) \\ &+ \xi_{2\varepsilon}^{q}k^{q}(d(x))(-\varphi'(Z(x)))^{q} - b(x)g(\xi_{2\varepsilon}(\varphi(Z(x)))) \\ &= \xi_{2\varepsilon}k^{q}(d(x))g(\varphi(Z(x))) \left[\frac{k^{2}(d(x))}{k^{q}(d(x))} \frac{\varphi''(Z(x))}{(-\varphi'(Z(x)))^{q}} + \frac{k'(d(x))}{k^{q}(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^{q}} \right. \\ &+ \frac{k(d(x))}{k^{q}(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^{q}} \Delta d(x) \\ &+ \xi_{2\varepsilon}^{q-1} - \frac{b(x)}{k^{q}(d(x))} \frac{g(\xi_{2\varepsilon}(\varphi(Z(x))))}{\xi_{2\varepsilon}g(\varphi(Z(x)))} \right] \end{split}$$

 $\leq 0.$

Note that Y(x) > K(d(x)) and

$$\xi_{1\varepsilon}^{q-1} - c_q \xi_{1\varepsilon}^{\rho} = \xi_{1\varepsilon}^{q-1} \left(1 - \frac{c_q}{c_q + 2\varepsilon} \right) > 0.$$

Thus, in the same way, we can show that, for $(x, \beta) \in D_{\beta}^{+} \times (0, \delta_{\varepsilon})$,

$$\begin{split} \Delta \underline{u}_{\beta}(x) + |\nabla \underline{u}_{\beta}(x)|^{q} - b(x)g(\underline{u}_{\beta}(x)) \\ &= \xi_{2\varepsilon}k^{2}(d(x))\varphi''((Y(x))) + \xi_{2\varepsilon}k'(d(x))\varphi'(Y(x)) \\ &+ \xi_{2\varepsilon}k(d(x))\varphi'(Y(x))\Delta d(x) \\ &+ \xi_{2\varepsilon}^{q}k^{q}(d(x))(-\varphi'(Y(x)))^{q} - b(x)g(\xi_{2\varepsilon}(\varphi(Y(x)))) \\ &= \xi_{2\varepsilon}k^{q}(d(x))g(\varphi(Y(x))) \left[\frac{k^{2}(d(x))}{k^{q}(d(x))} \frac{\varphi''(Y(x))}{(-\varphi'(Y(x)))^{q}} + \frac{k'(d(x))}{k^{q}(d(x))} \frac{\varphi'(Y(x))}{(-\varphi'(Y(x)))^{q}} \right. \\ &+ \frac{k(d(x))}{k^{q}(d(x))} \frac{\varphi'(Y(x))}{(-\varphi'(Y(x)))^{q}} \Delta d(x) \\ &+ \xi_{2\varepsilon}^{q-1} - \frac{b(x)}{k^{q}(d(x))} \frac{g(\xi_{2\varepsilon}(\varphi(Y(x))))}{\xi_{2\varepsilon}g(\varphi(Y(x)))} \right] \end{split}$$

 $\geqslant 0$.

Now let u_+ be an arbitrary solution of problem (P_+) and

$$M_{u+}(2\delta_{\varepsilon}) = \max_{d(x) \ge 2\delta_{\varepsilon}} u_{+}(x).$$

We see that

$$u_+ \leqslant M_u(2\delta_{\varepsilon}) + \bar{u}_{\beta}$$
 on ∂D_{β}^- .

Since φ is decreasing and k is non-increasing, it follows that $\underline{u}_{\beta} \leqslant \xi_{1\varepsilon}\varphi(K(2\delta_{\varepsilon}))$ whenever $d(x) = 2\delta_{2\varepsilon} - \beta$. Let $M_{\underline{u}}(2\delta_{\varepsilon}) = \xi_{1\varepsilon}\varphi(K(2\delta_{\varepsilon}))$. We see that

$$\underline{u}_{\beta} \leqslant u_{+} + M_{\underline{u}}(2\delta_{\varepsilon}) \quad \text{on } \partial D_{\beta}^{+}.$$

It follows by (g_1) and lemma 3.4 that

$$u_{+} \leqslant M_{u}(2\delta_{\varepsilon}) + \bar{u}_{\beta}, x \in D_{\beta}^{-} \quad \text{and} \quad \underline{u}_{\beta} \leqslant u_{+} + \xi_{1\varepsilon}\varphi(K(2\delta_{\varepsilon})), x \in D_{\beta}^{+}.$$

Hence, for $x \in D_{\beta}^- \cap D_{\beta}^+$ and letting $\beta \to 0$, we have

$$\xi_{1\varepsilon} - \frac{M_{\underline{u}}(2\delta_{\varepsilon})}{\varphi(K(d(x)))} \leqslant \frac{u_{+}(x)}{\varphi(K(d(x)))} \leqslant \xi_{2\varepsilon} + \frac{M_{u+}(2\delta_{\varepsilon})}{\varphi(K(d(x)))}.$$

Recalling that $\lim_{t\to 0^+} \varphi(t) = \infty$, we see that

$$\xi_{1\varepsilon} \leqslant \lim_{d(x)\to 0} \inf \frac{u_+(x)}{\varphi(K(d(x)))} \leqslant \lim_{d(x)\to 0} \sup \frac{u_+(x)}{\varphi(K(d(x)))} \leqslant \xi_{2\varepsilon}.$$

Letting $\varepsilon \to 0$, and looking at the definitions of $\xi_{1\varepsilon}^+$ and $\xi_{2\varepsilon}^+$, we have

$$\lim_{d(x)\to 0} \frac{u_+(x)}{\varphi(K(d(x)))} = \xi_0.$$

By lemma 2.12, the proof is finished.

Proof of theorem 1.8. By (b₃) and lemma 3.2, we see that

$$\begin{split} \lim_{(d(x),\beta)\to(0,0^+)} \frac{k^2(d(x))}{k^q(d(x))} \frac{\varphi''(Z(x))}{(-\varphi'(Z(x)))^q} \\ &= \lim_{(d(x),\beta)\to(0,0^+)} k^{2-q}(d(x)) K^{\theta}(d(x)) \frac{\varphi'(Z(x))}{Z^{\theta}(x)(-\varphi'(Z(x)))^q} \\ &= 0 \end{split}$$

and

$$\lim_{(d(x),\beta)\to(0,0^+)} \frac{k'(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^q}$$

$$= \lim_{(d(x),\beta)\to(0,0^+)} \frac{k'(d(x))(K(d(x)))^{\theta_1}}{k^q(d(x))} \frac{\varphi'(Z(x))}{(Z(x))^{\theta_1}(-\varphi'(Z(x)))^q}$$

$$= 0.$$

It follows that

$$\lim_{(d(x),\beta)\to(0,0^+)} \left(\frac{k^2(d(x))}{k^q(d(x))} \frac{\varphi''(Z(x))}{(-\varphi'(Z(x)))^q} + \frac{k'(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^q} + \frac{k(d(x))}{k^q(d(x))} \frac{\varphi'(Z(x))}{(-\varphi'(Z(x)))^q} \Delta d(x) \right) = 0.$$

By the proof of theorem 1.7, we can obtain

$$\lim_{d(x)\to 0} \frac{u_+(x)}{\varphi(K(d(x)))} = \xi_0.$$

Proof of theorem 1.9. Let

$$\tau_0 = \frac{\rho(C_k - 1)}{(2 + \rho)}, \qquad \xi_0 = ((1 + \tau_0)/c_0)^{1/\rho},$$

$$\xi_{2\varepsilon} = \left(\xi_0^{\rho} + \frac{2\varepsilon}{c_0}\right)^{1/\rho}, \quad \xi_{1\varepsilon} = \left(\xi_0^{\rho} - \frac{2\varepsilon}{c_0}\right)^{1/\rho},$$

where $\varepsilon \in (0, \frac{1}{4}c_0\xi_0^{\rho})$ is arbitrary. One can easily see that

$$\frac{\xi_0}{2^{1/\rho}} < \xi_{1\varepsilon} < \xi_0 < \xi_{2\varepsilon} < \left(\frac{3}{2}\right)^{1/\rho} \xi_0.$$

We define

$$\bar{u}_{\beta} = \xi_{2\varepsilon} \psi_1(Z(x)), \qquad \underline{u}_{\beta} = \xi_{1\varepsilon} \psi_1(Y(x)).$$

It follows by lemmas 2.8 and 3.3 that

$$\begin{split} &\lim_{(d(x),\beta)\to(0,0^+)} \frac{k'(d(x))\sqrt{2G(\psi_1(Z(x)))}}{k^2(d(x))g(\psi_1(Z(x)))} \\ &= \lim_{(d(x),\beta)\to(0,0^+)} \frac{k'(d(x))K(d(x))}{k^2(d(x))} \frac{\sqrt{2G(\psi_1(Z(x)))}}{Z(x)g(\psi_1(Z(x)))} = -\frac{\rho(C_k-1)}{2+\rho}, \\ &\lim_{(d(x),\beta)\to(0,0^+)} \frac{\sqrt{2G(\psi_1(Z(x)))}}{k(d(x))g(\psi_1(Z(x)))} \Delta d(x) \\ &= \lim_{(d(x),\beta)\to(0,0^+)} \frac{K(d(x))}{k(d(x))} \frac{\sqrt{2G(\psi_1(Z(x)))}}{Z(x)g(\psi_1(Z(x)))} \Delta d(x) = 0 \end{split}$$

and

$$\lim_{(d(x),\beta)\to(0,0^+)} \frac{k^q(d(x))(2G(\psi_1(Z(x))))^{q/2}}{k^2(d(x))g(\psi_1(Z(x)))}$$

$$= \lim_{d(x)\to0} \frac{k^q(d(x))}{k^2(d(x))} \lim_{(d(x),\beta)\to(0,0^+)} \frac{(2G(\psi_1(Z(x))))^{q/2}}{q(\psi_1(Z(x)))} = 0.$$

By the proof of theorem 1.7, we can obtain that, for $(x,\beta) \in D^-_{\beta} \times (0,\delta_{\varepsilon})$,

$$\Delta \bar{u}_{\beta}(x) - b(x)g(\bar{u}_{\beta}(x)) \pm |\nabla \bar{u}_{\beta}(x)|^{q}
= \xi_{2\varepsilon}k^{2}(d(x))g(\psi_{1}(Z(x))) - b(x)g(\xi_{2\varepsilon}(\psi_{1}(Z(x))))
- \xi_{2\varepsilon}k'(d(x))\sqrt{2G(\psi_{1}(Z(x)))} - \xi_{2\varepsilon}k(d(x))\sqrt{2G(\psi_{1}(Z(x)))}\Delta d(x)
\pm \xi_{2\varepsilon}^{q}k^{q}(d(x))(2G(\psi_{1}(Z(x))))^{q/2}$$

$$\begin{split} &= \xi_{2\varepsilon} k^2(d(x)) g(\psi_1(Z(x))) \bigg[1 - \frac{b(x) g(\xi_{2\varepsilon}(\psi_1(Z(x))))}{\xi_{2\varepsilon} k^2(d(x)) g(\psi_1(Z(x)))} \\ &\quad - \frac{k'(d(x)) \sqrt{2G(\psi_1(Z(x)))}}{k^2(d(x)) g(\psi_1(Z(x)))} \\ &\quad - \frac{\sqrt{2G(\psi_1(Z(x)))}}{k(d(x)) g(\psi_1(Z(x)))} \Delta d(x) \\ &\quad \pm \frac{\xi_{2\varepsilon}^{q-1} k^q(d(x)) (2G(\psi_1(Z(x)))^{q/2})}{k^2(d(x)) g(\psi_1(Z(x)))} \bigg] \end{split}$$

 ≤ 0

and, for $(x, \beta) \in D_{\beta}^+ \times (0, \delta_{\varepsilon})$,

$$\begin{split} \Delta u_{\beta}(x) - b(x)g(u_{\beta}(x)) &\pm |\nabla u_{\beta}(x)|^q \\ &= \xi_{2\varepsilon}k^2(d(x))g(\psi_1(Y(x))) - b(x)g(\xi_{2\varepsilon}(\psi_1(Y(x)))) \\ &- \xi_{2\varepsilon}k'(d(x))\sqrt{2G(\psi_1(Y(x)))} - \xi_{2\varepsilon}k(d(x))\sqrt{2G(\psi_1(Y(x)))}\Delta d(x) \\ &\pm \xi_{2\varepsilon}^q k^q(d(x))(2G(\psi_1(Y(x))))^{q/2} \\ &= \xi_{2\varepsilon}k^2(d(x))g(\psi_1(Y(x))) \left[(1 - \tau_0) - \frac{b(x)g(\xi_{2\varepsilon}(\psi_1(Y(x))))}{\xi_{2\varepsilon}k^2(d(x))g(\psi_1(Y(x)))} - \frac{k'(d(x))\sqrt{2G(\psi_1(Y(x)))}}{k^2(d(x))g(\psi_1(Y(x)))} - \tau_0 \right. \\ &- \frac{\sqrt{2G(\psi_1(Y(x)))}}{k(d(x))g(\psi_1(Y(x)))}\Delta d(x) \\ &\pm \frac{\xi_{2\varepsilon}^{q-1}k^q(d(x))(2G(\psi_1(Y(x))))^{q/2}}{k^2(d(x))g(\psi_1(Y(x)))} \right] \end{split}$$

 $\geqslant 0.$

Thus,

 $\lim_{d(x)\to 0} \frac{u_{\pm}(x)}{\psi_1(K(d(x)))} = \xi_0.$

By lemma 2.12, the proof is finished.

4. Existence of solutions

In this section, we consider the existence of solutions to problems (P_+) . First we need the following lemmas.

Define $H(u) = \int_u^\infty \mathrm{d}s/g(s)$ for u > 0. Then $H:(0,\infty) \to (0,\infty)$ is strictly decreasing and H'(u) = -1/g(u) for u > 0.

We note by [21, lemma 1] that if g satisfies (g_1) , then (g_2) implies that

$$\int_{u}^{\infty} \frac{\mathrm{d}s}{g(s)} < \infty \quad \text{for all } u > 0.$$

LEMMA 4.1. Let $u_+ \in C^2(\Omega)$ be an arbitrary solution to problem (P_+) and let $b \in C^{\alpha}_{loc}(\Omega)$ be non-negative and non-trivial in Ω . If b satisfies (b_4) , then

$$u_{+} \geqslant H^{-1}(\bar{v}(x)) > 0 \quad \text{for all } x \in \Omega,$$
 (4.1)

where H^{-1} denotes the inverse function of H.

Proof. Let $u_+(x) = H^{-1}(v(x)), x \in \Omega$. We see that $v|_{\partial\Omega} = 0$ and

$$-\Delta v + g_1(v)|\nabla v|^2 + g_2(v)|\nabla v|^q = b(x), \quad x \in \Omega, \quad v|_{\partial\Omega} = 0, \tag{4.2}$$

where $g_1(v) = g'(u_+) = g'(H^{-1}(v))$ and $g_2(v) = (g(H^{-1}(v)))^{q-1}$. It follows that $-\Delta v \leq b(x), x \in \Omega$. By the maximum principle, we obtain $v \leq \bar{v}$ in Ω , i.e. $u_+ \geq H^{-1}(\bar{v}(x))$ for all $x \in \Omega$.

LEMMA 4.2. Let q > 0, $b \equiv c_0 > 0$ in Ω (see [1, theorems 5.1 and 5.2] and [16, theorem 4.1]). If g satisfies (g_1) , (g_2) and

$$\lim_{u \to \infty} G(u)/(g(u))^{2/q} \in [0, \infty),$$

or g satisfies (g_1) , $(g(u))^{2/q}/u$ is increasing and

$$\int_{t}^{\infty} \frac{\mathrm{d}s}{(g(s))^{1/q}} < \infty \quad \text{for all } t > 0, \qquad \lim_{u \to \infty} \frac{G(u)}{(g(u))^{2/q}} \in (0, \infty],$$

then problem (P_+) admits at least one solution $u_+ \in C^2(\Omega)$.

LEMMA 4.3 (Lazer and McKenna [23, theorem 4.2]). Let Ω be a bounded open set of \mathbb{R}^N with smooth boundary. There then exists a sequence $\{\Omega_m\}_1^{\infty}$ of open sets such that $\Omega_m \subset \Omega_{m+1} \subset \Omega$, $\bigcup_{m=1}^{\infty} \Omega_m = \Omega$ and the boundary $\partial \Omega_m$ is a C^{∞} submanifold of N-1 dimension for each $m \geq 1$.

Let $\bar{v}_m \in C^{2+\alpha}(\bar{\Omega}_m)$ be the unique solution to the problem

$$-\Delta v = b(x), \quad v > 0, \quad x \in \Omega_m, \quad v|_{\partial \Omega_m} = 0.$$
 (4.3)

If follows by the maximum principle that

$$\bar{v}_m \leqslant \bar{v}_{m+1} \leqslant \bar{v} \quad \text{for all } x \in \bar{\Omega}_m.$$
 (4.4)

Proof of theorem 1.10. Since $b \in C^{\alpha}(\bar{\Omega}_m)$ and is positive on $\bar{\Omega}_m$, it follows by lemmas 4.1 and 4.2 that the problem

$$\Delta u + |\nabla u|^q = b(x)g(u), \quad u > 0, \quad x \in \Omega, \quad u|_{\partial\Omega_m} = \infty, \quad m \in \mathbb{N}$$
 (P_{m+})

admits one solution $u_{m+} \in C^2(\Omega_m)$. Moreover,

$$0 < H^{-1}(\bar{v}(x)) \le H^{-1}(\bar{v}_{m+1}(x)) \le u_{(m+1)+}(x) \le u_{m+}(x)$$
 for all $x \in \Omega_m$. (4.5)

Let D be an arbitrary compact subset of Ω . There exists m_0 such that $D \subset \Omega_{m_0}$ and it follows by (4.5) that the sequence $\{u_{m+}(x)\}_{m_0}^{\infty}$ is non-increasing and is bounded from below in D, so $u_+(x) = \lim_{m \to \infty} u_{m+}(x)$ exists for all $x \in \Omega$. By the standard argument (see, for instance, [1,16,44,51]), we see that $u_+ \in C^2(\Omega)$ and is one solution to problem (P_+) . The proof is finished.

Acknowledgments

This research was supported by the National Natural Science Foundation of the People's Republic of China under Grant no. 10671169.

References

- C. Bandle and E. Giarrusso. Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms. Adv. Diff. Eqns 1 (1996), 133–150.
- C. Bandle and M. Marcus. Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Analysis Math. 58 (1992), 9–24.
- 3 L. Bieberbach. $\Delta u = e^u$ und die automorphen Funktionen. *Math. Annalen* 77 (1916), 173–212.
- 4 M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, J. García Melián and R. Letelier. On an elliptic problem with boundary blow-up and a singular weight: radial case. *Proc. R. Soc. Edinb.* A **133** (2003), 1283–1297.
- 5 M. Chuaqui, C. Cortázar, M. Elgueta and J. García Melián. Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights. *Commun. Pure Appl. Analysis* 3 (2004), 653–662.
- 6 F. Cîrstea and Y. Du. General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91 (2005), 459–482.
- 7 F. Cîrstea and V. D. Rădulescu. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. C. R. Acad. Sci. Paris I 335 (2002), 447–452.
- 8 F. Cîrstea and V. D. Rădulescu. Asymptotics for the blow-up boundary solution of the logistic equation with absorption. C. R. Acad. Sci. Paris I 336 (2003), 231–236.
- 9 F. Cîrstea and V. D. Rădulescu. Solutions with boundary blow-up for a class of nonlinear elliptic problems. Houston J. Math. 29 (2003), 821–829.
- G. Diaz and R. Letelier. Explosive solutions of quasilinear elliptic equations: existence and uniqueness. *Nonlin. Analysis* 20 (1993), 97–125.
- Y. Du and Z. Guo. Blow-up solutions and their applications in quasilinear elliptic equations.
 J. Analysis Math. 89 (2003), 277–302.
- 12 Y. Du and Q. Huang. Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM. J. Math. Analysis 31 (1999), 1–18.
- J. García Melián. Nondegeneracy and uniqueness for boundary blow-up elliptic problems.
 J. Diff. Eqns 223 (2006), 208–227.
- J. García Melián, R. Letelier-Albornoz and J. S. de Lis. Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up. *Proc. Am. Math.* Soc. 129 (2001), 3593–3602.
- 15 E. Giarrusso. Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case. C. R. Acad. Sci. Paris I 331 (2000), 777–782.
- 16 E. Giarrusso. On blow up solutions of a quasilinear elliptic equation. *Math. Nachr.* **213** (2000), 89–104.
- 17 D. Gilbarg and N. S. Trudinger. *Elliptic partial differential equations of second order*, 3rd edn (Springer, 1998).
- A. Greco and G. Porru. Asymptotic estimates and convexity of large solutions to semilinear elliptic equations. Diff. Integ. Eqns 10 (1997), 219–229.
- 19 J. B. Keller. On solutions of $\Delta u = f(u)$. Commun. Pure Appl. Math. 10 (1957), 503–510.
- S. Kichenassamy. Boundary behavior in the Loewner-Nirenberg problem. J. Funct. Analysis 222 (2005), 98–113.
- A. V. Lair. A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations. J. Math. Analysis Applic. 240 (1999), 205–218.
- 22 J. M. Lasry and P. L. Lions. Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. *Math. Z.* 283 (1989), 583–630.
- 23 A. C. Lazer and P. J. McKenna. On a problem of Bieberbach and Rademacher. Nonlin. Analysis 21 (1993), 327–335.
- 24 A. C. Lazer and P. J. McKenna. Asymptotic behavior of solutions of boundary blowup problems. Diff. Integ. Eqns 7 (1994), 1001–1019.

- 25 J. F. Le Gall. A path-valued Markov process and its connections with partial differential equations. In First European Congress of Mathematics, II (Paris, 1992), Progress in Mathematics, vol. 120, pp. 185–212 (Basel: Birkhäuser, 1994).
- 26 C. Loewner and L. Nirenberg. Partial differential equations invariant under conformal or projective transformations. Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245–272 (New York: Academic, 1974).
- J. López-Gómez. The boundary blow-up rate of large solutions. J. Diff. Eqns 195 (2003), 25–45.
- J. López-Gómez. Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Diff. Eqns 224 (2006), 385–439.
- 29 M. Marcus and L. Véron. Uniqueness of solutions with blowup on the boundary for a class of nonlinear elliptic equations. C. R. Acad. Sci. Paris I 317 (1993), 557–563.
- 30 M. Marcus and L. Véron. Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations. Annales Inst. H. Poincaré Analyse Non Linéaire 14 (1997), 237–274.
- 31 M. Marcus and L. Véron. Existence and uniqueness results for large solutions of general nonlinear elliptic equations. *J. Evol. Eqns* **3** (2003), 637–652.
- 32 V. Maric. Regular variation and differential equations. Lecture Notes in Mathematics, vol. 1726 (Springer, 2000).
- 33 A. Mohammed. Boundary asymtotic and uniqueness of solutions to the p-Laplacian with infinite boundary value. J. Math. Analysis Applic. 325 (2007), 480–489.
- 34 R. Osserman. On the inequality $\Delta u \geqslant f(u)$. Pac. J. Math. 7 (1957), 1641–1647.
- 35 A. Porretta and L. Véron. Asymptotic behaviour for the gradient of large solutions to some nonlinear elliptic equations. Adv. Nonlin. Studies 6 (2006), 351–378.
- 36 A. Porretta and L. Véron. Symmetry of large solutions of nonlinear elliptic equations in a ball. J. Funct. Analysis 236 (2006), 581–591.
- 37 H. Rademacher. Einige besondere problem partieller Differentialgleichungen. In *Die differential-und Integralgleichungen der Mechanik und Physic, I* (ed. P. Frank and R. von Mises), 2nd edn, pp. 838–845 (New York: Rosenberg, 1943).
- 38 A. Ratto, M. Rigoli and L. Véron. Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Analysis 121 (1994), 15–77.
- 39 S. I. Resnick. Extreme values, regular variation, and point processes (Springer, 1987).
- 40 R. Seneta. Regular varying functions. Lecture Notes in Mathematics, vol. 508 (Springer, 1976).
- S. Tao and Z. Zhang. On the existence of explosive solutions for semilinear elliptic problems. Nonlin. Analysis 48 (2002), 1043–1050.
- 42 L. Véron. Semilinear elliptic equations with uniform blowup on the boundary. J. Analysis Math. 59 (1992), 231–250.
- 43 L. Véron. Large solutions of elliptic equations with strong absorption. Nonlin. Diff. Eqns Applic. 63 (2005), 453–464.
- 44 Z. Zhang. Nonlinear elliptic equations with singular boundary conditions. J. Math. Analysis Applic. 216 (1997), 390–397.
- 45 Z. Zhang. A remark on the existence of explosive solutions for a class of semilinear elliptic equations. Nonlin. Analysis 41 (2000), 143–148.
- 46 Z. Zhang. The asymptotic behaviour of solutions with blow-up at the boundary for semi-linear elliptic problems. J. Math. Analysis Applic. 308 (2005), 532–540.
- 47 Z. Zhang. The asymptotic behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms. *Nonlin. Analysis* 62 (2005), 1137–1148.
- 48 Z. Zhang. Existence of large solutions for a semilinear elliptic problem via explosive subsupersolutions. *Electron. J. Diff. Eqns* 2006 (2006), 1–8.
- 49 Z. Zhang. Boundary blow-up elliptic problems with nonlinear gradient terms. J. Diff. Eqns 228 (2006), 661–684.
- Z. Zhang. Boundary blow-up elliptic problems of Bieberbach and Rademacher type with nonlinear gradient terms. Nonlin. Analysis 67 (2007), 727–734.
- 51 Z. Zhang and J. Yu. On a singular nonlinear Dirichlet problem with a convection term. SIAM J. Math. Analysis 32 (2000), 916–927.

(Issued 5 December 2008)