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By Karamata regular variation theory, a perturbation method and construction of
comparison functions, we show the exact asymptotic behaviour of solutions near the
boundary to nonlinear elliptic problems ∆u ± |∇u|q = b(x)g(u), u > 0 in Ω,
u|∂Ω = ∞, where Ω is a bounded domain with smooth boundary in R

N , q > 0,
g ∈ C1[0, ∞) is increasing on [0, ∞), g(0) = 0, g′ is regularly varying at infinity with
positive index ρ and b is non-negative in Ω and is singular on the boundary.

1. Introduction and the main results

The purpose of this paper is to investigate the exact asymptotic behaviour of solu-
tions near the boundary to the following model problems:

∆u ± |∇u|q = b(x)g(u), u > 0 ∈ Ω, u|∂Ω = ∞, (P±)

where the last condition means that u(x) → +∞ as d(x) = dist(x, ∂Ω) → 0, and
the solution is called ‘a large solution’ or ‘an explosive solution’, Ω is a bounded
domain with smooth boundary in R

N , N � 1, q > 0, g have the properties that

(g1) g ∈ C1[0,∞), g(0) = 0, g is increasing on [0,∞),

(g2) the Keller–Osserman condition∫ ∞

t

ds√
2G(s)

< ∞ for all t > 0, G(s) =
∫ s

0
g(z) dz

holds,

and b satisfies the condition

(b1) b ∈ Cα(Ω) for some α ∈ (0, 1) is non-negative in Ω and limd(x)→0 b(x) = ∞.

The main feature of this paper is the presence of the three terms: the nonlinear term
g(u), which is regularly varying at infinity with index 1 + ρ, ρ > 0, and includes
a large class of functions; the nonlinear gradient term ±|∇u|q; and the weight b,
which is singular on the boundary, and also includes a large class of functions.

First, let us review the following model:

∆u = b(x)g(u) in Ω, u|∂Ω = +∞. (P0)
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The problem (P0) arises from many branches of mathematics and applied math-
ematics and has been discussed by many authors and in many contexts (see, for
example, [2–14,18–21,23–31,33,34,36–38,41–43,45,46]).

Problem (P0) was studied much earlier for the case in which b ≡ 1 on Ω for
g(u) = eu. Bieberbach [3] proved that when N = 2 there is one solution u ∈
C2(Ω) satisfying the condition that |u(x)− ln(d(x))−2| is bounded on Ω. The same
result was proved by Rademacher [37] for N = 3. For more general non-decreasing
functions g, Keller and Osserman [19, 34] first supplied a necessary and sufficient
condition (g2) for the existence of large solutions to problem (P0). Later, Loewner
and Nirenberg [26] showed that if g(u) = up0 with p0 = (N + 2)/(N − 2), N > 2,
then problem (P0) has a unique positive solution u satisfying

lim
d(x)→0

u(x)(d(x))(N−2)/2 = (N(N − 2)/4)(N−2)/4.

Then, by analysing the corresponding ordinary differential equation and combining
it with the maximum principle, Bandle and Marcus [2] established the following
results: if g satisfies (g1) and

(g3) there exist θ > 0 and s0 � 1 such that g(ξs) � ξ1+θg(s) for all ξ ∈ (0, 1) and
s � s0/ξ,

then, for any solution u of problem (P0)

u(x)
ψ1(d(x))

→ 1 as d(x) → 0, (1.1)

where ψ1 satisfies ∫ ∞

ψ1(t)

ds√
2G(s)

= t for all t > 0 (1.2)

and, in addition to the conditions given above, g satisfies the condition that

(g4) g(s)/s is increasing on (0,∞),

then problem (P0) has a unique solution.
Lazer and McKenna [24] showed that if g satisfies (g1) and

(g5) there exists a1 > 0 such that g′(s) is non-decreasing for s � a1, and

lim
s→∞

g′(s)√
G(s)

= ∞,

then, for any solution u of problem (P0),

u(x) − ψ1(d(x)) → 0 as d(x) → 0. (1.3)

Now we introduce a class of functions.
Let Λ denote the set of all positive monotonic functions k ∈ L1(0, ν) ∩ C1(0, ν)

which satisfy

lim
t→0+

d
dt

(
K(t)
k(t)

)
= Ck ∈ [0,∞), (1.4)
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where

K(t) =
∫ t

0
k(s) ds. (1.5)

We note that, for each k ∈ Λ, limt→0+ K(t)/k(t) = 0, Ck ∈ [0, 1] if k is non-
decreasing and Ck � 1 if k is non-increasing.

Most recently, applying the regular variation theory, which was first introduced
and established by Karamata in 1930 and is a basic tool in the stochastic pro-
cess, and constructing comparison functions, Ĉırstea and co-workers [6–9] showed
the uniqueness and exact asymptotic behaviour of solutions near the boundary to
problem (P0). A basic result is that if g satisfies (g1) and

(g6) there exists ρ > 0 such that lims→∞ g′(ξs)/g′(s) = ξρ for all ξ > 0

and b ∈ Cα(Ω̄), b � 0 in Ω, and satisfies

(b2) limd(x)→0 b(x)/k2(d(x)) = c0 > 0 for some non-decreasing function k ∈ Λ,

then any solution u of problem (P0) satisfies

lim
d(x)→0

u(x)
ψ(d(x))

= ξ0, (1.6)

where

ξ0 =
(

2 + ρCk

c0(2 + ρ)

)1/ρ

and ψ ∈ C2(0, a), a ∈ (0, ν), is defined by∫ ∞

ψ(t)

ds√
2G(s)

= K(t) for all t ∈ (0, a). (1.7)

Zhang [46] considered problem (P0) for the case k(t) = tσ/2 with σ > −2, and
Mohammed [33] generalized the above results to non-increasing function k ∈ Λ.

Now let us return to problem (P±).
When b ≡ 1 on Ω, Lasry and Lions [22] established the existence, uniqueness

and exact asymptotic behaviour of solutions near the boundary to problem (P−)
for g(u) = λu with λ > 0 and q > 1; when g(u) = up, p > 0, by the ordinary
differential equation theory and the comparison principle, Bandle and Giarrusso [1]
showed the following results:

(i) if p > 1 or q > 1, then problem (P+) has one solution in C2(Ω), and the same
statement is true for problem (P−) if p > 1 or 1 < q � 2;

(ii) if p > 1 and 0 < q < 2p/(p + 1), then every solution u± of problem (P±)
satisfies (1.1), where ψ1(t) = (

√
2(p + 1)/(p − 1))2/(p−1)t−2/(p−1);

(iii) if 2p/(p + 1) < q < p, then, for any solution u+ of problem (P+),

lim
d(x)→0

u+(x)
(

p − q

q
d(x)

)q/(p−q)

= 1; (1.8)

https://doi.org/10.1017/S0308210506000643 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506000643


1406 Z. Zhang

(iv) if max{2p/(p+1), 1} < q < 2, then every solution u− of problem (P−) satisfies

lim
d(x)→0

u−(x)(2 − q)((q − 1)d(x))(2−q)/(q−1) = 1; (1.9)

(v) if q = 2, then every solution u− of problem (P−) satisfies

lim
d(x)→0

u−(x)/ln(d(x)) = 1. (1.10)

Moreover, Bandle and Giarrusso [1] and Giarrusso [15,16] extended the above results
for more general g(u) satisfying

lim
u→∞

√
G(u)

(g(u))1/q
= c1 ∈ [0,∞].

Most recently, Porretta and Véron [35] gave the precise expression of the solution
for the case g(u) = up with p > 0. Zhang [49] generalized the above results in [1,
15, 16] to problem (P±) for the case that b ∈ Cα(Ω̄), b � 0 in Ω, and considered
problem (P±) when 0 < q < 2(ρ + 1)/(ρ + 2) and k(t) = tσ/2 with σ > −2 [47].

For other existence results of large solutions to elliptic problems with nonlinear
gradient terms, see [44,48,50] and the references therein.

In this paper, by Karamata regular variation theory, a perturbation method and
constructing comparison functions, we reveal that how the singular weights b affect
the exact asymptotic behaviour of solutions near the boundary to problems (P±).

First let us recall some basic definitions and the properties to Karamata regular
variation theory [32,39,40].

Definition 1.1. A positive measurable function f defined on [a,∞), for some a >
0, is called regularly varying at infinity with index ρ, written f ∈ RVρ, if, for each
ξ > 0 and some ρ ∈ R,

lim
t→∞

f(ξt)
f(t)

= ξρ. (1.11)

The real number ρ is called the index of regular variation.

In particular, when ρ = 0, we have the following.

Definition 1.2. A positive measurable function L defined on [a,∞), for some a >
0, is called slowly varying at infinity, if, for each ξ > 0,

lim
t→∞

L(ξt)
L(t)

= 1. (1.12)

It follows by definitions 1.1 and 1.2 that if f ∈ RVρ it can be represented in the
form

f(t) = tρL(t). (1.13)

Lemma 1.3 (uniform convergence theorem). If f ∈ RVρ, then (1.11) (and thus
(1.12)) holds uniformly for ξ ∈ [a, b] with 0 < a < b.
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Lemma 1.4 (representation theorem). The function L is slowly varying at infinity
if and only if it may be written in the form

L(t) = c(t) exp
( ∫ t

a

y(s)
s

ds

)
, u � a, (1.14)

for some a > 0, where c(t) and y(t) are measurable and t → ∞, y(t) → 0 and
c(t) → c, with c > 0.

As the corresponding to definitions 1.1 and 1.2, we have the following.

Definition 1.5. A positive measurable function h defined on (0, a), for some a > 0,
is called regularly varying at zero with index σ, written h ∈ RV Zσ, if, for each ξ > 0
and some σ ∈ R,

lim
t→0+

h(ξt)
h(t)

= ξσ. (1.15)

In particular, when σ = 0, we have the following.

Definition 1.6. A positive measurable function H defined on (0, a), for some a >
0, is called slowly varying at zero, if for each ξ > 0

lim
t→0+

H(ξt)
H(t)

= 1. (1.16)

It follows by definitions 1.5 and 1.6 that if h ∈ RV Zσ, then it can be represented
in the form

h(t) = tσH(t). (1.17)

We note that definition 1.1 is equivalent to saying that f(1/t) is regularly varying
at zero with index −ρ.

Our main results are the following.

Theorem 1.7. Let g satisfy (g1), g′ ∈ RVρ with ρ > 1; let b satisfy (b1) and let

(b3) limd(x)→0 b(x)/kq(d(x)) = cq > 0 for some non-increasing function k ∈ Λ.

If 2 � q < ρ + 1, then every solution u+ ∈ C2(Ω) to problem (P+) satisfies

lim
d(x)→0

u+(x)
ϕ(K(d(x)))

= c−1/(ρ−q+1)
q , (1.18)

where ϕ ∈ C2(0,∞) is uniquely determined by∫ ∞

ϕ(t)

ds

(g(s))1/q
= t for all t > 0. (1.19)

Moreover, ϕ ∈ RV Z−q/(ρ+1−q) and there exists H ∈ RV Z0 such that

ϕ(t) = H(t)t−q/(ρ+1−q). (1.20)
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Theorem 1.8. Let g satisfy (g1), g′ ∈ RVρ with ρ > 0, let

2(ρ + 1)
ρ + 2

< q < min{2, ρ + 1},

and let b satisfy (b1). Suppose that there exists some non-increasing function k ∈
C1(0, ν), k′ ∈ RV Z−σ−1 with σ ∈ (0, 1) and a positive constant cq such that (b3)
holds. If

σ(2 − q)
1 − σ

<
q(2 + ρ) − 2(1 + ρ)

ρ + 1 − q
and

σ + 1 + qσ

1 − σ
<

(q − 1)(1 + ρ)
ρ + 1 − q

, (1.21)

then the conclusion of theorem 1.7 holds.

Theorem 1.9. Let g satisfy (g1), g′ ∈ RVρ with ρ > 0, let b satisfy (b1) and

(b21) limd(x)→0 b(x)/k2(d(x)) = c0 > 0 for some non-increasing k ∈ Λ.

If either 0 < q < 2(1 + ρ)/(2 + ρ), or g(u) = u1+ρ with q = 2(1 + ρ)/(2 + ρ), then
every solution u± ∈ C2(Ω) to problem (P±) satisfies

lim
d(x)→0

u±(x)
ψ1(K(d(x)))

=
(

2 + ρ + ρ(Ck − 1)
c0(2 + ρ)

)1/ρ

, (1.22)

where ψ1 ∈ C2(0, a] is uniquely determined by (1.2). Moreover, ψ1 ∈ RV Z−2/ρ,
and there exists H ∈ RV Z0 such that ψ1(t) = H(t)t−2/ρ.

Theorem 1.10. Let q > 0, let g satisfy (g1), (g2) and limu→∞ G(u)/(g(u))2/q ∈
[0,∞), or g satisfy (g1), where (g(u))2/q/u is increasing and∫ ∞

t

ds

(g(s))1/q
< ∞ for all t > 0, lim

u→∞

G(u)
(g(u))2/q

∈ (0,∞].

If b ∈ Cα(Ω) is positive in Ω and

(b4) the linear Poisson’s problem

−∆v = b(x), v > 0, x ∈ Ω, v|∂Ω = 0 (1.23)

has a unique solution v̄ ∈ C2+α(Ω) ∩ C(Ω̄), then problem (P+) has at least one
solution u+ ∈ C2(Ω).

Remark 1.11. By (1.2), we see that the asymptotic behaviour (1.22) of u± is
independent of ±|∇u±|q when 0 < q < 2(1 + ρ)/(2 + ρ), and so is that when
g(u) = u1+ρ with ρ > 0 and q = 2(1 + ρ)/(2 + ρ).

Remark 1.12. Some basic examples of g which satisfies (g1) and g′ ∈ RVρ with
ρ > 0 are

(i) g(u) = uρ+1,

(ii) g(u) = uρ+1(ln(u + 1))β , β > 0,

(iii) g(u) = uρ+1 arctanu,
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(iv)

g(u) = c0u
ρ+1 exp

( ∫ u

0

y(s)
s

ds

)
, u � 0,

where c0 > 0, y ∈ C[0,∞) is non-negative such that lims→0+ y(s)/s ∈ [0,∞)
and lims→∞ y(s) = 0.

Remark 1.13. Some basic examples of the non-increasing functions in Λ are

(i) k ≡ C0 > 0, K(t) = C0t, Ck = 1,

(ii) k(t) = t−σ/2 with σ ∈ (0, 2),

K(t) =
2t(2−σ)/2

2 − σ
, Ck =

2
2 − σ

> 1,

(iii) k(t) = − ln t, K(t) = t(1 − ln t), Ck = 1,

(iv) k(t) = − ln t/tσ with σ ∈ (0, 1),

K(t) =
t1−σ

(1 − σ)2
(1 − (1 − σ) ln t), Ck =

1
1 − σ

> 1.

At the same time, we note that k(t) = 1/t(− ln t)σ with σ > 1, k ∈ L1(0, ν) ∩
C1(0, ν), K(t) = (ln t)1−σ/(σ − 1), Ck = +∞.

Remark 1.14. When g(u) = uρ+1, ρ > 0, 0 < q < ρ + 1,

ϕ(t) =
(

q

ρ + 1 − q

)q/(ρ+1−q)

t−q/(ρ+1−q), t > 0.

Remark 1.15. When g(u) = uρ+1, ρ > 0,

ψ1(t) =
(

2(2 + ρ)
ρ2

)1/ρ

t−2/ρ, t > 0.

Remark 1.16. If 2(ρ + 1)/(ρ + 2) < q < 2, then

1 <
(q − 1)(1 + ρ)

ρ + 1 − q
.

Remark 1.17 (Zhang [48, theorem 1.2]). Let g satisfy (g1) and g(s) � C1s
p1 for

all s ∈ (0,∞) and g(s) � C2s
p2 for large enough s, where p1 � p2 > 1 and C1, C2

are positive constants; let b ∈ Cα(Ω) and b > 0 in Ω, satisfying the following
assumption: there exist constants γ1 � γ2 > −2 such that

C2(d(x))γ2 � b(x) � C1(d(x))γ1 for all x ∈ Ω. (1.24)

If
1 < q � 2p1 + γ1

p1 + γ1 + 1
,

then problem (P−) has at least one solution u− ∈ C2(Ω).
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Remark 1.18. If b satisfies (b1) and supx∈Ω(d(x))2−σb(x) < ∞ with σ ∈ (0, 2),
then (b4) holds (see [17, ch. 4, theorem 4.3, problems 4.3 and 4.6, pp. 70–71]).

The paper is organized as follows. In § 2 we continue to recall Karamata regular
variation theory. In § 3 we prove theorems 1.7–1.9. Finally, we show existence of
solutions to problem (P+).

2. Some basic definitions and the properties to Karamata regularly
varying theory

Let us continue to recall some basic definitions and the properties to Karamata
regular variation theory (see [32,39,40]).

Some basic examples of slowly varying functions at infinity are as follows:

(i) every measurable function on [a,∞) which has a positive limit at infinity;

(ii) L(t) =
m=n∏
m=1

(logm t)αm , αm ∈ R;

(iii) L(t) = exp
( m=n∏

m=1

(logm t)αm

)
, 0 < αm < 1;

(iv) L(t) =
1
t

∫ t

a

ds

ln s
;

(v) L(t) = exp((ln t)1/3 cos((ln t))1/3), where

lim inf
t→∞

L(t) = 0 and lim sup
t→∞

L(t) = +∞;

(vi) we have

L1(t) =
1
t

∫ t

a

L(s) ds

s
,

where L is slowly varying at infinity and, in this case,

lim
t→∞

L1(t)
L(t)

= 0.

Lemma 2.1. If the functions L, L1 are slowly varying at infinity, then

(i) Lσ for every σ ∈ R, L(t)+L1(t), L(L1(t)) (if L1(t) → ∞ as t → ∞) are also
slowly varying at infinity,

(ii) for every θ > 0 and t → ∞,

tθL(t) → ∞, t−θL(t) → 0, (2.1)

(iii) for t → ∞, ln(L(t))/ ln t → 0.
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Lemma 2.2 (asymptotic behaviour). If the function L is slowly varying at infinity,
then [32, appendix, proposition 2] for t → ∞,∫ t

a

sβL(s) ds ∼= (β + 1)−1t1+βL(t) for β > −1, (2.2)

∫ ∞

t

sβL(s) ds ∼= (−β − 1)−1t1+βL(t) for β < −1. (2.3)

Let Ψ be non-decreasing in R. We define (as in [39]) the inverse of Ψ by

Ψ←(t) = inf{s : Ψ(s) � t}. (2.4)

Lemma 2.3 (Resnick [39, proposition 0.8]). The following hold:

(i) if f1 ∈ RVρ1 , f2 ∈ RVρ2 , then f1 · f2 ∈ RVρ1+ρ2 ;

(ii) if f1 ∈ RVρ1 , f2 ∈ RVρ2 , where limt→∞ f2(t) = ∞, then f1 ◦ f2 ∈ RVρ1ρ2 ;

(iii) if Ψ is non-decreasing in R, limt→∞ Ψ(t) = ∞, and Ψ ∈ RVρ with ρ 	= 0, then
Ψ← ∈ RVρ−1 .

By the above lemmas, we can obtain the following results directly.

Lemma 2.4 (representation theorem). The function H is slowly varying at zero if
and only if it may be written in the form

H(t) = c(t) exp
( ∫ a

t

y(s)
s

ds

)
, 0 < t < a, (2.5)

for some a > 0, where c(t) is a bounded measurable function, y ∈ C[0, a] with
y(0) = 0 and, for t → 0+, c(t) → c with c > 0.

Lemma 2.5. If the function H is slowly varying at zero, then for every θ > 0 and
t → 0+

t−θH(t) → ∞, tθH(t) → 0. (2.6)

Lemma 2.6 (asymptotic behaviour). If the function H is slowly varying at zero,
then for t → 0 [32, appendix, proposition 2]∫ t

0
sβH(s) ds ∼= (β + 1)−1t1+βH(t) for β > −1, (2.7)

∫ a

t

sβH(s) ds ∼= (−β − 1)−1t1+βH(t) for β < −1. (2.8)

Lemma 2.7. If g satisfies (g1) and g′ ∈ RVρ with ρ > 0, then

(i) limu→∞ g′(u) = limu→∞ g(u) = ∞ and g ∈ RVρ+1, G ∈ RVρ+2,

(ii) g satisfies the Keller–Osserman condition (g2) and∫ ∞

t

ds

(g(s))1/q
< ∞ for all t > 0

provided that 0 < q < ρ + 1,
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(iii) lim
s→∞

g′(s)
g(s)

= 0, lim
s→∞

sg′(s)
g(s)

= ρ + 1, lim
s→∞

g′(s)G(s)
g2(s)

=
1 + ρ

2 + ρ
,

(iv) when 2(ρ + 1)/(ρ + 2) < q < ρ + 1 and

θ ∈
[
0,

q(ρ + 2) − 2(ρ + 1)
ρ + 1 − q

)
, θ1 ∈

[
0,

(q − 1)(ρ + 1)
ρ + 1 − q

)
,

lim
u→∞

g′(u)/(g(u))2(q−1)/q

(
∫ ∞

u
ds/(g(s))1/q)θ

= 0 and lim
u→∞

1/(g(u))(q−1)/q

(
∫ ∞

u
ds/(g(s))1/q)θ1

= 0,

(v) when 0 < q < 2(1 + ρ)/(2 + ρ),

lim
u→∞

(
∫ u

0 g(s) ds)q/2

g(u)
= 0,

and when g(u) = u1+ρ with q = 2(1 + ρ)/(2 + ρ),

lim
u→∞

(G(u))q/2

g(u)
= (2 + ρ)−(1+ρ)/(2+ρ).

Proof. Since g satisfies (g1) and g′ ∈ RVρ with ρ > 0, there exists a function L
which is slowly varying at infinity such that g′(t) = tρL(t).

(i) This follows by definition 1.1, l’Hôpital’s rule and lemma 2.1.

(ii) By G ∈ RVρ+2 with ρ > 0, we see that there exists a function L which is slowly
varying at infinity such that G(t) = t2+ρL(t). Since ρ > 0, let ρ1 ∈ (0, 1

2ρ). We see
by lemma 2.1 that

lim
t→∞

G(t)
t2(1+ρ1)

= lim
t→∞

tρ−2ρ1L(t) = ∞,

i.e. there exists T0 > 0 such that

G(t)
t2(1+ρ1)

> 1,
√

G(t) > t1+ρ1 , t > T0.

This implies that g satisfies (g2). In the same way, we can show that∫ ∞

t

ds

(g(s))1/q
< ∞ for all t > 0,

provided that 0 < q < ρ + 1.

(iii) By g′(s) = sρL(s) with ρ > 0 and lemma 2.2, we see that, for t → 0,

g(t) =
∫ t

0
g′(s) ds =

∫ t

0
sρL(s) ds ∼= (ρ + 1)−1t1+ρL(t),

G(t) =
∫ t

0
g(s) ds = (ρ + 1)−1

∫ t

0
sρ+1L(s) ds ∼= (ρ + 1)−1(ρ + 2)−1t2+ρL(t).
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So

lim
s→∞

g′(s)
g(s)

= 0, lim
s→∞

sg′(s)
g(s)

= ρ + 1, lim
s→∞

G(s)
sg(s)

= (2 + ρ)−1

and

lim
s→∞

g′(s)G(s)
g2(s)

= lim
s→∞

sg′(s)
g(s)

lim
s→∞

G(s)
sg(s)

=
1 + ρ

2 + ρ
.

(iv) Since

q(ρ + 2) − 2(ρ + 1) − θ(ρ + 1 − q) > 0,

(q − 1)(ρ + 1) − θ1(ρ + 1 − q) > 0,

we see by lemma 2.1 and the proof of (i)–(iii) that

lim
u→∞

g′(u)/(g(u))2(q−1)/q

(
∫ ∞

u
ds/(g(s))1/q)θ

=
(1 + ρ)2(q−1)/q

q

(1 + ρ − q)θ

qθ
lim

u→∞

(u(q(ρ+2)−2(ρ+1))/q(L(u))(q−2)/q)−1

u−θ(ρ+1−q)/q(L1(u))θ

=
(1 + ρ − q)θ(1 + ρ)2(q−1)/q

q1+θ

lim
u→∞

(u(q(ρ+2)−2(ρ+1)−θ(ρ+1−q))/q(L(u))(q−2)/q(L1(u))θ)−1

= 0

and

lim
u→∞

1/(g(u))(q−1)/q

(
∫ ∞

u
ds/(g(s))1/q)θ1

=
(1 + ρ − q)θ1

qθ1
lim

u→∞

(u(q−1)(ρ+1)/q(L(u))(q−1)/q)−1

u−θ1(ρ+1−q)/q(L1(u))θ1

=
(1 + ρ − q)θ1

qθ1
lim

u→∞
(u((q−1)(ρ+1)−θ1(ρ+1−q))/q(L(u))(q−1)/q(L1(u))θ1)−1

= 0.

(v) This follows in the same way.

Lemma 2.8. Let b, k be in theorem 1.7. Then

(i) limt→0+ k(t) = ∞, limt→0+ K(t) = 0,

(ii)

lim
t→0+

K(t)
k(t)

= 0, lim
t→0+

k′(t)K(t)
k2(t)

= 1 − Ck.
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Proof. Since k ∈ Λ is non-increasing, b satisfies (b1) and (b3), we have

lim
t→0

k(t) = +∞, lim
t→0+

K(t) = 0,

lim
t→0+

k′(t)K(t)
k2(t)

= 1 − lim
t→0+

d
dt

(
K(t)
k(t)

)
= 1 − Ck.

Lemma 2.9. Let 2(ρ + 1)/(ρ + 2) < q < min{2, ρ + 1}, and b, k be in theorem 1.8.
If θ > σ(2 − q)/(1 − σ) and θ1 > (σ + 1 + qσ)/(1 − σ), then

(i) limt→0+ k′(t) = −∞, limt→0+ k(t) = ∞, limt→0+ K(t) = 0,

(ii) limt→0+(k(t))2−q(K(t))θ = 0,

(iii) limt→0+ k′(t)(K(t))θ1/(k(t))q = 0.

Proof. (i) Since k′ ∈ RV Z−σ−1 with σ ∈ (0, 1), there exists a function H which
is slowly varying at zero such that k′(t) = −t−σ−1H(t). It follows by lemmas 2.5
and 2.6 that

lim
t→0+

k′(t) = −∞, k(t) = −
∫ a

t

k′(s) ds + k(a) ∼= σ−1t−σH(t) as t → 0+,

and

K(t) =
∫ t

0
k(s) ds ∼= (σ(1 − σ))−1t1−σH(t) as t → 0+.

So
lim

t→0+
k(t) = ∞, lim

t→0+
K(t) = 0.

(ii) Since θ(1 − σ) − σ(2 − q) > 0, we see by lemma 2.5 that

lim
t→0+

(k(t))2−q(K(t))θ = lim
t→0+

tθ(1−σ)−σ(2−q)(L(t))2−q+θ

σ2−q+θ(1 − σ)θ
= 0.

(iii) We see by θ1(1 − σ) + qσ − σ − 1 > 0 and the proof of (ii) that

lim
t→0+

k′(t)(K(t))θ1

(k(t))q
= lim

t→0+

tθ1(1−σ)+qσ−σ−1(L(t))1+θ1−q

σθ1−q(1 − σ)θ1
= 0.

By the proof of lemma 2.3, we can show the following results.

Lemma 2.10. If h1 ∈ RV Zρ1 , h2 ∈ RV Zρ2 and limt→0+ h2(t) = 0, then h1 ◦ h2 ∈
RV Zρ1ρ2 .

Lemma 2.11. Let g1 and g2 be positive continuous on (0,∞), let g1 ∈ RV1+ρ with
ρ > 0 and let [49, lemma 2.4]∫ ∞

t

ds

g1(s)
< ∞ for all t > 0.
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If

lim
s→∞

g1(s)
g2(s)

= 1 and
∫ ∞

ϕ1(t)

ds

g1(s)
=

∫ ∞

ϕ2(t)

ds

g2(s)
= t for all t > 0,

then

lim
t→∞

ϕ1(t)
ϕ2(t)

= 1.

Lemma 2.12. Under the assumptions in theorems 1.7 and 1.9,

ϕ ∈ RV Z−q/(ρ+1−q) and ψ1 ∈ RV Z−2/ρ.

Proof. Let

f1(u) =
∫ ∞

u

ds

(g(s))1/q
, f11(u) =

∫ ∞

u

ds√
2G(s)

, u > 0.

By l’Hôpital’s rule, we can easily see that f1 ∈ RV−(ρ+1−q)/q and f11 ∈ RV−ρ/2. It
follows by lemma 2.3 that ϕ = f−1

1 ∈ RV Z−q/(ρ+1−q) and ψ1 = f11
−1 ∈ RV Z−2/ρ.

3. The exact asymptotic behaviour

In this section we prove theorems 1.7–1.9. We need the following preliminary con-
siderations.

Lemma 3.1. Let 2(ρ + 1)/ρ + 2 < q < ρ + 1, g and ϕ be as in theorem 1.7. Then

(i) limt→0+ ϕ(t) = ∞, limt→0+ ϕ′(t) = −∞,

(ii) lim
t→0+

ϕ′′(t)
(−ϕ′(t))q

= 0 and lim
t→0+

ϕ′(t)
t(−ϕ′(t))q

= 0.

Proof. (i) By the definition of ϕ in (1.19) and a direct calculation, we see that

lim
t→0+

ϕ(t) = ∞, ϕ′(t) = −(g(ϕ(t)))1/q,

ϕ′′(t) =
1
q
g′(ϕ(t))(g(ϕ(t)))(2−q)/q, t > 0.

It follows by lemma 2.7 that limt→0+ ϕ′(t) = −∞.

(ii) Since 2(ρ + 1)/(ρ + 2) < q, we see by lemma 2.7 that

lim
t→0+

ϕ′′(t)
(−ϕ′(t))q

=
1
q

lim
t→0+

g′(ϕ(t))(g(ϕ(t)))(2−q)/q

g(ϕ(t))
=

1
q

lim
u→∞

g′(u)
(g(u))2(q−1)/q

= 0

and

lim
t→0+

ϕ′(t)
t(ϕ′(t))q

= lim
t→0+

(g(ϕ(t)))(1−q)/q∫ ∞
ϕ(t) ds/(g(s))1/q

= lim
u→∞

(g(u))(1−q)/q∫ ∞
u

ds/(g(s))1/q

=
q − 1

q
lim

u→∞

g′(u)
(g(u))2(q−1)/q

= 0.
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Lemma 3.2. Let 2(ρ + 1)/(ρ + 2) < q < ρ + 1, g and ϕ be as in theorem 1.8, and
let

θ ∈
(

σ(2 − q)
1 − σ

,
q(ρ + 2) − 2(ρ + 1)

ρ + 1 − q

)
, θ1 ∈

(
σ + 1 + qσ

1 − σ
,
(q − 1)(ρ + 1)

ρ + 1 − q

)
.

Then

lim
t→0+

ϕ′′(t)
tθ(−ϕ′(t))q

= 0 and lim
t→0+

ϕ′(t)
tθ1(−ϕ′(t))q

= 0.

Proof. By lemma 2.7, we see that

lim
t→0+

ϕ′′(t)
tθ(−ϕ′(t))q

=
1
q

lim
t→0+

g′(ϕ(t))/(g(ϕ(t)))2(q−1)/q

(
∫ ∞

ϕ(t) ds/(g(s))1/q)θ

=
1
q

lim
u→∞

g′(u)/(g(u))2(2−q)/q

(
∫ ∞

u
ds/(g(s))1/q)θ

= 0

and

lim
t→0+

ϕ′(t)
tθ1(−ϕ′(t))q

= − lim
t→0+

1/(g(ϕ(t)))(q−1)/q

(
∫ ∞

ϕ(t) ds/(g(s))1/q)θ1

= lim
u→∞

1/(g(u))(q−1)/q

(
∫ ∞

u
ds/(g(s))1/q)θ1

= 0.

Lemma 3.3. Let g, k and ψ1 be as in theorem 1.9.

(i) If 0 < q < 2(1 + ρ)/(2 + ρ), then

lim
t→0+

(G(ψ(t)))q/2

g(ψ(t))
= 0 and lim

t→0+

√
2G(ψ(t))
tg(ψ(t))

=
ρ

2 + ρ
.

(ii) If g(u) = u1+ρ, q = 2(1 + ρ)/(2 + ρ), then

lim
t→0+

(G(ψ(t)))q/2

g(ψ(t))
= (2 + ρ)−(1+ρ)/(2+ρ).

Proof. (i) By lemma 2.7, we see that

lim
t→0+

(G(ψ(t)))q/2

g(ψ(t))
= lim

u→∞

(
∫ u

0 g(s) ds)q/2

g(u)
= 0

and

lim
t→0+

√
2G(ψ(t))
tg(ψ(t))

= lim
u→∞

√
2G(u)/g(u)∫ ∞

u
ds/

√
2G(s)

= lim
u→∞

(
2g′(u)G(u)

g2(u)
− 1

)
=

2(1 + ρ)
2 + ρ

− 1 =
ρ

2 + ρ
.

(ii) This follows by direct calculation. The proof is finished.
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Lemma 3.4 (the comparison principle). Let Ψ(x, s, ξ) satisfy the following two con-
ditions [17, theorem 10.1]:

(D1) Ψ is non-increasing in s for each (x, ξ) ∈ (Ω × R
N );

(D2) Ψ is continuously differentiable with respect to the variable ξ in Ω × (0,∞) ×
R

N .

If u, v ∈ C(Ω̄)∩C2(Ω) satisfy ∆u+Ψ(x, u,∇u) � ∆v+Ψ(x, v,∇v) in Ω and u � v
on ∂Ω, then u � v in Ω.

Proof of theorem 1.7. Given an arbitrary ε ∈ (0, 1
4cq). Let

ξ0 =
(

1
cq

)ρ−q+1

, ξ2ε = (cq − 2ε)−1/(ρ+1−q), ξ1ε = (cq + 2ε)−1/(ρ+1−q).

It follows that (
2
3

)1/(ρ+1−q)

ξ0 < ξ1ε < ξ2ε < 21/(ρ+1−q)ξ0.

For any δ > 0, we define

Ωδ = {x ∈ Ω : 0 < d(x) < δ}.

Since ∂Ω ∈ C2, there exists a constant δ ∈ (0, 1
2ν) which depends only on Ω such

that d(x) ∈ C2(Ω̄2δ) and |∇d| ≡ 1 on Ω2δ.
Recalling that

lim
t→0+

k2(t)
kq(t)

=

{
0 for q > 2,

1 for q = 2,

and

lim
t→0+

k′(t)K(t)
kq(t)

= lim
t→0+

k′(t)K(t)
k2(t)

lim
t→0+

1
kq−2(t)

=

{
0 for q > 2,

1 − Ck for q = 2,

and since k′(t) < 0, ϕ(t) < 0 and Z(x) < K(d(x)), we see that∣∣∣∣ k′(d(x))
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

∣∣∣∣ =
k′(d(x))K(d(x))

kq(d(x))
ϕ′(Z(x))

Z(x)(−ϕ′(Z(x)))q

Z(x)
K(d(x))

<
k′(d(x))K(d(x))

kq(d(x))
ϕ′(Z(x))

Z(x)(−ϕ′(Z(x)))q
.

It follows by (b3) and lemma 3.1 that

lim
(d(x),β)→(0,0+)

(
k2(d(x))
kq(d(x))

ϕ′′(Z(x))
(−ϕ′(Z(x)))q

+
k′(d(x))K(d(x))

kq(d(x))
ϕ′(Z(x))

Z(x)(−ϕ′(Z(x)))q

+
k(d(x))
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

∆d(x)
)

= 0

and

lim
(d(x),β)→(0,0+)

b(x)
kq(d(x))

g(ξ2ε(ϕ(Z(x))))
ξ2εg(ϕ(Z(x)))

= cqξ
ρ
2ε.
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Note that

ξq−1
2ε − cqξ

ρ
2ε = ξq−1

2ε

(
1 − cq

cq − 2ε

)
< 0.

Thus, we see that, corresponding to ε, there exists δε ∈ (0, δ) sufficiently small and,
letting β ∈ (0, δε) be arbitrary, we define

ūβ = ξ2εϕ(Z(x)), Z(x) = K(d(x)) − K(β), x ∈ D−
β = Ω2δε/Ω̄β ,

u
¯β = ξ1εϕ(Y (x)), Y (x) = K(d(x)) + K(β), x ∈ D+

β = Ω2δε−β ,

such that, for (x, β) ∈ D−
β × (0, δε),

∆ūβ(x) + |∇ūβ(x)|q − b(x)g(ūβ(x))

= ξ2εk
2(d(x))ϕ′′((Z(x))) + ξ2εk

′(d(x))ϕ′(Z(x))
+ ξ2εk(d(x))ϕ′(Z(x))∆d(x)
+ ξq

2εk
q(d(x))(−ϕ′(Z(x)))q − b(x)g(ξ2ε(ϕ(Z(x))))

= ξ2εk
q(d(x))g(ϕ(Z(x)))

[
k2(d(x))
kq(d(x))

ϕ′′(Z(x))
(−ϕ′(Z(x)))q

+
k′(d(x)
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

+
k(d(x)

kq(d(x))
ϕ′(Z(x))

(−ϕ′(Z(x)))q
∆d(x)

+ ξq−1
2ε − b(x)

kq(d(x))
g(ξ2ε(ϕ(Z(x))))
ξ2εg(ϕ(Z(x)))

]
� 0.

Note that Y (x) > K(d(x)) and

ξq−1
1ε − cqξ

ρ
1ε = ξq−1

1ε

(
1 − cq

cq + 2ε

)
> 0.

Thus, in the same way, we can show that, for (x, β) ∈ D+
β × (0, δε),

∆u
¯β(x) + |∇u

¯β(x)|q − b(x)g(u
¯β(x))

= ξ2εk
2(d(x))ϕ′′((Y (x))) + ξ2εk

′(d(x))ϕ′(Y (x))
+ ξ2εk(d(x))ϕ′(Y (x))∆d(x)
+ ξq

2εk
q(d(x))(−ϕ′(Y (x)))q − b(x)g(ξ2ε(ϕ(Y (x))))

= ξ2εk
q(d(x))g(ϕ(Y (x)))

[
k2(d(x))
kq(d(x))

ϕ′′(Y (x))
(−ϕ′(Y (x)))q

+
k′(d(x))
kq(d(x))

ϕ′(Y (x))
(−ϕ′(Y (x)))q

+
k(d(x))
kq(d(x))

ϕ′(Y (x))
(−ϕ′(Y (x)))q

∆d(x)

+ ξq−1
2ε − b(x)

kq(d(x))
g(ξ2ε(ϕ(Y (x))))
ξ2εg(ϕ(Y (x)))

]
� 0.

Now let u+ be an arbitrary solution of problem (P+) and

Mu+(2δε) = max
d(x)�2δε

u+(x).
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We see that
u+ � Mu(2δε) + ūβ on ∂D−

β .

Since ϕ is decreasing and k is non-increasing, it follows that u
¯β � ξ1εϕ(K(2δε))

whenever d(x) = 2δ2ε − β. Let Mu
¯
(2δε) = ξ1εϕ(K(2δε)). We see that

u
¯β � u+ + Mu

¯
(2δε) on ∂D+

β .

It follows by (g1) and lemma 3.4 that

u+ � Mu(2δε) + ūβ , x ∈ D−
β and u

¯β � u+ + ξ1εϕ(K(2δε)), x ∈ D+
β .

Hence, for x ∈ D−
β ∩ D+

β and letting β → 0, we have

ξ1ε − Mu
¯
(2δε)

ϕ(K(d(x)))
� u+(x)

ϕ(K(d(x)))
� ξ2ε +

Mu+(2δε)
ϕ(K(d(x)))

.

Recalling that limt→0+ ϕ(t) = ∞, we see that

ξ1ε � lim
d(x)→0

inf
u+(x)

ϕ(K(d(x)))
� lim

d(x)→0
sup

u+(x)
ϕ(K(d(x)))

� ξ2ε.

Letting ε → 0, and looking at the definitions of ξ+
1ε and ξ+

2ε, we have

lim
d(x)→0

u+(x)
ϕ(K(d(x)))

= ξ0.

By lemma 2.12, the proof is finished.

Proof of theorem 1.8. By (b3) and lemma 3.2, we see that

lim
(d(x),β)→(0,0+)

k2(d(x))
kq(d(x))

ϕ′′(Z(x))
(−ϕ′(Z(x)))q

= lim
(d(x),β)→(0,0+)

k2−q(d(x))Kθ(d(x))
ϕ′(Z(x))

Zθ(x)(−ϕ′(Z(x)))q

= 0

and

lim
(d(x),β)→(0,0+)

k′(d(x))
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

= lim
(d(x),β)→(0,0+)

k′(d(x))(K(d(x)))θ1

kq(d(x))
ϕ′(Z(x))

(Z(x))θ1(−ϕ′(Z(x)))q

= 0.

It follows that

lim
(d(x),β)→(0,0+)

(
k2(d(x))
kq(d(x))

ϕ′′(Z(x))
(−ϕ′(Z(x)))q

+
k′(d(x))
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

+
k(d(x))
kq(d(x))

ϕ′(Z(x))
(−ϕ′(Z(x)))q

∆d(x)
)

= 0.
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By the proof of theorem 1.7, we can obtain

lim
d(x)→0

u+(x)
ϕ(K(d(x)))

= ξ0.

Proof of theorem 1.9. Let

τ0 =
ρ(Ck − 1)
(2 + ρ)

, ξ0 = ((1 + τ0)/c0)1/ρ,

ξ2ε =
(

ξρ
0 +

2ε

c0

)1/ρ

, ξ1ε =
(

ξρ
0 − 2ε

c0

)1/ρ

,

where ε ∈ (0, 1
4c0ξ

ρ
0) is arbitrary. One can easily see that

ξ0

21/ρ
< ξ1ε < ξ0 < ξ2ε <

(
3
2

)1/ρ

ξ0.

We define
ūβ = ξ2εψ1(Z(x)), u

¯β = ξ1εψ1(Y (x)).

It follows by lemmas 2.8 and 3.3 that

lim
(d(x),β)→(0,0+)

k′(d(x))
√

2G(ψ1(Z(x)))
k2(d(x))g(ψ1(Z(x)))

= lim
(d(x),β)→(0,0+)

k′(d(x))K(d(x))
k2(d(x))

√
2G(ψ1(Z(x)))

Z(x)g(ψ1(Z(x)))
= −ρ(Ck − 1)

2 + ρ
,

lim
(d(x),β)→(0,0+)

√
2G(ψ1(Z(x)))

k(d(x))g(ψ1(Z(x)))
∆d(x)

= lim
(d(x),β)→(0,0+)

K(d(x))
k(d(x))

√
2G(ψ1(Z(x)))

Z(x)g(ψ1(Z(x)))
∆d(x) = 0

and

lim
(d(x),β)→(0,0+)

kq(d(x))(2G(ψ1(Z(x))))q/2

k2(d(x))g(ψ1(Z(x)))

= lim
d(x)→0

kq(d(x))
k2(d(x))

lim
(d(x),β)→(0,0+)

(2G(ψ1(Z(x))))q/2

g(ψ1(Z(x)))
= 0.

By the proof of theorem 1.7, we can obtain that, for (x, β) ∈ D−
β × (0, δε),

∆ūβ(x) − b(x)g(ūβ(x)) ± |∇ūβ(x)|q

= ξ2εk
2(d(x))g(ψ1(Z(x))) − b(x)g(ξ2ε(ψ1(Z(x))))

− ξ2εk
′(d(x))

√
2G(ψ1(Z(x))) − ξ2εk(d(x))

√
2G(ψ1(Z(x)))∆d(x)

± ξq
2εk

q(d(x))(2G(ψ1(Z(x))))q/2
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= ξ2εk
2(d(x))g(ψ1(Z(x)))

[
1 − b(x)g(ξ2ε(ψ1(Z(x))))

ξ2εk2(d(x))g(ψ1(Z(x)))

− k′(d(x))
√

2G(ψ1(Z(x)))
k2(d(x))g(ψ1(Z(x)))

−
√

2G(ψ1(Z(x)))
k(d(x))g(ψ1(Z(x)))

∆d(x)

± ξq−1
2ε kq(d(x))(2G(ψ1(Z(x)))q/2)

k2(d(x))g(ψ1(Z(x)))

]
� 0

and, for (x, β) ∈ D+
β × (0, δε),

∆u
¯β(x) − b(x)g(u

¯β(x)) ± |∇u
¯β(x)|q

= ξ2εk
2(d(x))g(ψ1(Y (x))) − b(x)g(ξ2ε(ψ1(Y (x))))

− ξ2εk
′(d(x))

√
2G(ψ1(Y (x))) − ξ2εk(d(x))

√
2G(ψ1(Y (x)))∆d(x)

± ξq
2εk

q(d(x))(2G(ψ1(Y (x))))q/2

= ξ2εk
2(d(x))g(ψ1(Y (x)))

[
(1 − τ0) − b(x)g(ξ2ε(ψ1(Y (x))))

ξ2εk2(d(x))g(ψ1(Y (x)))

− k′(d(x))
√

2G(ψ1(Y (x)))
k2(d(x))g(ψ1(Y (x)))

− τ0

−
√

2G(ψ1(Y (x)))
k(d(x))g(ψ1(Y (x)))

∆d(x)

± ξq−1
2ε kq(d(x))(2G(ψ1(Y (x))))q/2

k2(d(x))g(ψ1(Y (x)))

]
� 0.

Thus,

lim
d(x)→0

u±(x)
ψ1(K(d(x)))

= ξ0.

By lemma 2.12, the proof is finished.

4. Existence of solutions

In this section, we consider the existence of solutions to problems (P+). First we
need the following lemmas.

Define H(u) =
∫ ∞

u
ds/g(s) for u > 0. Then H : (0,∞) → (0,∞) is strictly

decreasing and H ′(u) = −1/g(u) for u > 0.
We note by [21, lemma 1] that if g satisfies (g1), then (g2) implies that∫ ∞

u

ds

g(s)
< ∞ for all u > 0.
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Lemma 4.1. Let u+ ∈ C2(Ω) be an arbitrary solution to problem (P+) and let
b ∈ Cα

loc(Ω) be non-negative and non-trivial in Ω. If b satisfies (b4), then

u+ � H−1(v̄(x)) > 0 for all x ∈ Ω, (4.1)

where H−1 denotes the inverse function of H.

Proof. Let u+(x) = H−1(v(x)), x ∈ Ω. We see that v|∂Ω = 0 and

−∆v + g1(v)|∇v|2 + g2(v)|∇v|q = b(x), x ∈ Ω, v|∂Ω = 0, (4.2)

where g1(v) = g′(u+) = g′(H−1(v)) and g2(v) = (g(H−1(v)))q−1. It follows that
−∆v � b(x), x ∈ Ω. By the maximum principle, we obtain v � v̄ in Ω, i.e. u+ �
H−1(v̄(x)) for all x ∈ Ω.

Lemma 4.2. Let q > 0, b ≡ c0 > 0 in Ω (see [1, theorems 5.1 and 5.2] and [16,
theorem 4.1]). If g satisfies (g1), (g2) and

lim
u→∞

G(u)/(g(u))2/q ∈ [0,∞),

or g satisfies (g1), (g(u))2/q/u is increasing and∫ ∞

t

ds

(g(s))1/q
< ∞ for all t > 0, lim

u→∞

G(u)
(g(u))2/q

∈ (0,∞],

then problem (P+) admits at least one solution u+ ∈ C2(Ω).

Lemma 4.3 (Lazer and McKenna [23, theorem 4.2]). Let Ω be a bounded open set
of R

N with smooth boundary. There then exists a sequence {Ωm}∞
1 of open sets such

that Ωm ⊂ Ωm+1 ⊂ Ω,
⋃∞

m=1 Ωm = Ω and the boundary ∂Ωm is a C∞ submanifold
of N − 1 dimension for each m � 1.

Let v̄m ∈ C2+α(Ω̄m) be the unique solution to the problem

−∆v = b(x), v > 0, x ∈ Ωm, v|∂Ωm
= 0. (4.3)

If follows by the maximum principle that

v̄m � v̄m+1 � v̄ for all x ∈ Ω̄m. (4.4)

Proof of theorem 1.10. Since b ∈ Cα(Ω̄m) and is positive on Ω̄m, it follows by
lemmas 4.1 and 4.2 that the problem

∆u + |∇u|q = b(x)g(u), u > 0, x ∈ Ω, u|∂Ωm = ∞, m ∈ N (Pm+)

admits one solution um+ ∈ C2(Ωm). Moreover,

0 < H−1(v̄(x)) � H−1(v̄m+1(x)) � u(m+1)+(x) � um+(x) for all x ∈ Ωm. (4.5)

Let D be an arbitrary compact subset of Ω. There exists m0 such that D ⊂ Ωm0

and it follows by (4.5) that the sequence {um+(x)}∞
m0

is non-increasing and is
bounded from below in D, so u+(x) = limm→∞ um+(x) exists for all x ∈ Ω. By the
standard argument (see, for instance, [1,16,44,51]), we see that u+ ∈ C2(Ω) and is
one solution to problem (P+). The proof is finished.
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9 F. Ĉırstea and V. D. Rǎdulescu. Solutions with boundary blow-up for a class of nonlinear
elliptic problems. Houston J. Math. 29 (2003), 821–829.

10 G. Diaz and R. Letelier. Explosive solutions of quasilinear elliptic equations: existence and
uniqueness. Nonlin. Analysis 20 (1993), 97–125.

11 Y. Du and Z. Guo. Blow-up solutions and their applications in quasilinear elliptic equations.
J. Analysis Math. 89 (2003), 277–302.

12 Y. Du and Q. Huang. Blow-up solutions for a class of semilinear elliptic and parabolic
equations. SIAM. J. Math. Analysis 31 (1999), 1–18.
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42 L. Véron. Semilinear elliptic equations with uniform blowup on the boundary. J. Analysis

Math. 59 (1992), 231–250.
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