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When a suspension of conducting particles is sheared in a magnetic field, the
fluid vorticity causes particle rotation. Eddy currents are induced in a conductor
rotating in a magnetic field, resulting in magnetic moment, and a magnetic torque
due to the external field. In the absence of inertia, the angular velocity of a
particle is determined from the condition that the sum of the hydrodynamic and
magnetic torques is zero. When the particle angular velocity is different from the
fluid rotation rate, the torque exerted by the particles on the fluid results in an
antisymmetric particle stress. The stress is of the form σ (p)

= |ω|(η(1)c (ε̂ : ω̂)+ η
(2)
c ε̂ :

(Ĥ − ω̂(ω̂ · Ĥ))/(
√

1− (ω̂ · Ĥ)2) + η(3)c (ω̂Ĥ − Ĥω̂)/
√

1− (ω̂ · Ĥ)2), where ω is

the fluid vorticity at the centre of the particle, ω̂ and Ĥ are the unit vectors in the
direction of the fluid vorticity and the magnetic field, ε̂ is the third order Levi-Civita
antisymmetric tensor and η(1)c , η(2)c and η(3)c are called the first, second and third
couple stress coefficients. The stress proportional to η(1)c is in the plane perpendicular
to ω̂, that proportional to η(2)c is in the plane perpendicular to the unit normal to
ω̂ in the ω̂–Ĥ plane, and that proportional to η(3)c is in the ω̂–Ĥ plane. A relation

η(2)c = −(ω̂ · Ĥη(1)c /

√
1− (ω̂ · Ĥ)2) results from the condition that the component of

the eddy current torque along the magnetic field is zero. The couple stress coefficients
are obtained for two geometries, a uniform spherical particle of radius R and a thin
spherical shell of radius R and thickness δR with δ� 1, in the dilute (non-interacting)
limit in the absence of fluid inertia. These couple stress coefficients are functions
of two dimensionless parameters, Σ = (µ0H2

0/4πη|ω|), the ratio of the characteristic
magnetic and hydrodynamic torques, and β, the product of the vorticity and current
relaxation time. Here µ0 is the magnetic permeability, H0 is the magnetic field and η
is the fluid viscosity. The parameter β has the form βp= (|ω|µ0R2/2%) for a uniform
particle and βs = (|ω|µ0R2δ/2%) for a thin shell, where % is the electrical resistivity.
Scaled couple stress coefficients are defined, η∗1 = (η(1)c /((3ηφ/2)(1 − (ω̂ · Ĥ)2)))

and η∗3 = (η
(3)
c /((3φη/2)ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2)), which are independent of the fluid

viscosity and the particle volume fraction, and which do not depend on ω̂ and Ĥ
in the limits Σ � 1 and Σ � 1. Here, φ is the volume fraction of the particles.
Asymptotic analysis is used to determine the couple stress coefficients in the limits
Σ� 1 and Σ� 1, and a numerical solution procedure is formulated for Σ ∼ 1. For
Σ � 1, the particle angular velocity is aligned close to the fluid vorticity, and the
scaled couple stress coefficients are Σ times a function of β. For Σ� 1, the particle

† Email address for correspondence: kumaran@iisc.ac.in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-9793-6523
mailto:kumaran@iisc.ac.in
https://doi.org/10.1017/jfm.2019.295


140 V. Kumaran

angular velocity is aligned close to the magnetic field, η∗1→ 1 and η∗3 ∝Σ
−1. When

the magnetic field is perpendicular to the fluid vorticity, ω̂ · Ĥ= 0, the particle angular
velocity is aligned along the vorticity, and only the first couple stress coefficient is
non-zero. For high β, there are multiple solutions for the couple stress coefficient.
Multiple steady states are also observed for a near perpendicular magnetic field,
ω̂ · Ĥ < (1/3), for a reason different from that for a perpendicular magnetic field.
Asymptotic analysis is used to explain the existence of multiple steady states in both
cases.

Key words: magnetic fluids, rheology, suspensions

1. Introduction

Consider a viscous suspension of spherical conducting particles subject to a shear
flow placed in a uniform magnetic field. The fluid strain rate induces particle rotation;
in the absence of any external torque, the particle angular velocity is equal to one half
of the fluid vorticity. However, eddy currents are induced within a conductor rotating
in a magnetic field due to Faraday’s law of induction. The eddy currents impart
a magnetic dipole moment to the particle due to Ampere’s law. The interaction
of the induced magnetic moment with the applied magnetic field results in an
eddy current torque on the particle (Halverson & Cohen 1964; Landau, Lifshitz
& Pitaevskii 2014). Due to the eddy current torque, the particle rotation rate is
different from the fluid rotation rate, and there is a net torque exerted by the
particle on the fluid. There is an antisymmetric contribution to particle stress in the
plane perpendicular to the torque when the particles exert a net torque on the fluid
(Batchelor 1970). If the magnetic field is perpendicular to the fluid vorticity, the
antisymmetric particle stress is in the flow–gradient plane perpendicular to the fluid
vorticity. If the magnetic field is not perpendicular to the fluid vorticity, the torque
has a ‘precession’ component perpendicular to the vorticity–magnetic field plane. In
this case, there are antisymmetric contributions to the stress perpendicular to all three
axes. The antisymmetric particle stress due to the eddy current torque in a viscous
(zero inertia) suspension of conducting particles subject to a magnetic field in the
dilute (non-interacting) limit is the subject of the present study.

The rheology and yielding behaviour of magnetorheological fluids have been
the subject of many studies (de Vicente, Klingenberg & Hidalgo-Alvarez 2011).
Magnetorheological fluids consist of magnetic particles with size in the range of
microns to nanometres suspended in a viscous carrier fluid. When a magnetic field
is applied, the viscosity of the fluid could increase by many orders of magnitude,
resulting in a transition from a fluid to a solid-like state within a time period of
a few milliseconds. In the presence of a magnetic field, a magnetorheological fluid
exhibits a very high yield stress. Due to the fast switching between fluid-like and
solid-like states and the high yield stress in the solid-like state, magnetorheological
fluids are used in applications such as dampers, shock absorbers, clutches and brakes
(Klingenberg 2001). The parameter governing the switching between the fluid-like
and solid-like states is the Mason number, which is the ratio of the torque on the
particle due to the shear flow and that due to the magnetic moment of the particle.
A second parameter is denoted λ, the ratio of the energy of the magnetic interaction
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Suspension of conducting particles in a magnetic field 141

between the pair of particles and the thermal energy which results in Brownian
diffusion of the particle orientation. For high λ (where the magnetic interaction
energy is much larger than the thermal energy) and below a critical Mason number,
there is an increase of many orders of magnitude in the viscosity. This is because
the particles are magnetised in the presence of the field, they align parallel to the
field lines and jam the suspension (Anupama, Kumaran & Sahoo 2018). The reason
for the high viscosity and the high yield stress has been the subject of many studies,
starting with studies on the constitutive relations for a dilute suspension of magnetic
particles (Jansons 1983), dynamic rheology under oscillatory shear and the effect of
shape on the rheology (de Vicente et al. 2009) and the rheology of suspensions of
magnetic fibres (Kuzhir, Lopez-Lopez & Bossis 2009; Lopez-Lopez, Kuzhir & Bossis
2009). The critical Mason number has been related to the Bingham number, which
is the ratio of the yield stress and the viscous stress (Sherman, Becnel & Wereley
2015). The instabilities in thin films of magnetic particles due to an applied electric
field (Seric, Afkhami & Kondic 2014) and the turbulence in fluid suspensions with
magnetic particles (Schumacher, Riley & Finlayson 2008) have also been studied.
The yield stress is one of the salient properties of a magnetorheological fluid, and
models for the yield stress include macroscopic models based on magnetic energy
minimisation of particle aggregates (Bossis et al. 1997) and microscopic particle-based
models (Klingenberg & Zukoski 1990; Vagberg & Tighe 2017).

The rheology of a suspension of conducting particles made of materials such as
aluminium or copper has received relatively less attention. Though all materials,
paramagnetic or diamagnetic, do develop a small magnetic moment under the
influence of a magnetic field, this effect is extremely weak and indiscernible in
most cases. However, when the particles are rotated by shear, there is an eddy
current induced in a particle, which imparts a magnetic moment. The interaction of
the induced moment and the external field results in a torque on the particle, which
acts in the direction opposite to the particle angular velocity. The torque on spherical
particles and shells rotating with a known angular velocity has been solved using the
Maxwell equations assuming a quasi-static electromagnetic field. For paramagnetic
and diamagnetic materials, the relative magnetic permeability is very close to 1, and
magnetic permeability is assumed to be the vacuum permeability µ0. An important
approximation is that in Ampere’s law ∇ × H = J + ε(∂E/∂t) for the magnetic
field H, the term proportional to the time derivative of the electric field ε(∂E/∂t) is
neglected in comparison to the current density J . Here, ε is the dielectric constant
of the material. Since the electric field and current density are related by Ohm’s law,
%J = E, where % is the resistivity of the material, the quasi-static approximation is
valid for (εΩ/%)� 1, where Ω is the angular velocity. The ratio (ε/%), the mean
free time for electrons in a conductor, is of the order of 10−14 s. Therefore, the
product of the angular velocity and the mean free time is small in practical situations,
and Ampere’s law is quasi-steady. There is, however, time dependence in Faraday’s
law of induction. Using the quasi-static approximation for Ampere’s law, the torque
on a rotating sphere and a rotating spherical shell in a magnetic field have been
calculated (Halverson & Cohen 1964; Landau et al. 2014).

The torque on a rotating shell in a magnetic field is used for modelling the
decrease in the angular velocity of satellites which orbit the Earth (Habib et al.
1994). In his pioneering work on the force and torque due to eddy currents, Moffat
(1990) considered prototypical time-varying magnetic fields such as rotating and
traveling fields. The trajectory of a particle in a specified time-varying magnetic field
was calculated, and the effect of particle interactions on the trajectories of multiple

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.295


142 V. Kumaran

particles was also determined. Experiments (Bolcato et al. 1993) have also been
conducted on the motion of metallic particles in a time-varying magnetic field. Here,
a simpler configuration is considered where the magnetic field is steady, but the
suspension is subjected to a shear flow with a rotational component which rotates
the particles. In the viscous limit, the particle and fluid rotation rates are equal in
the absence of an external torque. However, when there is a magnetic field, the eddy
current due to particle rotation results in a torque which tends to decrease the rotation
rate, resulting in a difference between the particle and the fluid rotation rates. The
torque exerted by the particles on the fluid results in an antisymmetric contribution
to the particle stress tensor (Batchelor 1970).

The antisymmetric part of the stress tensor due to the eddy current torque is
different from that in ‘couple stress fluids’ or ‘Cosserat continua’ (Truesdell & Toupin
1960; Mindlin & Tiersten 1962; Stokes 1966). In the latter, there is an antisymmetric
contribution to the stress tensor due to the gradient in the vorticity in the fluid, and
a contribution due to the ‘body torque’. The present system is qualitatively different
from couple stress fluids, because the body torque due to the particles is related to
the difference in the particle angular velocity and the fluid rotation rate; the particle
angular velocity is in turn determined by the torque balance condition that the sum of
the hydrodynamic and magnetic torques is zero in the absence of inertia. Therefore,
the couple stress due to the body torque is a function of the local fluid vorticity, and
not the gradient of the fluid vorticity as assumed in couple stress fluids. Moreover,
the eddy current torque is a nonlinear function of the particle angular velocity, so the
couple stress coefficients (ratios of the antisymmetric components of the stress tensor
and the vorticity) are functions of the angular velocity.

The torque on a conducting particle in a magnetic field due to induced eddy currents
is summarised in § 2, and a detailed calculation is provided in appendix A. Two types
of particles are considered, a uniform sphere of radius R and a thin shell of radius R
and thickness δR with δ� 1. The torque on a uniform spherical particle is a classical
problem (Landau et al. 2014). The torque on a spherical shell has been calculated
using phaser notation (Halverson & Cohen 1964), but this calculation is unnecessarily
complicated and tedious, and so a simpler derivation has been provided in appendix A.
The relation between the torque and the angular velocity is inherently nonlinear, as
shown in § 2. Moreover, the torque is not confined to the plane containing the angular
velocity and magnetic field, but there could be a component of the torque (called the
precession torque) which is perpendicular to the plane containing the angular velocity
and the magnetic field. Whereas the torque on a particle is determined as a function
of a known angular velocity in appendix A, it is necessary here to determine the
angular velocity from a balance between the hydrodynamic and eddy current torques.
The relationship between the eddy current torque and the angular velocity is nonlinear,
and it is not possible to obtain an explicit solution for the magnitude and direction
of the particle angular velocity for known vorticity and magnetic field. An implicit
solution procedure is formulated in § 2.

The particle stress due to the torque exerted by the particles, first discussed
by Batchelor (1970), is briefly summarised in § 3. The calculation is restricted
to the dilute limit where the particles are non-interacting, that is, the velocity
disturbance around one particle does not affect the dynamics of another. The primary
objective here is to define the couple stress coefficients in the relation between
the antisymmetric part of the particle stress tensor and the fluid vorticity. The
antisymmetric part of the stress tensor is resolved in three planes, each of which is
perpendicular to one of three orthogonal directions. The first couple stress is in the
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Suspension of conducting particles in a magnetic field 143

plane perpendicular to the direction of the vorticity vector, the second couple stress is
perpendicular to the unit normal to the vorticity in the vorticity–magnetic field plane,
the third couple stress is in the plane containing the vorticity and the magnetic field.
The first and second couple stress coefficients are not independent, but are related
due to the requirement that the torque is necessarily perpendicular to the magnetic
field. This relation is derived in § 3.

The couple stress coefficients for an oblique magnetic field, where the vorticity and
the magnetic field are not perpendicular, is calculated in § 4 based on the requirement
that the sum of the hydrodynamic and magnetic torques is zero. The solutions depend
on two parameters, the first of which is the ratio of the characteristic magnetic and
hydrodynamic torque, Σ = (µ0H2

0/4πη|ω|), where µ0 is the magnetic permeability, H0
is the magnitude of this magnetic field, η is the fluid viscosity and ω is the fluid
vorticity at the particle location. This parameter Σ is similar to the inverse of the
Mason number for magnetorheological fluids, but with one important difference, that
it is based on the fluid vorticity at the particle centre, in contrast to the Mason number,
which is based on the fluid strain rate. The parameter Σ here is defined as the ratio
of the magnetic and hydrodynamic torques, whereas the Mason number is the ratio
of the viscous and magnetic stresses. It is appropriate to define the dimensionless
parameter as the inverse of the Mason number for the present problem, because a
magnetic moment is induced in the particles only when subjected to rotation; this
is in contrast to particles in a magnetorheological fluid which are polarised by an
applied magnetic field even in the static state. The limit of zero Mason number can
be realised for a magnetorheological fluid by turning off the flow, but it is a singular
limit for conducting particles because there is no eddy current in stationary particles.
The subject of this study is the rheology modification due to the magnetic moment
induced in the particles, and so it is appropriate to consider the control parameter Σ
as the ratio of the characteristic magnetic and the hydrodynamic torques.

The second dimensionless parameter is β, the product of the fluid vorticity and the
eddy current relaxation time, which has no analogue in magnetorheological fluids. For
a uniform particle, β = βp = (|ω|µ0R2/2%), where R is the particle radius and % is
the electrical resistivity. For a thin shell, β = βs = (|ω|µ0R2δ/2%), where R is the
particle diameter, Rδ is the shell thickness and δ� 1. Asymptotic results are derived
in § 4 for the particle angular velocity and the couple stress coefficients in the limits
Σ� 1 and Σ� 1, and numerical solutions are obtained for the intermediate Σ , for
a comprehensive understanding of the rheology modification in different parameter
regimes.

The subject of § 5 is the special case where the fluid vorticity and magnetic field are
orthogonal. In this case, the particle angular velocity vector is parallel to the vorticity,
and only the first couple stress coefficient (perpendicular to the vorticity and in the
velocity–velocity gradient plane) is non-zero. An interesting observation here is the
possibility of multiple solutions for the particle angular velocity and the couple stress
coefficient at sufficiently high values of β. This is due to the nonlinear relationship
between the torque and the angular velocity in the balance equation for the torque in
the vorticity direction. The parameter regimes for multiple steady states are identified
using asymptotic analysis in the limit β� 1, and numerical solutions are obtained for
finite but large β. In § 6, multiple steady states are also found for a near-perpendicular
magnetic field when the cosine of the angle between the vorticity and the magnetic
field is less than 1/3. The reason for this, which is the nonlinear relationship between
the precession torque (perpendicular to the plane containing the vorticity and magnetic
field) and the angular velocity, is qualitatively different than that for a perpendicular
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magnetic field. Asymptotic analysis is also used to explain the physical reason, and
to identify the parameter regimes for the existence of multiple steady states, in § 6.

The effect of inter-particle interactions and particle migration due to a gradient
in the angular velocity and the fluid vorticity is briefly discussed in appendix D.
A noteworthy result is that there are no difficulties due to divergences with system
size such as those encountered in the velocity of settling spheres (Batchelor 1972;
Hinch 1977; Caflisch & Luke 1985) or the variance of the sedimentation velocity
(Koch & Shaqfeh 1991; Guazzelli & Hinch 2011) due to the slowly decreasing
nature of the velocity disturbance caused by a particle in the absence of inertia.
In appendix D, particle migration due to gradients in the particle angular velocity,
volume fraction and vorticity are also calculated. Faxen’s law has been used to
calculate the particle migration due to a gradient in the fluid strain rate by Hogg
(1994) for a zero Reynolds number flow in a parabolic velocity profile. In § D.4,
this calculation is briefly extended to the case where there is a gradient in the fluid
vorticity, and this results in a particle drift proportional to the curl of the vorticity.
The inertial migration of particles (Saffman 1965; Ho & Leal 1974) is not considered
here.

The couple stress coefficients depend on the parameters Σ and β, as well as the
unit vectors ω̂ and Ĥ in the directions of the angular velocity and the magnetic field
respectively. In the analysis, the unit vectors ω̂ and Ĥ, and the dot and cross products
ω̂ · Ĥ and Ĥ × ω̂, are explicitly written, instead of expressing these in terms of the
cosine or sine of the angle between the vorticity and the magnetic field. Though this
appears a little unwieldy, this notation enables easy application of the results to cases
where the vorticity and magnetic field are not aligned with any of the configuration-
based axes. There could also be situations where the vorticity at the particle centre
and the magnetic field are in different directions for different particles. In such cases,
the results derived here could be used to compute the torque and angular velocity of
individual particles in particle-based simulations. The notations are explained in detail
at the beginning of the following § 2 before proceeding to the calculation of the torque
on a particle.

2. Torque on a particle
The notations used in the analysis are first explained to enhance clarity. The particle

angular velocity vector, fluid vorticity vector and magnetic field vector are denoted
Ω , ω and H0 respectively. The unit vectors in the direction of the particle angular
velocity, fluid vorticity and the applied magnetic field are designated Ω̂ , ω̂ and Ĥ
respectively, as shown in figure 1. The projection of the unit angular velocity vector
Ω̂ on to the direction of the magnetic field is defined as Ω̂H ,

Ω̂H = Ω̂ · Ĥ, (2.1)

and the projection on to the direction of the fluid vorticity is defined as Ω̂ω,

Ω̂ω = Ω̂ · ω̂. (2.2)

The scalar product of the unit vectors in the vorticity and the magnetic field directions
is explicitly written as ω̂ · Ĥ throughout the analysis for reasons explained at
the end of the introduction. There are two distinct parts in the analysis, the first
where the eddy current torque is calculated for a specified particle angular velocity,
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Ø̂ ÷ Ĥ/�1 - Ø̂2
H

Ĥ

Ĥ

Ø̂

ø̂

Ĥ - Ø̂ Ø̂ H/�1 - Ø̂ 2H
Ĥ - ø̂ (ø̂ . Ĥ )/�1 - (ø̂  .Ĥ )2

ø̂ ÷ Ĥ/�1-(ø̂ . Ĥ )2

(a) (b)

FIGURE 1. Coordinate system for the torque on a particle with angular velocity Ω rotating
in a magnetic field H0 (a), and for the angular velocity of a particle in a flow field with
vorticity ω and magnetic field strength H0 (b). The hatted symbols are unit vectors in
the respective directions. In (b) the direction of the vorticity vector is perpendicular to
the flow plane for a simple shear flow.

and the second where the angular velocity is determined by setting the sum of
the hydrodynamic and eddy current torques equal to zero. In the first part, an
orthonormal coordinate system shown in figure 1(a) is used where the first unit vector

is along the angular velocity Ω̂ , the second unit vector ((Ĥ − Ω̂HΩ̂)/

√
1− Ω̂2

H) is

perpendicular to Ω̂ in the Ĥ–Ω̂ plane and the third unit vector ((Ω̂ × Ĥ)/
√

1− Ω̂2
H)

is perpendicular to the Ĥ–Ω̂ plane. In the second part where the angular velocity
is calculated for specified vorticity and magnetic field, an orthonormal coordinate
system shown in figure 1(b) is used where the first unit vector is in the vorticity

direction ω̂, the second ((Ĥ − ω̂(ω̂ · Ĥ))/
√

1− (ω̂ · Ĥ)2) is perpendicular to ω̂ in

the Ĥ–ω̂ plane and the third unit vector ((ω̂ × Ĥ)/
√

1− (ω̂ · Ĥ)2) is perpendicular

to the Ĥ–ω̂ plane. The components of the unit angular velocity vector, Ω̂ , along the
direction perpendicular to ω̂ in the ω̂–Ĥ plane is defined as Ω̂‖,

Ω̂‖ =
(Ω̂H − Ω̂ωω̂ · Ĥ)√

1− (ω̂ · Ĥ)2
, (2.3)

and the component of the unit angular velocity vector perpendicular to the ω̂–Ĥ plane
is defined as Ω̂⊥,

Ω̂⊥ =
Ω̂ · (ω̂× Ĥ)√

1− (ω̂ · Ĥ)2
. (2.4)

The hydrodynamic torque exerted by the fluid on the particle is 8πηR3((ω/2)−Ω),
where η is the fluid viscosity, R is the particle radius and ω is the far-field vorticity
vector at the particle centre calculated in the absence of the particle. The expressions
for the eddy current torque are derived in appendix A for a uniform particle of radius
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R and constant electrical resistivity, as well as for a thin conducting shell whose
thickness δR is small compared to the radius. In the torque balance equations, the
sum of the hydrodynamic and eddy current torque is set equal to zero in the three
coordinate directions. Along the direction of the angular velocity, the hydrodynamic
torque is 8πηR3((ω/2)−Ω) · Ω̂ , and the eddy current torque is given by Tz in (A 27),

where H0x =H0

√
1− Ω̂2

H is the component of the magnetic field perpendicular to Ω
in the H0–Ω plane, and H0 is the magnitude of the magnetic field. It is convenient
to scale the torque balance equation by the magnitude of the hydrodynamic torque in
the absence of particle rotation, 4πηR3

|ω|, to obtain the following angular momentum
balance equation along the direction of Ω̂ ,

Ω̂ω −Ω
∗
−Σ(1− Ω̂2

H)MI(βΩ
∗) = 0, (2.5)

where Ω∗ = (|Ω|)/(|ω|/2) is the particle angular velocity scaled by one half of
the vorticity, Σ = (µ0H2

0/4πη|ω|) is the dimensionless ratio of the characteristic
eddy current torque and the hydrodynamic torque, µ0 is the magnetic permeability
of free space and the dimensionless parameter β is the product of the current
relaxation time and the vorticity which is discussed a little later. In the direction

(Ĥ− Ω̂HΩ̂)/

√
1− Ω̂2

H , the hydrodynamic torque is 4πηR3ω · (Ĥ− Ω̂HΩ̂)/

√
1− Ω̂2

H ,

and the eddy current torque is given by Tx in (A 27), where H0z = H0Ω̂H is
the component of the magnetic field in the direction of the angular velocity, and

H0x = H0

√
1− Ω̂2

H . When the torque balance equation is divided by 4πηR3
|ω|, the

following scaled torque balance equation is obtained,

ω̂ · Ĥ − Ω̂ωΩ̂H√
1− Ω̂2

H

+ΣΩ̂H

√
1− Ω̂2

HMI(βΩ
∗)= 0. (2.6)

In the direction perpendicular to the Ω–H0 plane, the component of the hydrodynamic

torque is 4πηR3ω · (Ω̂ × Ĥ)/
√

1− Ω̂2
H . The magnetic torque is given by Ty in (A 27),

where H0z=H0Ω̂H and H0x=H0

√
1− Ω̂2

H . The following scaled equation is obtained
when the torque balance equation is divided by 4πηR3

|ω|,

ω̂ · (Ω̂ × Ĥ)√
1− Ω̂2

H

−ΣΩ̂H

√
1− Ω̂2

HMR(βΩ
∗)= 0. (2.7)

The functions MR(βΩ
∗) and MI(βΩ

∗) are dimensionless functions proportional to
the real and imaginary parts of the induced magnetic dipole moment of the particle
which are derived in appendix A. In (A 28) and (A 29) for a uniform particle, MR and
MI are functions of the product of the angular velocity scaled by the characteristic
relaxation time for the eddy current, Ω†

= (µ0ΩR2/%), where % is the electrical
resistivity of the particle. Using the substitution Ω†

=βpΩ
∗, where βp= (|ω|µ0R2/2%),

the functions MR(βpΩ
∗) and MI(βpΩ

∗) are,

MR =−
1
2
+

3
2
√

2βpΩ∗

sinh
(√

2βpΩ∗
)
− sin

(√
2βpΩ∗

)
cosh

(√
2βpΩ∗

)
− cos

(√
2βpΩ∗

) , (2.8)
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(a) (b)

FIGURE 2. The functions −MR (dashed line) and MI (solid line) (a) as a function of
(βpΩ

∗) for a uniform particle (equations (2.8) and (2.9)) and (b) as a function of (βsΩ
∗)

for a thin shell (equations (2.14) and (2.15)). The approximations (2.10)–(2.13) in the
limits (βpΩ

∗)� 1 and (βpΩ
∗)� 1 for a uniform particle are shown by the dotted lines

in (a), and the equivalent approximations in the limits (βsΩ
∗)� 1 and (βsΩ

∗)� 1 for a
thin shell are shown by the dotted lines in (b).

MI =−
3

2βpΩ∗
+

3
2
√

2βpΩ∗

sinh
(√

2βpΩ∗
)
+ sin

(√
2βpΩ∗

)
cosh

(√
2βpΩ∗

)
− cos

(√
2βpΩ∗

) . (2.9)

In the limits βpΩ
∗
� 1 and βpΩ

∗
� 1, the functions MR and MI are,

MR = −
(βpΩ

∗)2

315
for βpΩ

∗
� 1, (2.10)

= −
1
2

for βpΩ
∗
� 1, (2.11)

MI =
βpΩ

∗

30
for βpΩ

∗
� 1, (2.12)

=
3

2
√

2βpΩ∗
for βpΩ

∗
� 1. (2.13)

The functions MR(βpΩ
∗) and MI(βpΩ

∗), along with their limiting behaviour for
βpΩ

∗
� 1 and βpΩ

∗
� 1, are shown in figure 2(a).

For a thin shell of radius R and thickness Rδ with δ � 1, the functions MR and
MI in (A 32)–(A 33) are functions of the scaled frequency Ω‡

= (µ0ΩR2δ/%). Using
the substitution Ω‡

= βsΩ
∗ where βs = (|ω|µ0R2δ/2%), the functions MR(βsΩ

∗) and
MI(βsΩ

∗) are,

MR =−
(βsΩ

∗)2

2(9+ (βsΩ∗)2)
, (2.14)

MI =
3βsΩ

∗

2(9+ (βsΩ∗)2)
. (2.15)
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Figure 2(b) shows the functions MR(βsΩ
∗) and MI(βsΩ

∗), along with their limiting
behaviour for βsΩ

∗
� 1 and βsΩ

∗
� 1.

In the present problem, the angular velocity Ω has to be determined by setting
the total torque equal to zero. Therefore, it is necessary to reframe the equations in
terms of the unit vectors ω̂ and Ĥ, instead of Ω̂ and Ĥ. The three orthonormal unit

vectors are ω̂, ((Ĥ − ω̂(ω̂ · Ĥ))/
√

1− (ω̂ · Ĥ)2) and ((ω̂ × Ĥ)/
√

1− (ω̂ · Ĥ)2), and
the components of the unit angular velocity vector in these three directions are given
by (2.2)–(2.4). The torque balance (2.5)–(2.7) are simplified as follows. Addition of

Ω̂H times (2.5) and
√

1− Ω̂2
H times (2.6) results in the following equation relating

Ω∗ and Ω̂H ,

ω̂ · Ĥ −Ω∗Ω̂H = 0. (2.16)

This is a general result independent of the dimensionless parameters Σ and β, and
independent of the form of the functions MR and MI in (2.5)–(2.7). When expressed
in dimensional form by multiplying throughout by |ω|/2, this result states that the
projection of the particle angular velocity vector onto the direction of the magnetic
field is equal to the projection of fluid rotation rate (one half of the vorticity) onto
the direction of the magnetic field. This is because the torque due to the eddy current
is always perpendicular to the direction of the applied magnetic field.

Equation (2.16) is inserted into (2.5) and (2.7) to obtain equations for Ω̂ω and

Ω̂ · ((ω̂× Ĥ)/
√

1− (ω̂ · Ĥ)2),

Ω̂ω =
ω̂ · Ĥ
Ω̂H
+Σ(1− Ω̂2

H)MI

(
βω̂ · Ĥ
Ω̂H

)
, (2.17)

Ω̂⊥ = Ω̂ ·
(ω̂× Ĥ)√

1− (ω̂ · Ĥ)2
= −

ΣΩ̂H(1− Ω̂2
H)√

1− (ω̂ · Ĥ)2
MR

(
βω̂ · Ĥ
Ω̂H

)
. (2.18)

Equations (2.17) and (2.18) can be solved for Ω̂H by realising that Ω̂ω, Ω̂‖ and
Ω̂⊥ are the components of the unit vector Ω̂ , and so the sum of the squares of the
components is 1,

Ω̂2
ω + Ω̂

2
‖
+ Ω̂2

⊥
= 1. (2.19)

In (2.19), Ω̂ω and Ω̂‖ are expressed as functions of Ω̂H and ω̂ · Ĥ using (2.17), and
Ω̂⊥ is expressed as a function of Ω̂H and ω̂ · Ĥ using (2.18), to obtain an implicit
equation which is solved for Ω̂H for specified values of ω̂ · Ĥ, Σ and β. The solution
for Ω̂H is then substituted into (2.16) to determine Ω∗, equation (2.17) to determine
Ω̂ω, equation (2.3) to determine Ω̂‖ and (2.18) to determine Ω̂⊥.

Though (2.19) is an implicit equation, it is easy to solve numerically because Ω̂H is
a direction cosine bounded by ±1. Equation (2.19) provides a solution for Ω̂2

H , rather
than Ω̂H . Due to this, if Ω̂H is a solution of the equations, −Ω̂H is also a solution.
However, the solutions ±Ω̂H also lead to solutions of opposite sign for Ω∗ in (2.16),
resulting in the same solution for the angular velocity vector, Ω∗ =Ω∗Ω̂ . Since Ω∗
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Suspension of conducting particles in a magnetic field 149

is the magnitude of the velocity, the sign of Ω∗ is chosen to be positive, and Ω̂H has
the same sign as ω̂ · Ĥ.

Upon reversal of sign of ω̂ · Ĥ, equations (2.17)–(2.19) are satisfied if the sign
of Ω̂H is reversed, the sign of Ω̂ω is unchanged, and the sign of Ω̂⊥ is reversed.
This implies that the change in parity ω̂ · Ĥ→−ω̂ · Ĥ results in the transformation
Ω̂H→−Ω̂H , Ω∗→Ω∗, Ω̂ω→ Ω̂ω, Ω̂‖→−Ω̂‖ and Ω̂⊥→−Ω̂⊥. Therefore, results
are restricted to positive ω̂ · Ĥ, and the results for negative ω̂ · Ĥ can be determined
from symmetry.

3. Stress
The torque exerted on the fluid by a particle i is due to the difference between the

angular velocity and fluid rotation rate is,

Li = 8πηR3Ω ′i , (3.1)

where the ‘disturbance’ to the particle angular velocity Ω ′i , which is defined as the
difference between the angular velocity and the local fluid angular velocity,

Ω ′i = (Ωi −ω(xi)/2)

=
|ω(xi)|

2

(Ω∗i Ω̂ωi − 1)ω̂i +
Ω∗i Ω̂‖i(Ĥ i − ω̂i(ω̂i · Ĥ i))√

1− (ω̂i · Ĥ i)2
+
Ω∗i Ω̂⊥i(ω̂i × Ĥ i)√

1− (ω̂i · Ĥ i)2

 ,
(3.2)

where the subscript i indicates that the quantities are evaluated at the centre of
particle i. The particle stress σ (p) is then given by (Batchelor 1970),

σ (p)
=

1
2V

N∑
i=1

ε̂ : Li

=
2πηR3

V

N∑
i=1

|ω(xi)|

(Ω∗i Ω̂ωi − 1)(ε̂ : ω̂i)+
Ω∗i Ω̂‖iε̂ : (Ĥ i − ω̂i(ω̂i · Ĥ i))√

1− (ω̂i · Ĥ i)2

+
Ω∗i Ω̂⊥i(ω̂i Ĥ i − Ĥ iω̂i)√

1− (ω̂i · Ĥ i)2

 , (3.3)

where ε̂ is the third-order Levi-Civita antisymmetric tensor. The particle stress can
now be evaluated if Ω∗i , Ω̂ωi, Ω̂‖i and Ω̂⊥i are determined for specified values of the
fluid vorticity and the magnetic field at the particle centre.

The particle stress consists of three antisymmetric components, which are denoted
the first and third couple stresses. The first couple stress, proportional to (Ω∗Ω̂ω− 1),
is in the plane perpendicular to the vorticity vector. The magnitude of this component
is negative, because the eddy current exerts a torque opposite in direction to the
particle angular velocity, which tends to slow down the particle rotation rate. For
a unidirectional flow in which the vorticity is perpendicular to the flow plane, this
results in an antisymmetric component of the stress tensor in the flow plane. The
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second couple stress, with magnitude Ω∗Ω̂‖, is perpendicular to the unit vector

(Ĥ i − ω̂i(ω̂ · Ĥ i))/

√
1− (ω̂i · Ĥ i)2. The third couple stress with magnitude Ω∗Ω̂⊥, is

in the ω̂i–Ĥ i plane.
In a dilute suspension where the fluid vorticity is independent of position and

particle interactions are neglected, all the particles in the suspension rotate with equal
angular velocity and the quantities Ω∗, Ω̂ω, Ω̂‖ and Ω̂⊥ are independent of position.
The particle stress is,

σ (p)
= |ω|

η(1)c (ε̂ : ω̂)+
η(2)c ε̂ : (Ĥ − ω̂(ω̂ · Ĥ))√

1− (ω̂ · Ĥ)2
+
η(3)c (ω̂Ĥ − Ĥω̂)√

1− (ω̂ · Ĥ)2

 , (3.4)

where the three couple stress coefficients are,

η(1)c =
3φη(Ω∗Ω̂ω − 1)

2
, (3.5)

η(2)c =
3φηΩ∗Ω̂‖

2
, (3.6)

η(3)c =
3φηΩ∗Ω̂⊥

2
. (3.7)

The first and second couple stress coefficients are related due to the condition that the
component of the torque in the direction of the magnetic field is zero. Equation (2.16)
can be used to simplify (2.3) for Ω̂‖,

Ω̂‖ =
ω̂ · Ĥ

Ω∗
√

1− (ω̂ · Ĥ)2
−

Ω̂ωω̂ · Ĥ√
1− (ω̂ · Ĥ)2

. (3.8)

When this is multiplied by Ω∗, we obtain,

Ω∗Ω̂‖ =
ω̂ · Ĥ√

1− (ω̂ · Ĥ)2

(
1−Ω∗Ω̂ω

)
. (3.9)

Comparing (3.5), (3.6) and (3.9), the following relation is obtained between the couple
stress coefficients η(1)c and η(2)c ,

η(2)c =−
ω̂ · Ĥη(1)c√
1− (ω̂ · Ĥ)2

. (3.10)

It should be noted that (3.10) applies even if the particle angular velocities and
magnetic field are not uniform, since the relation (3.9) applies for each individual
particle. Results are presented only for the couple stress coefficients η(1)c and η(3)c ; the
coefficient η(2)c can be determined using (3.10).
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4. Oblique magnetic field

Equations (2.17)–(2.19) depend on two dimensionless parameters, Σ , the ratio of
the characteristic magnetic and viscous torque on the particle, and β, the product of
the eddy current relaxation time and the vorticity. Equations (2.17)–(2.19) cannot be
solved analytically. Therefore, asymptotic solutions are first presented for the limits
of small magnetic field (Σ � 1) and large magnetic field (Σ � 1). For Σ � 1, it
is expected that the angular velocity is close to one half of the vorticity, and the
correction to the angular velocity is O(Σ). For Σ � 1, it is shown that the angular
velocity aligns with the magnetic field in the leading approximation.

4.1. Σ� 1
A regular perturbation expansion in the parameter Σ can be used in (2.5)–(2.7) to
obtain,

Ω∗ = 1−Σ(1− (ω̂ · Ĥ)2)MI(β)+
1
2Σ

2(1− (ω̂ · Ĥ)2)

×[2MI(β)M′I(1− (ω̂ · Ĥ)2)+ (ω̂ · Ĥ)2(3(MI(β))
2
− (MR(β))

2)] (4.1)

Ω̂ω = 1− 1
2Σ

2(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)(MR(β)
2
+MI(β)

2) (4.2)

Ω̂‖ = ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2 {ΣMI(β) +Σ
2 [MI (β)

2(1− 2(ω̂ · Ĥ)2)

−MI(β)M′I(1− (ω̂ · Ĥ)2)+ (ω̂ · Ĥ)2MR(β)
2]} (4.3)

Ω̂⊥ = (ω̂ · Ĥ)
√

1− (ω̂ · Ĥ)2 {−ΣMR(β) +Σ
2MI(β)

×[(3(ω̂ · Ĥ)2 − 1)MR(β)+ (1− (ω̂ · Ĥ)2)M′R]} , (4.4)

where

M′R =
dMR(βΩ

∗)

dΩ∗

∣∣∣∣
Ω∗=1

, (4.5)

M′I =
dMI(βΩ

∗)

dΩ∗

∣∣∣∣
Ω∗=1

. (4.6)

The couple stress coefficients are obtained by substituting the solutions (4.1)–(4.4),
into (3.5)–(3.7),

η(1)c

(3φη/2)
= −Σ(1− (ω̂ · Ĥ)2)MI(β)+Σ

2 [(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)(MI(β)
2
−MR(β)

2)

+ (1− (ω̂ · Ĥ)2)2MI(β)M′I ] , (4.7)

η(3)c

(3φη/2)
= −Σω̂ · Ĥ

√
1− (ω̂ · Ĥ)2MR(β)

+Σ2 [2(ω̂ · Ĥ)3
√

1− (ω̂ · Ĥ)2MR(β)MI(β)

+ ω̂ · Ĥ(1− (ω̂ · Ĥ)2)3/2MI(β)M′R ] . (4.8)
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Uniform particle Thin shell

η(1)c

(3φη/2)
η(3)c

(3φη/2)
η(1)c

(3φη/2)
η(3)c

(3φη/2)

βp� 1 βs� 1

−
Σβp(1− (ω̂ · Ĥ)2)

30

Σβ2
p ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

315
−
Σβs(1− (ω̂ · Ĥ)2)

6

Σβ2
s ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

18

−
H2

0µ
2
0R2(1− (ω̂ · Ĥ)2)

240πη%

H2
0µ

3
0|ω|R

4ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

5040πη%2
−

H2
0µ

2
0R2δ(1− (ω̂ · Ĥ)2)

48πη%

H2
0µ

3
0|ω|R

4δ2ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

288πη%2

βp� 1, Σ� β−1/2
p βs� 1, Σ� β−1

s

−
3Σ(1− (ω̂ · Ĥ)2)

2
√

2βp

Σω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

2
−

3Σ(1− (ω̂ · Ĥ)2)
2βs

Σω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

2

−
3H2

0
√
µ0%(1− (ω̂ · Ĥ)2)
8πηR|ω|3/2

H2
0µ0ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

8πη|ω|
−

3H2
0%(1− (ω̂ · Ĥ)2)
4πηR2δ|ω|2

H2
0µ0ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

8πη|ω|

βp� 1, Σ� β−1/2
p βs� 1, Σ� β−1

s

−
Σ2(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)

4

Σω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

2
−
Σ2(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)

4

Σω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

2

−
H4

0µ
2
0(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)

64π2η2|ω|2

H2
0µ0ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

8πη|ω|
−

H4
0µ

2
0(ω̂ · Ĥ)2(1− (ω̂ · Ĥ)2)

64π2η2|ω|2

H2
0µ0ω̂ · Ĥ

√
1− (ω̂ · Ĥ)2

8πη|ω|

TABLE 1. The Σ� 1 limiting values of the couple stress coefficients, equations
(4.7)–(4.8), for a uniform particle and a thin shell.

The couple stress coefficients (4.7)–(4.8) can be simplified in the limits β� 1 and
β� 1 using (2.10)–(2.13) for a uniform particle and (2.14) and (2.15) for a thin shell.
The O(Σ) contributions to the couple stress coefficients for Σ� 1 are summarised in
table 1. These are proportional to the asymptotic expressions for MR(βp) and MI(βp) in
(2.10)–(2.13) for the regime βp� 1 and Σ� 1 and βp� 1 and Σ�β−1/2

p for uniform
particles, where the largest contribution to the couple stress coefficients is due to the
O(Σ) term in (4.7)–(4.8). Similarly, for thin shells, the couple stress coefficients are
proportional to the asymptotic expressions for (2.14)–(2.15) for βs � 1 and Σ � 1
and βs� 1 and Σ� β−1

s . In both the aforementioned regimes, the first couple stress
coefficient is proportional to (1− (ω̂ · Ĥ)2), and the third couple stress coefficient is

proportional to ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2.
For the first couple stress coefficient, there is an intermediate regime, βp� 1 and

Σ � β−1/2
p for uniform particles and βs� 1 and Σ � β−1

s for thin shells, where the
O(Σ2) term in (4.7) is larger than the O(Σ) term. For a uniform particle, MI(βp)∝
β−1/2

p (2.13), and MR(βp) tends to −(1/2) (2.11). The O(Σ) term on the right in the
series in (4.7) is smaller than the O(Σ2) term for (Σ/

√
βp)�Σ

2, or Σ�β−1/2
p . For

a thin shell, MI(βs)∝ β
−1
s and MR(βs)=−(1/2) for βs� 1 (equations (2.14)–(2.15)).

The O(Σ) term on the right in (4.7) is smaller than the O(Σ2) term for (Σ/βs)�Σ
2,

or Σ�β−1
s . In the two aforementioned regimes, it can be shown that the O(Σ2) term

is the largest contribution to the first couple stress coefficient, and this contribution
is proportional to (ω̂ · Ĥ)2(1 − (ω̂ · Ĥ)2). The expressions for the first couple stress
coefficient in this regime are provided in table 1.

In contrast to the first couple stress coefficient, in (4.8) for the third couple stress
coefficient, the O(Σ) term is dominant even for βp� 1 and Σ� β−1/2

p for a uniform
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particle and βs� 1 and Σ � β−1
s for a thin shells. Therefore there is one common

expression for the third couple stress coefficient for β� 1 in table 1.
In table 1, the couple stress coefficients are explicitly expressed in terms of

dimensional variables, in order to highlight their vorticity dependence. For β � 1,
the first and second couple stress coefficients are independent of the magnitude of
the vorticity, and the third couple stress coefficient is proportional to the vorticity
magnitude |ω|. Interestingly, for β� 1, the couple stress coefficients are proportional
to a negative power of the vorticity. The vorticity exponent for the first and third
couple stress coefficients is different for uniform particles and thin shells. This is
because the high β limit of MI for a uniform particle in (2.13) is different from that
for a thin shell in (2.15).

4.2. Σ� 1

An examination of (2.5)–(2.7) indicates that (1− Ω̂2
H) is necessarily small for Σ� 1,

in order to obtain a balance between the terms on the left and right. This implies that
the angular velocity is nearly aligned with the magnetic field, and the angle between
the two is proportional to Σ−1 for Σ � 1. Expansions for Ω∗, Ω̂ω, Ω̂‖ and Ω̂⊥ of
the form,

?= ?(0) +Σ−1 ?(1) +Σ−2?(2), (4.9)

are inserted into the conservation (2.5)–(2.7) and the normalisation condition (2.19).
The results, correct to O(Σ−2), are,

Ω∗ = ω̂ · Ĥ +
Σ−2(ω̂ · Ĥ)(1− (ω̂ · Ĥ)2)

2(MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2)
, (4.10)

Ω̂ω = ω̂ · Ĥ +
Σ−1(1− (ω̂ · Ĥ)2)MI(βω̂ · Ĥ)
MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2

+
Σ−2ω̂ · Ĥ(1− (ω̂ · Ĥ)2)

2(MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2)
, (4.11)

Ω̂‖ =

√
1− (ω̂ · Ĥ)2 −

Σ−1ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2MI(βω̂ · Ĥ)

MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2

−
Σ−2

√
1− (ω̂ · Ĥ)2(1+ (ω̂ · Ĥ)2)

2(MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2)
, (4.12)

Ω̂⊥ =−
Σ−1

√
1− (ω̂ · Ĥ)2MR(βω̂ · Ĥ)

MI(βω̂ · Ĥ)2 +MR(βω̂ · Ĥ)2
. (4.13)

Since the angular velocity is nearly aligned with the magnetic field for Σ � 1,

the components Ω̂ω and Ω̂‖ differ from ω̂ · Ĥ and
√

1− (ω̂ · Ĥ)2 respectively by

O(Σ−1). The magnitude of the angular velocity tends to ω̂ · Ĥ in the limit Σ� 1; the
difference (Ω∗ − ω̂ · Ĥ) is proportional to Σ−2. The component Ω̂⊥ of the angular
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Uniform particle Thin shell

βp� 1 βs� 1

η(1)c

(3φη/2)
+ (1− (ω̂ · Ĥ)2)

η(3)c

(3φη/2)
η(1)c

(3φη/2)
+ (1− (ω̂ · Ĥ)2)

η(3)c

(3φη/2)

30ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
βpΣ

20ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

7Σ
6ω̂ · Ĥ(1− (ω̂ · Ĥ)2)

Σβs

2ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

Σ

240πη%ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
H2

0µ
2
0R2

80πη|ω|ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

7H2
0µ0

48πη%ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
H2

0µ
2
0R2δ

8πη|ω|ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

H2
0µ0

βp� 1 βs� 1

3
√

2ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
Σ
√
βp

2ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

Σ

6ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
Σβs

2ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

Σ

24πη
√
|ω|%ω̂ · Ĥ(1− (ω̂ · Ĥ)2)

H2
0µ

3/2
0 R

8πη|ω|ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

H2
0µ0

48πη%ω̂ · Ĥ(1− (ω̂ · Ĥ)2)
H2

0µ
2
0R2δ

8πη|ω|ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2

H2
0µ0

TABLE 2. The Σ� 1 limiting values of the couple stress coefficients, equations
(4.14)–(4.15), for a uniform particle and a thin shell.

velocity unit vector perpendicular to the ω̂–Ĥ plane is O(Σ−1). The first and third
couple stress coefficients, obtained by substituting the expressions (4.10)–(4.13) into
(3.5)–(3.7), are,

η(1)c

(3φη/2)
=−(1− (ω̂ · Ĥ)2)+

ω̂ · Ĥ(1− (ω̂ · Ĥ)2)MI(βω̂ · Ĥ)
Σ(MR(βω̂ · Ĥ)2 +MI(βω̂ · Ĥ)2)

, (4.14)

η(3)c

(3φη/2)
=−

ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2MR(βω̂ · Ĥ)

Σ(MR(βω̂ · Ĥ)2 +MI(βω̂ · Ĥ)2)
. (4.15)

Equation (4.14) indicates that the scaled first couple stress coefficient, (η(1)c /(3φη/2)),
attains a constant value −(1 − (ω̂ · Ĥ)2) for Σ � 1; from (3.10), the scaled couple

stress coefficient (η(2)c /(3φη/2)) approaches ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2 in this limit. The
third couple stress coefficient decreases proportional to Σ−1 for Σ� 1.

The asymptotic limits for the couple stress coefficients for β � 1 and β � 1 are
listed in table 2. For a thin shell, by coincidence, the asymptotic expressions in the
limits βs� 1 and βs� 1 are identical, even though the functions MR(βsω̂ · Ĥ) and
MI(βsω̂ · Ĥ) in (4.14)–(4.15) are different. For a uniform particle, the third couple
stress coefficient is proportional to Σ−1 and independent of βp for both small and
large βp, although there is a small difference in the numerical prefactor. The first
couple stress coefficient is independent of |ω| and the third couple stress coefficient
is proportional to |ω| for a thin shell for small and large βs. For a uniform particle,
the third couple stress coefficient is proportional to |ω| for small and large βp.

4.3. Numerical results
The variation of the scaled particle angular velocity and couple stress coefficients with
Σ for different values of β and ω̂ · Ĥ are shown in figure 3 for a uniform particle and
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FIGURE 3. The scaled angular velocity Ω∗∗ (a), negative of the scaled first couple stress
coefficient −η∗1 (b) and third couple stress coefficient η∗3 (c), defined in (4.16)–(4.18), as
a function of Σ for a uniform particle with βp = 1 (dashed lines), βp = 10 (solid lines)
and βp= 1000 (dotted lines) forE ω̂ · Ĥ = (1/3),A ω̂ · Ĥ = (1/2),C ω̂ · Ĥ = (1/

√
2) and

6 ω̂ · Ĥ = 0.99.

figure 4 for a thin shell. In these figures, the asymptotic analysis of §§ 4.1 and 4.2
has been used to rescale the coordinates. The magnitude of the angular velocity Ω∗

approaches 1 for Σ� 1 (4.1), and tends towards ω̂ · Ĥ for Σ� 1 (4.10). A natural
definition of the rescaled angular velocity is,

Ω∗∗ =
Ω∗ − ω̂ · Ĥ
1− ω̂ · Ĥ

, (4.16)

which varies from 1 for Σ � 1 to 0 for Σ � 1. The scaled first couple stress
coefficient (η(1)c /(3ηφ/2)) is 0 for Σ = 0 (4.7), and it increases to a maximum value
of (1 − (ω̂ · Ĥ)2) for Σ � 1 (4.14). An appropriate definition of the scaled first
couple stress coefficient is,

η∗1 =
η(1)c

(3φη/2)(1− (ω̂ · Ĥ)2)
, (4.17)
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FIGURE 4. The scaled angular velocity Ω∗∗ (a), the scaled first couple stress coefficient
η∗1 (b) and third couple stress coefficient η∗3 (c), defined in (4.16)–(4.18), as a function of
Σ for a thin shell with βs = 0.3 (dashed lines), βs = 3 (solid lines) and βs = 100 (dotted
lines) forE ω̂ · Ĥ = (1/3),A ω̂ · Ĥ = (1/2), C ω̂ · Ĥ = (1/

√
2) and6 ω̂ · Ĥ = 0.99.

which varies in the range 0–1. The scaled third couple stress coefficient is proportional

to ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2 for Σ � 1 (4.8) and for Σ � 1 (equation 4.15); a suitable
scaled third couple stress coefficient is,

η∗3 =
η(3)c

(3φη/2)(ω̂ · Ĥ
√

1− (ω̂ · Ĥ)2)
. (4.18)

The magnitude of the angular velocity Ω∗∗ (figures 3a and 4a) decreases from 1 to
ω̂ · Ĥ over a range of approximately two decades in Σ . The functional form of Ω∗∗

shows a relatively small dependence on ω̂ · Ĥ for small β, but there is a significant
dependence on ω̂ · Ĥ for βp= 300 for a uniform particle and βp= 100 for a thin shell.
It is observed that the magnitude of the slope of the Ω∗∗ − Σ curve increases and
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appears to diverge at ω̂ · Ĥ = (1/3) for βp = 300 for a uniform particle and βs = 100
for a thin shell. This aspect is analysed in detail in § 6.

In contrast to the angular velocity, η∗1 and η∗3 exhibit a remarkable lack of
dependence on ω̂ · Ĥ when β is small; all the results for the first and third couple
stress coefficients collapse on to ω̂ · Ĥ-independent curves over the entire range of Σ
for βp 6 10 for a uniform particle and βs 6 3 for a thin shell. The scaled first couple
stress coefficient η∗1 increases proportional to Σ for Σ � 1, and tends to a limiting
value of 1 for Σ � 1. For low Σ and high β, two distinct regions are visible in
figures 3(b) and 4(b) for the first couple stress coefficient. These correspond to the
two distinct regimes identified in table 1. For a uniform particle, η∗1 is found to be
independent of βp for Σ . 3 × 10−2 in figure 3(b); this is in agreement with the
prediction in the parameter regime Σ� β−1/2

p in table 1. For a thin shell, η∗1 appears
to become independent of ω̂ · Ĥ only for Σ . 10−2; this is due to the more stringent
requirement that Σ� β−1

s for a thin shell in table 1. There is an intermediate region,
Σ & 3 × 10−2 for a uniform particle and Σ & 10−2 for a thin shell, where η∗1 does
depend on ω̂ · Ĥ. In this regime, the variation of η∗1 with Σ in agreement with the
asymptotic result η∗1 ∝Σ

2 in table 1. Table 1 also shows that the first couple stress
coefficient is proportional to (ω̂ · Ĥ)2(1 − (ω̂ · Ĥ)2) in this regime, and therefore
the scaled first couple stress coefficient (4.17) does depend on ω̂ · Ĥ in figures 3(b)
and 4(b).

The scaled third couple stress coefficient (figures 3c and 4c) increases proportional
to Σ for Σ � 1, and decreases proportional to Σ−1 for Σ � 1. Consistent with the
results in table 1, there is only one regime for Σ � 1 for the third couple stress
coefficient, and η∗3 ∝Σ in this regime. Due to this, there is a remarkable data collapse
in the limits Σ � 1 and Σ � 1 for both low and high β. The appearance of an
inflection point close to the maximum in the η∗3 graph for ω̂ · Ĥ = 1/3 is noteworthy;
the reason for this is discussed in § 6.

The β dependence of the couple stress coefficients is examined in further detail for
ω̂ · Ĥ = (1/

√
2) in figures 5 and 6. For a uniform particle, the asymptotic expression

for η∗1 in table 1 is proportional to βpΣ for βp� 1, and proportional to (Σ/
√
βp) for

βp�1 and Σ�β−1/2
p . In figure 5, the dashed lines show the first couple stress plotted

against (βpΣ), and the dotted lines show the asymptotic expression for βp� 1. It is
observed that the asymptotic expression provides an excellent fit for the (βpΣ) . 1
and βp 6 3. There is some deviation from the asymptotic expression for βp > 10.
The solid lines in figure 5 are graphs of η∗1 versus (Σ/

√
βp). These provide good

fits for the first couple stress coefficient for (Σ/
√
βp) 6 10−3 and βp > 30. There

is an intermediate range of 3 < βp < 30 where the asymptotic expressions are not
in quantitative agreement with the numerical results. In addition, there is a range of
10−3 6 Σ 6 10−1, corresponding to the limit βp� 1 and 1� Σ � β−1/2

p in table 1,
where the there is a dependence on βp. In this range, we find that a graph of η∗1 versus
Σ results in data collapse for βp > 30; this result is not shown here for conciseness.
For a thin shell, the qualitative behaviour of η∗1 is similar for a uniform particle. The
asymptotic expression for η∗1 in table 1 is proportional to βsΣ for βs � 1. This is
in agreement with the numerical result in figure 5(b) for βs 6 1 and Σ 6 1. For
βs� 1 and Σ � β−1

s , η∗1 is proportional to (Σ/βs) in table 1. The numerical result
in figure 5 is in agreement with the asymptotic expression for βs > 10 in the limit
Σ� 1. However, the asymptotic expression is applicable for a smaller range in Σ in
comparison to that for a uniform particle, due to the stronger condition Σ� β−1

s . In
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FIGURE 5. The negative of the scaled first couple stress coefficient −η∗1 for ω̂ · Ĥ =
(1/
√

2) for a uniform particle (a) as a function of βpΣ (dashed lines) and (Σ/
√
βp) (solid

lines) for βp = 1 (E), βp = 3 (A), βp = 10 (C), βp = 30 (B), βp = 100 (D) and βp = 300
(6); and a thin shell (b) as a function of (βsΣ) (dashed lines) and (Σ/βs) (solid lines)
for βs = 0.3 (E), βs = 1 (A), βs = 3 (C), βs = 10 (B), βs = 30 (D) and βs = 100 (6).

the intermediate regime β−1
s �Σ� 1, there is collapse of the data when η∗1 is plotted

as a function of Σ ; this regime is not shown here for conciseness.
The third couple stress coefficient is shown as a function of Σ in figure 6. In

table 1, the third couple stress coefficient is proportional to β2Σ for Σ � 1 and
β� 1. Figure 6 shows that this relationship is valid for a uniform particle for βp 6 3
and Σ . 1, and for a thin shell for βs 6 1 and Σ . 1. In table 1, the third couple
stress coefficient proportional to Σ for Σ� 1 and β� 1. Figure 6 indicates that this
relationship is valid for βp > 30 and Σ . 1 for a uniform particle, and for βs > 10 and
Σ . 1 for a thin shell. There is an intermediate interval of a decade, 3.βp . 30 for a
uniform particle and 1.βs . 10 for a thin shell, where the asymptotic expressions are
not quantitatively accurate. In the limit Σ� 1, the asymptotic expressions for β� 1
and β� 1 in table 2 numerically close for a uniform particle. Figure 6(a) shows the
numerical results are in agreement with the predicted Σ−1 behaviour, and it is even
possible to discern the small numerical difference in the coefficients for the limits
βp� 1 and βp� 1 for a uniform particle. For a thin shell, the asymptotic expressions
for Σ� 1 are identical in the limits βs� 1 and βs� 1, and these are in quantitative
agreement with the numerical results. For high β, there is a transition between the low
and high Σ regimes at Σ ≈ 3 for a uniform particle and Σ ≈ 2 for a thin shell. For
low β, there is a transition from low to high Σ regime at Σ ≈ 15β−1

p for a uniform
particle, and Σ ≈ 15β−1

s for a thin shell.

5. Perpendicular magnetic field
A special case arises when the direction of the magnetic field is perpendicular to the

direction of the fluid vorticity at the particle centre. In this case, the particle angular
velocity vector is parallel to the fluid vorticity, and perpendicular to the magnetic
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FIGURE 6. The scaled third couple stress coefficient η∗3 for ω̂ · Ĥ = (1/
√

2) as a function
of Σ for a uniform particle (a) for βp = 1 (E), βp = 3 (A), βp = 10 (C), βp = 30 (B),
βp = 100 (D) and βp = 300 (6), and a thin shell (b) for βs = 0.3 (E), βs = 1 (A), βs = 3
(C), βs = 10 (B), βs = 30 (D) and βs = 100 (6). In (a) the dashed lines, from right to
left, are the relations η∗3 = (Σβ

2
p/315) (see table 1) for βp = 1, 3 and 10 respectively. In

(b) the dashed lines, from right to left, are the relations η∗3 = (Σβ
2
s /18) (see table 1) for

βs = 0.3, 1 and 3 respectively.

field. Equations (2.6) and (2.7) are trivially satisfied if Ω̂H = 0 and Ω̂ω = 1, and it
is necessary to solve (2.5) to determine the particle angular velocity. The asymptotic
expression in § 4.1 is applicable for a perpendicular magnetic field, but the asymptotic
result in § 4.2 is not applicable, because the terms in the expansion in (4.10)–(4.15)
were calculated assuming that ω̂ · Ĥ is finite and Σ� 1.

For a perpendicular magnetic field, equation (2.5) reduces to,

1−Ω∗ −Σ MI(βΩ
∗)= 0. (5.1)

The second and third couple stress coefficients are zero for a perpendicular magnetic
field, and the first couple stress coefficient is given by (3.5) with Ω̂ω = 1.

5.1. Uniform particle
The left side of (5.1) is shown as a function of Σ for βp=200 in figure 7. When Σ is
increased from 5 to 6, there is first a transition from one solution to three solutions.
As Σ is further increased from 6 to 7, there is a second transition from three real
solutions to one real solutions. Thus, there is an finite range of Σ for which there are
three solutions for a fixed value of βp; there is only one solution outside this range.

The solutions Ω∗ for (5.1) are shown as a function of Σ for different values of
βp in figure 8(a), and the corresponding scaled first couple stress coefficient (equation
(4.17)) is shown in figure 8(b). It is evident that (5.1) has a unique solution,

Ω∗ = 1−ΣMI(βp),

η∗1 =−ΣMI(βp),

}
(5.2)
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FIGURE 7. The left side of (5.1) shown as a function of Ω∗ for βp= 200 and Σ = 5 (E),
6 (A) and 7 (C).
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FIGURE 8. The solution Ω∗ of (5.1) for a uniform particle (a) and the negative of the
scaled first couple stress coefficient −η∗1 (b) as a function of Σ for βp= 50 (E), 100 (A),
200 (C), 400 (6) and 800 (@). The dotted lines at the right in (a) show the limiting value
30(Σβp)

−1 for Σ� 1 (5.3), and the dotted lines on the left in (b) show the limiting value
ΣMI(βp).

for Σ� 1. The asymptotic results for η∗1 for Σ� 1, shown by the dotted lines on the
left in figure 8(b), are in good agreement with the numerical results. For Σβp� 1, the
solution Ω∗ decreases proportional to (Σβp)

−1, as shown by the dotted lines on the
right in figure 8(a). This solution is inferred from (5.1), if we take the limit Ω∗� 1,
MI(βpΩ

∗)= (βpΩ
∗/30) for βpΩ

∗
� 1 (2.12), and Ω∗Σβp ∼ 1,

Ω∗ =
30

30+Σβp
. (5.3)
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FIGURE 9. For a uniform particle, as a function of βp, the lower limit (E) and upper
limit (A) of the range of Σ for the existence of multiple steady states (a), and the angular
velocity Ω∗ (b) on the upper and lower branches for the values of Σ shown in (a). The
dashed line in (a) is (Σ/

√
βp) = (4

√
2/9
√

3). The value Ω∗ = (1/3) at the boundary
(Σ/

√
βp)= (4

√
2/9
√

3) is shown by the dashed line in (b). The dotted line in (a) shows
Σ = 5.63, and in (b) shows the asymptote Ω∗ = (11.61/βp).

For Σβp� 30, the solution (5.3) is approximately 30(Σβp)
−1, shown by the dashed

lines on the right in figure 8(a). Thus, asymptotic analysis can be used to determine
the values of Ω∗ and η∗1 for Σ� 1 and Σ� 1.

For βp = 50, figure 8(a) shows that the solution for Ω∗ monotonically decreases
as Σ increases. When βp is greater than 100, there is a range of values of Σ for
which there are three solutions for Ω∗. There are two turning points of infinite slope
where the solution turns back on itself. There is a stable solution for Ω∗ which is a
continuation of the solution for Σ � 1 (5.2), and another stable solution which is a
continuation of the solution for Σ � 1, both shown by the solid lines. In between,
there is a solution shown by the dashed line, which is an unstable solution.

A salient feature of the turning points in figure 8(a) are the values of Σ and Ω∗

at right and left turning points. The value of Σ at the right turning point shows a
significant increase as βp is increased, whereas the value of Ω∗ is approximately the
same. At the left turning point, the value of Σ is approximately independent of βp,
while the value of Ω∗ decreases significantly as βp is increased. The value of Σ at
the right and left turning points are shown in figure 9(a), while the values of Ω∗ are
shown in figure 9(b). For βp < 93.02, there is only one solution for Ω∗ for all values
of Σ . For βp> 93.02, there are three real solutions when Σ has a value in between a
minimum, which tends to a constant value of 5.63 for βp� 1, and a maximum which
tends to (4

√
2βp/9

√
3) for βp� 1.

In appendix B, the Σ and β dependence of the right and left turning points in
figure 9(a), and the reason for the multistability, are examined using asymptotic
analysis in the limit βpΩ

∗
� 1.
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FIGURE 10. The solution Ω∗ of (5.4) for a thin shell (a) and the negative of the scaled
first couple stress coefficient −η∗1 (b) as a function of Σ for βs= 10 (E), 20 (A), 40 (C),
80 (6) and 160 (@). The dotted lines on the right in (a) show the limiting value 6(Σβs)

−1

(5.6). The dotted lines on the left in (b) show the limiting value ΣMI(βs).

5.2. Thin shell
The results for the scaled angular velocity of a thin shell are briefly presented, since
these are very similar to those for a uniform particle. The torque balance equation at
steady state is,

1−Ω∗ −
3ΣβsΩ

∗

2(9+ β2
sΩ
∗2
)
= 0. (5.4)

The solutions for the angular velocity are shown as a function of Σ for different
values of βs in figure 10(a), and the scaled first couple stress coefficient in (b). The
transition between a unique solution and multiple solutions takes place at a value of
βs that is about 15.7, which is approximately 6 times smaller than the value of βp at
which the transition takes place for a uniform particle. For (βsΩ

∗)� 1 and Ω∗ ∼ 1,
there is a unique solution for (5.4),

Ω∗ =
1

1+ (Σβs/6)
. (5.5)

This solution predicts the decrease in Ω∗ from 1 for small Σ . In the limit (βsΩ
∗)� 1

and Σ� 1, the unique solution for Ω∗ is similar to the solution (5.3) for a uniform
particle,

Ω∗ = 6(Σβs)
−1. (5.6)

This solution is shown by the dotted lines on the right side of figure 10(a).
The values of Σ and Ω∗ at the left and right turning points in figure 10(a) are

shown in figure 11(a,b). At the right turning point, Σ tends to (βs/6) and Ω∗ tends
to 0.5 for βs� 1. These are examined using asymptotic analysis in appendix B.
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FIGURE 11. For a thin shell, as a function of βs, the lower limit (E) and upper limit
(A) of the range of Σ for which multiple steady states exists for the particle angular
velocity (a), and the angular velocity Ω∗ (b) on the upper and lower branches for the Σ
shown in (a). The asymptotic expression (Σ = βs/6) (B 3) is the region below the dashed
line in (a). The value Ω∗= (1/2) for βs� 1 and Σ = (βs/6) is shown by the dashed line
in (b). The dotted line in (a) shows Σ = 4, and in (b) shows Ω∗ = (3/βs).

6. Near-perpendicular magnetic field

In § 4, a unique solution was obtained for the angular velocity and the couple stress
coefficients for fixed Σ and β, whereas in § 5, there was the possibility of multiple
steady states for a perpendicular magnetic field for sufficiently large β. In this section,
we consider a near-perpendicular magnetic field, ω̂ · Ĥ� 1, in order to examine the
range of ω̂ · Ĥ for which there is the possibility of multiple steady states.

The numerical solutions show that there are multiple steady states even when
ω̂ · Ĥ is small but not zero. These multiple steady states are shown for ω̂ · Ĥ = 0.1
in figure 12 for a uniform particle and figure 13 for a thin shell. Similar to a
perpendicular magnetic field, multiple steady states are observed for high values of
β, that is, βp > 100 for a uniform particle and βp > 10 for a thin shell. However,
the variation of the scaled angular velocity and the first couple stress coefficient
with Σ are qualitatively different from those for a perpendicular magnetic field in
figures 8 and 10. The scaled angular velocity Ω∗∗ decreases proportional to Σ−2

for Σ � 1 and ω̂ · Ĥ = 0.1 in figures 12(a) and 13(a), in contrast to the decrease
proportional to Σ−1 for a perpendicular magnetic field. The multiple steady states
at ω̂ · Ĥ = 0.1 are a continuation of the point of infinite slope at ω̂ · Ĥ = (1/3)
for an oblique magnetic field in figures 3(a) and 4(a); this was briefly pointed out
in § 4. The scaled first couple stress coefficient tends to the asymptotic value for
Σ � 1 for an oblique magnetic field in table 1, instead of the value −ΣMI(β) for
a perpendicular magnetic field in figures 8(b) and 10(b). In addition, the scaled third
couple stress coefficient (figures 12c and 13c) is found to converge to the limits in
table 1 for Σ � 1, and table 2 for Σ � 1. However, multiple steady states for the
third couple stress coefficient are clearly visible, and the right turning point is close
to the maximum. This feature appears to be a continuation of the cusp in the scaled
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FIGURE 12. The scaled angular velocity Ω∗∗ (4.16) as a function of Σ (a), the negative
of the scaled first couple stress coefficient −η∗1 (4.17) as a function of (Σ/

√
βp) (b) and

the scaled third couple stress coefficient η∗3 (4.18) as a function of Σ (c) for a uniform
particle for ω̂ · Ĥ = 0.1 and βp = 100 (E), 300 (A), 1000 (C), 3000 (B) and 10 000 (D).

third couple stress coefficient at ω̂ · Ĥ = (1/3) in figures 3(c) and 4(c), as briefly
highlighted in § 4.

The reason for the multiple steady states is examined using asymptotic analysis in
appendix C. The predictions of the asymptotic analysis for the existence of three real
solutions for Ω̂H are compared with the numerical solutions for a uniform particle in
figure 14, and for a thin shell in figure 15. Multiple solutions are found for a uniform
particle for βp > 100, and for a thin shell for βs > 30. For a uniform particle, the
asymptotic results in (C 4) and (C 5) are in agreement with numerical results only
for a very high value of βp = 104. For a thin shell, the asymptotic results are in
reasonable agreement even for a much lower value of βs = 300. In both cases, the
results diverge from the numerical result as ω̂ · Ĥ decreases. This is due to a violation
of the requirement that ω̂ · Ĥ� β−1/2

p for a uniform particle and ω̂ · Ĥ� β−1
s for the

asymptotic results (C 4) and (C 5) to be valid.
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FIGURE 13. The scaled angular velocity Ω∗∗ (4.16) as a function of Σ (a), the negative
of the scaled first couple stress coefficient −η∗1 (4.17) as a function of (Σ/βs) (b) and
the scaled third couple stress coefficient η∗3 (4.18) as a function of Σ (c) for a thin shell
for ω̂ · Ĥ = 0.1 and βp = 10 (E), 30 (A), 100 (C), 300 (B).

7. Conclusions
7.1. Parameter regimes

The couple stress coefficients depend on two parameters, the ratio of the magnetic and
viscous torques Σ = (µ0H2

0/4πη|ω|), and the product of the vorticity and the current
relaxation time βp = (|ω|µ0R2/2%) for a uniform particle or βs = (|ω|µ0R2δ/2%) for
a thin shell. The dimensionless parameter Σ is independent of the particle radius,
and is only a function of the magnetic field, the fluid vorticity and the viscosity.
The parameter β does depend on the particle radius and the electrical resistivity
of the particle, but is independent of the applied magnetic field. Thus, a change
in the magnetic field results in a change in Σ but not β, whereas a change in
the particle radius alters β but not Σ . The magnetic permeability of free space is
µ0 = 4π × 10−7 kg m s−2 A−2, while a typical value of the resistivity % for metals
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FIGURE 14. For a uniform particle, as a function of ω̂ · Ĥ, the lower and upper bounds
of Σ for the existence of three steady states (a), the value of Ω∗ at the upper and lower
bounds (b) forE βp= 100,A βp= 300,C βp= 1000,6 βp= 10 000. The solid lines show
the asymptotic result (C 4) and (C 5).
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FIGURE 15. For a thin shell, as a function of ω̂ · Ĥ, the lower and upper bounds of
Σ for the existence of three steady states (a), the value of Ω∗ at the lower and upper
bounds (b) forE βp= 30,A βs= 100,C βs= 300,6 βs= 1000. The solid lines show the
asymptotic result (C 4) and (C 5).

is 1.5 × 10−8 kg m3 s−3 A−2. For these values, the parameter βp ≈ 40R2
|ω| for a

uniform particle and βs ≈ 40R2δ|ω| for a thin shell, where R and |ω| are expressed
in m and s−1 respectively. Therefore, the parameter β is O(1) only for very high
strain rates of the order of 103–104 s−1 even for millimetre-sized metal particles in a
viscous liquid. However, there are now reports of ultra-low resistivity in composites
of graphene/carbon nanotubes with metals, which have resistivity up to two orders of
magnitude smaller than metals (Hjortstam et al. 2004; Zheng et al. 2018). This might
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render it feasible to access the high β regime with particles in the range 0.1–1 mm,
and observe the multiple steady states that are predicted here. The results in the high
β regime could also be applicable for superconducting particles, where the resistivity
decreases to zero because the magnetic flux lines are expelled from the particle. Type
I superconductors are not suitable for this purpose, because the resistivity decreases
to zero discontinuously. The induced magnetic moment for a type I superconductor
is directly proportional to the angular velocity (Holdeman 1975), and so there is no
possibility of multiple steady states. There is a continuous decrease in the resistivity
in type II superconductors, and so they could be possible to access the high β regime.
In fact, the equations for type II superconductors are only a small modification of
the equations used in appendix A (Schafer & Heiden 1978), in that the permeability
is a function of the magnetic field, and Ohm’s law has to be modified to include a
critical current density and a flux flow conductivity. Type II superconductors also have
relatively high critical temperatures, enabling easier experimentation. The adaptation
of the present analysis for superconducting particles is the subject of future work.

The parameter Σ can be varied over a relatively wide range in real applications.
The Earth’s magnetic flux density µ0H0 is less than 65 microteslas, which is
6.5 × 10−5 kg s−2 A−1, but a magnetic flux density of 1 kg s−2 A−1 is easily
achievable in practice. Therefore, the magnetic field strength H0 can be varied in
the range 50–106 A m−1. The characteristic magnetic torque µ0H2

0 can, therefore,
be varied in the range 3 × 10−3–106 kg m s−2. Hydrodynamic torques lower or
higher than the characteristic magnetic torque are easily generated by using low/high
viscosity fluids and by varying the strain rate. Therefore, the entire range Σ� 1 and
Σ� 1 is easily accessible in practical applications.

An issue of interest is the expected enhancement in the shear viscosity due to the
eddy current torque. It is important to note that the couple stress coefficients are
proportional to the antisymmetric part of the rate of deformation tensor, in contrast
to the viscous stress, which is proportional to the symmetric part. It bears reiterating
that the effect of the eddy current torques results in antisymmetric stresses which
act in the planes perpendicular to the flow plane, and these are likely to give rise
to complicated and interesting phenomena which cannot be considered a simple
enhancement of the shear viscosity. The effect of couple stresses can be modelled as
a modified viscosity only for simple flows. For a unidirectional flow with velocity in
the x direction, velocity gradient in the y direction and vorticity in the z direction,
it is easily shown that the enhancement to the viscosity is the negative of the first
couple stress coefficient, −η(1)c .

7.2. Geometries
The calculations have been carried out for two geometries, a uniform particle and
a thin shell with thickness small compared to the radius, in order to examine the
generality of the results. The major difference between the two is the scaling of the
imaginary part of the magnetic moment, MI , in the limit of high β, between the
equations (2.13) for a uniform particle and (2.15) for a thin shell. Due to this, there
is a difference in the first couple stress coefficient in the limit of small Σ and high
β in the regime Σ � β−1/2

p for a uniform particle and Σ � β−1
s for a thin shell, as

shown in table 1. The real part of the magnetic moment MR tends to −(1/2) for both
uniform particles and thin shells. Since the real part affects the third couple stress
coefficient, there is no difference in the scaling of the third couple stress coefficient
between uniform particles and thin shells. There is also no difference in the dominant
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terms for the first and third couple stress coefficients for high Σ . The calculations for
a shell of finite thickness can also be carried out using the results in appendix A if
necessary; apart from the difference at low Σ and high β, the scaling relations derived
in § 4 are robust for different shell thicknesses, though the coefficients in the scaling
relations do depend on the ratio of the shell thickness and radius.

7.3. Couple stress coefficients
A suspension of conducting particles in a magnetic field is a micro-polar fluid, in
which the antisymmetric part of the stress tensor has components perpendicular to
all three coordinate planes in general. Here, a specific orthonormal coordinate system
has been chosen, where one axis ω̂ is along the vorticity direction, the second (Ĥ −

ω̂(ω̂ · Ĥ))/
√

1− (ω̂ · Ĥ)2 is perpendicular to the ω̂ in the ω̂–Ĥ plane, and the third

(ω̂× Ĥ)/
√

1− (ω̂ · Ĥ)2 is perpendicular to the ω̂–Ĥ plane. The rheology is simplified
due to the relation (3.10), which arises because there is no torque parallel to the
magnetic field; due to this, there are only two independent couple stress coefficients.
An alternate choice is to consider Ĥ as one axis. In this case, the couple stress
coefficient in the plane perpendicular to Ĥ would have been zero. Here, we have
preferred to align one axis along the vorticity direction, since this direction is usually
of importance for the fluid dynamics.

An unusual characteristic of the rheology is the presence of an antisymmetric
component of the stress tensor, proportional to the third couple stress coefficient η(3)c ,
in the ω̂–Ĥ plane, when ω̂ and Ĥ are not orthogonal. This is due to the ‘precession
torque’ in the direction perpendicular to the ω̂–Ĥ plane when a conductor rotates in
a magnetic field. Due to this, there could be an antisymmetric stress in a conducting
fluid even perpendicular to the flow plane, that is, the plane containing the velocity
and the velocity gradient, for two-dimensional flows. The effect of such a stress on
the stability of two-dimensional flows and the generation of secondary flows could
reveal novel phenomena which are worth exploring.

Asymptotic analysis has been used to calculate the couple stress coefficients in the
limits Σ � 1 and Σ � 1 as a function of the parameter β. For Σ � 1, a regular
perturbation expansion can be used in the parameter Σ . In the leading approximation,
the torque due to the magnetic field is neglected, and the particle angular velocity is
equal to one half of the fluid vorticity. The O(Σ) correction to the particle angular
velocity and the couple stress coefficients are calculated in (4.1), (4.7) and (4.8),
and are listed for uniform particles and thin shells in table 1. For β � 1, the first
couple stress coefficient is independent of |ω| and the third couple stress coefficient
is proportional to |ω| in all cases. For β � 1, η(1)c and η(3)c exhibit unusual inverse
power-law dependences on |ω| because βp and βs are proportional to |ω|, Σ is
inversely proportional to |ω| and the first couple stress coefficient, in particular, has
an inverse power-law dependence on βp and βs.

In the limit Σ � 1, one would simplistically expect the particles to stop rotating
because the retarding magnetic torque is much larger than the hydrodynamic torque.
However, in the absence of particle rotation, there is no eddy current and therefore
no magnetic torque. The solution to this paradox is that the particle rotation axis
aligns close to the magnetic field, so that the (1− Ω̂2

H)∼Σ
−1 in (2.5)–(2.7), and a

balance is achieved between the hydrodynamic and magnetic torques. The asymptotic
results in (4.10), (4.14) and (4.15) indicate that the first couple stress coefficient tends
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to a constant value (3φη/2)(1 − (ω̂ · Ĥ)2) in this limit, and the third couple stress
coefficients decreases proportional to Σ−1. When expressed in terms of the vorticity
and dimensional parameters, table 2 indicates that the first couple stress coefficient
is independent of |ω| and the third couple stress coefficient is proportional to |ω|.
Both of these dependences are robust because they are independent of the parameter β
and of the configuration (uniform particle or thin shell), and therefore this parameter
regime is suitable for the design of fluids with well-defined non-Newtonian rheological
properties.

The couple stress coefficients can be further simplified for small β, which is of
most relevance to practical applications. An important simplification was made by
defining the scaled angular velocity (4.16) and the scaled couple stress coefficients
(equations (4.17)–(4.18)). Figures 3–4 show that the couple stress coefficients are
independent of ω̂ · Ĥ for small values of β, indicating that universal forms for the
scaled couple stress coefficients can be used for any relative orientation between the
vorticity and the magnetic field. A further simplification is shown in figure 5, where
η∗1 is only a function of one parameter, (βpΣ) for βp 6 10 for a uniform particle, and
a function of (βsΣ) alone for βs 6 3 for a thin shell. Similarly, figure 6 shows that the
η∗3 increases proportional to Σβ2

p and Σβ2
s for small Σ , and decreases proportional

to Σ−1 independent of β for Σ� 1. Therefore, simple relations can be used for the
first and third couple stress coefficients for small β.

The situation in the limit β � 1 is different for the two couple stress coefficients.
The third couple stress coefficient η∗3 has a very simple variation proportional to Σ
for Σ � 1 and proportional to Σ−1 for Σ � 1. This is because η∗3 depends on the
real part of the induced magnetic moment MR in (2.8) and (2.14), and MR tends to
a constant value of −(1/2) independent of β and the configuration (uniform particle
or thin shell) for β� 1. The form of η∗1 for large β is more complicated, because it
depends on the imaginary part of the induced magnetic moment MI in (2.9) and (2.15),
and this has different power-law dependences on βp for a uniform particle (2.13) and
on βs for a thin shell (equation (2.15)). For Σ� 1, scaling laws are obtained in two
different regimes. For Σ� β−1/2

p for a uniform particle and Σ� β−1
s for a thin shell,

η∗1 is independent of ω̂ · Ĥ and it depends only on one parameter, (Σ/β1/2
p ) for a

uniform particle and (Σ/βs) for a thin shell. The coefficient η∗1 does depend on ω̂ · Ĥ
for β−1/2

p �Σ� 1 for a uniform particle and β−1
s �Σ� 1 for a thin shell.

An issue of interest is the expected enhancement in the shear viscosity due to the
eddy current torque. It bears reiterating that the effect of the eddy current torques
results in antisymmetric stresses which act in the planes perpendicular to the flow
plane, and these are likely to give rise to complicated and interesting phenomena
which cannot be considered a simple enhancement of the shear viscosity. The effect of
couple stresses can be modelled as a modified viscosity only for simple flows. For a
unidirectional flow with velocity in the x direction, velocity gradient in the y direction
and vorticity in the z direction, it is easily shown that the enhancement to the viscosity
is the negative of the first couple stress coefficient, −η(1)c .

Since a single-particle calculation is carried out in the dilute limit, the couple
stress coefficients are proportional to the volume fraction φ. This is similar to the
Einstein viscosity for a particle suspension. The scaled couple stress coefficient has
been defined as η∗1 = (η

(1)
c /((3φ/2)η(1 − (ω̂ · Ĥ)2))), where η is the fluid viscosity.

The scaled couple stress coefficient η∗1 has a maximum value of 1 in the limit H� 1
for all values of β, and therefore, the viscosity enhancement is (3φη(1− (ω̂ · Ĥ)2)/2).
For a perpendicular magnetic field, the viscosity enhancement is (3φη/2), which is
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comparable to the enhancement of the viscosity in a particle suspension proportional
to (5φη/2) due to the symmetric force moment in an extensional flow.

7.4. Perpendicular and near-perpendicular magnetic fields

Multiple steady states are observed when the vorticity and the magnetic field are
perpendicular or almost perpendicular, for high β. For a perpendicular magnetic
field, the particle angular velocity is parallel to the vorticity, and the second and
third couple stress coefficients are zero. It is necessary to solve one torque balance
equation, equation (5.1), to determine the angular velocity and first couple stress
coefficient. The underlying reason for the multiple steady states is that the relation
between the imaginary part of the magnetic moment MI and the angular velocity
is nonlinear in the limit of high β, as shown in (2.13) and (2.15), resulting in a
nonlinear relationship between the torque and the angular velocity. It should be noted
that for a perpendicular magnetic field, the torque depends only on MI . Multiple
solutions are observed for βp > 93 for a uniform particle and βs > 15.7 for a thin
shell. The right and left turning points in the graphs of the angular velocity and first
couple stress difference versus Σ have been determined using asymptotic analysis in
appendix B, where the high β approximations, equations (2.13) and (2.15) are used
for the eddy current torques. These are in good quantitative agreement with numerical
results for high β.

Multiple steady states can exist for a near-perpendicular magnetic field, where
ω̂ · Ĥ is less than 1/3, in the limit of large β. The reason for multiple steady
states in this case is qualitatively different from that for a perpendicular magnetic
field. For high β, the imaginary part of the magnetic moment MI decreases to zero
(equations (2.13) and (2.15)), whereas the real part MR tends to a constant value
−(1/2) (equations (2.11) and (2.14)). In the limit of high β, the term proportional to
MI is neglected in (2.17), and MR is set equal to −(1/2) in (2.18), to obtain equations
that are independent of β or the configuration (uniform particle or thin shell). Using
this approximation, it is shown that there could be multiple steady states only for
ω̂ · Ĥ < (1/3), and the values of Σ at the two turning points have been calculated
using asymptotic analysis in appendix C. The numerical results are in agreement
with the asymptotic solutions only for very large values of β, that is, βp = 104 for a
uniform particle and βs = 103 for a thin shell. However, there is a small interval of
Σ where there are multiple solutions even for βp = 100 for a uniform particle and
βs = 30 for a thin shell.

The transition between the solutions for the perpendicular and near-perpendicular
magnetic field occurs when the magnitude of the term on the right in (2.18) becomes
larger than the term on the right in (2.17), that is, for |ω̂ · ĤMR(βΩ

∗)|> |MI(βΩ
∗)|.

Since MR tends to −(1/2) for βΩ∗� 1, this implies that ω̂ · Ĥ�β−1/2
p for a uniform

particle, and ω̂ · Ĥ� β−1
s for a thin shell.

The existence of multiple steady states suggests the intriguing possibility of ‘spin
banding’ in these suspensions, where different particle angular velocities could co-exist
for the same fluid vorticity and magnetic field; this is an exciting prospect that does
not seem to have been proposed before. The evolution and rheology of spin-banded
states necessarily depends on nature of particle interactions at the two-particle level
and beyond, and this is an area that merits further study.
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7.5. Particle interactions and migration
Some aspects of the hydrodynamic interactions between particles and the flow in finite
channels were considered in appendix D. One important result is the convergence
of the integrals in unbounded systems for the flow generated by particles that
exert a net torque on the fluid. This is surprising, because the velocity disturbance
due to the particle decreases proportional to (1/r2), while the vorticity disturbance
decreases proportional to (1/r3). The velocity disturbance is expected to be zero in a
uniform suspension of rotating particles due to symmetry. However, the net vorticity
disturbance also turns out to be finite, because the integral over the solid angle of
the vorticity disturbance in (D 2) for |x − x′| > R turns out to be zero. Due to this,
the integral for the mean vorticity is convergent. The integrals for the mean square
velocity and vorticity are also convergent, and these have been calculated in § D.1.

Particle migration is predicted in a finite channel due to gradients in the particle
angular velocity or the volume fraction in §§ D.2 and D.3. A gradient in the particle
angular velocity could result from the gradient in the vorticity even in a uniform
magnetic field. When the gradient is in the cross-stream direction for a unidirectional
flow in a channel, and the particle angular velocity is in the direction of the fluid
vorticity, the secondary velocity is opposite to the flow direction. However, if there is
a component of the angular velocity in the flow–gradient plane due to a precession
torque, there is a secondary flow velocity generated in the spanwise direction as well.
Thus, an oblique magnetic field, coupled with a volume fraction or vorticity gradient
in the cross-stream direction, could cause particle migration in the spanwise direction.
The secondary flow could be useful for separation of conducting particles under an
applied magnetic field, and the drift velocity generated is proportional to φū where ū
is the average velocity, φ is the volume fraction and the length scale for the vorticity
and volume fraction gradient is considered to be the channel height h. There is also
a drift velocity due to a gradient in the fluid vorticity, but this drift is only in the
streamwise direction if the vorticity is perpendicular to the flow plane. This drift
velocity is proportional to (ūR2/h2).
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Appendix A. Torque due to eddy currents
A conducting spherical shell of inner radius Ri, outer radius R, electrical resistivity

% and permeability µ0 is rotating with angular velocity Ω in an insulating fluid.
The relative permeability µ of the particle and fluid are considered to be 1, because
the calculation is restricted to non-ferromagnetic materials. The particle is subject to
a constant external magnetic field H0 far from the particle. A spherical coordinate
system is used where r is the distance from the centre of the shell. The Maxwell
equations for the magnetic field H and electric field E are,

∇× H = 0 for r< Ri and r> R,
= J for Ri < r< R, (A 1)

∇× E=−µ0
dH
dt

for Ri < r< R, (A 2)
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and the current in the conducting particle is related to the electric field by Ohm’s law,

J =
E
%
. (A 3)

The magnetic field is written as the curl of the solenoidal magnetic potential A,

H =∇× A. (A 4)

Equation (A 2) can be used to express the induced electric field as,

E=−µ0
dA
dt
. (A 5)

Combining (A 1), (A 3), (A 4) and (A 5), we obtain an equation for the vector potential,

−
µ0

%

dA
dt
+∇

2 A= 0 for Ri < r< R, (A 6)

within the spherical shell. Since the material inside and outside is insulating, the
equation for the magnetic potential is,

∇
2 A= 0 for r< Ri and r> R. (A 7)

The two coupled equations have to be solved with boundary conditions H = H0 far
H is finite at r= 0, and the matching condition that the magnetic field is continuous
across the surface.

The solution is obtained in a coordinate system with the axis of rotation along the z
direction and the applied magnetic field is in the x–z plane, with components H0x and
H0z in the x and z directions far from the particle. Since the particle is rotating in the
magnetic field, it is necessary to express the magnetic field in a coordinate system x′
rotating with the particle. The fixed and rotating coordinates are related by the rotation
matrix,

x′ = R · x, (A 8)

where R is the rotation matrix. Since the angular velocity is aligned with the z axis,
the rotation matrix is,

R =

 cos (Ωt) sin (Ωt) 0
− sin (Ωt) cos (Ωt) 0

0 0 1


= Re

 exp (−ıΩt) ı exp (−ıΩt) 0
−ı exp (−ıΩt) exp (−ıΩt) 0

0 0 1

 , (A 9)

where Ω is the magnitude of the angular velocity Ω In the rotating frame, the
components of the applied magnetic field are,

H′0x′ =Re(exp (−ıΩt)H0x),

H′0y′ =Re(−ı exp (−ıΩt)H0x),

H′0z′ =H0z.

 (A 10)
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In the following analysis, the superscript ′ is used for quantities referenced to the
rotating coordinate system.

Within the shell, the divergence of A′ is zero, and the vector A is a linear function
of the applied field H ′0. Therefore, the solution for (A 6) in the conductor for Ri <
r< R is of the form,

A′ =∇× (As(r)H ′0), (A 11)

where the scalar function As(r) is a solution of the equation

∇
2As(r)+ k2As(r)= 0, (A 12)

where k=
√

ıΩµ0/%.
The solution of (A 12) for the scalar field As(r) is

As(r)=
As1 sin (kr)

r
+

As2 cos (kr)
r

, (A 13)

where As1 and As2 are constants. The magnetic field within the shell is,

H ′ =
[(

1
r

dAs

dr
+ k2As

)
H ′0 −

(
3
r

dAs

dr
+ k2As

)
(H ′0 · er)er

]
, (A 14)

where er is the unit vector in the radial direction. In deriving the above (A 14), the
Laplace equation (A 12) has been used to substitute (d2As/dr2) = −(2/r)(dAs/dr) −
k2As.

Since there is no current inside or outside the particle, the magnetic field outside
satisfies the divergence-free condition ∇ · H ′ = 0 and the irrotational condition ∇ ×
H ′ = 0. The magnetic field outside the particle is the sum of the imposed magnetic
field and the disturbance field which is irrotational, solenoidal and a linear function of
the imposed field H ′0. Since the disturbance field outside has to decay far from the
particle, the superposition of the imposed field H ′0 and the field due to a magnetic
dipole in the direction of H ′0,

H ′ =
(

H ′0 +MR3

(
3er(er · H ′0)

r3
−

H ′0
r3

))
, (A 15)

where MR3 H ′0 is a the effective magnetic dipole moment due to the particle, and the
constant M is defined to be dimensionless. Within the particle, the field is proportional
to H ′0,

H ′ = Ai H ′0, (A 16)

where Ai is a constant.
The coefficients As1 and As2 in (A 13), Ai in (A 16) and M in (A 16) are determined

from the matching condition that the magnetic field is continuous at the surface r=R
and r = Ri. In particular, the components of the magnetic field along H ′0 and along
erer · H ′0 have to be equal. Equating the components at r= Ri in (A 16) and (A 14),

1
r

dAs

dr
+ k2As = Ai,

3
r

dAs

dr
+ k2As = 0.

 (A 17)
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A relation between M, As1 and As2 is determined by equating (A 14) and (A 15) at
r= R,

1
r

dAs

dr
+ k2As = 1−M,

3
r

dAs

dr
+ k2As =−3M.

 (A 18)

These can be solved to obtain Ai, As1, As1 and M,

Ai =
3kR

(3− k2R2
i ) sin (k(R− Ri))+ 3kRi cos (k(R− Ri))

, (A 19)

As1 =
3R((3− k2R2

i ) cos (kRi)+ 3kRi sin (kRi))

2k2((3− k2R2
i ) sin (k(R− Ri))+ 3kRi cos (k(R− Ri)))

, (A 20)

As2 =
−3R((3− k2R2

i ) sin (kRi)− 3kRi cos (kRi))

2k2((3− k2R2
i ) sin (k(R− Ri))+ 3kRi cos (k(R− Ri)))

, (A 21)

M =−
1
2
+

3
2(kR)2

+
3(−(3− k2R2

i ) cos (k(R− Ri))+ 3kRi sin (k(R− Ri)))

2kR((3− k2R2
i ) sin (k(R− Ri))+ 3kRi cos (k(R− Ri)))

.

(A 22)

From (A 15), it is evident that the magnetic moment of the particle due to eddy
currents in the rotating reference frame is M′=R3MH ′0, where M is given by (A 22).
The components of M′ are,

M′x′ =Re(R3MH′0x′)= R3(MR cos (Ωt)+MI sin (Ωt))H0x, (A 23)
M′y′ =Re(R3MH′0y′)= R3(−MR sin (Ωt)+MI cos (Ωt))H0x, (A 24)

where MR and MI are the real and imaginary parts of M (A 22). The torque on the
particle is

T ′ =M′ × (µ0 H ′0), (A 25)

with components

T ′x′ = R3(−MR sin (Ωt)+MI cos (Ωt))µ0H0xH0z,

T ′y′ = R3(−MR cos (Ωt)−MI sin (Ωt))µ0H0xH0z,

T ′z′ =−R3MIµ0H2
0x.

 (A 26)

Equation (A 26) can be transformed to the original coordinates using the inverse of
the transformation R in (A 9),

Tx = R3MIµ0H0xH0z,

Ty =−R3MRµ0H0xH0z,

Tz =−R3MIµ0H2
0x.

 (A 27)
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A.1. Torque on a uniform spherical particle
The real and imaginary parts of M can be simplified for a spherical particle by
substituting Ri = 0 in (A 22),

MR =−
1
2
+

3

2
√

2Ω†

sinh (
√

2Ω†)− sin (
√

2Ω†)

cosh (
√

2Ω†)− cos (
√

2Ω†)
, (A 28)

MI =−
3

2Ω†
+

3

2
√

2Ω†

sinh (
√

2Ω†)+ sin (
√

2Ω†)

cosh (
√

2Ω†)− cos (
√

2Ω†)
, (A 29)

where Ω†
= (µ0ΩR2/%) is a scaled frequency.

A.2. Torque on a thin shell
For a thin conducting shell of thickness δ= (R−Ri)/R�1, it can be inferred from the
boundary conditions (A 17) and (A 18) that k2

∼ δ−1. Using the substitution Ri=R(1−
δ) and k2

= (k‡2/δ) in (A 22), the leading-order approximation for M in an expansion
in δ is,

M =
k‡2R2

2(3− k‡2R2)
. (A 30)

This can be expressed in terms of the scaled frequency Ω‡
= (µ0ΩR2δ/%) using the

substitution k‡2R2
= ıΩ‡,

M =
ıΩ‡

2(3− ıΩ‡)
. (A 31)

The real and imaginary parts of M are,

MR =
−Ω‡2

2(9+Ω‡2)
, (A 32)

MI =
3Ω‡

2(9+Ω‡2)
. (A 33)

Appendix B. Asymptotic analysis for perpendicular magnetic field
B.1. Uniform particle

Here, the Σ and β dependence of the right and left turning points in figure 8(a)
are examined using asymptotic analysis in the limit βpΩ

∗
� 1. Equation (2.13) is

substituted for MI(βpΩ
∗) in (5.1) to obtain,

1−Ω∗ −
3Σ

2
√

2βpΩ∗
= 0. (B 1)

Equation (B 1) can be reduced to a cubic equation for
√
Ω∗ which depends on the

parameter Σ/
√
βp. Equation (B 1) has one real root for (Σ/

√
βp) > (4

√
2/9
√

3), and
three real roots for (Σ/

√
βp) < (4

√
2/9
√

3). In the limit (Σ/
√
βp)� 1, the unique

real root tends to (3Σ/2
√

2βp)
2/3. However, this is an unphysical root, because Ω∗ is
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10010-110-2

(Í/�ıs)
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1.125(Í2/ıp)

Ø*

FIGURE 16. The roots of (B 1) as a function of (Σ/
√
βp). The spurious root with

magnitude greater than 1 is not shown. For (Σ/
√
βp) < (4

√
2/9
√

3), the stable root is
shown by the solid line, and the unstable root is shown by the dashed line.

greater than 1 for this root, and
√
Ω∗ in (B 1) is assumed negative for this root. When

(Σ/
√
βp) is less than (4

√
2/9
√

3), there are three real roots, of which one spurious
root has a value greater than 1, while two physical roots have values less than 1. The
stable and unstable roots merge for (Σ/

√
βp) = (4

√
2/9
√

3) and Ω∗ = (1/3), and
there are no solutions for (Σ/

√
βp) > (4

√
2/9
√

3). This results in the location of the
right turning point at Σ = (4

√
2βp/9

√
3) in figure 8(a) and Ω∗= (1/3) in figure 8(b).

The asymptotic limit for the lower unstable branch in figure 16 can be determined
by taking the limit Ω∗ � 1 in (B 1) and neglecting the second term on the left in
comparison to the first and third terms, to obtain Ω∗ = (9Σ2/8βp). This is shown by
the dotted line in figure 16.

The location of the left turning point in figure 8(a) is not accessible from (B 1),
because the approximation (βsΩ

∗)� 1 is not applicable at this point. The location
of this point can be estimated from the intersection of the lower unstable branch
in figure 16, and the lower stable branch in figure 8(a). The former is proportional
to (9Σ2/8βp), while the latter is proportional to 30(Σβp)

−1. These two limiting
approximations intersect at Σ3

= (80/3), or Σ = 2.99, where Ω∗ = 10.04β−1
p .

This simple estimate turns out to be an underestimate for Σ , which is found to
be about 5.63 from the numerical solution, and value predicted for Ω∗ is close to the
actual value of Ω∗= (11.61/βp) determined from the numerical solution in figure 8(a).
Thus, dependence of Σ and Ω∗ on βp at the left turning point is reasonably well
predicted by a simple approximation based on the low Ω∗ limiting behaviour of the
lower branch solution of (B 1), and the high Σ solution (5.3) for βpΩ

∗
� 1.

B.2. Thin shell
The values of Σ and Ω∗ at the left and right turning points in figure 10(a)
are determined using asymptotic analysis in the limit βsΩ

∗
� 1. In this limit,

equation (5.4) is approximated as,

1−Ω∗ −
3Σ

2βsΩ∗
= 0. (B 2)
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10010-110-2

100

10-1

10-2

1.5(Í/ıs)

(Í/ıs)

Ø*

FIGURE 17. The roots of (B 2) as a function of (Σ/βs). For (Σ/βs) < (1/6), the stable
root is shown by the solid line, and the unstable root is shown by the dashed line.

Equation (B 2) indicates that the solution for Ω∗ depends on (Σ/βs), in contrast to
the dependence on (Σ/

√
βp) for a uniform particle. For βsΩ

∗
� 1, the (B 2) has two

real solutions, for

Σ 6
βs

6
(B 3)

and no real solutions otherwise. This is consistent with the location of the turning
point at (βs/6) in figure 10(a). At this value of Σ , the two solutions for Ω∗ have a
common value of 0.5, consistent with the constant value of Ω∗ at the upper turning
point in figure 10(b). One of the solutions of (B 2) is stable and it tends to 1 for
(Σ/βs)� 1, while the other solution is unstable and is proportional to (3Σ/2βs), as
shown in figure 17.

The value of Σ and βs at the left turning point can be estimated by matching the
unstable lower branch Ω∗ = (3Σ/2βs) in figure 17 with the limiting value of Ω∗ =
6(Σβs)

−1 for Σ� 1 in figure 10(a). This results in a value Σ = 4 and Ω∗= 6β−1
s at

the left turning point. The result from the numerical calculations is slightly different,
Σ = 4 and Ω∗ = 3β−1

s , as shown in figure 11.

Appendix C. Asymptotic analysis for near-perpendicular magnetic field
The reason for the existence of multiple steady states when the magnetic field

is nearly perpendicular to the vorticity is examined here using asymptotic analysis.
Since multiple steady states are observed for large β, it is appropriate to substitute
the βΩ∗� 1 approximations (2.11) and (2.13) for MR and MI in (2.17) and (2.18).
Since MI decreases as (βpΩ

∗)−1/2 (uniform particles) and (βsΩ
∗)−1 (thin shells),

whereas MR =−(1/2) for both uniform particles and thin shells, equation (2.17) can
be simplified by neglecting the second term on the right, and MR is set equal to
−(1/2) in (2.18), to obtain,

Ω̂ω =
ω̂ · Ĥ
Ω̂H

, (C 1)
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Ω̂ · (ω̂× Ĥ)√
1− (ω̂ · Ĥ)2

=
ΣΩ̂H(1− Ω̂2

H)

2
√

1− (ω̂ · Ĥ)2 )
. (C 2)

The above equations are applicable for uniform particles and thin shells; in fact, they
more broadly applicable to any system where MR→−(1/2) and MI� 1 for βΩ∗� 1.

For small but finite ω̂ · Ĥ, the approximation in (C 1) and (C 2) is that the eddy
current torque can be neglected in the direction along ω̂, but it is significant in the
direction perpendicular to the ω̂–Ĥ plane. For a uniform particle in the limit βp� 1
and ω̂ · Ĥ� 1, the magnitudes of the torque parallel and perpendicular to the ω̂–Ĥ
plane are (3Σ/2

√
2βp) and (Σω̂ · Ĥ/2) respectively from (2.11) and (2.13). The latter

is much larger than the former for ω̂ · Ĥ� β−1/2
p . For a thin shell in the limit βs� 1

and ω̂ · Ĥ� 1, using the limiting forms for (2.14) and (2.15), the magnitudes of the
torques parallel and perpendicular to the ω̂–Ĥ plane are (3Σ/2βs) and (Σω̂ · Ĥ/2)
respectively. The former is much smaller than latter for ω̂ · Ĥ� β−1

s . In this case, the
particle angular velocity and the fluid rotation rate parallel to the vorticity are equal.
There is, however, a torque perpendicular to the ω̂–Ĥ plane, which drives the particle
angular velocity in that direction. This is in contrast to the analysis in § 5 for ω̂ · Ĥ=
0, where the effect of the torque on the particle along the vorticity direction results
in the third term on the left in (5.1), but the torque balance equation perpendicular to
the ω̂–Ĥ plane is trivially satisfied.

In order to examine the reason for the multiple steady states, equations (C 1) and
(C 2) are substituted into (2.19), and reduced to the following equation,

Σ2(Ω̂6
H − Ω̂

4
H)+ 4(Ω̂2

H − (ω̂ · Ĥ)2)= 0. (C 3)

The (C 3) has three real roots for(1+ 18(ω̂ · Ĥ)2 − 27(ω̂ · Ĥ)4)−
√

1− (ω̂ · Ĥ)2(1− 9(ω̂ · Ĥ)2)3/2

2(ω̂ · Ĥ)2

1/2

<Σ

<

(1+ 18(ω̂ · Ĥ)2 − 27(ω̂ · Ĥ)4)+
√

1− (ω̂ · Ĥ)2(1− 9(ω̂ · Ĥ)2)3/2

2(ω̂ · Ĥ)2

1/2

,

(C 4)

while there are one real and two complex conjugate roots otherwise. The lower limit
in (C 4) approaches 4 for ω̂ · Ĥ → 0, and the upper limit diverges proportional to
(ω̂ · Ĥ)−1. Both the lower and upper limits are equal to 2

√
3 at ω̂ · Ĥ = (1/3). It can

be inferred, from (C 4), that there is the possibility of three real solutions for Ω̂H only
for |ω̂ · Ĥ|< (1/3), and there is a unique solution for |ω̂ · Ĥ|> (1/3). The value of
Ω∗ at the two limiting values of Σ in (C 4) are,

Ω∗ = 1
2

(
1+ 3(ω̂ · Ĥ)2 −

√
(1− (ω̂ · Ĥ)2)(1− 9(ω̂ · Ĥ)2)

)1/2

and

Ω∗ = 1
2

(
1+ 3(ω̂ · Ĥ)2 +

√
(1− (ω̂ · Ĥ)2)(1− 9(ω̂ · Ĥ)2)

)1/2

.

 (C 5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.295


Suspension of conducting particles in a magnetic field 179

ω̂ · Ĥ = 1
3 ω̂ · Ĥ� 1 ω̂ · Ĥ� 1

Lower Upper

Σ 2
√

3 4 (ω̂ · Ĥ)−1

Ω∗ (1/
√

3)
√

2ω̂ · Ĥ (1/
√

2)
η∗1 −(3/4) −1 −(1/2)

η∗3 (3
√

3/4) 1 (2ω̂ · Ĥ)−1

TABLE 3. The values of Σ (C 4), Ω∗ (C 5), η∗1 and η∗3 at ω̂ · Ĥ = (1/3) and in the limit
ω̂ · Ĥ→ 0 for the two limiting values of Σ in (C 4).

The values of Σ , Ω∗, η∗1 and η∗3 at ω̂ · Ĥ = (1/3) and in the limit ω̂ · Ĥ � 1
are reported in table 3. It is noteworthy that these values are the same for uniform
particles and thin shells, because the value MR = −(1/2) substituted in (C 2) is the
same, and there is no eddy current torque in (C 1). As ω̂ · Ĥ→ 0, the value of Ω∗

is
√

2ω̂ · Ĥ for the lower limit in (C 4), and is proportional to (1/2)1/2 for the upper
limit in (C 4). At ω̂ · Ĥ = (1/3), the value of Ω∗ is (1/3)1/2.

Appendix D. Particle interactions in a dilute suspension

There is shear-induced migration in a Poiseuille flow in the absence of a magnetic
field from regions of high to low shear. This migration is due to the effect of near-field
particle interactions – particles in a high shear region interact more frequently due to
a large difference in the particle velocity, and this interaction pushes particles towards
low shear regions. Here, we examine two other effects which could lead to migration –
the effect of gradients in the vorticity and the particle rotation rates which could lead
to either a secondary fluid flow or an additional force on the particles resulting in
migration. The enhancement of fluctuations due to interactions in a uniform vorticity
field is considered in § D.1, followed by an analysis of the secondary velocity induced
by a gradient in the particle angular velocity in § D.2, a gradient in the particle volume
fraction in § D.3 and that due to a gradient in the vorticity in § D.4.

D.1. Uniform vorticity
The effect of pair interactions on particle migration is analysed in the dilute limit
φ � 1, where φ is the volume fraction of the particles. In a uniform suspension,
it turns out that the quantities such as the mean velocity and vorticity, as well as
the mean square of the fluctuating velocity and vorticity, are finite in the mean field
approximation. There are no divergences of the type encountered in the calculation of
the mean and mean square velocities for unbounded suspensions of settling particles.
The mean velocity and vorticity are determined from the disturbance at a location x
(which could be within or outside the particle) due to the presence of a particle at
the location x′, and averaging over the location x′. If the distribution of particles is
uniform, the probability of finding a particle in the differential volume dx′ about x′ is
(φ/(4πR3/3)) dx′, where R is the particle radius. The disturbance to the velocity and
vorticity at the location x due to the presence of a particle at the location x′ rotating
with angular velocity Ω ′ relative to the local fluid rotation rate are,
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u′(x|x′) = Ω ′ × (x− x′) for |x− x′|6 R,

=
R3Ω ′ × (x− x′)
|x− x′|3

for |x− x′|> R, (D 1)

ω′(x|x′) = 2Ω ′ for |x− x′|6 R,

= 2R3Ω ′ ·

(
I

|x− x′|3
−

3(x− x′)(x− x′)
|x− x′|5

)
for |x− x′|> R, (D 2)

where I is the identity tensor, and Ω ′ is the difference between the particle rotation
rate and the fluid rotation rate. For the configuration analysed in § 2, Ω ′ is given by
(3.2). The average velocity and vorticity disturbances due to the presence of other
particles are defined as,

u′ =
φ

(4/3πR3)

∫
dx′ u′(x|x′), (D 3)

ω′ =
φ

(4/3πR3)

∫
dx′ ω′(x|x′), (D 4)

where u(x|x′) and ω(x|x′) are the velocity and vorticity at a location x due to the
presence of a rotating particle at the location x′. From symmetry, it can be inferred
that the average velocity disturbance u′ = 0 in a uniform suspension. The integral
in (D 4) for |x − x′| > R appears to be logarithmically divergent as |x − x′| → ∞.
However, when (D 2) is substituted into (D 4) and integrated over the solid angle of
the vector x − x′, the result is zero for |x − x′|> R if the distribution of particles is
isotropic. The result is non-zero only for |x− x′|< R, that is, when the location x is
within a particle, and therefore the average vorticity is,

ω′ = 2φΩ ′. (D 5)

The mean square of the velocity and vorticity fluctuations is the sum of contributions
obtained using (D 1) and (D 2) for |x − x′| 6 R and |x − x′| > R. The result is
convergent when integrated over an unbounded volume,

u · u=
12φR2Ω ·Ω

5
, (D 6)

ω′ ·ω′ −ω′ ·ω′ = 72φΩ ·Ω. (D 7)

Thus, in a uniform suspension, the mean and mean square of the fluctuating velocity
and vorticity are finite and increase proportional to φ in the dilute limit. It can also
be inferred from symmetry that the net force on a particle in any direction is zero in
a uniform suspension, and so there is no particle migration.

D.2. Angular velocity gradient
A gradient in the particle angular velocity disturbance, Ω ′ in (3.2), could cause
particle migration. This could be caused by a gradient in the vorticity in, for example,
a parabolic flow in a channel, shown in figure 18. In general, the local particle angular
velocity has to be obtained by numerically solving equations (2.17)–(2.19). However,
in some cases such as the limit Σ � 1, the particle angular velocity disturbance is
directly proportional to the fluid vorticity for both β � 1 and β � 1. In this case,
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y = h/2

y = -h/2 y = -h/2

y = h/2

x
z

y

x
z

y(a) (b)

FIGURE 18. The configuration for the calculating the secondary flow velocity due to a
gradient in the angular velocity of the particles (a) and due to a gradient in the volume
fraction of the particles (b).

there is a linear variation in the angular velocity disturbance when a parabolic flow,
for example, causes a linear variation in the vorticity. Here, we examine the particle
migration due to a linear variation in the angular velocity disturbance Ω ′ of the
particles. The velocity disturbance at a position x due to the presence of a particle at
x′ is obtained by substituting Ω ′(x′)=Ω(x)+ (x′ − x) · (∇Ω ′) in (D 1), where ∇Ω ′
is considered independent of position. The equation for the velocity disturbance at
the observation point x due to all other particles at locations x′ for a linear variation
of the angular velocity is,

u′(x) =
φ

(4πR3/3)

(∫
|x−x′|6R

dx′ ((x′ − x) · ∇Ω ′)× (x− x′)

+

∫
|x−x′|>R

dx′
((x′ − x) · ∇Ω ′)× (x− x′)

|x− x′|3

)
. (D 8)

The contribution due to Ω ′(x) is zero, and so it has not been included in (D 8). An
unbounded system is not realistic because a parabolic velocity profile is necessary to
generate a gradient in the angular velocity of the particles, and a finite flow height in
the cross-stream section has to be considered for a parabolic profile.

For definiteness, a unidirectional parabolic velocity profile is considered in a channel
of height h bounded at y = ±(h/2), of infinite extent in the flow (x) and spanwise
(z) directions, as shown in figure 18(a). There is a constant gradient in the angular
velocity in the y direction. The only non-zero component of the angular velocity
gradient is ey(dΩ ′/dy), where ey is the unit vector in the y direction. Equation (D 8)
is evaluated in the limit R� h, where the particle radius is much smaller than the
channel width, so that the contribution due to the first term on the right in (D 8) can
be neglected in comparison to the second, and the second term is integrated over the
entire volume of the channel. The error made due to this approximation, which is
O(φ), is small in the dilute limit. With these approximations, the equation for the
fluid velocity at a location y in the channel is,

u′(x)=
φ

(4πR3/3)

(∫
dx′

R3((x′ − x) · ∇Ω ′)× (x− x′)
|x− x′|3

)
. (D 9)

Using a cylindrical coordinate system where r2
= (x′ − x)2 + (z′ − z)2, equation (D 9)

is simplified as,

u′(x) =
φ

(4πR3/3)

∫ h/2

−h/2
dy′
∫
∞

0
2πr dr

R3(y′ − y)(y− y′)
(r2 + (y− y′)2)3/2

(
dΩ ′

dy
× ey

)
. (D 10)
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When the integral is carried out over r for an infinite system, we obtain,

u′(x) =
3φ
2

(∫ h/2

−h/2
dy′
(y′ − y)(y− y′)
|y− y′|

)
dΩ ′

dy
× ey

=
3φ
2

(∫ y

−h/2
dy′(y′ − y)+

∫ h/2

y
dy′(y− y′)

)
dΩ ′

dy
× ey

=
3φ
2

(
−

h2

4
− y2

)
dΩ ′

dy
× ey. (D 11)

The solution (D 11) does not satisfy the no-slip boundary conditions at the surface
y = ±h/2. In order to enforce the no-slip condition at the walls, it is necessary to
postulate the presence of two vortex sheets at the boundaries such that the velocity
discontinuity due to these sheets cancels the non-zero velocity induced by the particles
at the walls. It is evident that the strength of the vortex sheets that have to be added at
the two boundaries is (3φh2/4)((dΩ ′/dy)× ey)δ(y∓ h/2) at the boundaries y=±h/2.
With this, the solution for the velocity field is,

u′(x)=
3φ
2

(
h2

4
− y2

)
dΩ ′

dy
× ey. (D 12)

The above equation can be expressed in tensor notation when the gradient direction
is perpendicular to the walls of the channel,

u′(x)=−
3φ
2

(
h2

4
− y2

)
∇×Ω ′. (D 13)

From (D 13), the secondary flow velocity due to the gradient in the particle angular
velocity is zero in the cross-stream (y) direction, but it could be non-zero in the
streamwise and spanwise directions. In the streamwise direction, the migration velocity
is given by,

u′x(y)=−
3φ(h2

− 4y2)

8
dΩ ′z
dy
. (D 14)

The cross-section averaged secondary flow velocity is (φh2/4)(dΩ ′z/dy). For an
oblique magnetic field, there is a flow in the z (spanwise) direction due to the
particle rotation,

u′z(y)=
3φ(h2

− 4y2)

8
dΩ ′x
dy

. (D 15)

This flow is in the ±z direction of (dΩ ′x/dy) is positive/negative.

D.3. Volume fraction gradient
When there is a gradient in the volume fraction of the particles, there could be a net
velocity even when the particle angular velocity is a constant. Consider, for example,
a Couette flow between two plates at location y=±h, where the mean velocity is in
the x direction and the velocity gradient is in the y direction, as shown in figure 18(b).
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The volume fraction is expressed as φ(x′)= φ(x)+ (x′ − x) · ∇φ, where the volume
fraction gradient ∇φ is assumed to be a constant. The velocity disturbance due to the
volume fraction gradient, analogous to (D 9), is,

u′(x) =
1

4πR3/3

(∫
dx′

R3((x′ − x) · ∇φ)Ω ′ × (x− x′)
|x− x′|3

)
. (D 16)

If the volume fraction gradient is in the cross-stream (y) direction, the above integral
can be evaluated in a manner identical to that for the velocity due to the angular
velocity gradient, and the results for the secondary flow velocity induced by the
density gradient, analogous to (D 14) and (D 15), is,

u′x(y)=−
3Ω ′z(h

2
− 4y2)

8
dφ
dy
, (D 17)

u′z(y)=
3Ω ′x(h

2
− 4y2)

8
dφ
dy
. (D 18)

D.4. Vorticity gradient

The net force F on a particle of radius R in an imposed quadratic velocity field u∞(x)
far from the particle given by Faxen’s law,

F= 6πηR
(

1+
R2

6
∇

2

)
u∞
∣∣∣∣

x=x0

, (D 19)

where x0 is the centre of the particle, and u∞ is the imposed velocity field at the
location x0 in the absence of the particle. Here, the secondary flow velocity due to
the fluid vorticity and vorticity gradient is considered,

u∞(x)= u∞(x0)+
1
2ω(x0)× (x− x0)+

1
2((x− x0) · ∇ω|x=x0

)× (x− x0). (D 20)

The second and third terms on the right in (D 20) are due to the fluid vorticity and the
vorticity gradient at the centre of the particle, evaluated in the absence of the particle.
When this velocity field is substituted in (D 19), we obtain,

F= 6πηR
(

u∞(x0)−
R2

12
∇×ω|x=x0

)
. (D 21)

Thus, the additional drift velocity due to a vorticity gradient is −(R2/12)(∇ × ω),
where the curl of the vorticity vector is calculated at the centre of the particle.

For the example shown in figure 18(a), the vorticity is in the z direction and the
vorticity gradient is in the y direction. This implies a net force on the particles in
the x (flow) direction. If the velocity field is of the form ux= (6ū/h2)((h/2)2− y2) in
the channel for (−h/2)6 y 6 (h/2), where ū is the average velocity, the vorticity is
ωz = (12ūy/h2). Therefore, the net force is given by Fx =−(6πηR3ū/h2). This force
acts to reduce the particle velocity in the flow direction.
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