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Swept-wing boundary-layer receptivity
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Adjoint solutions of the linearized incompressible Navier–Stokes equations are
presented for a cross-flow-dominated swept-wing boundary layer. For the first time
these have been computed in the region upstream of the swept leading edge and
may therefore be used to predict receptivity to any disturbances of the incoming free
stream as well as to surface roughness. In this paper we present worst-case scenarios,
i.e. those external disturbances yielding maximum receptivity amplitudes of a steady
cross-flow disturbance. In the free stream, such an ‘optimal’ disturbance takes the
form of a streak which, while being convected downstream, penetrates the boundary
layer and smoothly turns into a growing cross-flow mode. The ‘worst-case’ surface
roughness has a wavy shape and is distributed in the chordwise direction. It is shown
that, under such optimal conditions, the boundary layer is more receptive to surface
roughness than to incoming free stream disturbances.
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1. Introduction
Transition scenarios of three-dimensional, cross-flow-dominated boundary layers

have a distinct dependence on disturbance environments. One reason is that the
predominant cross-flow disturbances are receptive to both steady and unsteady
disturbance environments, e.g. surface roughness and free stream turbulence,
respectively. Experimental studies by Bippes and co-workers as well as Saric and
co-workers showed (cf. Bippes 1999; Saric, Reed & White 2003, for detailed reviews)
that under low levels of free stream turbulence, which are believed to prevail in free
flight, the route to transition is dominated by steady cross-flow disturbances which
are excited by surface roughness despite the larger growth rates of their unsteady
counterparts. This exemplifies the influence and importance of receptivity mechanisms
which determine initial cross-flow disturbance amplitudes.

Theoretical and numerical studies on three-dimensional boundary layers have mostly
focused on the receptivity to surface roughness as well as the combination of the
latter with acoustic waves (most notably those by Fedorov 1988; Crouch 1993;
Choudhari 1994). It was concluded that stationary disturbances are likely to dominate
in environments exhibiting low levels of free stream disturbances. Schrader, Brandt
& Henningson (2009) and Schrader, Amin & Brandt (2010a) studied the receptivity
of a swept-flat-plate boundary layer to both vortical free stream modes, free stream
turbulence and surface roughness. Their results confirm experimental observations in
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that they found steady cross-flow instabilities to dominate for low-level free stream
disturbances.

Worst-case scenarios for swept-flat-plate flow, i.e. those disturbances exhibiting
maximum energy growth were computed by Corbett & Bottaro (2001) and
Tempelmann, Hanifi & Henningson (2010). Both studies revealed a significant
potential for non-modal disturbance growth. The corresponding optimal initial
disturbances were found to be of vortical type and non-modal growth was thus
concluded to be relevant for receptivity to vortical free stream disturbances and large-
size surface roughness. None of these studies considered the receptivity to free stream
disturbances upstream of a finite-thickness leading edge of a realistic swept wing.
However, it is the region close to the stagnation line where free stream disturbances
entrain the boundary layer. Asymptotic and numerical studies for two-dimensional flat
plate boundary layers identified efficient receptivity mechanisms related to free stream
vorticity impinging onto finite-thickness leading edges (cf. Goldstein, Leib & Cowley
1992; Schrader et al. 2010b).

If part of a general disturbances field, amplitudes of dominant disturbances or
eigenmodes of the underlying linear stability operator, here associated with the
linearized Navier–Stokes equations (LNSE), may be identified by projection onto
their corresponding adjoint solutions. The latter are thus ideally suited for predicting
boundary-layer receptivity to external disturbance fields. In this respect adjoint
solutions have been successfully employed by, e.g., Fedorov (1988), Hill (1995),
Luchini & Bottaro (1998), Dobrinsky (2002) and Giannetti & Luchini (2006) for
model problems such as flat plate boundary layers.

In this study we consider the flow over a realistic swept wing and incorporate the
upstream region. We predict receptivity to steady external disturbances by solving
the direct and adjoint incompressible LNSE for a stationary cross-flow disturbance
and determine worst-case scenarios. The latter allow us to compare the efficiency of
surface roughness and free stream disturbances in exciting cross-flow disturbances.

2. Flow configuration and baseflow

We examine receptivity of the boundary-layer flow over a swept wing (NLF(2)-0415
aerofoil) mounted in a wind tunnel at an angle of attack of α = −4◦. The sweep
angle is φ = 45◦. The wing geometry is invariant in the spanwise direction. This
configuration, depicted in figure 1, conforms to experiments by Reibert et al.
(1996). Owing to a strong favourable pressure gradient on the upper wing side it
is ideally suited for the study of cross-flow disturbances. Lengths and velocities
are normalized by the nose radius and the free stream velocity component U∞,
respectively. The corresponding dimensional values are rd

n = 10.76 mm and Ud
∞ =

13.1 m s−1. If not specified differently, velocities (U,V,W) are given with respect
to Cartesian coordinates (x, y, z) whose origin is at the leading edge and which
are defined in figure 1. The flow conditions are defined by the Reynolds number
Rern = U∞rn/ν = 10010.9 with ν being the kinematic viscosity. The chord Reynolds
number is ReC = Q∞C/ν = 2.4× 106, with C = 169.52 the swept chord.

In this paper we study linear receptivity mechanisms of the boundary layer on the
upper wing side. Accordingly, we solve the LNSE. These require a steady baseflow
about which the disturbances develop and which is obtained as a solution to the
nonlinear Navier–Stokes equations. Since a direct numerical simulation (DNS) of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.152


492 D. Tempelmann, A. Hanifi and D. S. Henningson

10

0

20

y

z
x

–10

–50
0

50
–20 0 20 40 60 80 100 120

FIGURE 1. Geometry of the swept NLF wing and numerical domains used. The numerical
grid used to obtain the adjoint solution is shown in red (every second grid line shown only)
while the baseflow domain and the domain used to compute the direct cross-flow disturbance
are denoted by grey and thin black lines, respectively. The receptivity methodology is based
on the domain Ω represented by thick black lines denoting piecewise boundaries Γi. The
RANS solution is sketched by coloured contour lines and blue lines denote respective
streamlines.

the whole wind tunnel test section is unfeasible, the domain plotted in grey colour
in figure 1 is chosen for the baseflow computations. Dirichlet boundary conditions
extracted from a complementary Reynolds-averaged Navier–Stokes (RANS) solution
are prescribed at the free stream boundaries. For a detailed description of how the
baseflow is obtained the reader is referred to Tempelmann et al. (2011a,b).

3. Receptivity theory
Since the baseflow is homogeneous in the spanwise direction we assume time- and

spanwise periodic disturbances of the form

q′(x, y, z, t)= q(x, y)eiβz−iωt + c.c. (3.1)

with q = (u, v,w, p)T, where p is the disturbance pressure and c.c. denotes the
complex conjugate terms. For such disturbances the incompressible LNSE can be
recast into

L q=
(
A+ B

∂

∂y
+ C

(
∂2

∂y2
+ ∂2

∂x2

)
+ D

∂

∂x

)
q= 0 (3.2)

where A,B,C and D represent linear operators. Following the work by Hill (1995) a
Lagrange identity may be defined as∫∫

Ω

(q∗)H L q dx dy=
∫∫

Ω

(L ∗q∗)H q dx dy+
∫
Γ

(J ·n) dΓ (3.3)

with Ω being an open bounded subset of R2 defined by the domain of interest which
has a piecewise smooth boundary Γ . The outward facing unit normal vector on Γ is
denoted n = (nx, ny)

T. The superscript ‘∗’ denotes adjoint quantities and ‘H’ denotes
a conjugate transpose. The adjoint LNSE are defined as L ∗q∗ = 0 and J = (Jx, Jy)

T

is a bilinear function of q and q∗. In the following we use the form J = K q,
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with K = (Kx,Ky)
T, and define

Jx =Kxq=
(
DHq∗ + CHq∗

∂

∂x
− CH ∂q

∗

∂x

)H

q (3.4)

Jy =Kyq=
(
BHq∗ + CHq∗

∂

∂y
− CH ∂q

∗

∂y

)H

q. (3.5)

Both L ∗ and J are obtained by performing integration by parts on the leftmost
inner product of (3.3). If q and q∗ are solutions to the direct LNSE and its adjoint,
respectively, i.e. L q =L ∗q∗ = 0 only the boundary integral term with respect to Γ
is non-zero in (3.3). Figure 1 shows the domain Ω that is used for the following
receptivity analyses of the swept wing and its five respective boundaries Γi. Note,
that Γ3 is chosen normal to the wing surface. Receptivity is studied by evaluating
J at these boundaries. The following analysis is based on the assumption that any
external disturbance environment has a non-zero projection onto the cross-flow mode
of interest, i.e. the cross-flow disturbance is always present at Γ3. It is the amplitude
of this cross-flow mode that shall be determined at Γ3. The adjoint cross-flow mode
is obtained by solving L ∗q∗ = 0 subject to boundary conditions u∗ = v∗ = w∗ = 0 at
Γ2, Γ4 and Γ5. Far outside the boundary layer, at Γ2, and upstream of the stagnation
point, at Γ5 we assume disturbances q to have decayed. Accordingly, we impose
u = v = w = 0. Note that all assumptions have been verified numerically. Taking into
account these boundary conditions, equation (3.3) is recast into

A3

∫
Γ3

(K Hn)H q̃3 dΓ3 =−A1

∫
Γ1

(K Hn)H q̃1 dΓ1 − A4

∫
Γ4

(K Hn)H q̃4 dΓ4 (3.6)

where we have used

J |Γi = AiK q̃i with Ai =
(∫

Γi

qHMq dΓi

)1/2

. (3.7)

The subscript ‘i’ denotes the respective boundaries, M = diag(1/2, 1/2, 1/2, 0) and
q̃i = q/Ai. Hence, A2

i is a measure of the disturbance energy. Equation (3.6) determines
the receptivity amplitude A3 of a cross-flow mode which is excited by inhomogeneous
boundary conditions at the wall or incoming free stream disturbances. Assuming that
external disturbances do not affect the shape but just the amplitude and phase of the
cross-flow disturbance at Γ3 we evaluate J |Γ3 on the basis of solutions q and q∗

obtained for a clean cross-flow mode. Accordingly, J |Γ1 and J |Γ4
are evaluated on

the basis of the adjoint cross-flow disturbance q∗ while q is defined by the considered
external disturbances.

4. Results
In the following we study the excitation of a stationary cross-flow disturbance

by surface roughness as well as by incoming free stream disturbances. Except for
validation purposes we do not determine receptivity to specific external disturbance
environments but consider worst-case scenarios yielding the largest possible receptivity.
The cross-flow mode that is considered has been identified as the naturally most
unstable stationary disturbance by Reibert et al. (1996). The spanwise wavenumber is
β = 5.6523.

Both the direct and the adjoint LNSE solutions of the cross-flow disturbance have
been obtained using the ‘nek5000’ code by Fischer, Lottes & Kerkemeier (2008)
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which builds on the spectral element method originally introduced by Patera (1984). It
provides spectral accuracy while allowing for complex geometries. A two-dimensional
slice of the computational grid of spectral elements used to solve the adjoint LNSE
is depicted in figure 1. Note that the solution is represented element-wise as a
spectral decomposition to Legendre polynomials of order N = 11. The grid consists of
30 144 three-dimensional spectral elements. Three elements are used to discretize the
homogeneous spanwise direction. Periodic boundary conditions are prescribed at the
lateral boundaries. Since the adjoint cross-flow mode convects upstream its solution
is initiated by prescribing the eigenmode of the local adjoint stability problem at the
downstream ‘outflow’ boundary of the domain. This boundary is located sufficiently
downstream of Γ3 to ensure a clean, transient-free adjoint LNSE solution at Γ3.
Accordingly, the upstream ‘inflow’ boundary is located such that the adjoint solution at
Γ1 is unaffected by the zero-stress boundary condition.

The response q inside Ω to any external disturbance is assumed to satisfy L q = 0.
However, since we know that the response will evolve into a cross-flow mode and
since the prescription of q is just required at Γ3 there is no need to compute the
shape of the cross-flow mode on the complete domain Ω . Hence, in order to obtain
the LNSE solution of the clean cross-flow mode at Γ3, the direct LNSE are solved
by disregarding the free stream part upstream of the leading edge. Note, however, that
the evaluation of receptivity and the definition of the adjoint are still based on the
entire domain Ω . Furthermore, auxiliary computations solving the parabolized stability
equations showed that the cross-flow mode decays strongly outside of the boundary
layer. Therefore, to obtain the shape of the direct cross-flow mode q|Γ3

, we lower the
upper boundary of the computational DNS domain as depicted in figure 1 and assume
the cross-flow mode to be zero outside. This results in a grid consisting of 13 596
spectral elements. The cross-flow disturbance is initiated by prescribing the eigenmode
of the direct local stability problem as a Dirichlet boundary condition at the inflow
boundary while zero-stress conditions are assumed at the outflow.

For both direct and adjoint simulations of the clean cross-flow mode zero-slip
conditions are prescribed at the wall as well as the upper and lower free stream
boundaries. Note, that for homogeneous wall boundary conditions the left-hand-side
term in (3.6) is constant at any position of Γ3 along the chordwise direction. This
property allows us to check the accuracy of the computations and is visualized in
figure 2(a) for the current case. The maximum deviation from its mean value is 0.3 %
and we thus expect accurate receptivity predictions.

4.1. Receptivity to surface roughness
By evaluating the integral terms at Γ3 and Γ4, equation (3.6) allows us to determine
the receptivity amplitude A3 of the cross-flow mode excited by inhomogeneous wall
boundary conditions. Incoming free stream disturbances are not considered, i.e. A1 = 0.
The receptivity to surface roughness may then be computed by projecting the no-slip
conditions from the surface of the roughness element to the undisturbed wall
employing Taylor series expansions. Truncating the series after first-order terms the
corresponding wall boundary conditions become

u|Γ4 =−Hβ ·∇U|Γ4, (4.1)

where U denotes baseflow velocities. Hβ = (Hβ,x,Hβ,y)
T is the spectral representation

of the roughness shape, i.e. the displacement of the smooth wall, as obtained from a
Fourier transformation with respect to the spanwise direction and ∇ = (∂/∂x, ∂/∂y)T.
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FIGURE 2. Validation: (a) absolute values of J3 =
∫
Γ3
(J |Γ3

·n) dΓ3 versus x. (b) Receptivity
amplitudes obtained by considering circular roughness elements. The adjoint-based prediction
(—) is compared with direct LNSE solutions comprising meshed roughness element (�).

Note that the disturbance pressure p̃ is multiplied by zero along Γ4 in (3.6) and thus
needs not be prescribed.

Employing (3.6) and (4.1) we can predict amplitudes of the chosen cross-flow
mode excited by the periodic array of localized cylindrical roughness elements which
was considered by Reibert et al. (1996). Based on our reference variables spacing,
height, diameter and positions of the cylinders are λz = 2π/β = 1.11, hr = 5.55× 10−4,
dr = 0.343 and xr ∈ [2.565, 18]. Figure 2(b) compares the adjoint-based prediction to
DNSs by Tempelmann et al. (2011b) who meshed the physical roughness element and
considered four different roughness positions xr. The agreement is excellent and, thus,
verifies our methodology and numerical approach.

Next, we aim at determining the worst-case scenario with respect to surface
roughness. Hence, we seek for the roughness shape yielding a maximum normalized
receptivity amplitude Ar = A3/A4. Such a roughness will be referred to as the optimal
roughness in the following. The first step is to determine the optimal wall boundary
conditions which are obtained by choosing q̃4 such as to maximize the inner product
with respect to Γ4. We thus choose

q̃4,opt =−cK Hn|Γ4 (4.2)

with c = (∫
Γ4
(K Hn)H M(K Hn) dΓ4)

−1/2
. This choice yields a maximum projection

of q̃4 on K Hn|Γ4
. The response of the swept-wing boundary layer to such wall

disturbances is presented in figure 3(c). However, this optimal response cannot be
expected from surface roughness since the roughness model (4.1) imposes restrictions
on the wall velocities. One such restriction stems from the fact that continuity of
the baseflow in combination with (4.1) will implicate a zero wall-normal disturbance
velocity component at Γ4. Hence, (u, v)|Γ4

are related through u|Γ4
= v|Γ4

/ tan(ϕ)
with ϕ being the angle between the x-direction and the local tangent to the wall.
Similarly, surface roughness is represented by a local, wall-normal displacement of
the smooth wall, i.e. Hβ,x = −Hβ,y tan(ϕ). Hence, the roughness model (4.1) can be
reduced to two equations of the form (u,w)T = Hβ,y(tan(ϕ)∂/∂x − ∂/∂y) (U,W)T. The
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FIGURE 3. (a) Optimal shape of distributed roughness. Hopt
β has been multiplied by a factor

20 for visualization purposes. (b) Absolute value of Hopt
β . (c) Boundary-layer response to

optimal wall boundary conditions (- - -) as well as optimal surface roughness (—).

optimal roughness shape would then be obtained through

Hopt
β,y =


∂U

∂x
tan(ϕ)− ∂U

∂y
∂W

∂x
tan(ϕ)− ∂W

∂y


−1(

ũ4,opt

w̃4,opt

)
, (4.3)

which is overdetermined. We therefore determine the optimal roughness shape
Hopt
β by seeking the least-squares solution to (4.3) which is the minimizer

of ‖(ũ4,opt, w̃4,opt)
T−Hβ,y[tan(ϕ)∂/∂x− ∂/∂y] (U,W)T‖2. The corresponding shape is

shown in figure 3(a,b). Note, that Hopt
β has been normalized such that the respective

wall disturbance velocities u|Γ4 , determined through (4.1), fulfil
∫
Γ4

1/2 uHu dΓ4 = 1.
The optimal roughness takes a wavy shape distributed along x. Its waviness is in phase
with the periodic oscillations of the cross-flow disturbance. The amplitude exhibits
a clear maximum very close to the stagnation line (located at x = 0.47) while it
monotonically decays towards zero farther downstream. Hence, excitation of the cross-
flow mode by surface roughness is most efficient close to the stagnation region. The
optimal response to surface roughness shown in figure 3(c) is two orders of magnitude
lower than that to general optimal, but rather unphysical, wall disturbances.

4.2. Receptivity to free stream disturbances
The receptivity to incoming free stream disturbances is predicted by assuming a
smooth wall and thus by evaluating terms with respect to Γ3 and Γ1 in (3.6). Here,
Γ1 is chosen perpendicular to the x-direction and thus −(K Hn)H =Kx. Again, we
do not study the receptivity to any specific free stream disturbance environment but
aim at determining the optimal initial disturbance, i.e. the localized disturbance at Γ1

that yields the largest normalized receptivity amplitude Ar = A3/A1. According to the
previous discussion, this optimal disturbance is obtained by choosing q̃1,opt ∝K H

x |Γ1
.

However, this choice is not possible as we search for an optimal disturbance localized
in x while Kx involves differentiation with respect to x. Thus, further assumptions are
needed. Here, Γ1 is chosen far enough upstream of the leading edge to assume the
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FIGURE 4. Optimal disturbance: (a) pseudocolours of u (red: positive; blue: negative). Grey
pseudocolours denote the wall disturbance pressure. Blue lines denote streamlines of the
baseflow whose projection to the x-y-plane is represented by streamline 1 (- - -). (b) Local
angles (φ,ψ) of streamline 1 with respect to x (y–z-plane) and y (x–z-plane), respectively.
(c) Disturbance velocities (us, vs,ws) projected onto the local streamline direction (see a)
extracted along streamline 1. (d) Optimal receptivity amplitudes obtained from both the
direct LNSE solution and the adjoint-based prediction of the optimal free stream disturbance
compared with the response to optimal roughness.

baseflow to be nearly homogeneous. The disturbances at Γ1 can then be assumed to
take the form q̃(x, y)= q̂(y)eiαx where the wavenumber α is extracted from the solution
to the adjoint LNSE assuming q∗(x, y) = q̂∗(y)e−iαx. The optimal initial disturbance is
then obtained as

q̃1,opt = cK H
x |Γ1 with Kx = (D+ 2iαC)H q∗ (4.4)

which is normalized with c= (∫
Γ1

K H
x MKx dΓ1)

−1/2 and in detail reads

ũ1,opt = c

[
p∗ +

(
U + 2iα

Re

)
u∗
]
Γ1

and

(
ṽ1,opt

w̃1,opt

)
= c

[(
U + 2iα

Re

)(
v∗

w∗

)]
Γ1

.

(4.5)

Equation (4.4) also yields an optimal initial disturbance pressure p̃1,opt ∝ u∗|Γ1
which

is not necessarily physical since we do not impose any constraints on the initial
disturbance, i.e. p̃|Γ1

is not enforced to be consistent with ũ|Γ1
. However, since the

physical pressure is related to the velocity field through a Poisson equation (in practice
the physical pressure can be obtained iteratively) we do not need to prescribe the
pressure at the inflow boundary; it will result from the solution to the LNSE. Note
that most of the following analysis is based on velocities us = (us, vs,ws)

T projected in
the direction of streamline 1 as depicted in figure 4. Hence, us denotes the streamwise
component and (vs,ws) denote components normal to the streamline direction while ws

is in the x–z-plane. The optimal initial free stream disturbance defined by (4.5) takes
the form of a streak as is shown in figure 6(a). While streamwise vorticity is present
the streak component us is clearly dominant. This explains results by Tempelmann
et al. (2011a) who found the same flow configuration to be more receptive to
vertical than to streamwise free stream vorticity. Since the latter implies a zero ‘streak’
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FIGURE 5. (a) Side view (x–y-plane) of parts of figure 4(a) showing the boundary layer
thickness δ99. (b) Top view of us extracted along streamline 1.
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FIGURE 6. Absolute values of us (—), vs ( ) and ws ( ). Pseudocolours denote
streamwise disturbance velocities us while black contours represent streamwise vorticity.
Grey horizontal lines denote the boundary layer thickness δ99. (a) Optimal initial disturbance
at x=−10 (y–z-plane). (b,c,d) Wall-normal planes along the wing surface at x= 2, x= 5 and
x= 10.

component us, its projection on to the optimal initial disturbance and thus the resulting
receptivity amplitude is rather small.
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Figures 4–6 depict the spatial evolution of the optimal disturbance as obtained
from a direct LNSE solution where the optimal initial condition (4.5) is prescribed
at the inflow boundary. Note that the optimal response predicted on the basis of
(3.6) is identical to that obtained from the direct LNSE and thus provides further
validation (cf. figure 4d). The optimal disturbance is convected along streamlines
slightly above the one which approaches the stagnation line. Shortly downstream of
the stagnation line the disturbance entrains the boundary layer as can be seen by
the sudden rise of the disturbance wall pressure in figure 4(a). Farther downstream
the emergence of the cross-flow mode is apparent. To illuminate how the optimal
disturbance enters the boundary layer we extract us along streamline 1 (cf. figure 4a,b).
It is apparent from figure 4(c) that the streamwise component is dominant at all
positions even in the stagnation line region where all disturbance velocity components
are damped. At about x = 4 the disturbance extracted along streamline 1 enters
the boundary layer (cf. figure 5a) and smoothly develops into the exponentially
growing cross-flow instability. Hence, the optimal disturbance seems to exhibit a
streaky structure at all positions. To further clarify how the cross-flow mode is
excited we extract us and the respective streamwise disturbance vorticity along wall-
normal planes (cf. figure 6b–d). Conforming to the previous observation we find the
streamwise component to be dominant inside the boundary layer. However, outside
of the boundary layer we observe the existence of vortical free stream disturbances
exhibiting velocity components (vs,ws) of the same order or even larger than us. Such
free stream disturbances may be represented as a superposition of continuous spectrum
modes the receptivity to which was studied by Schrader et al. (2009). These authors
identified a direct receptivity mechanism where vorticity modes of the continuous
spectrum penetrate the boundary layer and excite cross-flow instabilities. Initial
optimal disturbances in a swept-flat-plate boundary layer were found by Tempelmann
et al. (2010) to primarily consist of streamwise vorticity mainly located inside or
at the edge of the boundary layer which leads to strong non-modal growth via the
lift-up and Orr mechanisms. In our case streamwise vorticity is strongly damped inside
the boundary layer. Hence, the lift-up mechanism does not seem to be the driving
receptivity mechanism behind the excitation of cross-flow disturbances. It is rather the
excitation of continuous spectrum modes penetrating the boundary layer as well as
the smooth entrainment of the initial streaky disturbance into the boundary layer that
optimally excite the steady cross-flow mode.

Studying global modes of a compressible flow around a swept leading edge Mack,
Schmid & Sesterhenn (2008) found attachment-line instabilities of two-dimensional
nature which are convected along the stagnation line and connect to cross-flow modes
under certain conditions. Guégan, Schmid & Huerre (2008) identified strong non-
modal growth of streaks aligned with the stagnation line. However, considering both
the wall disturbance pressure and us along streamline 1 (see figure 5) the optimal
disturbance obtained here is of distinct three-dimensional nature in the stagnation
region. The fact that we do not find attachment-line instabilities of two-dimensional
nature is explained by the low sweep Reynolds number Res =W∞ (S)

1/2 /ν = 82 (S is
the strain rate of the potential flow at the stagnation line) which is significantly lower
than those considered in the previously mentioned studies.

Finally, we compare the boundary-layer response with both optimal surface
roughness and the optimal initial free stream disturbance. Figure 4(d) shows that
receptivity amplitudes obtained for the former are about one order of magnitude
higher.
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5. Conclusions
The receptivity of a swept-wing boundary layer to surface roughness and incoming

free stream disturbances has been studied by determining worst-case scenarios. The
optimal surface roughness which is most efficient in exciting cross-flow disturbances
takes the form of a wavy wall with a maximum amplitude close to the stagnation
line. To the best of our knowledge, an optimal disturbance of streak-type, localized
upstream of a swept wing has been presented for the first time. While the optimal
disturbance exhibits minor streamwise vorticity its streak component is found to
dominate all of the way into the boundary layer where it smoothly turns into a
cross-flow disturbance. Under such optimal conditions the boundary layer is found to
be more receptive to surface roughness than to steady free stream disturbances. Within
the linear framework, the adjoint solution computed may be used to predict receptivity
to any disturbance environment in the free stream as well as to any surface roughness.
It is thus perfectly suited for parametric studies of receptivity to various disturbance
environments, e.g. free stream vorticity or localized surface roughness. Also the forced
receptivity to sources of mass and momentum is easily accounted for.
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