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The migration of a capsule enclosed by an elastic membrane in a wall-bounded linear
shear is investigated using a front-tracking method. A detailed comparison with the
migration of a viscous drop is presented varying the capillary number (in the case
of a capsule, the elastic capillary number) and the viscosity ratio. In both cases,
the deformation breaks the flow reversal symmetry and makes them migrate away
from the wall. They quickly go through a transient evolution to eventually reach a
quasi-steady state where the dynamics becomes independent of the initial position
and only depends on the wall distance. Previous analytical theories predicted that
for a viscous drop, in the quasi-steady state, the migration and slip velocities scale
approximately with the square of the inverse of the drop–wall separation, whereas
the drop deformation scales as the inverse cube of the separation. These power law
relations are shown to hold for a capsule as well. The deformation and inclination
angle of the capsule and the drop at the same wall separation show a crossover
in their variation with the capillary number: the capsule shows a steeper variation
than that of the drop for smaller capillary numbers and slower variation than the
drop for larger capillary numbers. Using the Green’s function of Stokes flow, a
semi-analytic theory is presented to show that the far-field stresslet that causes the
migration has two distinct contributions from the interfacial stresses and the viscosity
ratio, with competing effects between the two defining the dynamics. It predicts the
scaling of the migration velocity with the capsule–wall separation, however, matching
with the simulated result very well only away from the wall. A phenomenological
correlation for the migration velocity as a function of elastic capillary number, wall
distance and viscosity ratio is developed using the simulation results. The effects of
different membrane hyperelastic constitutive equations – neo-Hookean, Evans–Skalak,
and Skalak – are briefly investigated to show that the behaviour remains similar for
different equations.
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1. Introduction
The deformation-induced migration of drops, capsules and cells plays a key role in

structures and functions of many chemical and biological emulsions/suspensions. In
blood flow, for example, migration of red blood cells (RBCs) away from the vessel
wall creates a cell-depleted layer and reduces the overall viscosity (Fåhraeus 1929;
Barbee & Cokelet 1971; Reinke, Gaehtgens & Johnson 1987). On the other hand,
relatively less deformable cells – platelets and white blood cells – are expelled towards
the vessel wall (Tangelder et al. 1985). Variation in deformability changes the lateral
force on these cells, affecting their ability to adhere to the vessel wall under different
physiological conditions (Damiano et al. 1996). Here, we investigate the migration of
a capsule enclosed by an elastic membrane in simple shear near a wall.

The lateral migration of deformable particles away from a wall has a purely
viscous origin (Leal 1980), and is absent for a rigid sphere in a wall-bounded
plane shear. At zero Reynolds number without the influence of inertia, reversibility
of the linear Stokes flow precludes lateral migration of rigid spheres. Deformation
breaks the reversibility and the deformed particle migrates away from the wall. This
phenomenon has been extensively investigated for the case of a viscous drop with
an interface where the normal stress jump is given by the interfacial tension. A
number of analytical results have been developed (Chaffey, Brenner & Mason 1965;
Karnis & Mason 1967; Chan & Leal 1979; Shapira & Haber 1990; Imaeda 2000)
using perturbation theory. However, the theories are limited to small deformations and
far from the wall, and they neglected alterations of deformation and orientation due
to the presence of the wall. The results showed large discrepancies when compared
with experiments (Karnis & Mason 1967). Improved predictions were achieved
using boundary element simulations of large drop deformation (Uijttewaal, Nijhof
& Heethaar 1993; Kennedy, Pozrikidis & Skalak 1994; Uijttewaal & Nijhof 1995).
Smart & Leighton (1991), in an elegant presentation, elucidated that the wall-induced
migration of a drop arises due to the stresslet field generated by the drop – more
specifically by the flow induced by the image stresslet on the other side of the wall.
Recently, we have shown that in a shear-induced pair-collision between two viscous
drops in a confined shear, the wall-induced migration makes them organize at a
specific separation in the centre of the domain (Sarkar & Singh 2013).

There have been fewer investigations of the lateral migration of more complex
particles such as elastic capsules. Capsule shape in the small deformation limit
has been analysed using perturbation theories (Barthes-Biesel 1980; Barthes-Biesel
& Rallison 1981). Bagchi and co-workers, in a number of articles, applied an
immersed boundary technique to study the behaviours of single (Doddi & Bagchi
2008; Bagchi & Kalluri 2009) and multiple neo-Hookean capsules (Doddi & Bagchi
2009) in a plane Poiseuille flow. There a balance between the wall effects and
shear gradient effects determines the equilibrium positions of the capsules. A recent
two-dimensional study (Coupier et al. 2008; Kaoui et al. 2008; Li & Ma 2010)
showed that elastic capsules and vesicles (fluid bodies enclosed by an area-preserving
membrane characterized by a bending resistance energy) migrate toward the centre
of the Poiseuille flow, in contrast to a drop which moves to an off-centre position.
Introduction of inertia plays an important role in determining the equilibrium positions
(Shin & Sung 2011). There have also been a number of studies of the lift of a
vesicle near a wall (Olla 1997a,b; Callens et al. 2008; Farutin & Misbah 2013),
showing that the vesicle experiences a tank-treading (membrane rotation) motion with
a steady tilt. Lift may also induce unbinding of a tank-treading vesicle adhered to a
wall by non-specific interactions; the small clearance between the vesicle and the wall
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allowed a lubrication analysis within the binding regions, which gave an estimation of
the lift force (Cantat & Misbah 1999; Seifert 1999). Further quantitative experiments
(Lorz et al. 2000; Abkarian & Viallat 2005) confirmed the existence of a lift force.
More recently, boundary element simulation was used to show the formation of a
cell depletion layer in a suspension of capsules in viscous and viscoelastic matrices
(Pranay, Henriquez-Rivera & Graham 2012). In view of the majority of the above
studies being in Poiseuille flow, we note that there the shear rate gradient plays a role
in migration. In contrast, in simple shear characterized by a constant shear rate, the
migration is exclusively caused by the presence of the wall, making it an interesting
case in its own right.

Here, we use a front-tracking finite difference method to directly simulate the
deformation and motion of a capsule enclosed by an elastic membrane near a wall
in plane shear. The front-tracking method provides a comprehensive framework to
study various complex effects including inertia (Sarkar & Schowalter 2001; Li &
Sarkar 2005, 2006; Singh & Sarkar 2011), membrane/fluid viscoelasticity (Sarkar &
Schowalter 2000; Li & Sarkar 2008; Aggarwal & Sarkar 2007, 2008a,b; Mukherjee
& Sarkar 2009, 2010, 2011, 2013), and multi-particle interactions (Olapade, Singh &
Sarkar 2009; Singh & Sarkar 2009; Sarkar & Singh 2013). This paper is organized
as follows. In § 2, we briefly describe the mathematical formulation of the fluid flow
and membrane forces. The numerical algorithm is described in § 3. In § 4, results on
capsule deformation, orientation and migration velocity are presented. We discuss in
detail the quasi-steady dynamics and its dependence on the capillary number and the
instantaneous distance from the wall. We offer a detailed comparison between drop
and capsule migration. Using a Green’s function formulation of the Stokes flow around
a drop or a capsule, we develop an approximate theory for the migration that explains
the different scalings numerically observed. Using the simulated results, we provide
a phenomenological correlation for the migration of an elastic capsule as a function
of capillary number, capsule–wall separation and viscosity ratio. Finally, the effects of
different constitutive equations are briefly considered. Results are summarized in § 5.

2. Governing equations
The mathematical formulation has been described in detail previously (Li & Sarkar

2008). Here it is only briefly sketched. The flow is governed by the continuity and
Navier–Stokes equations:

∇ ·u= 0, (2.1)
∂(ρu)
∂t
+∇ · (ρuu)=−∇p+∇ · [µ{∇u+ (∇u)T}] −

∫
∂B
f m(x′)δ(x− x′) dS(x′), (2.2)

where p is the pressure, ρ is the density and µ is the viscosity of the fluid. The density
and viscosity are uniform in each phase and are allowed to have a sharp variation
across the membrane ∂B separating them. In this work, the capsule is assumed to be
neutrally buoyant with the same density as that of the liquid outside. The superscript
T represents the transpose; f m is the elastic membrane forces arising as a jump
in the stress condition across the membrane. The elastic stress in the membrane
is determined by the initial membrane configuration and its deformation state via
two-dimensional constitutive laws. In this paper, three different constitutive laws for
membranes are considered: neo-Hookean, Skalak and Evans & Skalak (Barthes-Biesel,
Diaz & Dhenin 2002; Evans & Skalak 1979; Skalak et al. 1973). Note that for a drop
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the force at the interface is simply due to the interfacial tension σs (Singh & Sarkar
2011).

A neo-Hookean membrane (denoted by NH below) is an example of a class of
models that assume the membrane to be an infinitely thin sheet of an isotropic volume-
incompressible elastic medium. The area of the membrane is allowed to change, with
the implicit assumption that it is balanced by the thinning of the membrane. Its
strain-energy function is

W = Gs

2

(
λ2

1 + λ2
2 +

1
λ2

1λ
2
2

)
, (2.3)

where λ1 and λ2 are the principal stretches on the membrane surface. The principal
membrane stresses are

τm
1
= 1
λ2

∂W

∂λ1
= Gs

λ1λ2

(
λ2

1 −
1
λ2

1λ
2
2

)
, (2.4a)

τm
2 =

1
λ1

∂W

∂λ2
= Gs

λ1λ2

(
λ2

2 −
1
λ2

1λ
2
2

)
. (2.4b)

Skalak et al. (1973) proposed a constitutive model for the red blood cell membrane
(denoted by SK below), that incorporates area-incompressibility. The strain-energy
function is given by

W = Gs

4
[(λ4

1 + λ4
2 − 2λ2

1 − 2λ2
2 + 2)+ C(λ2

1λ
2
2 − 1)

2]. (2.5)

A large value of C indicates approximate area-incompressibility. The principal
membrane stresses are

τm
1
= Gs

λ1λ2

[
λ2

1(λ
2
1 − 1)+ Cλ2

1λ
2
2(λ

2
1λ

2
2 − 1)

]
, (2.6a)

τm
2 =

Gs

λ1λ2

[
λ2

2(λ
2
2 − 1)+ Cλ2

1λ
2
2(λ

2
1λ

2
2 − 1)

]
. (2.6b)

Evans & Skalak (1979) simplified the above constitutive model by adding linearly and
independently contributions of the shear and dilations (denoted by ES). The modified
strain energy function is

W = GS

[(
λ2

1 + λ2
1

2λ2
1λ

2
2

− 1
)
+ A(λ1λ1 − 1)2

]
. (2.7)

The area dilation modulus is simply proportional to the shear modulus (Ks = AGS) and
the principal membrane stresses are

τm
1
= GS

[
1

2λ2
1λ

2
2

(λ2
1 − λ2

2)+ A(λ1λ2 − 1)
]
, (2.8a)

τm
2 = GS

[
1

2λ2
1λ

2
2

(λ2
2 − λ2

1)+ A(λ1λ2 − 1)
]
. (2.8b)

At C = 1 and A = 3, the NH, SK and ES models predict the same deformation of the
membrane with (Ks = 3GS) at a small deformation limit, but they show different
nonlinear stress–strain relations for large deformation (Lefebvre & Barthes-Biesel
2007). From relative deformation, the principal directions g1, g2 and corresponding
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FIGURE 1. A schematic diagram of the flow of a capsule near a wall in a shear flow.

stretches are obtained. Equations (2.4), (2.6) or (2.8) are used to obtain the principal
stresses. The stress tensor in an element is

τm = τm
1
g1 ⊗ g1 + τm

2 g2 ⊗ g2, (2.9)

which can then be used to calculate the membrane force f m in (2.1). In the present
formulation, we do not consider stresses due to membrane bending.

3. Problem setup and numerical implementation
We investigate deformation and lateral migration of a capsule in simple shear near

a wall. A spherical capsule with radius a is initially placed at a distance h0 from the
bottom wall (see figure 1). Simulations are performed in a rectangular computational
domain of size 10a× 10a× 5a in the flow (x), gradient (y) and vorticity (z) directions
respectively. Periodic boundary conditions are imposed in the flow and the vorticity
directions. In the gradient direction, the bottom wall is at rest, and the top wall
(assumed to be sufficiently far away from the bottom wall and the capsule) is moving
with a velocity U to generate a shear rate γ̇ = U/10a. The effects of the top wall
have been investigated to find that the capsule dynamics remain independent until the
capsule reaches a distance from the bottom wall h/a> 3.5.

The governing equation (2.1) is solved in a three-dimensional staggered (volume)
grid. The capsule membrane is described by the interface (front) separately discretized
by a triangular mesh (Sarkar & Schowalter 2001; Tryggvason et al. 2001; Li &
Sarkar 2005). The membrane force is computed using the deformation of the triangular
element on the front from its initial undeformed configuration (Eggleton & Popel
1998; Shrivastava & Tang 1993). During deformation, each element remains flat and
the strain is homogeneous within each element. Principal strains computed from the
deformation are used in (2.4), (2.6) or (2.8) along with (2.9) to obtain the stresses at
each element. The forces along the element edges were computed and the total force
exerted on each membrane node is computed by adding the elastic forces acting on
all the element edges connected to that node. A fractional-step projection algorithm is
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FIGURE 2. Initial shapes of the capsule during the migration. It first becomes asymmetric
and then migrates away from the wall: h0/a= 1.2, ε = 0.6 and λ= 1. The solid line indicates
the wall.

used to solve the problem. The pressure Poisson equation is solved using a multi-grid
method. An ADI scheme is applied for the viscous terms to alleviate the severe
diffusion limited restriction (1t < 0.25(1x)2ρ/µ) on time steps.

We use a uniform 96×96×48 grid in the computational domain and a surface mesh
with 10 242 nodes for tracking the membrane, unless otherwise specified. The ratio of
an element edge to the grid spacing is 0.66 for the initial undeformed configuration
so that appropriate grid-front property transfer is ensured. The numerical convergence
of the simulation tool was presented in a previous publication (Li & Sarkar 2008).
The problem is governed by dimensionless parameters ε = µmaγ̇ /Gs (elastic capillary
number) and λ = µd/µm (viscosity ratio), and h/a (normalized capsule–wall distance).
In the case of drops, the elastic capillary number is replaced by Ca = µmaγ̇ /σs. The
explicit nature of the algorithm restricts simulation at Re= 0.05 to approximate Stokes
flow simulation.

4. Results and discussion
4.1. Transient deformation and migration

First we consider a capsule enclosed by a neo-Hookean (NH) membrane (ε = 0.6, λ=
1) placed initially at h0 = 1.2a. Figure 2 shows its evolving shape as it moves away
from the wall at various t′ = γ̇ t. Initially (see e.g. t′ = 1.0) the capsule deforms into
an ellipsoid with a symmetric shape, showing negligible effects of the wall. After
t′ = 3, further deformation breaks the symmetry in shape due to the wall: a higher
deformation of the capsule results in a tail shape near the wall. Due to the membrane
compressive force, the tail has a tendency to retract. Similar asymmetric shapes were
also observed for a viscous drop in shear near a wall (Uijttewaal et al. 1993). The
deformed capsule moves in the flow direction and simultaneously moves away from
the wall. As the distance between the capsule and the wall increases, the influence
of the wall decreases. Owing to the reduced wall effect, the stress relaxes, the tail
gradually disappears, and eventually the capsule gains an approximately ellipsoidal
shape. At t′ = 50, the capsule reaches h/a≈ 3.0, where wall effects on the shape seem
to be negligible, the shape now being almost symmetric.
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We define the axes of the capsule using an inertia tensor:

Id =
∫

V
(r2I − xx) d3r = 1

5

∫
∂V
(r2xI − xxx) ·n d2r, (4.1)

where I is the identity tensor. The relations between the eigenvalues Id
L,B,W of Id and the

major axes of the capsule are

L =
√

5
2ρV

(Id
B + Id

W − Id
L), (4.2)

B=
√

5
2ρV

(Id
L + Id

W − Id
B), (4.3)

W =
√

5
2ρV

(Id
L + Id

B − Id
W). (4.4)

We compare the cases in the presence and absence of the wall in figure 3(a) by
plotting the transient deformation D= (L−B)/(L+B) and the orientation angle ϕ (the
angle between the largest axis L and the flow direction). In the initial stage before
t′ ' 1.0, D and ϕ are identical in the presence and absence of the wall. Afterwards, the
capsule in the presence of the wall becomes more aligned with the flow and ϕ shows
a slight undershoot. After t′ ' 15, the capsule is sufficiently far from the wall that the
effects of wall on ϕ become negligible. After the initial stage and before the capsule
migrates far from the wall, D shows a large increase from the no-wall case primarily
due to increased L (not shown here for the reasons of brevity). In the long time limit,
deformation curves for both cases gradually converge.

The wall-induced migration is depicted in the inset of figure 3(b) by the evolution of
the x and y coordinates of the centre of mass of the capsule. The capsule moves in the
flow direction shown by xc increasing with time. In the initial stage before t′ ' 1.0, yc

remains close to 1.2a and the capsule hardly moves in the lateral direction (figure 1).
After t′ > 3, as the shape loses its symmetry, the capsule starts moving in the lateral
direction. Corresponding velocities are also shown in figure 3(b). We compute the
slip velocity – the relative velocity between the unperturbed fluid and the capsule
Vslip = γ̇ h − Vx (γ̇ h is the unperturbed velocity at the capsule’s centre of mass and Vx

is the streamwise velocity of the capsule’s centre). Migration and slip velocities of the
capsule are non-dimensionalized by γ̇ a. Both velocities remain small before t′ ' 1.0.
Then they quickly increase to a maximum due to excess deformation. Subsequently,
both velocities slowly decrease as a result of increasing capsule–wall distance. Similar
to the case of a drop subjected to shear (Uijttewaal et al. 1993), migration velocities
are highly dependent on the deformation. The slip velocity is almost twice the value of
the migration velocity and its positive value shows the capsule lagging behind the flow.

In figure 4, we plot the migration velocity of the capsule as a function of the
capsule–wall distance (h/a) with different starting positions h0/a. The inset plots the
corresponding deformation. Note that after transient lateral displacement, the capsule
adapts itself to the flow and reaches a quasi-steady state, where the deformation and
the migration velocity become independent of the initial position. They are then only
functions of the instantaneous lateral position of the centre of the capsule from the
wall (h/a). In the following, we discuss the behaviour of a capsule that has reached a
quasi-steady state.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

62
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.624


428 R. K. Singh, X. Li and K. Sarkar

0.1

0.2

0.4

0.6

(a)

(b)

0.2

0.4

D

0.6

0 10 15 20 255

0 10 20 30 40

0.1

0.2

Slip velocity
Lateral velocity

1

2

0 10 20 30 40

20

40

60

80

0

0.30.3

0

1003

0.2

0.8

D, free

, free

D, wall-bounded

, wall-bounded

FIGURE 3. (Colour online) (a) Temporal evolution of the deformation D and orientation
angle ϕ of a neo-Hookean capsule at ε = 0.60 and λ = 1. The results for free and wall-
bounded conditions are compared. (b) Lateral and slip velocities with time. The inset of (b)
shows the temporal evolution of the x and y coordinates of the centre of the capsule.

4.2. Effects of capillary number in quasi-steady state and comparison with drops

Due to the development of compressive stresses in an elastic membrane (Lac
et al. 2004), the capsule shape may become unstable in the absence of bending
resistance leading to surface buckling. The formation of such buckles in an unbounded
shear at low capillary numbers (ε) has been previously investigated and discussed
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FIGURE 4. Evolution of the lateral velocity of an NH capsule starting at different initial
positions with ε = 0.6 and λ = 1. The inset shows the evolution of deformation for the same
case.

(Li & Sarkar 2008). There we found that the numerical buckling instability is
somewhat alleviated due to the smoothing involved in the front-tracking algorithm.
At low ε, even when a capsule tends to be unstable, it can always reach a quasi-
steady D and ϕ before buckling instability sets in. Here, we do not explore the
capsule behaviour beyond the unstable point. In figure 5(a), we plot the quasi-
steady deformation and orientation angle as functions of capillary number ε at
different capsule–wall distances, h/a. Different cases reach a value of h/a at different
time instants. Increasing ε decreases elastic stresses in the membrane compared to
deforming viscous stresses. Therefore, for a fixed value of h/a,D increases with
increasing ε. The orientation angle decreases with increasing ε; similar to a drop,
the more elongated the capsule is, the more it aligns with the flow. The decrease of
capsule–wall distance h/a leads to a slight increase in D but negligible change in ϕ.
Note that D is less sensitive to h/a at larger values of h/a.

In addition to deformation, a spherical capsule also exhibits a tank-treading motion:
a fluid particle on the membrane goes around the capsule due to the vorticity in
the shear flow. In figure 5(b), we plot the first, second, third and fifth tank-treading
periods. The period shows a linear variation with the elastic capillary number. It shows
a higher value for the first tank-treading period when the capsule is closest to the wall.
As the capsule moves laterally away from the wall, the tank-treading period decreases.
The underlying physics can be understood from figure 5(a). Near the wall, a capsule
experiences higher deformation caused by the excess stress due to the wall effect. The
tank-treading period is the time for the fluid particle to complete the motion around
the capsule. The more deformed the interface, the longer it takes for the fluid particle
to go around. As the deformed capsule moves away from the wall, the deformation
decreases, resulting in a lower tank-treading period. For a capsule in an unbounded
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FIGURE 5. (a) Deformation D and orientation angle ϕ, and (b) first, second, third and fifth
tank-treading periods (TTP) versus capillary number (ε) for an NH capsule at λ= 1.

shear, we saw a one-to-one relation between the deformation and the tank-treading
period (Lac et al. 2004; Li & Sarkar 2008). Further, closeness to the wall retards the
membrane motion.

The migration of a drop in a shear flow near a wall has been extensively
investigated (Uijttewaal et al. 1993). Due to the similarity between the capsule and
drop cases, in figure 6, we compare the migration of a drop and an NH capsule as
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FIGURE 6. Comparison of (a) deformation, (b) orientation angle, (c) lateral velocity and
(d) slip velocity versus capillary number for an NH capsule and a viscous drop at h/a= 1.5.

a function of capillary number ε = µγ̇ a/Gs and Ca = µγ̇ a/σs at a fixed separation
h/a = 1.5. In figure 6(a,b), we observe that the variations of deformation and
orientation angle for a drop and a capsule show distinct characteristics with capillary
numbers. For low capillary numbers, deformation of both capsules and drops increases
linearly with capillary number ε(Ca). At low capillary numbers below ε(Ca)' 0.25, a
capsule reaches a larger deformation and smaller orientation angle compared to a drop.
The opposite occurs at higher capillary numbers above ε(Ca) > 0.28. The inclination
angle variation with capillary number shows similar crossover between a drop and a
capsule, the capsule initially decreasing its inclination with ε(Ca) faster than the drop
and later reversing.

The migration velocity shows roughly linear variation with ε(Ca) for smaller values
of these numbers (figure 6c). The linearity is replaced by a quadratic variation
for drops at larger Ca, but for capsules the migration velocity seems to be flatter
(∼ε0.6: see (4.18)) for ε > 0.1. The drop migration velocity compares very well with
the boundary element method (BEM) computation of Uijttewaal et al. (1993), also
shown here. For larger capillary numbers (Ca > 0.3), the migration velocity of a drop
experiences different dynamics initially, and only at a larger wall separation does it
reach a quasi-steady state. Figure 6(d) shows that the slip velocity of a migrating
drop is at least initially independent of capillary number (note that the perturbative
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theory – (4.7) below – due to Shapira & Haber 1990 obtains a value 0.0972 for the
slip velocity of a drop at h/a = 1.5 close enough to the simulated value of 0.11).
However, for a capsule, the slip velocity shows an initial linear decrease followed by a
region of little change. In the next section, we try to explore some of these variations
using relations analogous to those for drops obtained using perturbative analysis.

4.3. Quasi-steady dynamics: scaling with distance and elastic capillary number
For a viscous drop with a Newtonian interface characterized by an interfacial tension
value, perturbative theories predict a number of scaling relations. Due to the similarity
between a drop and a capsule, we are led to investigate similar scalings for capsules.
Shapira & Haber (1990) arrived at an expression for deformation of a drop induced by
the presence of the wall:

D= DTaylor

[
1+ 3(1+ 2.5λ)

8(1+ λ)
(a

h

)3
]
, DTaylor = (16+ 19λ)

16(1+ λ) Ca, (4.5)

where DTaylor is the deformation of a drop in free shear obtained using a perturbative
method by Taylor (1934). The expression was also successfully matched by BEM
simulation at low capillary numbers (Uijttewaal et al. 1993). Figure 7(a) shows
that the deformation of a capsule also scales as D ∼ (a/h)3 for different ε values.
Figure 6(a) already showed linear variation of D with ε for small ε. For the lateral
migration of a viscous drop, Chan & Leal (1979) obtained an analytical expression:

Vlat

γ̇ a
= DTaylor

3
(
54λ2 + 97λ+ 54

)
280(1+ λ)2

(a

h

)2
. (4.6)

Figure 7(b) shows that for capsules too, Vlat ∼ (a/h)2 for low ε (see § 4.5). In
figure 7(c), we show a scaling similar to (4.6) Vlat ∼ D(a/h)2. Note that Chan &
Leal, in their perturbative analysis, did not account for effects of the wall on drop
deformation, and took it to be DTaylor. Instead, here we use the simulated instantaneous
deformation D at that position. The scaling is again better for lower values of D(a/h)2

corresponding to a larger capsule–wall distance (h). In the inset of figure 7(c), we also
show the analogous scaling (4.6) for a viscous drop: the scaling is far better for the
drop than for the capsule. For the slip velocity of a viscous drop, Shapira & Haber
(1990) obtained

Vslip

γ̇ a
=
(a

h

)2 1+ 2.5λ
8(1+ λ) . (4.7)

In figure 7(d), we see that for a capsule, the slip velocity follows a similar scaling
Vslip ∼ (a/h)2 scaling being better for lower ε.

Note that there have been extensive studies of vesicle and RBC migration in wall-
bounded shear flows predicting and numerically verifying inverse square variation
with wall separation (Olla 1997a,b, 1999; Sukumaran & Seifert 2001; Farutin &
Misbah 2013). Typically, the vesicles have a volume less than the maximal volume
for their area. Olla (1997a) obtained a relation Vlat = U(λ,B/L,W/L)γ̇LBW/h2 for
an ellipsoidal vesicle with principal axes L, B and W, where U(λ,B/L,W/L) is a
function of the parameters indicated. The inverse square law was also experimentally
observed (Callens et al. 2008; Grandchamp et al. 2013). Sukumaran & Seifert (2001)
using a BEM simulation found a correlation Vlat = 0.08γ̇LBW/h2 for a vesicle of close
to maximal (95 %) volume.
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FIGURE 7. (Colour online) Scalings of different parameters with capsule–wall distances
(h/a): (a) deformation versus (a/h)3, (b) lateral velocity versus (a/h)2, (c) lateral velocity
versus D(a/h)2 (the inset shows the same for a viscous drop) and (d) slip velocity
versus (a/h)2.

4.4. A far-field theory of lateral migration velocity
In the previous section, we used analytical theories for migration of a viscous drop
to postulate analogous expressions for a capsule. We did not find any perturbative
analysis in the literature for the lateral migration of a capsule in shear flow. Although
one can do such an analysis, investigating any of the previous studies for drops
amply demonstrates the algebraic complexity of the task. Furthermore, although it
provides an analytical expression, the underlying physics remains non-transparent. As
mentioned in the Introduction, Smart & Leighton (1991) elucidated the migration
of a viscous drop near a wall as arising from the image stresslet field induced by
the presence of a wall. Here, we develop this idea to explain the scaling that we
presented in the last section. Note that the derivation here closely follows a recent
investigation for drop migration in a viscoelastic medium by us (Mukherjee & Sarkar
2013). Therefore we provide a brief sketch for completeness and omit details. We
express the flow field using a Stokes Green’s function, as is usually done in boundary
element simulations. Assuming Stokes flow, the velocity field outside the capsule in
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the entire domain can be written as

uj(x)= u∞j −
1

8πµm

∫
Ad

fi(y)Gij(x, y) dA(y)

+ (1− λ)
8π

∫
Ad

ui(y)Mijk(x, y)nk(y) dA(y),

Gij(x, y)= GFS
ij (x, y)+ Gw

ij (x, y), Mijk(x, y)=MFS
ijk (x, y)+Mw

ijk(x, y),

 (4.8)

where we use the proper Green’s function that adds a contribution Gw
ij (x, y) to the free

space Green’s function GFS
ij (x, y) so that Gij(x, y) = 0 on the wall y2 = 0 (Blake 1971).

The tensor Mijk(x, y) is the stress due to this Green’s function. This special property
of the Green’s function along with the no-slip condition eliminates the surface integral
over the wall. Here u∞i is the imposed shear, Ad is the surface of the capsule with
outward normal ni(x), and fi(x) is the membrane force appearing in (2.1) which is also
equal to the jump in fluid traction across the membrane (see (4.13) below). We find an
expression appropriate for the far-field by performing a Taylor series expansion of the
Green’s function and the double-layer potential around the centre of the drop yc:

Gij(x, y)= Gij(x, yc)+ ∂Gij(x, yc)

∂yck
(yk − yck)+ O

(
a

|y− yc|
)3

, (4.9)

Mijk(x, y)=Mijk(x, yc)+ O

(
a

|y− yc|
)3

. (4.10)

Using this expression in (4.8), and noting that
∫

Ad
fj(y) dA(y) = 0 (net membrane

force for a free capsule) and
∫

Ad
uk(y)nk(y)dA(y)= 0 (incompressibility), we obtain the

far-field expression of the velocity field given in terms of the stresslet

uj(x)= u∞j (x)−
1

8πµm

∂Gij(x, yc)

∂yck

×
{∫

Ad

fi(y)(yk − yck) dA(y)− µm(1− λµ)
∫

Ad

(uink + ukni)(y) dA(y)
}

= u∞j (x)−
1

8πµm

∂Gij(x, yc)

∂yck
(Smem′

ik + Svrat′
ik )

= u∞j (x)−
1

8πµm

∂Gij(x, yc)

∂yck
(Smem

ik + Svrat
ik ), (4.11)

where

Smem′
ik =

∫
Ad

fi(y)(yk − yck) dA(y), (4.12a)

Svrat′
ik =−µm(1− λµ)

∫
Ad

(uink + ukni)(y) dA(y) (4.12b)

are the contributions to the stresslet due to the interfacial stresses and the viscosity
ratio respectively. The same terms without primes in the last expression in (4.11)
represent their traceless forms. Note that due to incompressibility, ∂Gik(x, yc)/∂yck = 0.
Therefore, the traces of the stresslets do not contribute. Also, note that the theory is
identical for a drop and a capsule, the only difference being that the interfacial or
membrane stress terms are different in the two cases (Mukherjee & Sarkar 2013). For
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a drop, the relation

fi(y)= σsni(y)[∇ ·n(y)] (4.13)

gives rise to

Smem′
ik = σs

∫
Ad

(δik − nink) dA(y), (4.14)

where an identity due to Rosenkilde (1967) has been used to change the surface
integral term involving curvature (4.12) and (4.13).

The drop or capsule migration is caused by the velocity field due to the image
stresslet induced by the wall, i.e. the contribution due to Gw

ij (x, y) in (4.8) towards
∂Gij(x, yc)/∂yck in (4.11). Smart and Leighton obtained an expression for the image
stresslet propagator near a rigid wall with normal n. Using that, one obtains the lateral
velocity as

udrift
j nj =− 1

8πµm

(
9

8h2

)
(Smem

ik + Svrat
ik )nink,

(a

h

)2� 1. (4.15)

For the case here with the wall at x2 = 0, we obtain the migration velocity

Vlat =− 1
8πµm

(
9

8h2

)
(Smem

22 + Svrat
22 ). (4.16)

Non-dimensionalizing, we obtain

Vlat

γ̇ a
=− 9

64π

(a

h

)2
(Smem∗

22 + Svrat∗
22 )=−0.4476

(a

h

)2
(Smem∗

22 + Svrat∗
22 ), (4.17)

where non-dimensional stresslet S∗22 = S22/γ̇ µma3. The second term is absent for a
viscosity matched system (λµ = 1). In figure 8(a), we plot the simulated migration
velocity as a function of the distance from the wall and compare it with the expression
obtained by the stresslet theory (4.17) for different ε. The two curves match well for
large separation from the wall, h/a > 2.5, where the one-term series expansion (4.9)
is valid, but not for small h/a. However, note also that the higher-order terms in
(4.9) would lead to a correction of order (h/a)3. On the other hand, the relationship
Vlat/γ̇ a ∼ (a/h)2 is seen to hold even for smaller h/a, at least for the small ε
considered here (see § 4.5 for deviation from this scaling at larger ε). At any rate,
to investigate this theory further, we plot in figure 8(b) the migration velocity against
S∗22(a/h)

2 for different wall separation h and elastic capillary number ε. They collapse
to a single curve as predicted by (4.17). In figure 8(c), we show that the stresslet
theory works better for a viscous drop. In figure 8(d), we investigate the dependence
of Smem

22 on capillary number for drops and elastic capillary number for capsules. Both
show linear variation for small values of the capillary numbers. This is consistent with
(4.6) in view of the relation D ∼ Ca as well as the results plotted in figure 7(c). As
noted before, the linearity breaks down for capsules before it happens for drops.

4.5. A phenomenological correlation for migration velocity
The above result implies a power law relation for the capsule migration velocity. Using
the simulated results, we seek such a phenomenological relation as a function of ε
and h/a. However, although we find Vlat/γ̇ a∼ ε(a/h)2 for small ε, in figures 6(c) and
8(d) one clearly sees a deviation from linearity for larger ε. For larger ε, we also find
deviation from Vlat/γ̇ a∼ (a/h)2: the inset of figure 9(a) shows that Vlat(h/a)

2/γ̇ a as a
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FIGURE 8. (Colour online) (a) Comparison of lateral velocity between simulation and theory
(21) for different ε values. Variation of lateral velocity with stresslet for a capsule (b) and a
drop (c) at different capillary numbers. Away from the wall, all curves converge to single one
for both cases. (d) Comparison of the variation of S22 with capillary number for a drop and a
capsule at h= 1.5a.

function of ε for different h/a fails to collapse to a single curve, especially for larger
ε. The main plot in figure 9(a) shows that, in fact, in this range Vlat/γ̇ a ∼ (a/h)1.35.
Using the simulated result, we propose the following relation:

Vlat

γ̇ a
= (0.65ε + 0.021)

(a

h

)2
ε 6 εcr,

Vlat

γ̇ a
= Vlat

γ̇ a

∣∣∣∣
ε=εcr

+ 0.02(ε − εcr)
0.6
(a

h

)1.35
ε > εcr,

0.125< εcr < 0.175.

 (4.18)

The finite intercept at ε = 0 might be attributed to the finite inertia present in the
simulation. Here εcr is the value of elastic capillary number where the linearity with ε
breaks down and ε0.6 is observed. Note that 0.6 power scaling with the capillary was
also recently found by Pranay et al. (2012). The simulation suggests that for ε > εcr
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FIGURE 9. (Colour online) (a) Vlat(h/a)
1.35/γ̇ a versus ε. The inset shows variation of

Vlat(h/a)
2γ̇ a with ε. (b) Empirical expression (4.18) plotted along with simulated results.

(c) Comparison of migration velocity from expression (4.18) using upper and lower limits of
εcr with simulation at two wall separations.

the quadratic scaling with inverse distance from the wall also ceases to hold. However,
εcr seems to vary with h/a within a small range 0.125 < εcr < 0.175, being larger for
larger h/a. Figure 9(b) shows that choosing appropriate εcr for different h/a provides
a good match between the correlation (4.18) and the simulated velocity. However,
one would like to obtain an a priori estimate of εcr for (4.18) to be useful. Using
the maximum and the minimum values of εcr for the smallest and the largest h/a
considered here, figure 9(c) shows that the two limits provide an upper and a lower
bound for the migration velocity. As can be expected, the result is more sensitive
closer to the wall h/a= 1.5, where the appropriate value is the lower limit εcr ∼ 0.125.
Using this value leads to less than 20 % error, even for the largest h/a considered here
(figure 9c). In the next subsection, we investigate the effects of the viscosity ratio on
the correlation (4.18).

4.6. Effects of the viscosity ratio and membrane constitutive law
In figure 10 we consider the effects of the viscosity ratio. Figure 10(a) shows the
quasi-steady capsule migration velocity as a function of viscosity ratio for h/a = 1.5
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FIGURE 10. (Colour online) Variation of (a) lateral velocity of a capsule with λ at h/a= 1.5
and ε = 0.30. The inset shows the variations of −Stot

22 , −Svrat
22 and −Smem

22 with λ for the same
case. (b) Variation of lateral velocity of a drop with λ at h/a = 1.5 and Ca = 0.20. The inset
shows the variation of −Stot

22 , −Svrat
22 and −Sint

22 with λ for the same case. (c) Comparison of
simulated lateral velocity and that from the stresslet theory at three λ values at ε = 0.10.
(d) Variation of lateral velocity with S∗22(a/h)

2 for a capsule at ε = 0.10. Away from the wall,
all curves converge to a single one.

and ε = 0.3. The migration velocity decreases with increasing viscosity ratio. Note that
as the viscosity inside the capsule increases, the capsule behaviour approaches that of
a rigid particle, which does not experience any lateral motion in a Stokes flow. We
also investigate the stresslet theory (4.17) developed in § 4.4. In the inset, we plot the
total stresslet Stot

22 along with the contributions Smem
22 and Svrat

22 due to the membrane
and the viscosity ratio terms. Note that the membrane term Smem

22 increases as the
viscosity ratio increases from λ = 1. The result is, however, dominated by Svrat

22 , which
drastically reduces with λ. Figure 10(b) shows the same physics for a drop at Ca= 0.2
and h/a = 1.5. Figure 10(c) shows a direct comparison of the stresslet theory and the
simulated capsule migration velocity as a function of h/a for different λ. Similar to
the viscosity matched case, here also the theory works well at large separation from
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FIGURE 11. (Colour online) (a) Variation of the lateral velocity with viscosity ratio.
(b) Variation of β with capillary numbers.

wall h/a > 2.5. In figure 10(d), we show that the migration velocity plotted as a
function of S∗22(a/h)

2 according to (4.17) collapses to a single curve for three different
viscosity ratios.

In § 4.5, we developed a phenomenological correlation of capsule migration velocity
as a function of ε and a/h. Figure 11(a) shows that the migration velocity decreases
exponentially with viscosity ratio, giving rise to a correlation

Vlat

γ̇ a
= Vlat

γ̇ a

∣∣∣∣
λ=1

e−β(ε)(λ−1). (4.19)

Note that due to the exponential variation, in the limit of infinite viscosity ratio, one
recovers zero migration for a rigid sphere. The exponential power β increases linearly
with ε for small ε and later seems to approach β ∼ 0.2 (figure 11b). The expression at
λ= 1Vlat/γ̇ a|λ=1 is given by (4.18).

Finally, we very briefly study the effects of the membrane constitutive law – NH,
SK (C = 1), SK (C = 10) and ES (A= 3) – on the migration of a capsule for λ=1 in
figure 12. Note that the neo-Hookean model is strain softening and is easier to deform
than that of the Skalak membrane, which is a strain hardening model (Barthes-Biesel
et al. 2002). The migration velocity plotted as a function of ε at h/a = 1.5, however,
shows very similar results for all constitutive laws. For NH, SK (C = 1) and ES
(A = 3), the migration velocity is indistinguishable. SK (C = 10) leads to a decreased
migration velocity. The behaviour for slip velocity is also similar except that SK
(C = 10) leads to higher slip velocity.

5. Summary
We have investigated the migration dynamics of a capsule enclosed by an elastic

membrane in shear near a wall using a front-tracking method, and compared
its dynamics with that of a drop. A spherical capsule initially deforms quickly
and reaches a quasi-steady state just like a viscous drop, where the dynamics
– deformation, migration and slip velocities – depend only on the instantaneous
capsule–wall distance, independent of its initial history. Both migration and slip
velocities of the capsule vary approximately as the square of the inverse of the
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FIGURE 12. (Colour online) Variation of migration and slip velocities with ε for different
membrane constitutive laws at h/a= 1.5 and λ= 1.

distance from the wall whereas the deformation varies with the inverse cube of the
distance. These scalings are very similar to those predicted by the perturbative theories
for drops.

We developed a semi-analytic theory of migration velocity by representing the flow
field using a Green’s function that automatically accounts for the presence of the wall.
The theory clearly shows that the presence of the capsule gives rise to a stresslet in
the far field, and the migration is a result of the velocity field induced by the image
stresslet on the other side of the wall. The theory predicts the inverse square variation
with the wall separation, quantitatively matching the simulated velocity away from the
wall h/a > 2.5. Furthermore, it delineates the two distinct additive contributions to the
stresslet due to the viscosity ratio and the membrane stresses. With increasing viscosity
ratio, although the membrane stresslet term increases, the migration velocity decreases
due to the larger decrease in the stresslet term directly related to the viscosity ratio.

Inspired by the different scalings seen in the simulation and the small deformation
perturbative results for drops, we proposed a correlation for capsule migration as a
function of capillary number, wall distance and viscosity ratio. It shows two distinct
regimes – smaller than a critical capillary number εcr,Vlat/γ̇ a ∼ ε(a/h)2 and above,
Vlat/γ̇ a ∼ (ε − εcr)

0.6(a/h)1.35. With viscosity ratio λ, Vlat/γ̇ a ∼ e−β(λ−1). Different
constitutive equations for the membrane elasticity seem to produce similar migration.
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