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Dense suspensions are non-Newtonian fluids that exhibit strong shear thickening
and normal stress differences. Using numerical simulation of extensional and shear
flows, we investigate how rheological properties are determined by the microstructure
that is built under flows and by the interactions between particles. By imposing
extensional and shear flows, we can assess the degree of flow-type dependence
in regimes below and above thickening. Even when the flow-type dependence is
hindered, non-dissipative responses, such as normal stress differences, are present and
characterise the non-Newtonian behaviour of dense suspensions.
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1. Introduction

Suspensions, namely mixtures of solid particles and viscous liquids, can be
considered as incompressible fluids as long as the volume fraction φ of solid particles
is less than a certain value, the jamming point, above which a solid-like behaviour is
observed. The behaviour of suspensions is not usually captured by simple Newtonian
models. As a primary example of a non-Newtonian effect, the viscosity can vary with
the shear rate, exhibiting shear thinning and shear thickening (Laun 1984; Barnes
1989; Bender & Wagner 1996; Guy, Hermes & Poon 2015). Moreover, non-vanishing
normal stress differences N1 and N2, further hallmarks of non-Newtonian behaviour,
are often observed (Laun 1994; Lootens et al. 2005; Lee et al. 2006; Couturier et al.
2011; Dbouk, Lobry & Lemaire 2013; Cwalina & Wagner 2014). Discontinuous shear
thickening is a particularly intriguing phenomenon of dense suspensions, and the
underlying mechanism has raised significant debate (Brady & Bossis 1985; Hoffman
1998; Melrose & Ball 2004; Fall et al. 2008; Brown & Jaeger 2009). Analysis
of the rheology of suspensions is a difficult task since forces of various types act
among particles and the system lives mostly far from thermodynamic equilibrium.
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Particle simulations have been used to explore the microstructure emerging among
particles in various flows and to estimate the importance of different interactions.
Several particle simulations have recently succeeded in reproducing shear thickening
by taking into account direct contact forces (Fernandez et al. 2013; Heussinger
2013; Seto et al. 2013). These works support the ‘stress-induced friction’ scenario
(Mari et al. 2014; Wyart & Cates 2014), and the contribution of contact forces was
also confirmed in experiments (Lin et al. 2015; Clavaud et al. 2017). Thus, the
particle-scale mechanism of shear thickening is, to a great extent, understood.

However, particle-scale simulations are not capable of reproducing engineering-scale
flows of dense suspensions due to the practical limits imposed on the system size
by computational tractability. For this reason, it is important to develop effective
continuum models through the design of suitable non-Newtonian constitutive relations.
Besides laboratory experiments, particle-scale simulations are an important source of
indications for the development of such models. A complete model should describe
the fluid response under any flow condition (Miller, Singh & Morris 2009), not only
in the simple shear flows in which most experimental and computational data are
retrieved. Indeed, the response of non-Newtonian fluids can depend on the type of
flow, as exemplified by the observations of shear thinning and extensional thickening
in some viscoelastic fluids. Particularly important is the class of extensional flows of
suspensions, for which few rheological characterisations are available (Dai & Tanner
2017) and the sole computational investigation of which the authors are aware was
performed by Sami (1996), who studied semidilute Brownian suspensions. (We note
that in his analysis, flow-type dependence was not evidenced.) A related computational
method to treat hydrodynamic interactions in diluted suspensions was introduced by
Ahamadi & Harlen (2008). For important developments regarding emulsions of
deformable droplets, we refer the reader to the work of Zinchenko & Davis (2015).

To study the material response, we simulate motions of particles in the bulk
region under prescribed flow conditions. As usual, periodic boundary conditions are
employed to minimise finite-size effects. The Lees–Edwards boundary conditions
(Lees & Edwards 1972) are commonly used to impose simple shear flows in many
contexts, including suspension rheology (Bossis & Brady 1984; Mari et al. 2014).
In this work, we also apply the Kraynik–Reinelt boundary conditions (Kraynik &
Reinelt 1992; Todd & Daivis 1998), originally devised to impose planar extensional
flows in non-equilibrium molecular dynamics simulations. With these, we can provide
a first assessment of the flow-type dependence of the response in dense suspensions.

In §§ 2.1 and 2.2, we describe our simulation technique, which operates in the
inertialess approximation. To compare the results under different flow conditions
consistently, we employ the rheometric framework introduced by Giusteri & Seto
(2017) (summarised in § 2.3), which defines, for the case of planar flows, a dissipative
response function, κ , and two non-dissipative response functions, λ0 and λ3. These
are defined for any flow type (simple shear, extensional and mixed flows) and offer
a unified description of the material response. The results of our analysis, discussed
in § 3, highlight the presence of flow-type dependence in the microstructure and in
the non-Newtonian effects observed for dense suspensions.

2. Methods

2.1. Bulk rheology with periodic boundary conditions
Non-Newtonian incompressible fluids obey the differential equations

ρ

[
∂u
∂t
+ (u · ∇)u

]
=∇ · σ , with ∇ · u= 0, (2.1)
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Dense suspensions under extensional and shear flows

x x

y y(a) (b)

FIGURE 1. (a) The deforming periodic cells for simple shear flows. The initial rectangular
shape can be recovered when the shear strain γ equals 1 by removing a part A of
the master cell and including the corresponding part A′ of a periodic image in the new
master cell. It should be noted that the recovery can be performed at any value of the
shear strain γ if the periodic displacement of the rows is taken into account. (b) The
deforming periodic cells for extensional flow (Kraynik–Reinelt boundary conditions). The
initial rectangular cell, which is oriented at a certain angle θ∗ ≈ 31.7◦, can be recovered
when the strain ε equals εp ≈ 0.962 by removing parts A–C of the master cell and
including the corresponding parts A′–C′ of periodic images in the new master cell.

where u is the velocity field and ρ is the density. To close the system of equations, the
stress tensor σ must be given in terms of the velocity gradient through a constitutive
prescription. The local value of the stress tensor describes the material response and
is determined by the local history of deformation. To investigate this response, we
consider small volume elements in which the velocity gradient ∇u is approximately
uniform. By simulating motions of particles in the volume element with fixed ∇u, we
can find the typical stress for a certain deformation history.

Time-dependent periodic boundary conditions allow us to impose ∇u and effectively
simulate the bulk behaviour. Since we consider planar flows in a 3D geometry, we
can describe our methods considering the 2D projections of the computational
cells. The cell frame vectors l1(t) and l2(t) (see figure 1) are prescribed to follow
the velocity field u = ∇u · r, and periodic images of a particle at r are given by
r′ = r+ il1(t)+ jl2(t) with (i, j=±1,±2, . . .). For simple shear flows (∇u= γ̇ eyex),
this is equivalent to the Lees–Edwards boundary conditions. The initial periodic cells
are rectangles in the flow plane (blue in figure 1a). A simple shear flow deforms
the cells to parallelogram shapes (red in figure 1a). To avoid significantly deformed
periodic cells, the initial rectangular cells can be recovered as shown in figure 1(a).
To impose planar extensional flows (∇u = ε̇exex − ε̇eyey) for long times, we employ
the Kraynik–Reinelt periodic boundary conditions (Kraynik & Reinelt 1992; Todd &
Daivis 1998). If the initial master cell is a regular square oriented at a certain angle
θ∗ from the extension axis (x axis), the deformed parallelogram cell after a certain
strain εp can be remapped to the initial regular shape, as shown in figure 1(b).

2.2. Inertialess particle dynamics for suspensions
We numerically evaluate the stress tensor σ by using particle simulations with
deforming periodic cells. Our simulation is analogous to rate-controlled rheological
measurements in the sense that time-averaged stress responses 〈σ 〉 are evaluated for
imposed velocity gradients ∇u.

We consider non-Brownian, density matched and dense suspensions. Suspended
particles interact with each other in several ways. As discussed in Mari et al.
(2014), we take into account contact forces FC (and torques TC) and stabilising
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repulsive forces FR, besides hydrodynamic interactions FH and TH . Since the inertia
of sufficiently small particles is negligible in comparison with the hydrodynamic drag
forces, the particles obey the quasi-static equations of motion

FH +FC +FR = 0 and TH + TC = 0. (2.2a,b)

Here, forces F and torques T represent the set of forces and torques for N particles.
Flows around microscale particles are dominated by viscous dissipation, and the inertia
of the fluid is negligible, so they are described by the Stokes equations. The imposed
velocity gradient ∇u gives the background flow via the velocity u(r), vorticity ω ≡
∇ × u and rate of deformation tensor D such that ∇u · r = u(r) = D · r + (ω/2) ×
r. In this case, the hydrodynamic interactions can be expressed as the sum of linear
resistances to the relative velocities 1U(i)

≡ U(i)
− u(r(i)), angular velocities 1Ω (i)

≡

Ω (i)
−ω/2, for i= 1, . . . ,N, and imposed deformation D via(

FH
TH

)
=−R ·

(
1U
1Ω

)
+ R′ : DN, (2.3)

where 1U and 1Ω represent the set of relative velocities for N particles, DN is block-
diagonal with N copies of D, and R and R′ are resistance matrices, which can, in
principle, be derived from the Stokes equations once the particle configurations are
given. In dense suspensions, the long-range hydrodynamic interactions are screened by
crowds of particles. Therefore, we may approximately construct the resistance matrices
by including only the contributions of Stokes drag and lubrication forces.

In real suspensions, the lubrication singularity in FH is absent due to factors such
as the surface roughness of particles – direct contacts are not forbidden. Hence, we
include the contact interactions FC and TC in (2.2). The contact forces between solid
particles depend on the nature of the particle surfaces. This is effectively encoded in
the friction coefficient µ that enters a simple friction model. By denoting with Fn

C and
Ft

C normal and tangential forces respectively, we prevent sliding if Ft
C 6 µFn

C. The
normal force depends on the overlap between particles through an effective elastic
constant and the tangential force depends on the sliding displacement in a similar way.
The details of the model employed are given in Mari et al. (2014).

The presence of the stabilising repulsive force FR in (2.2) generates the rate
dependence of rheological properties in such suspensions. Indeed, while reaching the
same strain, FR can work more to prevent particle contacts under lower deformation
rates, but less under higher rates. As a result, the number of contacts depends on
the rate of the imposed flow. In colloidal suspensions, Brownian forces may play a
similar role, as discussed by Mari et al. (2015a).

The bulk stress tensor is obtained as

σ =−p0I + 2η0D + V−1

(∑
i

S(i)D +
∑
i>j

S(i,j)P

)
, (2.4)

where η0 is the viscosity of the solvent, S(i)D is the stresslet on particle i due to D, and
S(i,j)P is the stresslet due to non-hydrodynamic interparticle forces between particles i
and j (Mari et al. 2015b). It should be noted that, since the hydrostatic pressure p0
is arbitrary, we set p0 = 0. However, the last term in (2.4) is not traceless and thus
contributes to the total pressure p≡−(1/3)Tr σ .
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2.3. General response functions for steady flows of non-Newtonian fluids
The stress σ is a tensorial quantity, and we need a procedure to extract the relevant
information from it in terms of scalar quantities. We are interested in comparing
the material response under different types of imposed flow conditions. For this
reason, we need a framework in which it is possible to identify the dependence on
the flow type of each independent non-Newtonian effect. To this end, we use the
framework introduced by Giusteri & Seto (2017), in which the characteristic rate
of the imposed flow is defined independently of the flow type and a complete set
of response functions is given. These functions generalise to any flow-type standard
quantities such as viscosity and normal stress differences.

The velocity gradient ∇u is decomposed into symmetric and antisymmetric parts as
∇u= D +W . In the planar case, with D 6= 0, we denote by ε̇ the largest eigenvalue
of D and express D̂ ≡ D/ε̇ and Ŵ ≡W/ε̇ on the basis of the eigenvectors d̂1 and d̂2
of D (corresponding to the eigenvalues ε̇ and −ε̇) as follows:

D̂ = d̂1d̂1 − d̂2d̂2, Ŵ = β3(d̂2d̂1 − d̂1d̂2). (2.5a,b)

The non-vanishing and positive rate ε̇ > 0 is used to set the time scale of deformation
in any flow type. With this definition, the standard rate γ̇ for simple shear corresponds
to the value 2ε̇. The vorticity ωz is represented by the dimensionless parameter β3
through ωz = 2ε̇β3. It should be noted that planar extensional flows are characterised
by β3 = 0 and simple shear flows by β3 = 1.

A general representation of the stress tensor in planar flows is then given by

σ (ε̇, β3)=−p(ε̇, β3)I + ε̇[κ(ε̇, β3)D̂ + λ0(ε̇, β3)Ê + λ3(ε̇, β3)Ĝ3], (2.6)

where Ê ≡−(1/2)(d̂1d̂1 + d̂2d̂2)+ d̂3d̂3, d̂3 is the eigenvector of D orthogonal to the
flow plane and Ĝ3≡ d̂1d̂2+ d̂2d̂1 is introduced to complete an orthogonal basis for the
space of symmetric tensors for planar flows. The functional dependence of κ , λ0 and
λ3 on the two kinematical parameters ε̇ and β3 needs to be determined to characterise
the response in generic flows. We remark that the response functions κ , λ0 and λ3 can
depend on any other quantity that characterises the system. For instance, in § 3, we
will also show their dependence on the volume fraction φ. The function κ is the only
one to carry information about dissipation. We therefore refer to it as the dissipative
response function, a generalised viscosity. The functions λ0 and λ3 carry information
about non-dissipative responses, and we call them non-dissipative response functions.
The presence of a non-vanishing λ0 leaves the eigenvectors of the stress σ aligned
with those of D, as happens in Newtonian fluids, but gives a contribution to the stress
in the form of a modified pressure that is isotropic in the flow plane but different
in the direction normal to the flow plane. On the other hand, a non-vanishing λ3
corresponds to a rotation of the eigenvectors of σ in the flow plane with respect to
those of D, determining the reorientation angle

ϕ ≡ arctan
[
λ3

/(
κ +

√
κ2 + λ2

3

)]
. (2.7)

For the sake of comparison, the shear viscosity η and normal stress differences N1
and N2, defined for simple shear flows with β3 = 1 as functions of γ̇ = 2ε̇, are given
by

η(2ε̇)= κ(ε̇, 1)/2, N1(2ε̇)=−2ε̇λ3(ε̇, 1) and N2(2ε̇)= ε̇[λ3(ε̇, 1)− (3/2)λ0(ε̇, 1)].
(2.8a−c)
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Moreover, the extensional viscosity, defined for extensional flows with β3 = 0, is
given by ηE(ε̇)= 2κ(ε̇, 0). Therefore, the Trouton ratio ηE(ε̇)/η(2ε̇) equals 4 only if
κ(ε̇, 0)= κ(ε̇, 1).

We want to stress that, to arrive at (2.6), no a priori assumption is made on the list
of quantities on which the material functions can depend. Hence, the stress tensor for
any non-Newtonian fluid model under steady flow conditions can be expressed in the
form (2.6). For example, since D2 in planar flows is a linear combination of I and Ê ,
the class of Reiner–Rivlin fluids corresponds to choosing λ3= 0, and assuming κ and
λ0 to be independent of β3. Similarly, second-order fluids under steady shear flows
would produce constant values of κ and λ0, and entail λ3 ∝ β3ε̇, since, under such
flows, W · D − D ·W = β3ε̇

2Ĝ3. A detailed discussion of the representation (2.6) and
its relation to fluid models is given in Giusteri & Seto (2017).

3. Results

To obtain the numerical results, we mainly performed 50 independent 3D
simulations with 2000 particles. The periodic cells were initially cuboids with ratio
5 : 5 : 1. We also performed some simulations with 4000 particles using double-sized
cells (5 : 5 : 2) to confirm the absence of significant finite-size effects (data are not
shown). Regarding the friction coefficient, we set µ = 1, since it is the value that,
in a previous paper (Mari et al. 2015a), was found to give good agreement with the
experimental data by Cwalina & Wagner (2014). It is worth mentioning that Tanner
& Dai (2016) showed that µ= 0.5 gives better quantitative agreement with different
experimental data. Nevertheless, such a fine tuning of µ is not necessary for our
qualitative analysis.

The short-range repulsive force is given by |FR| = FR(0) exp[−(r − 2a)/(0.02a)],
with a the particle radius. A reference rate is set as ε̇0≡FR(0)/(12πη0a2). To estimate
the importance of the inertial effects, we can use the Stokes number, given by

St≡
2ρpa2ε̇

η0
=
ρpFR(0)

6πη2
0

ε̇

ε̇0
, (3.1)

with ρp the particle density. Hence, inertial effects can be neglected if St� 1; that
is, when the ratio ε̇/ε̇0 is much smaller than 6πη2

0/ρpFR(0). The preceding threshold
determines, for each specific system, the region in which the rheology curves obtained
with our simulations can be expected to be in agreement with real data.

3.1. Dissipative response function κ
For the case of monodisperse suspensions, the dissipative response function κ

significantly increases with the rate ε̇ in both simple shear and extensional flows
(figure 2). Not only shear thickening but also extensional thickening occurs. However,
below thickening, there is a clear flow-type dependence. The value of κ in extensional
flow is much higher than the value obtained in simple shear flow (the Trouton ratio
is much larger than 4). On the other hand, above thickening, the values of κ in
extensional and shear flows are almost indistinguishable (the Trouton ratio is very
close to 4) and the flow-type dependence is hindered.

The significant discrepancy observed below thickening is due to shear-induced
ordering, which can occur only in simple shear flows, as we confirm by analysing
the pair distribution functions in § 3.4. Since the streamlines of a simple shear flow
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101

102

103

10–110–210–3

Monodisperse

FIGURE 2. Both shear thickening and extensional thickening are observed in the rate
dependence of the dissipative material function κ . The data are for monodisperse
suspensions in extensional flows (filled symbols with solid lines) and in simple shear flows
(open symbols with dashed lines). Below thickening, κ in simple shear flows is much
lower than κ in extensional flows. In each simulation, the time average is taken over five
strains after reaching the steady state. The error bars show the standard deviation for 50
independent simulations.

are straight and parallel to each other, particles tend to be arranged in chain-like
structures along the flow direction. We observe a gradual decrease of κ over time
(strain thinning) in simple shear flows, which indicates the growth of the ordered
structure. It should be noted that the shear-induced ordering is enhanced by the
periodic boundary conditions, since linear chains may connect with their own periodic
images. By contrast, the streamlines of extensional flows are never parallel to each
other. Therefore, there is no obvious ordered structure compatible with extensional
flows. Indeed, we neither observe strain thinning nor any ordered microstructure in
the extensional flow simulation.

In the thickened regime, frictional contact forces are constantly activated. These
contact forces are so strong that particles are easily prevented from following the
background flow; thus, ordered structures cannot be developed. As long as the
disordered structure is maintained under simple shear flows, the value of κ remains
very close to that observed in extensional flows.

The shear-induced ordering can be hindered by mixing particles with different sizes.
To see this effect, we consider two types of bidisperse suspensions with different size
ratios: a2/a1 = 1.2 and a2/a1 = 1.4 (named ‘weak’ and ‘strong’ respectively). The
two populations occupy the same volume fractions, i.e. φ1 = φ2 = φ/2. In the weakly
bidisperse suspensions (figure 3a), although the differences clearly become smaller,
some flow-type dependence can still be seen, especially for φ = 0.5. In the strongly
bidisperse suspensions (figure 3b), we no longer see a noticeable flow-type dependence.
Trouton ratios are always close to 4.

3.2. Pressure and anisotropic response
The total stress tensor σ is usually split into two parts: the isotropic pressure term
and the traceless extra-stress term. Although only the extra-stress term determines the
flows of incompressible fluids, the pressure p is also part of the material response. As
seen in figure 4(a) for monodisperse suspensions in extensional flows, the pressure
term p varies in a similar way to ε̇κ: the ratio ε̇κ/p remains of the order of unity
even when κ significantly increases by thickening. In our simulation, the volume
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10–110–210–3 10–110–210–3

102

103

101

102

103

101

Weak bidispersity Strong bidispersity(a) (b)

FIGURE 3. Mixing particles of different sizes hinders the shear-induced ordering.
Differences in κ between extensional flow (filled symbols with solid lines) and simple
shear (open symbols with dashed lines) are still present in the weakly bidisperse
suspensions, a2/a1 = 1.2 (a), but no longer significant in the strongly bidisperse
suspensions, a2/a1 = 1.4 (b).

10–110–210–3 10–110–210–3

1.0

0

0.2

0.4

0.6

0.8

 0

0.05

 0.10

0.15

 0.20

0.25

0.30
Monodisperse Monodisperse

(a) (b)

FIGURE 4. (a) The ratio between ε̇κ and p for monodisperse suspensions in extensional
flows remains of the order of unity even when the viscosity increases significantly. (b)
The positive values of the ratio ε̇λ0/p for monodisperse suspensions in extensional flows
indicate some anisotropy in the pressure response; that is, the in-plane pressure is higher
than the out-of-plane pressure.

of the periodic cells is fixed; therefore, the system can never dilate. However, such
increase of p with ε̇κ suggests that extensional thickening (and shear thickening) of
suspensions is a phenomenon related to that of dilatancy in granular materials.

The pressure term p contributes isotropically to σ by definition. However, there
is another contribution to the stress σ sharing the same origin. The non-dissipative
response associated with dilatancy can be anisotropic and activate the response
function λ0. The dimensionless ratio ε̇λ0/p represents such anisotropy. Its positive
values reported in figure 4(b) indicate that the in-plane pressure is higher than the
out-of-plane pressure. However, this anisotropy is not very strong, as it would be if
the pressure dilatancy were only present in the flow plane.

3.3. Reorientation angle of stress eigenvectors
Besides the ordering in simple shear flow, we can see some flow-type dependence
in the reorientation angle ϕ, defined in (2.7). In extensional flows, the principal axes
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(a) (b) (c)

10–110–2 10–110–210–3 10–110–210–3

Monodisperse Strong bidispersity

FIGURE 5. The reorientation angle ϕ is non-zero in simple shear flows for both
monodisperse suspensions (a,b) and strongly bidisperse suspensions (c), while it fluctuates
around zero in extensional flows (not shown). This angle is associated with the first normal
stress difference N1, and we have ϕ ≈ −N1/(4ε̇κ) when λ3 � κ . The large standard
deviations present in the monodisperse case (a) below thickening are due to the existence
of several types of stable ordered structures displaying rather different values of ϕ. This
is likely to be an effect originated by the finite size of the simulation cell. When the
microstructure is disordered (b,c), the standard deviations are smaller and comparable.

of the stress tensor σ must be parallel to the eigenvectors of D due to symmetry
considerations. Indeed, the reorientation angle ϕ fluctuates around zero in those
simulations. In simple shear flows, the shear-induced ordering is accompanied by large
negative values of ϕ (figure 5a). On the other hand, in the disordered states above
thickening (figure 5b) and with strong bidispersity (figure 5c), ϕ is always rather small
but non-zero. In our inertialess simulation, this finite flow-type dependence indicates
some characteristic microstructure (see § 3.4) due to the presence of vorticity in
simple shear, which is absent in extensional flows.

It is worth commenting on the dependence of the angle ϕ on the volume fraction φ
(figure 5). In the thickened regime, corresponding to higher values of ε̇, the angle ϕ
is always positive for φ = 0.5. The values of ϕ become smaller and can take slightly
negative values as φ increases. This behaviour is consistent with some experimental
measurements of N1, which is proportional to −λ3. When the volume fraction is
not very high, negative values have been observed for N1 (Lee et al. 2006; Cwalina
& Wagner 2014), corresponding to positive ϕ, while the sign of N1 turns positive
(negative ϕ) at higher volume fractions (Lootens et al. 2005; Dbouk et al. 2013).

3.4. Microstructure
As discussed in the modelling section § 2.2, it is reasonable to neglect particle and
fluid inertia in the particle-scale dynamics. The response of such inertialess material
elements to an imposed flow essentially depends on the microstructure built by
the particles during the flow (Morris 2009). To measure the correlation of particle
positions, we evaluate the pair distribution function g(r) ≡ P1|1(r|0)/n, where n is
the average number density of particles and P1|1(r|0) is the conditional probability
of finding a particle at r with the condition that another particle is at the origin
0. Figure 6(a,b) shows g(r) in the flow-plane slice |z| < 0.1a. We also consider
angular distributions gc(θ) for contacting (and nearly contacting) particles such that
|r|< 2.02a. The angle θ is measured from the d̂1 axis.

As seen in figure 6(a), a stripe-patterned correlation g(r) appears for the
monodisperse suspensions in simple shear flow below thickening (ε̇/ε̇0 = 0.01). The
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FIGURE 6. (a) The pair distribution function g(r) highlights the presence of strong
ordering below thickening (ε̇/ε̇0 = 0.01) for monodisperse suspensions (φ = 0.54) under
simple shear, and its absence above thickening (ε̇/ε̇0 = 0.02). (b) No obvious ordered
structure can be associated with g(r) for the case of extensional flow both below and
above thickening. (c,d) The polar plot of the angular distribution gc(θ) of contacting (and
nearly contacting) particles such that |r| < 2.02a shows that the strong enhancement of
contact interactions is mainly responsible for the thickening. It should be noted that, since
practically no particles are in contact for ε̇/ε̇0 6 0.005 in simple shear, the corresponding
data in (c) are negligible. The difference between simple shear flow (c) and extensional
flow (d) is discussed in the main text.

periodic peaks and striped correlation indicate the formation of chain-like structures
by the particles. Once such chain-like structure is formed, particle interactions are
rather weak, which leads to significantly low values of κ , as seen in figure 2. The
microstructure is totally different above thickening (ε̇/ε̇0 = 0.02). The long-range
correlation is no longer seen. The correlation pattern indicates some disordered
anisotropic microstructure. In figure 6(c), the angular contact distribution gc(θ) clearly
shows that the number of contacting particles increases remarkably for ε̇/ε̇0 > 0.02.
This observation is consistent with the idea that shear thickening is caused by the
development of the contact network (Seto et al. 2013).

These results can be directly compared with those for the extensional flow
simulation. As seen in figure 6(b), even below thickening (ε̇/ε̇0 = 0.01), there is
no long-range correlation in g(r). The distribution pattern has horizontal and vertical
mirror symmetries, and no vorticity skews the correlation in the extensional flow. The
distribution pattern does not change much above thickening (ε̇/ε̇0 = 0.02). However,
a clear difference is present in the angular contact distribution gc(θ) (figure 6d). A
flame-shaped distribution transforms into a fan-shaped distribution at the extensional
thickening transition. Thus, just below the transition, we can find contacting particles
only around the directions of the compression axis. Nevertheless, the width of the
flame shape indicates that, differently from what we observed under shear, the
contact chains do not correspond to stable ordered chains of particles. Rather, they
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are constantly rebuilt among new neighbouring particles. Such contact chains which
are roughly parallel and oriented along the compression axis do not contribute to
the viscosity significantly (figure 2). By contrast, above the thickening transition,
contacting particles can be found in all directions, even in the directions of the
extension axis (θ = 0 and π). This distribution suggests an anisotropic network
structure for the pattern of contacts, which enhances the viscosity. Thus, we can
describe the essence of extensional thickening as a contact-chain to contact-network
transition.

The fact that such a transition occurs in extensional flows without significant
change of the long-range correlation (always absent) indicates that also in simple
shear flows the contact-chain to contact-network transition is mainly responsible
for the thickening. Indeed, while we observe a concurrent order–disorder structural
transition in monodisperse suspensions under shear, this is not present in strongly
bidisperse suspensions, which nevertheless display a strong thickening behaviour.

4. Conclusions

We numerically explored the non-Newtonian character of dense suspensions, which
has a different origin from that of viscoelastic fluids. This character is manifested
in three main aspects: rate dependence, non-dissipative responses and flow-type
dependence. By analysing the thickening in both extensional and simple shear flows,
we were able to confirm that the contact-chain to contact-network transition is its main
cause. Non-dissipative responses, such as normal stress differences, are present in any
flow regime. Flow-type dependence is evident in monodisperse suspensions below
thickening, where ordering occurs under simple shear. The prevention of ordering
through thickening or polydispersity hinders (but does not cancel) the flow-type
dependence.
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