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The analysis of randomized search heuristics on classes of functions is fundamental to

the understanding of the underlying stochastic process and the development of suitable

proof techniques. Recently, remarkable progress has been made in bounding the expected

optimization time of a simple evolutionary algorithm, called (1+1) EA, on the class

of linear functions. We improve the previously best known bound in this setting from

(1.39 + o(1))en ln n to en ln n + O(n) in expectation and with high probability, which is

tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary mutation

probabilities p are derived, which imply expected polynomial optimization time as long as

p = O((ln n)/n) and p = Ω(n−C ) for a constant C > 0, and which are tight if p = c/n for

a constant c > 0. As a consequence, the standard mutation probability p = 1/n is optimal

for all linear functions, and the (1+1) EA is found to be an optimal mutation-based

algorithm. Furthermore, the algorithm turns out to be surprisingly robust since the large

neighbourhood explored by the mutation operator does not disrupt the search.

AMS 2010 Mathematics subject classification: Primary 68W20

Secondary 68Q25

1. Introduction

Consider the following modified coupon collector process. There are n bins, initially empty,

each one with a positive real weight. At each time step, go through the bins and flip the

state (full/empty) of each bin independently with probability 1/n. Then check whether

the total weight of the full bins has decreased compared to the previous time step. If so,

restore the previous configuration, otherwise keep the new one. How long does it take

until all bins are full at the same time?

If all bins have the same weight, then an O(n log n) bound on the expected time follows

along the lines of the standard analysis of the coupon collector problem. However, if the

weights are different, then the analysis becomes much more involved. In fact, this problem

has been studied for more than a decade in the analysis of randomized search heuristics

(RSH) and is known as the linear function problem there.

† An extended abstract of this paper appeared at STACS ’12 [27].

https://doi.org/10.1017/S0963548312000600 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000600


Tight Bounds on the Optimization Time of an RSH on Linear Functions 295

RSHs are general problem solvers that may be used when no problem-specific algorithm

is available. Famous examples are simulated annealing, evolutionary computation, tabu

search, etc. In order to understand the working principles of RSHs, and to give theoretically

founded advice on the applicability of certain RSHs, rigorous analyses of the runtime of

RSHs have been conducted. This is a growing research area where many results have

been obtained in recent years. It started off in the early 1990s [20] with the consideration

of very simple evolutionary algorithms such as the well-known (1+1) EA on very simple

example functions such as the OneMax function. Later on, results regarding the runtime

on classes of functions were derived (e.g., [10, 12, 25, 26]) and powerful tools for the

analysis were developed. Today the state of the art in the field allows for the analysis of

different types of search heuristics on problems from combinatorial optimization [21].

Recently, the analysis of evolutionary algorithms on linear functions has experienced

a great renaissance. The first proof that the (1+1) EA optimizes any linear function in

expected time O(n log n) by Droste, Jansen and Wegener [10] was highly technical since

it did not yet explicitly use the analytic framework of drift analysis [11], which allowed

for a considerably simplified proof of the O(n log n) bound; see He and Yao [13] for

the first complete proof using the method.1 Another major improvement was made by

Jägersküpper [15, 16], who for the first time stated bounds on the constant hidden in the

O(n log n) term. This constant was finally improved by Doerr, Johannsen and Winzen [7]

to the bound (1.39 + o(1))en ln n using a clean framework for the analysis of multiplicative

drift [8]. The best known lower bound for general linear functions with non-zero weights

is en ln n − O(n) and was also proved by Doerr, Johannsen and Winzen [7], building upon

the OneMax function analysed by Doerr, Fouz and Witt [3, 4].

The standard (1+1) EA flips each bit with probability p = 1/n, but different values

for the mutation probability p have also been studied in the literature. Recently, it has

been proved by Doerr and Goldberg [5, 6] that the O(n log n) bound on the expected

optimization time of the (1+1) EA still holds (also with high probability) if p = c/n for

an arbitrary constant c > 0. This result uses the multiplicative drift framework mentioned

above and a drift function being cleverly tailored towards the particular linear function.

However, the analysis is also highly technical and does not yield explicit constants in the

O-term. For p = ω(1/n), no runtime analyses have been known until now.

In this paper, we prove that the (1+1) EA optimizes all linear functions in expected

time en ln n + O(n), thereby closing the gap between the upper and the lower bound up to

lower-order terms. Moreover, we show a general upper bound depending on the mutation

probability p, which implies that the expected optimization time is polynomial as long as

p = O((ln n)/n) (and p = Ω(n−C ) for some constant C > 0). We will also show that the

expected optimization time is superpolynomial for p = ω((ln n)/n). Together, these results

show that there is a transition from polynomial to superpolynomial optimization time

in the region Θ((ln n)/n). If the mutation probability is c/n for some constant c > 0, the

expected optimization time is proved to be (1 ± o(1)) e
c

c
n ln n. Altogether, we obtain that

the standard choice p = 1/n of the mutation probability is optimal for all linear functions.

1 Note, however, that not the original (1+1) EA but a variant rejecting offspring of equal fitness is studied in

that paper.
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In fact, the lower bounds turn out to hold for the large class of so-called mutation-based

EAs, in which the (1+1) EA with p = 1/n is found to be an optimal algorithm.

Our findings are interesting from both a theoretical and a practical perspective. On

the theoretical side, it is noteworthy that ec/c is basically the expected waiting time

for a mutation step that changes only a single bit. Hence, the mutation operator (in

conjunction with the acceptance criterion) is surprisingly robust in the sense that steps

flipping many bits neither help nor harm. On the practical side, the optimality of p = 1/n

is remarkable since this seems to be the choice that is most often recommended by

researchers in evolutionary computation [2]. Furthermore, the fact that the (1+1) EA is

an optimal mutation-based algorithm emphasizes that its runtime analysis can be crucial

for obtaining results for more complex approaches.

The proofs of the upper bounds use the recent multiplicative drift theorem by Doerr

and Goldberg [5, 6] and a drift function adapted towards both the linear function and

the mutation probability. As a consequence of our main result, we obtain the results by

Doerr and Goldberg with less effort and explicit constants in front of the n ln n-term. All

these bounds hold also with high probability, which follows from the recent tail bounds

added to the multiplicative drift theorem by Doerr and Goldberg. The lower bounds are

based on a new multiplicative drift theorem for lower bounds. By deriving exact results,

we show that the research area is maturing, and provides very strong and, at the same

time, general tools.

This paper is structured as follows. Section 2 sets up definitions, notations and other

preliminaries. Section 3 summarizes and explains the main results. In Sections 4 and 5,

respectively, we prove an upper bound for general mutation probabilities and a refined

result for p = 1/n. Lower bounds are shown in Section 6. We finish in Section 7 with

some conclusions.

2. Preliminaries

The (1+1) EA is a basic search heuristic for the optimization of pseudo-boolean functions

f : {0, 1}n → R. It reflects the typical behaviour of more complicated evolutionary al-

gorithms, serves as basis for the study of more complex approaches and is therefore

intensively investigated in the theory of randomized search heuristics [1]. For the case of

minimization, it is defined as Algorithm 1.

Algorithm 1 (1+1) EA

t := 0.

choose an initial bit string x0 ∈ {0, 1}n uniformly at random.

repeat

create x′ by flipping each bit in xt independently with probability p (mutation).

xt+1 := x′ if f(x′) � f(xt), and xt+1 := xt otherwise (selection).

t := t + 1.

forever.
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The (1+1) EA can be considered as a simple hill-climber where search points are drawn

from a stochastic neighbourhood based on the mutation operator. The parameter p, where

0 < p < 1, is often chosen as 1/n, which then is called standard mutation probability. We

call a mutation from xt to x′ accepted if f(x′) � f(xt), i.e., if the new search point is

taken over; otherwise we call it rejected. In our theoretical studies, we ignore the fact

that the algorithm in practice will be stopped at some time. The runtime (synonymously,

optimization time) of the (1+1) EA is defined as the first point in time t such that the

search point xt has optimal, i.e., minimum f-value. This corresponds to the number of

f-evaluations until it reaches the optimum. In many cases, one aims for results on the

expected optimization time. Here, we also prove results that hold with high probability,

which means probability 1 − o(1).

The (1+1) EA is also an instantiation of the algorithmic scheme called mutation-based

EA by Sudholt [23], which is displayed as Algorithm 2. It is a general population-based

approach that includes many variants of evolutionary algorithms with parent and offspring

populations as well as parallel evolutionary algorithms. Any mechanism for managing

the populations, which are multisets, is allowed as long as the mutation operator is the

only variation operator and follows the independent bit-flip property with probability

0 < p � 1/2. Again the smallest t such that xt is optimal defines the runtime. Sudholt

has proved that for p = 1/n no mutation-based EA can locate a unique optimum faster

than the (1+1) EA can optimize OneMax. We will see that the (1+1) EA is the best

mutation-based EA for a broad class of functions and for different mutation probabilities.

Algorithm 2 Scheme of a mutation-based EA with population size μ

t := −1.

repeat

t := t + 1.

create xt ∈ {0, 1}n uniformly at random.

until t = μ − 1.

repeat

select a parent x ∈ {x0, . . . , xt} according to t and f(x0), . . . , f(xt).

create xt+1 by flipping each bit in x independently with probability p � 1/2.

t := t + 1.

forever.

Throughout this paper, we are concerned with linear pseudo-boolean functions. A

function f : {0, 1}n → R is called linear if it can be written as f(xn, . . . , x1) = wnxn + · · · +

w1x1 + w0. As is common in the analysis of the (1+1) EA, we assume without loss of

generality that w0 = 0 and wn � · · · � w1 > 0 hold. Search points are read from xn down

to x1 such that xn, the most significant bit, is said to be on the left-hand side and x1,

the least significant bit, on the right-hand side. Since it fits the proof techniques more

naturally, we also assume without loss of generality that the (1+1) EA (or, more generally,

the mutation-based EA at hand) is minimizing f, implying that the all-zeros string is the

optimum. Our assumptions do not restrict generality since we can permute bits and
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negate the weights of a linear function without affecting the stochastic behaviour of the

(1+1) EA/mutation-based EA.

Probably the most studied linear function is OneMax(xn, . . . , x1) = xn + · · · + x1, oc-

casionally also called the CountingOnes problem (which would be the more appropriate

name here since we will be minimizing the function). In this paper, we will see that

OneMax is the easiest linear function not only because of its definition but also in

terms of expected optimization time. On the other hand, the upper bounds obtained for

OneMax hold for every linear function up to lower-order terms. Hence, surprisingly the

(1+1) EA is basically as efficient on an arbitrary linear function as it is on OneMax.

This underlines the robustness of the randomized search heuristic and, in retrospect and

for the future, is a strong motivation to investigate the behaviour of randomized search

heuristics on the OneMax problem thoroughly.

Our proofs of the upper bounds shown later in this paper use the multiplicative drift

theorem in its most recent version (see [8] and [6]). The key idea of multiplicative drift is

to identify a relative progress of the algorithm that is expected in every time step. This

expected value is called drift.

Theorem 2.1 (multiplicative drift, upper bound). Let S ⊆ R be a finite set of positive

numbers with minimum 1. Let {X(t)}t�0 be a sequence of random variables over S ∪ {0}.
Let T be the random variable that gives the first point in time t � 0 for which X(t) = 0.

Suppose that there exists a δ > 0 such that

E
(
X(t) − X(t+1) | X(t) = s

)
� δs

for all s ∈ S and all t � 0 with P(X(t) = s) > 0. Then, for all s0 ∈ S with P(X(0) = s0) > 0,

E
(
T | X(0) = s0

)
� ln(s0) + 1

δ
.

Moreover, we have P(T > (ln(s0) + r)/δ)) � e−r for all r > 0.

As an easy example application, consider the (1+1) EA on OneMax and let X(t) denote

the number of one-bits at time t. As worse search points are not accepted, X(t) is non-

increasing over time. We obtain E(X(t) − X(t+1) | X(t) = s) � s(1/n)(1 − 1/n)n−1 � s/(en),

in other words a multiplicative drift of at least δ = 1/(en), since there are s disjoint

single-bit flips that decrease the X-value by 1. Theorem 2.1 applied with δ = 1/(en) and

ln(X(0)) � ln n gives us the upper bound en(ln n + 1) on the expected optimization time,

which is basically the same as would be yielded by the classical method of fitness-based

partitions [24, 23] or coupon collector arguments [19].

On a general linear function, it is not necessarily a good choice to let X(t) count the

current number of one-bits. Consider, for example, the natural and well-studied function

BinVal(xn, . . . , x1) =

n∑
i=1

2i−1xi.

The (1+1) EA might replace the search point (1, 0, . . . , 0) by the better search point

(0, 1, . . . , 1), amounting to a loss of n − 2 zero-bits. More generally, replacing (1, 0, . . . , 0)
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by a better search point is equivalent to flipping the leftmost one-bit. In such a step,

an expected number of (n − 1)p zero-bits flip, which decreases the expected number of

zero-bits by only 1 − (n − 1)p. The latter expectation (the so-called additive drift) is only

1/n for the standard mutation probability p = 1/n and might be negative for larger p.

Therefore, X(t) is typically defined as X(t) := g(x(t)), where x(t) is the current search point

at time t and g(xn, . . . , x1) is another linear function called drift function or potential

function. Doerr, Johannsen and Winzen [8] use x1 + · · · + xn/2 + (5/4)(xn/2+1 + · · · + xn)

as the potential function in their application of the multiplicative drift theorem in order

to bound the expected optimization time of the (1+1) EA on linear functions. This choice

leads to a good lower bound on the multiplicative drift on the one hand and a small

maximum value of X(t) on the other hand. In our proofs of upper bounds in the Sections 4

and 5, it is crucial to define appropriate potential functions.

For the lower bounds in Section 6, we need the following variant of the multiplicative

drift theorem, whose proof is also given in Section 6.

Theorem 2.2 (multiplicative drift, lower bound). Let S ⊆ R be a finite set of positive

numbers with minimum 1. Let {X(t)}t�0 be a sequence of random variables over S , where

X(t+1) � X(t) for any t � 0, and let smin > 0. Let T be the random variable that gives the

first point in time t � 0 for which X(t) � smin. If there exist positive reals β, δ � 1 such that,

for all s > smin and all t � 0 with P(X(t) = s) > 0,

(1) E(X(t) − X(t+1) | X(t) = s) � δs,

(2) P(X(t) − X(t+1) � βs | X(t) = s) � βδ/ln s,

then for all s0 ∈ S with P(X(0) = s0) > 0,

E(T | X(0) = s0) � ln(s0) − ln(smin)

δ
· 1 − β

1 + β
.

Compared to the upper bound, the lower-bound version includes a condition on the

maximum stepwise progress and requires non-increasing sequences. As a technical detail,

the theorem allows for a positive target smin, which is required in our applications.

3. Summary of main results

We now list the main consequences of the lower bounds and upper bounds that we will

prove in the following sections.

Theorem 3.1. On any linear function, the following holds for the expected optimization time

E(Tp) of the (1+1) EA with mutation probability p.

(1) If p = ω((ln n)/n) or p = o(n−C ) for every constant C > 0, then E(Tp) is superpolynomial.

(2) If p = Ω(n−C ) for some constant C > 0 and p = O((ln n)/n), then E(Tp) is polynomial.

(3) If p = c/n for a constant c > 0, then E(Tp) = (1 ± o(1)) e
c

c
n ln n.

(4) E(Tp) is minimized for mutation probability p = 1/n (up to lower-order terms).

(5) No mutation-based EA has an expected optimization time smaller than E(T1/n) (up to

lower-order terms).
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In fact, our analyses below are even more precise; in particular, Theorem 3.1 does

not state tail bounds. These are presented below in the more general but also more

complicated Theorem 4.1.

Proof of Theorem 3.1. The first statement of our summarizing Theorem 3.1 follows from

Theorems 6.3, 6.4 and 6.5 below. The second statement is proved in Corollary 4.3, which

follows from the already mentioned Theorem 4.1. The third statement takes together

Corollaries 4.2 and 6.6. Since ec/c is minimized for c = 1, the fourth statement follows

from the third one in conjunction with Corollary 6.6. The fifth statement is also contained

in Theorems 6.3 and 6.5.

It is worth noting that the optimality of the mutation probability p = 1/n was apparently

unknown even for the case of OneMax before this paper appeared in its conference version

[27]. However, very recently Sudholt [23] showed the optimality of p = 1/n for OneMax

using a different approach. Prior to these two publications, tight upper and lower bounds

on the expected optimization time of the (1+1) EA on OneMax were only available when

the mutation probability was fixed to the standard p = 1/n [22, 4]. For the general case

of linear functions, the strongest previous result said that p = Θ(1/n) is optimal [10]. Our

result on the optimality of the mutation probability 1/n is interesting since this is the

choice commonly recommended by practitioners.

4. Upper bounds

In this section we show a general upper bound that applies to any non-trivial mutation

probability.

Theorem 4.1. On any linear function on n variables, the optimization time of the (1+1) EA

with mutation probability 0 < p < 1 is at most

(1 − p)1−n

(
nα2(1 − p)1−n

α − 1
+

α

α − 1

ln(1/p) + (n − 1) ln(1 − p) + r

p

)
=: b(r),

with probability at least 1 − e−r for any r > 0, and it is at most b(1) in expectation, where

α > 1 can be chosen arbitrarily (even depending on n).

Before we prove the theorem, we note two important consequences in more readable

form. The first one (Corollary 4.2) displays upper bounds for mutation probabilities

c/n. The second one (Corollary 4.3) is used in Theorem 3.1 above, which states a

transition from polynomial to superpolynomial expected optimization times in the region

p = Θ((ln n)/n).

Corollary 4.2. On any linear function, the optimization time of the (1+1) EA with

mutation probability p = c/n, where c > 0 is a constant, is bounded from above by

(1+ o(1))((ec/c)n ln n) with probability 1 − o(1) and also in expectation.
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Proof. Let α := ln ln n or any other sufficiently slowly growing function. Then α/(α − 1) =

1 + O(1/ln ln n) and α2/(α − 1) = O(ln ln n). Moreover, (1 − c/n)1−n � (1 + o(1))ec. The

b(r) in Theorem 4.1 becomes at most

ec ·
(
O(n ln ln n) + (1 + o(1))

n(ln(n) + ln(1/c) + r)

c

)
,

and the corollary follows by choosing, e.g., r := ln ln n.

Corollary 4.3. On any linear function, the optimization time of the (1+1) EA with mutation

probability p = O((ln n)/n) and p = Ω(n−C ) for some constant C > 0 is polynomial with

probability 1 − o(1) and also in expectation.

Proof. Let α := 2. By making all positive terms at least 1 and multiplying them, we

obtain that the upper bound b(r) from Theorem 4.1 is at most

8n(1 − p)2−2n · ln(e/p) + r

p
� 8ne2pn · ln(e/p) + r

p
.

Assume 1/p = O(nC) and p � c(ln n)/n for constants c, C > 0 and sufficiently large n. Then

e2pn � n2c and the whole expression is polynomial for r = 1 (proving the expectation) and

also if r = ln n (proving the probability 1 − o(1)).

The proof of Theorem 4.1 uses an adaptive potential function as in [6]. That is, the

random variables X(t) used in Theorem 2.1 map the current search point of the (1+1) EA

via a potential function to some value in a way that depends also on the linear function

at hand. As a special case, if the given linear function happens to be OneMax, X(t) just

counts the number of one-bits at time t. The general construction shares some features

with the one of Doerr and Goldberg [6], but both construction and proof are less

involved.

Proof of Theorem 4.1. Let f(x) = wnxn + · · · + w1x1 be the linear function at hand.

Define

γi :=

(
1 +

αp

(1 − p)n−1

)i−1

for 1 � i � n, and let g(x) = gnxn + · · · + g1x1 be the potential function defined by g1 :=

1 = γ1 and

gi := min

{
γi, gi−1 · wi

wi−1

}

for 2 � i � n. Note that the gi are non-decreasing with respect to i. Intuitively, if the ratio

of wi and wi−1 is too extreme, the minimum function caps it appropriately, otherwise gi
and gi−1 are in the same ratio. We consider the stochastic process X(t) := g(a(t)), where

a(t) is the current search point of the (1+1) EA at time t. Obviously, X(t) = 0 if and only

if f has been optimized.
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Let Δt := X(t) − X(t+1). We claim that

E(Δt | X(t) = s) � s · p · (1 − p)n−1 ·
(

1 − 1

α

)
(4.1)

and first prove the theorem using (4.1), which is proved afterwards.

The initial value satisfies

X(0) � gn + · · · + g1 �
n∑

i=1

γi �
(
1 + αp

(1−p)n−1

)n − 1

αp(1 − p)1−n
� enαp(1−p)1−n

αp(1 − p)1−n
,

which means

ln(X(0)) � nαp(1 − p)1−n + ln(1/p) + ln((1 − p)n−1).

The multiplicative drift theorem (Theorem 2.1) yields that the optimization time T is

bounded from above by

ln(X(0)) + r

p(1 − p)n−1(1 − 1/α)
�

α
(
nαp(1 − p)1−n + ln(1/p) + ln((1 − p)n−1) + r

)
(α − 1)p(1 − p)n−1

= b(r)

with probability at least 1 − e−r , and E(T ) � b(1), which proves the theorem.

To show (4.1), we fix an arbitrary current value s and an arbitrary search point a(t)

satisfying g(a(t)) = s. In the following, we implicitly assume X(t) = s but mostly omit this

for the sake of readability. We denote by I := {i | a(t)
i = 1} the index set of the one-bits

in a(t) and by Z := {1, . . . , n} \ I the zero-bits. We assume I �= ∅ since there is nothing to

show otherwise. Denote by a′ the random (not necessarily accepted) offspring produced

by the (1+1) EA when mutating a(t) and by a(t+1) the next search point after selection.

Recall that a(t+1) = a′ if and only if f(a′) � f(a(t)). In the following, we will use the event A

that a(t+1) = a′ �= a(t) and note that Δt = 0 if A does not occur. Let I∗ := {i ∈ I | a′
i = 0}

be the set of one-bits of a(t) that are flipped and let Z∗ := {i ∈ Z | a′
i = 1} be the set of

zero-bits of a(t) that are flipped (not conditioned on A). Note that I∗ �= ∅ if A occurs.

We need further definitions to analyse the drift carefully. For i ∈ I , we define k(i) :=

max{j � i | gj = γj} as the most significant position to the right of i (possibly i itself)

where the potential function takes its maximum on a γ-coefficient, i.e., k(i) is the most

significant position to the right of i where we cannot be sure that gk(i)/gk(i)−1 = wk(i)/wk(i)−1

holds. Note that k(i) � 1 since g1 = γ1. Let L(i) := {k(i), . . . , n} ∩ Z be the set of zero-bits

left of (and including) k(i) and let R(i) := {1, . . . , k(i) − 1} ∩ Z be the remaining zero-bits.

Both sets may be empty. For event A to occur, it is necessary that there is some i ∈ I such

that bit i flips to zero and ∑
j∈I∗

wj −
∑

j∈Z∗∩L(i)

wj � 0,

since we are taking only zero-bits out of consideration; more precisely, the last inequality

is weaker than the condition
∑

j∈I∗ wj −
∑

j∈Z∗ wj � 0 necessary for A.

Now, for i ∈ I , let Ai be the event that:

(1) i is the leftmost flipping one-bit (i.e., i ∈ I∗ and {i + 1, . . . , n} ∩ I∗ = ∅) and

(2)
∑

j∈I∗ wj −
∑

j∈Z∗∩L(i) wj � 0.

If none of the Ai occurs, then Δt = 0. Furthermore, the Ai are mutually disjoint.
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For any i ∈ I , Δt can be written as the sum of the two terms

ΔL(i) :=
∑
j∈I∗

gj −
∑

j∈Z∗∩L(i)

gj and ΔR(i) := −
∑

j∈Z∗∩R(i)

gj .

By the law of total probability and the linearity of expectation, we have

E(Δt) =
∑
i∈I

E(ΔL(i) | Ai) · P(Ai) + E(ΔR(i) | Ai) · P(Ai). (4.2)

In the following, the bits in R(i) are pessimistically assumed to flip from 0 to 1

independently with probability p each if Ai happens. This leads to

E(ΔR(i) | Ai) � −p
∑
j∈R(i)

gj . (4.3)

In order to estimate E(ΔL(i)), we carefully inspect the relation between the weights of the

original function and the potential function. By definition, we obtain gj/gk(i) = wj/wk(i)

for k(i) � j � i and gj/gk(i) � wj/wk(i) for j > i whereas gj/gk(i) � wj/wk(i) for j < k(i).

Hence, if Ai occurs then gj � gk(i) · wj

wk(i)
for j ∈ I∗ (since i is the leftmost flipping one-bit)

whereas gj � gk(i) · wj

wk(i)
for j ∈ L(i). Together, we obtain, under the assumption that Ai

has occurred, the non-negativity of the random variable ΔL(i):

on Ai, ΔL(i) =
∑
j∈I∗

gj −
∑

j∈Z∗∩L(i)

gj

�
∑
j∈I∗

gk(i) · wj

wk(i)
−

∑
j∈Z∗∩L(i)

gk(i) · wj

wk(i)
� 0,

using the definition of Ai.

Now let Si := {|Z∗ ∩ L(i)| = 0} be the event that no zero-bit from L(i) flips. Using the

law of total probability, we obtain that

E
(
ΔL(i) | Ai

)
· P(Ai) = E

(
ΔL(i) | Ai ∩ Si

)
· P(Ai ∩ Si) + E

(
ΔL(i) | Ai ∩ Si

)
· P(Ai ∩ Si).

Since ΔL(i) � 0 if Ai occurs, the conditional expectations are non-negative. We bound the

second term on the right-hand side by 0. In conjunction with (4.2), we get

E(Δt) �
∑
i∈I

E(ΔL(i) | Ai ∩ Si) · P(Ai ∩ Si) + E(ΔR(i) | Ai) · P(Ai).

Obviously, E(ΔL(i) | Ai ∩ Si) � gi. We estimate P(Ai ∩ Si) � p(1 − p)n−1 since it is suffi-

cient to flip only bit i, and P(Ai) � p since it is necessary to flip this bit. In (4.3), we have

bounded E(ΔR(i) | Ai). Taking everything together, we get

E(Δt) �
∑
i∈I

(
p(1 − p)n−1gi − p2

∑
j∈R(i)

gj

)

�
∑
i∈I

(
p(1 − p)n−1 gi

gk(i)
γk(i) − p2

k(i)−1∑
j=1

γj

)
.

https://doi.org/10.1017/S0963548312000600 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000600


304 C. Witt

The term for i equals

p(1 − p)n−1 gi

gk(i)

(
1 +

αp

(1 − p)n−1

)k(i)−1

−
p2 ·

((
1 + αp

(1−p)n−1

)k(i)−1 − 1
)

(
αp

(1−p)n−1

)

�
(

1 − 1

α

)
p(1 − p)n−1 gi

gk(i)

(
1 +

αp

(1 − p)n−1

)k(i)−1

=

(
1 − 1

α

)
p(1 − p)n−1gi,

where the inequality uses gi � gk(i). Hence,

E(Δt) �
∑
i∈I

(
1 − 1

α

)
p(1 − p)n−1gi =

(
1 − 1

α

)
p(1 − p)n−1g(a(t)),

which proves (4.1) and therefore the theorem.

5. Refined upper bound for mutation probability 1/n

In this section we consider the standard mutation probability p = 1/n and refine the result

from Corollary 4.2. More precisely, we obtain that the lower-order terms are O(n). The

proof will be shorter, and uses a simpler potential function.

Theorem 5.1. On any linear function, the expected optimization time of the (1+1) EA

with p = 1/n is at most en ln n + 2en + O(1), and the probability that the optimization time

exceeds en ln n + (1 + r)en + O(1) is at most e−r for any r > 0.

Proof. Let f(x) = wnxn + · · · + w1x1 be the linear function at hand and let g(x) = gnxn +

· · · + g1x1 be the potential function defined by

gi =

(
1 +

1

n − 1

)min{j|j�i∧wj=wi}−1

,

hence gi = (1 + 1/(n − 1))i−1 for all i if and only if the wi are mutually distinct. We

consider the stochastic process X(t) := g(a(t)), where a(t) is the current search point of the

(1+1) EA at time t. Obviously, X(t) = 0 if and only if f has been optimized.

Let Δt := X(t) − X(t+1). In a case analysis (partly inspired by Doerr, Johannsen and

Winzen [8]), we will show below for n � 4 that E(Δt | X(t) = s) � s/(en). The initial value

satisfies

X(0) � gn + · · · + g1 �
n−1∑
i=0

(
1 +

1

n − 1

)i

� n

(
1 +

1

n − 1

)n−1

� en.

Hence, ln(X(0)) � ln n + 1. Assuming n � 4, Theorem 2.1 yields E(T ) � en(ln n + 2) and

P(T > en(ln n + r + 1)) � e−r regardless of the starting point, from which the theorem

follows.

The case analysis fixes an arbitrary current search point a(t). We use the same notation

as in the proof of Theorem 4.1 and denote by I := {i | a(t)
i = 1} the index set of its one-bits

and by Z := {1, . . . , n} \ I its zero-bits. We assume I �= ∅ since there is nothing to show

otherwise. Denote by a′ the random (not necessarily accepted) offspring produced by the
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(1+1) EA when mutating a(t) and by a(t+1) the next search point after selection. Recall

that a(t+1) = a′ if and only if f(a′) � f(a(t)). In what follows, we will often condition on

the event A that a(t+1) = a′ �= a(t) holds and note that Δt = 0 if A does not occur. Let

I∗ := {i ∈ I | a′
i = 0} be the set of one-bits of a(t) that are flipped and let Z∗ := {i ∈ Z |

a′
i = 1} be the set of zero-bits of a(t) that are flipped (not conditioned on A). Note that

I∗ �= ∅ if A occurs.

Case 1. Event S1 := {|I∗| � 2} ∩ A occurs. Under this condition, each zero-bit in a(t) has

been flipped to 1 in a(t+1) with probability at most 1/n. Since gi � 1 for 1 � i � n, we have

E(Δt | S1) � |I∗| − 1

n

∑
i/∈I

gi � 2 − 1

n

n∑
i=1

(
1 +

1

n − 1

)i−1

= 2 − (1 + 1/(n − 1))n − 1

n/(n − 1)
� 2 −

(
e −

(
1 − 1

n

))
� 0

for n � 4, where we have used 1 + 1/(n − 1) = 1/(1 − 1/n). Hence, it is pessimistic to

assume E(Δt | S1) = 0.

Case 2. Event S2 := {|I∗| = 1} ∩ A occurs. Let i∗ be the single element of I∗ and note that

this is a random variable.

Subcase 2.1. S21 := {|I∗| = 1} ∩ {Z∗ = ∅} ∩ A occurs. Since {|I∗| = 1} and {Z∗ = ∅} to-

gether imply A, the index i∗ of the flipped one-bit is uniform over I . Hence,

E(Δt | S21) =
∑
i∈I

gi/|I |.

Moreover, P(S21) � |I |(1/n)(1 − 1/n)n−1 � |I |/(en), implying

E(Δt | S21) · P(S21) � g(a(t))/(en) = X(t)/(en).

If we can show that E(Δt | {|I∗| = 1} ∩ {|Z∗| � 1} ∩ A) � 0, which will be proved in

Subcase 2.2 below, then E(Δt | X(t) = s) � s/(en) follows by the law of total probability

and the proof is complete.

Subcase 2.2. S22 := {|I∗| = 1} ∩ {|Z∗| � 1} ∩ A occurs. Let j∗ := max{j | j ∈ Z∗} be the

index of the leftmost flipping zero-bit, and note that j∗ is also random. Since we work

under |I∗| = 1 and the wj are monotone increasing with respect to j, for A to occur it is

necessary that wj∗ � wi∗ holds.

Subcase 2.2.1. S221 := {|I∗| = 1} ∩ {|Z∗| � 1} ∩ {j∗ > i∗} ∩ A occurs. Then wj∗ = wi∗ and

|Z∗| = 1 must hold. In this case gj∗ = gi∗ , by the definition of g, and E(Δt | S221) = 0

follows immediately.

Subcase 2.2.2. S222 := {|I∗| = 1} ∩ {|Z∗| � 1} ∩ {j∗ < i∗} ∩ A occurs. If wj∗ = wi∗ then

|Z∗| = 1 must hold for A to occur, and zero drift follows as in the previous subcase. Now

let us assume wj∗ < wi∗ and thus gj∗ < gi∗ . For notational convenience, we redefine i∗ :=

min{i | wi = wi∗ }. We consider Zr := Z ∩ {1, . . . , i∗ − 1}, the set of potentially flipping zero-

bits right of i∗, denote k := |Zr| and note that in the worst case, Zr = {i∗ − 1, . . . , i∗ − k}
as the gi are non-decreasing. By using p̃ := P(Z∗ ∩ Zr �= ∅) = 1 − (1 − 1/n)k and the
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definition of conditional probabilities, we obtain under S222 that every bit from Zr is

flipped (not necessarily independently) with probability at most (1/n)/p̃ = 1
n(1−(1−1/n)k )

.

We now assume that all the corresponding a′ are accepted. This is pessimistic for the

following reasons. Consider a rejected a′. If |Z∗| = 1 then our prerequisite j∗ < i∗ and the

monotonicity of the gi imply a negative Δt-value. If |Z∗| > 1 then the negative Δt-value is

due to the fact that gi < gi−1 + gi−2 for 3 � i � n. Hence, using the linearity of expectation

we get

E(Δt | S222) � gi∗ − 1

np̃
·
∑
j∈Zr

gj � gi∗ −
k∑

j=1

gi∗−j

n(1 − (1 − 1/n)k)

=

(
1 +

1

n − 1

)i∗−1

−
k−1∑
j=0

(1 + 1/(n − 1))i
∗−1−j

n(1 − (1 − 1/n)k)

=

(
1 +

1

n − 1

)i∗−k((
1 +

1

n − 1

)k−1

− ((1 + 1/(n − 1))k − 1) · (n − 1)

n(1 − (1 − 1/n)k)

)
= 0,

where the last equality follows since 1 + 1/(n − 1) = (1 − 1/n)−1 and

((1 + 1/(n − 1))k − 1) · (n − 1)

n(1 − (1 − 1/n)k)
=

(
1 − 1

n

)
(1 − 1/n)−k − 1

1 − (1 − 1/n)k
=

(
1 − 1

n

)1−k

.

This completes the proof.

6. Lower bounds

In this section we state lower bounds that prove the results from Theorem 4.1 to be

tight up to lower-order terms for a wide range of mutation probabilities. Moreover, we

show that the lower bounds hold for the very large class of mutation-based algorithms

(Algorithm 2). Recall that a list of the most important consequences is given above in

Theorem 3.1. For technical reasons, we split the proof of the lower bounds into two main

cases, namely p = O(n−2/3−ε) and p = Ω(nε−1) for any constant ε > 0. Unless p > 1/2, the

proofs go back to OneMax as a worst case, as outlined in the following subsection.

6.1. OneMax as easiest linear function

Doerr, Johannsen and Winzen [7] show with respect to the (1+1) EA with standard

mutation probability 1/n that OneMax is the ‘easiest’ function from the class of functions

with unique global optimum, which comprises the class of linear functions. More precisely,

the expected optimization time on OneMax is proved to be smallest within the class.

We will generalize this result to p � 1/2 with moderate additional effort. In fact we will

relate the behaviour of an arbitrary mutation-based EA on OneMax to the (1+1) EAμ in

a similar way to Sudholt [23, Section 7]. The latter algorithm, displayed as Algorithm 3,

creates search points uniformly at random from time 0 to time μ − 1, and then chooses a

best one from these to be the current search point at time μ − 1; afterwards it works as

the standard (1+1) EA. Note that we obtain the standard (1+1) EA for μ = 1. Moreover,

we will only consider the case μ = nO(1) in order to bound the running time of the
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initialization. This makes sense since even drawing 2
√
n random search points will with

overwhelming probability fail to lead to a unique optimum (such as the all-zeros string in

OneMax).

Algorithm 3 (1+1) EAμ

t := −1.

repeat

t := t + 1.

create xt ∈ {0, 1}n uniformly at random.

until t = μ − 1.

xt := arg min{f(x) | x ∈ {x0, . . . , xt}} (breaking ties uniformly).

repeat

create x′ by flipping each bit in xt independently with probability p.

xt+1 := x′ if f(x′) � f(xt), and xt+1 := xt otherwise.

t := t + 1.

forever.

Our analyses need the monotonicity statement from Lemma 6.1 below, which is similar

to Lemma 11 of Doerr, Johannsen and Winzen [7] and whose proof is already sketched

in Droste, Jansen and Wegener [9, Section 5]. Note, however, that Doerr, Johannsen

and Winzen [7] only consider p = 1/n and have a stronger statement for this case.

More precisely (using the notation defined in the lemma), they show P(|mut(a)|1 = j) �
P(|mut(b)|1 = j), which does not hold for large p. Here and below, |x|1 denotes the number

of ones in a bit string x.

Lemma 6.1. Let a, b ∈ {0, 1}n be two search points satisfying |a|1 < |b|1. Denote by mut(x)

the random string obtained by flipping each bit of x independently with probability p. Let

0 � j � n be arbitrary. If p � 1/2 then

P(|mut(a)|1 � j) � P(|mut(b)|1 � j).

Proof. We prove the result only for |b|1 = |a|1 + 1. The general statement then follows

by induction on |b|1 − |a|1.
By the symmetry of the mutation operator, P(|mut(x)|1 � j) is the same for all x with

|x|1 = |a|1. We therefore assume b � a (i.e., b is componentwise not less than a). In the

following, let s∗ be the unique index where bs∗ = 1 and as∗ = 0. Let S(x) be the event

that bit s∗ flips when x is mutated. Since bits are flipped independently, it holds that

P(S(x)) = p for any x. We write a′ := mut(a) and b′ := mut(b). Assuming p � 1/2, the

aim is to show P(|a′|1 � j) � P(|b′|1 � j), which is equivalent to(
P(|a′|1 � j | S(a)) − P(|b′|1 � j | S(b))

)
· (1 − p)

+
(
P(|a′|1 � j | S(a)) − P(|b′|1 � j | S(b))

)
· p � 0. (6.4)

Note that the relation P(|a′|1 � j | S(a)) � P(|b′|1 � j | S(b)) follows from a simple coup-

ling argument as a′ � b′ holds if the mutation operator flips the bits other than s∗ in the
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same way with respect to a and b. Moreover,

P(|a′|1 � j | S(a)) − P(|b′|1 � j | S(b)) = P(|b′|1 � j | S(b)) − P(|a′|1 � j | S(a))

since a is obtained from b by flipping bit s∗ and vice versa. Hence, (6.4) follows.

The following theorem is a generalization of Theorem 9 by Doerr, Johannsen and

Winzen [7] to the case p � 1/2 instead of p = 1/n. However, we not only generalize to

higher mutation probabilities but also consider the more general class of mutation-based

algorithms. Finally, we prove stochastic ordering, while Doerr, Johannsen and Winzen [7]

inspect only the expected optimization times. Still, many ideas of the original proof can

be taken over and combined with the proof of Theorem 5 of Sudholt [23].

Theorem 6.2. Consider a mutation-based EA A with population size μ and mutation probab-

ility p � 1/2 on any function with a unique global optimum. Then the optimization time of A

is stochastically at least as large as the optimization time of the (1+1) EAμ on OneMax.

Proof. Let f denote the function with unique global optimum, which, without loss of

generality, we assume to be the all-zeros string. For any sequence X = (x0, . . . , x�−1) of

search points over {0, 1}n, let q(X ) be the probability that X represents the first � search

points x0, . . . , x�−1 created by Algorithm A on f (its so-called history up to time � − 1).

For any history X with q(X ) > 0, let Tf(X ) denote the random optimization time of

Algorithm A on f, given that its history up to time � equals X . Let

Ξ� :=

{
X = (x0, . . . , x�−1) ∈

�×
i=1

{0, 1}n
∣∣∣ q(X ) > 0

}

denote the set of all possible histories of length � with respect to Algorithm A on f, and

let

Ξ :=

{ m⋃
�=1

Ξ� | m ∈ N

}

denote all possible histories of finite length. Finally, for any X ∈ Ξ, let L(X ) denote the

length of X .

Given any X ∈ Ξ, let (1+1) EA(X ) be the algorithm that chooses a search point with

minimal number of ones from X as current search point at time L(X ) − 1 (breaking

ties uniformly) and afterwards proceeds as the standard (1+1) EA on OneMax. Now, let

TOneMax(X ) denote the random optimization time of the (1+1) EA(X ). We claim that the

stochastic ordering

P(Tf(X ) � t) � P(TOneMax(X ) � t)

holds for every X ∈ Ξ satisfying L(X ) � μ and every t � 0. Note that the random vector of

initial search points X ∗ := (x0, . . . , xμ−1) follows the same distribution in both Algorithm A

and the (1+1) EAμ. In particular, the two algorithms are identical before time μ − 1, i.e.,

before initialization is finished. Furthermore, (1+1) EA(X ∗) is the (1+1) EAμ initialized

with X ∗. Altogether, the claimed stochastic ordering implies the theorem. Moreover,
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regardless of the length L(X ), the claim is obvious for t � L(X ) since the behaviour up

to time L(X ) is fixed.

For any X ∈ Ξ, let |X |1 := min{|x|1 | x ∈ X } denote the best number of ones in the

history, where x ∈ (x0, . . . , x�−1) means that x = xi for some i ∈ {0, . . . , � − 1}. For every

k ∈ {0, . . . , n}, every � � μ and every t � 0, let

pk,�(t) := min{P(TOneMax(X ) � � + t) | X ∈ Ξ�, |X |1 = k}

be the minimum probability of the (1+1) EA(X ) needing at least � + t steps to optimize

OneMax from a history of length � whose best search point has exactly k one-bits.

Due to the symmetry of the OneMax function and the definition of (1+1) EA(X ), we

have P(TOneMax(X ) � � + t) = pk,�(t) for every X satisfying |X | = � and |X |1 = k. In other

words, the minimum can be omitted from the definition of pk,�.

Furthermore, for every k ∈ {0, . . . , n}, every � � μ and every t � 0, let

p̃k,�(t) := min{P(Tf(X ) � � + t) | X ∈ Ξ�, |X |1 � k}

be the minimum probability of Algorithm A needing at least � + t steps to optimize f from

a history of length � � μ whose best search point has at least k one-bits. We will show

p̃k,�(t) � pk,�(t) for any k ∈ {0, . . . , n} and � � μ by induction on t. In particular, by choosing

� := μ and applying the law of total probability with respect to the outcomes of |X ∗|1,
this will imply the above-mentioned stochastic ordering and therefore the theorem.

If k � 1 then pk,�(0) = p̃k,�(0) = 1 for any � � μ, since k � 1 means that the first �

search points do not contain the optimum. Moreover, p0,�(t) = p̃0,�(t) = 0 for any t � 0

and � � μ, since a history beginning with the all-zeros string corresponds to optimization

time 0 and thus minimizes both P(Tf(X ) � t + �) and P(TOneMax(X ) � t + �). Now let

us assume that there is some t � 0 such that p̃k,�(t
′) � pk,�(t

′) holds for all 0 � t′ � t,

k ∈ {0, . . . , n}, and � � μ. Note that the inequality has already been proved for all t if

k = 0.

Consider the (1+1) EA(X ) for an arbitrary X satisfying L(X ) = � � μ and |X |1 = k + 1

for some k ∈ {0, . . . , n − 1}. Let some x ∈ {0, 1}n, where |x|1 = k + 1, be chosen from X
and let y ∈ {0, 1}n be the random search point generated by flipping each bit in x

independently with probability p. The (1+1) EA(X ) will accept y as new search point at

time � + 1 > μ if and only if |y|1 � |x|1 = k + 1. Hence,

pk+1,�(t + 1) = P(|y|1 � k + 1) · pk+1,�+1(t) +

k∑
j=0

P(|y|1 = j) · pj,�+1(t). (6.5)

Next, let X , where again L(X ) = � � μ, be a history satisfying P(Tf(X ) � t + 1) =

p̃k+1,�(t + 1) and let x̃ be the (random) search point that is chosen for mutation at time �

in order to obtain the equality of the two probabilities. Note that |x̃|1 � k + 1. Moreover,

let ỹ ∈ {0, 1}n be the random search point generated by flipping each bit in x̃ independently
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with probability p. Let X ′ be the concatenation of X and ỹ. Then

p̃k+1,�(t + 1) = P(|ỹ|1 � k + 1) · P(Tf(X ′) � t | |ỹ|1 � k + 1)

+

k∑
j=0

P(|ỹ|1 = j) · P(Tf(X ′) � t | |ỹ|1 = j),

which, by definition of the p̃i(t), gives us the lower bound

p̃k+1,�(t + 1) � P(|ỹ|1 � k + 1) · p̃k+1,�+1(t) +

k∑
j=0

P(|ỹ|1 = j) · p̃j,�+1(t).

To relate the last inequality to (6.5) above, we interpret the right-hand side as a function

of k + 2 variables. More precisely, let

φ(a0, . . . , ak+1) :=

k+1∑
j=0

ajp̃j,�+1(t),

and consider the vectors

v(f) = (v(f)
0 , . . . , v

(f)
k+1) := (P(|ỹ|1 = 0), . . . ,P(|ỹ|1 = k),P(|ỹ|1 � k + 1))

and

v(O) = (v(O)
0 , . . . , v

(O)
k+1) := (P(|y|1 = 0), . . . ,P(|y|1 = k),P(|y|1 � k + 1)).

If we can show that φ(v(f)) � φ(v(O)), then we can conclude

p̃k+1,�(t + 1) � φ(v(f)) � φ(v(O))

� P(|y|1 � k + 1) · pk+1,�+1(t) +

k∑
j=0

P(|y|1 = j) · pj,�+1(t) = pk+1,�(t + 1),

where the last inequality follows from the induction hypothesis and the equality is from

(6.5). This will complete the induction step.

To show the claimed inequality φ(v(f)) � φ(v(O)), we use that for 0 � j � k

P(|y|1 � j) � P(|ỹ|1 � j),

which follows from Lemma 6.1 since |x̃|1 � |x|1 and p � 1/2. In other words,

j∑
i=0

v
(O)
i �

j∑
i=0

v
(f)
i

for 0 � j � k and

k+1∑
i=0

v
(O)
i =

k+1∑
i=0

v
(f)
i ,

since we are dealing with probability distributions. Altogether, the vector v(O) majorizes

the vector v(f). Since they are based on increasingly restrictive conditions, the p̃j(t) are

non-decreasing in j. Hence, φ is Schur-concave (see Theorem A.3 in Chapter 3 of [18]),

which proves φ(v(f)) � φ(v(O)) as desired.
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6.2. Large mutation probabilities

It is not too difficult to show that mutation probabilities p = Ω(nε−1), where ε > 0 is an

arbitrary constant, make the (1+1) EA (and also the (1+1) EAμ) flip too many bits for it

to optimize linear functions efficiently.

Theorem 6.3. On any linear function, the optimization time of an arbitrary mutation-based

EA with μ = nO(1) and p = Ω(nε−1) for some constant ε > 0, is bounded from below by 2Ω(nε)

with probability 1 − 2−Ω(nε).

Proof. Due to Theorem 6.2, if suffices to show the result for the (1+1) EAμ on OneMax.

The following two statements follow from Chernoff bounds (and a union bound over

μ = nO(1) search points in the second statement).

(1) Due to the lower bound on p, the probability of a single step not flipping at least

�pi/2� bits out of a set of i bits is at most 2−Ω(pi) = 2−Ω(inε−1).

(2) The search point xμ−1 has at least n/3 and at most 2n/3 one-bits with probability

1 − 2−Ω(n).

Furthermore, as we consider OneMax, the number of one-bits is non-increasing over

time. We assume an xμ−1 being non-optimal and having at most 2n/3 one-bits, which

contributes a term of only 2−Ω(n) to the failure probability. The assumption means that all

future search points accepted by the (1+1) EAμ will have at least n/3 zero-bits. In order

to reach the optimum, none of these is allowed to flip. As argued above, the probability

of this happening is 2−Ω(nε), and by the union bound, the total probability is still 2−Ω(nε)

in a number of 2cn
ε

steps if the constant c is chosen small enough.

Mutation-based EAs have only been defined for p � 1/2 since flipping bits with

higher probability seems to contradict the idea of a mutation. However, for the sake

of completeness, we also analyse the (1+1) EA with p > 1/2 and obtain exponential

expected optimization times. Note that we do not know whether OneMax is the easiest

linear function in this case.

Theorem 6.4. On any linear function, the expected optimization time of the (1+1) EA with

mutation probability p > 1/2 is bounded from below by 2Ω(n).

Proof. We distinguish between two cases.

Case 1. p � 3/4. Here we assume that the initial search point has at least n/2 leading

zeros and is not optimal, the probability of which is at least 2−n/2−1. Since the n/2 most

significant bits are set correctly in this search point, all accepted search points must have

at least n/2 zeros as well. To create the optimum, it is necessary that none of them flip.

This occurs only with probability at most (1/4)n/2, hence the expected optimization time

under the assumed initialization is at least 4n/2. Altogether, the unconditional expected

optimization time is at least 2−n/2−1 · 4n/2 = 2Ω(n).
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Case 2. 1/2 < p � 3/4. Now the aim is to show that all created search points have a

number of ones that is in the interval I := [n/8, 7n/8] with probability 1 − 2−Ω(n). This

will imply the theorem by the usual waiting time argument.

Let x be a search point such that |x|1 ∈ I . We consider the event of mutating x to

some x′ where |x′|1 < n/8. Since p > 1/2, this is most likely if |x|1 = 7n/8 (using the ideas

behind Lemma 6.1 for the complement of x). Still, using Chernoff bounds and p � 3/4,

at least (1/5) · (7n/8) > n/8 one-bits are not flipped with probability 1 − 2−Ω(n). By a

symmetrical argument, the probability is 2−Ω(n) that |x′|1 > 7n/8.

As was to be expected, no polynomial expected optimization times were possible for

the range of p considered in this subsection.

6.3. Small mutation probabilities

We now turn to mutation probabilities that are bounded from above by roughly 1/n2/3.

Here relatively precise lower bounds can be obtained.

Theorem 6.5. On any linear function, the expected optimization time of an arbitrary

mutation-based EA with μ = nO(1) and p = O(n−2/3−ε) is bounded from below by

(1 − o(1))(1 − p)−n(1/p) min{ln n, ln(1/(p3n2))}.

As a consequence of Theorem 6.5, we obtain that the bound from Theorem 4.1

is tight (up to lower-order terms) for the (1+1) EA as long as ln(1/(p3n2)) = ln n −
o(ln n). This condition is weaker than p = O((ln n)/n). If p = ω((ln n)/n) or p = o(n−C ) for

every constant C > 0 then Theorem 6.5 in conjunction with Theorem 6.3 and 6.4 imply

superpolynomial expected optimization time. Thus, the bounds are tight for all p that

allow polynomial optimization times.

Before giving the proof, we state another important consequence, implying the statement

from Theorem 3.1 that using the (1+1) EA with mutation probability 1/n is optimal for

any linear function.

Corollary 6.6. On any linear function, the expected optimization time of a mutation-based

EA with μ = nO(1) and p = c/n, where c > 0 is a constant, is bounded from below by (1 −
o(1))((ec/c)n ln n). If p = ω(1/n) or p = o(1/n), the expected optimization time is ω(n ln n).

Proof. The first statement follows immediately from Theorem 6.5 using (1 − c/n)−n � ec

and ln(1/(p3n2)) = ln n − O(ln c). The second one follows, depending on p, either from

Theorem 6.3 or, in that case assuming p = O((ln n)/n), from Theorem 6.5, noting that

(1 − p)−n(1/p) � enp/p = ω(n)

if p = ω(1/n) or p = o(1/n).

Recall that by Theorem 6.2, it is enough to prove Theorem 6.5 for the (1+1) EAμ on

OneMax. As mentioned above, this is a well-studied function, for which strong upper and
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lower bounds are known in the case p = 1/n. Our result for general p is inspired by the

proof of Theorem 1 of Doerr, Fouz and Witt [3], which uses an implicit multiplicative drift

theorem for lower bounds. Therefore, we now need an upper bound on the multiplicative

drift, which is given by the following generalization of Lemma 6 in [4].

Lemma 6.7. Consider (1+1) EA with mutation probability p for the minimization of

OneMax. Given a current search point with i one-bits, let I ′ denote the number of one-

bits in the subsequent search point (after selection). Then we have E(i − I ′) � ip(1 − p +

ip2/(1 − p))n−i.

Proof. Note that I ′ � i since the number of one-bits in the process is non-increasing.

Hence, only mutations that flip at least as many one-bits as zero-bits have to be considered.

The event that the total number of one-bits is decreased by k � 0 can be partitioned into

the subevents Fk,j that k + j one-bits and j zero-bits flip, for all j ∈ Z
+
0 . The probability

of an individual event Fk,j equals(
i

k + j

)(
n − i

j

)
pk+2j(1 − p)n−k−2j ,

where
(
a
b

)
:= 0 for b > a. Thus, we have

E(i − I ′) �
i∑

k=1

k
∑
j�0

(
i

k + j

)(
n − i

j

)
pk+2j(1 − p)n−k−2j

�
i∑

k=1

k

(
i

k

)
pk(1 − p)n−k

︸ ︷︷ ︸
=:S1

·
n−i∑
j=0

ij
(
n − i

j

)(
p

1 − p

)2j

︸ ︷︷ ︸
=:S2

,

where the second inequality uses
(

i
k+j

)
� ij ·

(
i
k

)
. Factoring out (1 − p)n−i of S1, we

recognize the expected value of a binomial distribution with parameters i and p, which

means S1 = (1 − p)n−i · ip. Regarding S2, we apply the Binomial Theorem and obtain

S2 = (1 + i(p/(1 − p))2)n−i. The product of S1 and S2 is the upper bound from the lemma.

The proof of Theorem 6.5 will use the preceding lemma and Theorem 2.2, the lower-

bound version of the multiplicative drift theorem. To make this paper self-contained, we

fully prove Theorem 2.2 now before completing the proof of Theorem 6.5. Note, however,

that a very similar drift theorem for lower bounds was also proved by Lehre and Witt [17,

Theorem 5].

The proof of Theorem 2.2 uses the following additive drift theorem.

Theorem 6.8 (Jägersküpper [14]). Let X(1), X(2), . . . be random variables with bounded

support and let T be the stopping time defined by T := min{t | X(1) + · · · + X(t) � g} for a

given g > 0. If E(T ) exists and E(X(i) | T � i) � u for i ∈ N, then E(T ) � g/u.

In addition, we need the following simple fact.
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Fact 6.9. Let X be a random variable with finite expectation, and k any real number. If

P(X < k) > 0, then E(X) � E(X | X < k).

Proof. [of Theorem 2.2] The proof generalizes the proof of Theorem 1 in Doerr, Fouz

and Witt [3]. We fix an arbitrary starting value s0 and analyse the random variable T

under the condition X(0) = s0. Note that T is non-negative. Hence, its expectation E(T )

is either positive infinite or positive finite. In the first case, the theorem is trivial. From

now on, we consider the case of finite E(T ).

We fix an arbitrary t � 0 and an arbitrary s > smin where P(X(t) = s) > 0. In the

following, we condition on the joint event (T > t ∧ X(t) = s), but we omit stating this

event in the expectations for notational convenience. We define the sequence of random

variables Y (t) := ln(X(t)) (note that X(t) � 1), and apply Theorem 6.8 with respect to the

random variables

Δt+1(s) :=
(
Y (t) − Y (t+1)

)
=

(
ln

(
s

X(t+1)

))
.

We consider the time until X(t) � smin (still assuming X(0) = s0) and use the parameter

g := ln(s0/smin). The expectation of Δt+1(s) can be expressed as

P(s − X(t+1) � βs) · E
(
Δt+1(s) | s − X(t+1) � βs

)
+ P(s − X(t+1) < βs) · E

(
Δt+1(s) | s − X(t+1) < βs

)
. (6.6)

By applying the second condition from the theorem, the first term in (6.6) can be bounded

from above by (βδ/ln s) ln s = βδ. The logarithm function is concave. Hence, by Jensen’s

inequality the second term in (6.6) is at most

ln

(
E

(
s

X(t+1)

∣∣∣ s − X(t+1) < βs

))
= ln

(
1 + E

(
s − X(t+1)

X(t+1)

∣∣∣ s − X(t+1) < βs

))
.

By using the inequality ln(1 + x) � x as well as the conditions X(t+1) � (1 − β)s and

X(t+1) � X(t), this can be bounded by

E

(
s − X(t+1)

X(t+1)

∣∣∣ s − X(t+1) < βs

)
< E

(
s − X(t+1)

(1 − β)s

∣∣∣ s − X(t+1) < βs

)
.

By Fact 6.9 and the first condition from the theorem, it follows that the second term

in (6.6) is at most

E

(
s − X(t+1)

(1 − β)s

)
� δ

1 − β
.

Altogether, we obtain E(Δt+1(s)) � (β + 1/(1 − β))δ � ((β + 1)/(1 − β))δ. From The-

orem 6.8, it now follows that

E(T | X(0) = s0) � 1

δ
· 1 − β

1 + β
· ln

(
s0

smin

)
.

Now we are ready to prove the desired lower bound on the expected optimization time.
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Proof of Theorem 6.5. As already mentioned, we may assume that the linear function

is OneMax and that the algorithm is the (1+1) EAμ. Then the proof mainly applies

Theorem 2.2 for a suitable choice of its various parameters. Let p̃ := max{p, 1/n}. We first

observe that the probability of flipping at least b := p̃n ln n bits in a single step is bounded

from above by

(
n

p̃n ln n

)
· pp̃n ln n �

(
ep̃n

p̃n ln n

)p̃n ln n

= 2−Ω(p̃n(ln n)(ln ln n)),

where we have used p � p̃. Hence, the probability is superpolynomially small. In the

following, we assume that the number of one-bits changes by at most b in each of a total

number of at most (1 − p)−nn ln n = 2O(p̃n)+O(ln ln n) steps that are considered for the lower

bound we want to prove. This event holds with probability 1 − o(1), which decreases the

bound only by a factor of 1 − o(1).

Let X(t) denote the number of one-bits at time t and note that this is non-increasing

over time. We choose smin := np̃ ln2 n and β := 1/ln n and introduce smax := 1/(2p̃2n ln n)

as an additional upper bound. Note that smax � n/(2 ln n) due to p̃ � 1/n. Since the μ

initial search points are drawn uniformly at random and μ = nO(1), it holds that Xμ � smax

with probability 1 − o(1). Again, assuming this occurs, we lose a factor 1 − o(1) in

the bound we want to prove. Moreover, due to our assumption p = O(n−2/3−ε) (which

means p̃ = O(n−2/3−ε)), we have b = np̃ ln n � 1/(4p̃2n ln n) = smax/2 for n large enough.

Altogether, it holds that smax/2 � Xt∗ � smax at the first point of time t∗ where Xt∗ � smax.

To simplify issues, we consider the process only from time t∗ on. Skipping the first t∗

steps, we pessimistically assume s0 := smax/2 as a starting point and X(t) � smax for all

t � 0. The second condition of the drift theorem is now fulfilled since the bound on p̃ also

implies b = p̃n ln n � 1/(2p̃2n ln2 n) = βsmax, where βsmax is the largest value for βs to be

taken into account.

Assembling the factors from the lower bound in Theorem 2.2, we obtain 1−β
1+β

= 1 − o(1).

Furthermore, we have ln(s0/smin) = ln(1/(4p̃3n2 ln3 n)) = ln(1/(p̃3n2)) − O(ln ln n), which is

(1 − o(1)) ln(1/(p̃3n2)) by our assumption on p̃. If we can prove that 1/δ = (1 − o(1))(1 −
p)−n(1/p), the proof is complete.

To bound δ, we use Lemma 6.7. Note that i � smax holds in our simplified process.

Using the lemma and recalling that 1/p̃ � 1/p, we get

E(X(t) − X(t+1) | X(t) = i)

i
� p

(
1 − p +

smaxp
2

1 − p

)n−smax

� p

(
1 − p +

1

n ln n

)n−smax

� p

(
(1 − p)

(
1 +

2

n ln n

))n−smax

= (1 + o(1))p(1 − p)n,

where we have used p � 1/2 and (1 + 2/(n ln n))n = 1 + o(1) and

(1 − p)−smax = (1 − p)−1/(2p̃2n ln n) = 1 + o(1).
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Hence, 1/δ � (1 − o(1))(1/p)(1 − p)−n as suggested, which completes the proof.

Finally, we remark that the expected optimization time of the (1+1) EA with p = 1/n

on OneMax is known to be en ln n − Θ(n) [4]. Hence, in conjunction with Theorems 5.1

and 6.2, we obtain for p = 1/n that the expected optimization time of the (1+1) EA varies

by at most an additive term Θ(n) within the class of linear functions.

7. Conclusions

We have presented new bounds on the expected optimization time of the (1+1) EA on

the class of linear functions. These bounds are now tight up to lower-order terms, which

applies to any mutation probability p = O((ln n)/n). This means that 1/n is the optimal

mutation probability on any linear function. We have for the first time studied the case

p = ω(1/n) and proved a transition from polynomial to exponential running time in the

region Θ((ln n)/n). The lower bounds show that OneMax is the easiest linear function

for all p � 1/2, and they apply not only to the (1+1) EA but also to the large class

of mutation-based EAs. This means that the (1+1) EA is an optimal mutation-based

algorithm on linear functions. The upper bounds hold with high probability. As proof

techniques, we have employed multiplicative drift in conjunction with adaptive potential

functions. In the future, we hope to see these techniques applied to the analysis of other

randomized search heuristics.

We finish with an open problem. Even though our proofs of upper bounds would

simplify for the function BinVal, this function is often considered as a worst case. Is it

true that the runtime of the (1+1) EA on BinVal is stochastically largest within the class

of linear functions, thereby complementing the result that the runtime on OneMax is

stochastically smallest?
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