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Abstract. In the first part of this paper, we consider several natural problems about
locally homogeneous rigid geometric structures. In particular, we formulate a notion
of topological completeness which is adapted to the study of global rigidity of chaotic
dynamical systems. In the second part of the paper, we prove the following result: let ϕ be
a C∞ expanding map of a closed manifold. If ϕ preserves a topologically complete C∞

rigid geometric structure, then ϕ is C∞ conjugate to an expanding infra-nilendomorphism.

1. Introduction
Rigid geometric structures are natural generalizations of classical finite-type geometric
structures such as Riemannian metrics and linear connections. A classical program
initiated by Zimmer and Gromov consists of classifying chaotic differential dynamical
systems preserving rigid geometric structures (see [14]). The following important result
related to this program was obtained by Benoist and Labourie in [5] (see also [4]).

THEOREM 1.1. Let φ be a C∞ topologically transitive Anosov diffeomorphism with C∞

stable and unstable distributions. If φ preserves a C∞ linear connection, then φ is C∞

conjugate to an Anosov infra-nilautomorphism.

It is true that linear connections are very important cases of rigid geometric structures.
However, for certain interesting dynamical systems, linear connections are not the naturally
associated rigid geometric structures (see for example [12, 17]). Therefore, it is necessary
to consider general invariant rigid geometric structures in the context of the Zimmer–
Gromov program. The following question is due to Katok and Spatzier (see [18]).

Question 1.1. Let φ be a C∞ topologically transitive Anosov diffeomorphism with C∞

stable and unstable distributions. If φ preserves a C∞ rigid geometric structure, prove that
φ is C∞ conjugate to an Anosov infra-nilautomorphism.

In this paper, we consider C∞ expanding maps which are simpler dynamical systems
than Anosov diffeomorphisms. However, we consider general invariant rigid geometric
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structures. We hope that some of the results obtained in the paper will help to give an
answer to Question 1.1. Our central result is as follows.

THEOREM 1.2. Let ϕ be a C∞ expanding map of a closed manifold M. If ϕ preserves
a topologically complete C∞ rigid geometric structure g, then ϕ is C∞ conjugate to an
expanding infra-nilendomorphism.

We should mention that our topological completeness formulated in §5 is a natural
generalization of the classical completeness of linear connections. Typical rigid geometric
structures preserved by expanding maps are generalized connections in frame bundles,
which are natural generalizations of linear connections (see §5.3). It is easy to verify
that generalized connections preserved by expanding maps are necessarily topologically
complete (see §7). Therefore, we obtain the following corollary of Theorem 1.2.

COROLLARY 1. Let ϕ be a C∞ expanding map of a closed manifold M. If ϕ
preserves a C∞ generalized connection, then ϕ is C∞ conjugate to an expanding infra-
nilendomorphism.

In the special case that ϕ is defined on the circle S1 and preserves a C∞ linear
connection, the corollary above was proved by Feres in [11]. This elegant one-dimensional
result is one of the motivations of the present paper.

In order to obtain Theorem 1.2, we prove several geometric propositions about locally
homogeneous rigid geometric structures. For example, the following geometric problem is
considered.

Recall firstly that by the celebrated open-dense theorem of Gromov (see §3), any C∞

rigid geometric structure preserved by a chaotic dynamical system is locally homogeneous
on at least an open-dense subset. Now let g be a locally homogeneous C∞ rigid geometric
structure. We consider the problem of extending local isometries of g to global ones. In the
case that g is real analytic, several results of extending local analytic Killing fields to global
ones are well known, which have very interesting applications to the study of analytic
semisimple group actions (see [1, 15]). However, analytic rigid geometric structures are
not adequate for the study of C∞ dynamical systems. In addition, the extendibility of local
Killing fields is not well adapted to the study of global rigidity of dynamical systems.

In this paper, we prove, under some mild assumptions, the extendibility of local
isometries to global ones for locally homogeneous C∞ rigid geometric structures. More
precisely, we obtain the following proposition, which gives a partial generalization of the
classical Liouville theorem in conformal geometry.

PROPOSITION 1. Let g be a locally homogeneous C∞ rigid geometric structure on a
connected manifold M. Let M̃ be the universal covering space of M and g̃ the lifted rigid
geometric structure of g on M̃. Take x ∈ M. If g verifies the following two conditions:
(a) there exists a local isometry of g fixing x whose differential at x is hyperbolic,

i.e. without eigenvalue of modulus one;
(b) g is topologically complete,
then any local isometry of g̃ defined on a connected open subset of M̃ can be uniquely
extended to a C∞ global isometry of g̃ on M̃. In particular, the isometry group of g̃ acts
transitively on M̃.
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The organization of the paper is as follows: in §2 we recall some definitions and
elementary properties of rigid geometric structures. In §3 we recall the open-dense theorem
of Gromov. Then in §4 we define and study normal rigid geometric structures. In §5 we
define topological completeness and prove Proposition 1, which will be used in §6 as the
departing point of the proof of Theorem 1.2. Finally, in §7, we prove Corollary 1 by
showing the topological completeness of invariant generalized connections.

2. Preliminaries
For any k ≥ 1 and n ≥ 1, let Gl(k)(n) be the set of k-jets at zero of diffeomorphisms of Rn

fixing zero, which is a Lie group with respect to the composition of k-jets. For any k ≥ 1,
let T (k)0 Rn be the vector space of (k − 1)-jets at zero of C∞ vector fields of Rn . The Lie

group Gl(k)(n) admits a natural linear representation ρ on T (k)0 Rn defined as follows: for

any jk
0φ ∈ Gl(k)(n) and jk−1

0 Y ∈ T (k)0 Rn ,

ρ( jk
0φ)( jk−1

0 Y )= jk−1
0 (Dφ(Y )).

It is easy to see that ρ is injective and Gl(k)(n) is a real algebraic group with respect to this
faithful representation.

Let M be a C∞ manifold of dimension n. For any k ≥ 1, let L(k)(M) denote the kth
order frame bundle of M . This is the principal fiber bundle over M whose elements are the
k-jets at the origin 0 ∈ Rn of diffeomorphisms from a neighborhood of 0 ∈ Rn into M . The
structural group of L(k)(M) is Gl(k)(n) with the natural right action given by composition
of k-jets. Geometric structures arise as sections of bundles associated to L(k)(M).

Let Z be a smooth real algebraic variety admitting an algebraic action of Gl(k)(n) on
the left. Let L(k)(M)o Z be the fiber bundle over M associated to L(k)(M) and such an
action. A geometric structure of order k and algebraic type Z on M is a C∞ section of
the fiber bundle L(k)(M)o Z . It is well known that geometric structures of order k and
algebraic type Z are in bijection with Gl(k)(n)-equivariant C∞ maps from L(k)(M) to Z .

For any i ≥ 0, let J i
n(Z) be the space of i-jets of C∞ maps from Rn to Z , which is a

smooth real algebraic variety admitting a natural algebraic action of Gl(k+i)(n) (see [6]).
Let g be a C∞ geometric structure of order k and algebraic type Z on M , viewed as a
Gl(k)(n)-equivariant C∞ map from L(k)(M) to Z . By differentiating g (see [6] for the
details), we obtain a Gl(k+i)(n)-equivariant C∞ map g(i) : L(k+i)(M)→ J i

n(Z), i.e. a C∞

geometric structure of order k + i and algebraic type J i
n(Z), which is said to be the i th

order prolongation of g.
A C∞ diffeomorphism f of M induces a bundle diffeomorphism f(k) of L(k)(M) given

by composition of k-jets. Through such maps, the group of C∞ diffeomorphisms of M
acts naturally on the associated bundles L(k)(M)o Z and their smooth sections. If g is
such a section, i.e. a geometric structure on M , then the group of diffeomorphisms of M
that preserve g is denoted by I (g) and is called the group of isometries of g. Similarly,
I loc(g) denotes the pseudogroup of local diffeomorphisms of M which preserve g.

Closely related to local isometries, isometric jets are algebraic and infinitesimal objects,
which can be defined as follows: for any i ≥ 0 and x, y ∈ M , let D(k+i)

x,y (M) be the space
of (k + i)-jets of local diffeomorphisms from a neighborhood of x into M and which
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send x to y. We define

I k+i
x,y = { j

k+i
x f ∈ D(k+i)

x,y (M) | ( f∗g
i )(y)= gi (y)},

where f∗gi denotes the image of g(i) under the natural action of f . The elements of I k+i
x,y

are said to be the (k + i)th order isometric jets of g from x to y. In the case that x = y,
we denote D(k+i)

x,x (M) by D(k+i)
x (M) and I k+i

x,x by I k+i
x . Similar to Gl(k)(n), it is easy to

see that D(k+i)
x (M) is a real algebraic group. Since the action of Gl(k+i)(n) on J i

n(Z) is
algebraic, I k+i

x is a real algebraic subgroup of Dk+i
x (M) (see [22]). For any s ≥ t ≥ 1, the

natural projection π s
t : I

k+s
x → I k+t

x is defined as π s
t ( jk+s

x f )= jk+t
x f .

Definition 2.1. Under the notation above, a C∞ geometric structure g is said to be rigid
(or more precisely (k + i)-rigid) if there exists i ≥ 0 such that for any x ∈ M the natural
projection πk+i+1

k+i : I k+i+1
x → I k+i

x is injective.

It is well known that classical geometric structures of finite type are rigid, such as
pseudo-Riemannian metrics, complete parallelisms and linear connections (see [6]). To
illustrate the abstract definitions above, let us verify by a straightforward calculation that
Riemannian metrics are rigid. We mention that similar calculations show equally the
rigidity of pseudo-Riemannian metrics.

Let g be a C∞ Riemannian metric on a manifold M of dimension n. For any x ∈ M ,
let us prove that π2

1 : I
2
x → I 1

x is injective. Take a normal coordinate system in an
open neighborhood of x . The local isometries fixing x are determined by the following
equations:

gi j (φ) ·
∂φi

∂xk
·
∂φ j

∂xl
= gkl for all 1≤ k, l ≤ n.

By differentiating these equations, we get for any 1≤ s, k, l ≤ n,

∂r gi j (φ)
∂φr

∂xs

∂φi

∂xk

∂φ j

∂xl
+ gi j (φ)

∂2φi

∂xk∂xs

∂φ j

∂xl
+ gi j (φ)

∂φi

∂xk

∂2φ j

∂xl∂xs
= ∂s gkl .

So, I 2
x is determined by the following algebraic equations:

gi j (x) ·
∂φi

∂xk
·
∂φ j

∂xl
= gkl(x)

and

∂r gi j (x)
∂φr

∂xs

∂φi

∂xk

∂φ j

∂xl
+ gi j (x)

∂2φi

∂xk∂xs

∂φ j

∂xl
+ gi j (x)

∂φi

∂xk

∂2φ j

∂xl∂xs
= ∂s gkl(x).

Since the coordinate system at x is normal,

gi j (x)= δi j , ∂k gi j (x)= 0 for all 1≤ i, j, k ≤ n.

Suppose that j2
x φ ∈ I 2

x and j1
x φ = j1

x Id. Then we deduce easily from the algebraic
equations above that

∂2φl

∂xk∂xs
=−

∂2φk

∂xl∂xs
for all 1≤ s, k, l ≤ n.

So,
∂2φl

∂xk∂xs
=−

∂2φk

∂xl∂xs
=

∂2φs

∂xl∂xk
=−

∂2φl

∂xs∂xk
.

Thus, ∂2φl/∂xk∂xs ≡ 0 and j2
x φ = j2

x Id. Therefore, π2
1 is injective and g is rigid.
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3. Open-dense theorem
The most striking result about rigid geometric structures is the open-dense theorem due to
Gromov. Let us illustrate firstly this important theorem by the simple proposition below.

PROPOSITION 2. Let A be a C∞ complete parallelism on a manifold M. If its
pseudogroup of local isometries I loc admits a dense orbit, then I loc acts transitively on M.

Proof. Suppose that M is of dimension n. Recall that a C∞ complete parallelism on M
is a C∞ section of the frame bundle π : L(1)(M)→ M. Therefore, A is given by n vector
fields {X1, . . . , Xn} such that for any x ∈ M , {X1(x), . . . , Xn(x)} are independent. We
obtain n3C∞ functions { f k

i, j }1≤i, j,k≤n such that

[X i , X j ] =
∑

1≤k≤n

f k
i, j · Xk .

Since the pseudogroup of local isometries of A admits a dense orbit, each function f k
i, j is

constant on a dense subset of M . So, they must be all constant. Therefore, {X1, . . . , Xn}

generates a Lie algebra denoted by g.
Denote by G the simply connected Lie group with g as its right-invariant Lie algebra.

It is well known that A is induced by a local G-action on M . Denote by {X̄1, . . . , X̄n} the
right-invariant vector fields of G inducing the complete parallelism A.

For any x ∈ M , we define αx : G→ M such that αx (g)= gx . It is clear that in
a neighborhood of the unit element e ∈ G, αx is a C∞ local diffeomorphism sending
{X̄1, . . . , X̄n} to {X1, . . . , Xn}. Therefore, A is locally homogeneous, i.e. I loc acts
transitively on M . 2

The following open-dense theorem gives a substantial generalization of the above
proposition (see [2, 9, 13, 15, 23] for the proof).

THEOREM 3.1. (Gromov) Let M be a C∞ manifold and g a C∞ rigid geometric structure
of order k and algebraic type Z on M. If its pseudogroup of local isometries I loc(g) admits
a dense orbit in M, then I loc(g) admits a unique open-dense orbit in M, which is denoted
by �.

Moreover, for any r large enough, g verifies the following condition: for any x, y ∈�
and any g ∈ I r

x,y , there exists a unique germ of local isometry integrating g, which depends
smoothly on g.

Remark 1. Suppose that g is (k + i)-rigid and that the pseudogroup of local isometries of
g admits a dense orbit. We define the stable degree of g as follows:

d(g)= inf{k + s | dim(I k+l
x )= dim(I k+ j

x ), ∀x ∈�, ∀l ≥ j ≥ s},

where� is the unique open-dense orbit of I loc. It is well known that for any x ∈ M and any
l ≥ j ≥ i , the natural projection πk+l

k+ j : I
k+l
x → I k+ j

x is injective (see [6, Corollary 5.5]).
Therefore, d(g) is finite. We can show that for any r ≥ d(g), the second part of the theorem
above is true (see [9]).

4. Normal locally homogeneous structures
Throughout this section, we denote by g a C∞ rigid geometric structure of order k and
algebraic type Z on M . We suppose that its pseudogroup of local isometries I loc(g) admits
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a dense orbit. By the open-dense theorem, I loc(g) admits a unique open-dense orbit �
in M . Inspired by the ideas in [4], we define in this section a normality condition for g,
which ensures the existence of a (G, X)-structure on �.

4.1. Definition of normality. A C∞ vector field Y on M is said to be Killing if the local
flow of Y preserves the rigid geometric structure g. Take x ∈� and denote by g the space
of germs at x of local C∞ Killing fields of g. Let h be the subset of g of local Killing fields
vanishing at x .

PROPOSITION 3. Under the notation above, for any Y, Z ∈ g, Y = Z as germs of vector
fields at x if and only if jr

x Y = jr
x Z, where r is any integer greater than or equal to d(g).

In particular, g is a finite-dimensional Lie algebra and h is a Lie subalgebra of g.

Proof. For any Y, Z ∈ g, their bracket is defined as the germ of the local vector field [Y, Z ]
at x . If X is a vector field on M , its local flow lifts naturally to a local flow on the principal
fiber bundle L(k)(M), which induces a vector field X(k) on L(k)(M).

The following relations are well known (see [6, Lemma 4.4]):

(Y + Z)(k) = Y(k) + Z(k), (aY )(k) = a · Y(k)

and
[Y(k), Z(k)] = [Y, Z ](k).

Recall that g is of order k and algebraic type Z , which can be viewed as a Gl(k)(n)-
equivariant C∞ map from L(k)(M) to Z . It is easy to see that a vector field X is Killing if
and only if Dg(X(k))≡ 0. Therefore, we deduce from the formulas above that Y + Z , aY
and [Y, Z ] are all local Killing fields. So, g is a Lie algebra, and obviously h is a Lie
subalgebra of g.

Let r ≥ d(g). Suppose that Y ∈ g is such that jr
x Y = 0 and denote by φY

t the local flow
of Y . By [6], we have the following relation:

exp(t · jr
x Y )= jr

xφ
Y
t for all |t | � 1.

Since jr
x Y = 0, jr

xφ
Y
t ≡ jr

x Id for any |t | � 1. Therefore, by the second part of the open-
dense theorem, there exists an open neighborhood U of x such that φY

t is defined on U and
φY

t |U = Id|U for any |t | � 1. We deduce that Y = 0 in g. The proof is complete. 2

Definition 4.1. Under the notation above, let Ḡ be the connected and simply connected Lie
group whose Lie algebra of right-invariant fields is g. Let H̄ be the connected Lie subgroup
of Ḡ integrating the Lie subalgebra h. The C∞ rigid geometric structure g is said to be
normal if H̄ is closed in Ḡ.

Since g|� is locally homogeneous, the normality of g is independent of the base point
x in �. The proof of the following proposition is straightforward and can be found in [9,
Ch. II].

PROPOSITION 4. Let g be a C∞ rigid geometric structure whose pseudogroup of local
isometries admits a unique open-dense orbit �. If g is normal, then there exists a
Ḡ-invariant C∞ rigid geometric structure ḡ on Ḡ�H̄ locally isometric to g|�. Moreover,
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by taking the local isometries from (�, g|�) into (Ḡ�H̄ , ḡ) as charts, we obtain a
(I (ḡ), Ḡ�H̄)-structure on �, where I (ḡ) denotes the isometry group of ḡ.

Remark 2. One of the important points in the proof of Proposition 4 (see [9]) is to show
that any local isometry of ḡ defined on a connected open subset of Ḡ�H̄ can be extended
to a global isometry of ḡ.

4.2. A criterion for normality. In this subsection, we prove the following proposition.

PROPOSITION 5. Under the notation above, if there exists a local isometry of g fixing x
whose differential at x has no eigenvalue of modulus one, then g is normal.

LEMMA 4.2. Under the notation above, if there exists a local isometry of g fixing x whose
differential at x is hyperbolic, then the center of g is trivial.

Proof. Let I loc
x be the group of local isometries of g fixing x . By the open-dense theorem,

I loc
x is identified naturally to I r

x for any r ≥ d(g). Therefore, I loc
x is a real algebraic group.

By hypothesis, there exists a local isometry φ of g fixing x whose differential at x is
hyperbolic. Let φh be the hyperbolic part in the real Jordan decomposition of φ (see [22]).
Since I loc

x is a real algebraic group, φh is also contained in I loc
x .

With respect to the local action of I loc
x on M , each right-invariant vector field of I loc

x
induces naturally a germ of a local Killing field vanishing at x . We can identify in this way
the right-invariant Lie algebra of I loc

x with h. Since φh is hyperbolic in the sense that φh

is diagonalizable over R and with positive eigenvalues, its logarithm in h is well defined,
which is denoted by Xh . So, we have expXh = φh . Moreover, since the differential of φ
at x has no eigenvalue of modulus one, one is not the eigenvalue of the differential of φh

at x . We deduce that zero is not the eigenvalue of the 1-jet j1
x Xh , which acts naturally on

Tx M as follows:

( j1
x Xh)(W )= j0

x ([Xh, W̄ ]) for all W ∈ Tx M,

where W̄ denotes an arbitrary C∞ vector field extension of W .
Now let Y be an element in the center of g, i.e. for any X ∈ g, [Y, X ] = 0. In particular,

we have [Y, Xh] = 0. Suppose that in a local coordinate system, Y = Y i (∂/∂xi ) and
Xh = X i

h(∂/∂xi ). Since [Y, Xh] = 0, the 0-jet j0
x [Y, Xh] = 0. Moreover, since Xh ∈ h,

j0
x Xh = 0. So, we obtain

j0
x [Y, Xh] =

(
Y i ∂X j

h

∂xi

)
(x)

∂

∂x j
= 0.

However, since zero is not the eigenvalue of j1
x Xh acting on Tx M , we deduce that

Y (x)= 0, i.e. j0
x Y = 0.

Since g is locally homogeneous on �, for any u ∈ Tx M there exists X ∈ g such that
j0
x X = u. Since Y is contained in the center of g, we have [Y, X ] = 0. In particular,

j0
x [Y, X ] = 0. Moreover, since j0

x Y = 0 by the argument above, for any u ∈ Tx M

j0
x [Y, X ] = −

(
X i ∂Y j

∂xi

)
(x)

∂

∂x j
=−ui ∂Y j

∂xi
(x)

∂

∂x j
= 0.

We deduce that j1
x Y = 0.
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Since [Y, X ] = 0, j1
x [Y, X ] = 0. We have by the argument above that j1

x Y = 0, which
implies that the order 0 terms of j1

x [Y, X ] are all zero. In a local coordinate system, the
order 1 terms of j1

x [Y, X ] are equally zero and given by

∂

∂xk

(
Y i ∂X j

∂xi
− X i ∂Y j

∂xi

)
=

(
∂Y i

∂xk

∂X j

∂xi
+ Y i ∂

2 X j

∂xi∂xk
−
∂X i

∂xk

∂Y j

∂xi
− X i ∂

2Y j

∂xi∂xk

)
(x)

= −

(
X i ∂

2Y j

∂xi∂xk

)
(x)=−ui ∂

2Y j

∂xi∂xk
(x)= 0.

We deduce that for any i, j, k, (∂2Y j/∂xi∂xk)(x)= 0. Therefore, j2
x Y = 0.

It is clear that by successive derivations of [Y, X ] at x as above, we get j s
x Y = 0 for any

s ∈ N. By Proposition 3, we know that for any r ≥ d(g), each local Killing field of g is
determined by its r -jet at x . Therefore, Y = 0 in g. The proof is complete. 2

LEMMA 4.3. Under the notation above, if the center of g is trivial, then g is normal.

Proof. Let I loc
x be the group of local isometries of g fixing x . Recall that by the open-

dense theorem, I loc
x is identified naturally to I r

x for any r ≥ d(g). Therefore, I loc
x is a real

algebraic group. Define ρ : I loc
x → Aut(g) such that

ρ(h)(Y )= Dh(Y ),

where Aut(g) denotes the Lie group of automorphisms of g. Since ρ is a morphism of real
algebraic groups, ρ(I loc

x ) is a closed subgroup of Aut(g) (see [22]).
On the other hand, we have the adjoint representation Ad : Ḡ→ Aut(g). It is easy to

see that Ad(H̄) and ρ(I loc
x ) have the same Lie algebra in Aut(g). So, we have

Ad(H̄)= (ρ(I loc
x ))e,

the identity component of ρ(I loc
x ) which is closed in Aut(g). Since the center of g is

supposed to be trivial, H̄ = (Ad−1((ρ(I loc
x ))e))e. Therefore, H̄ is closed in Ḡ, i.e. g is

normal. 2

The two lemmas above certainly give the proof of Proposition 5. We deduce from
Propositions 4 and 5 the following corollary.

COROLLARY 2. Under the notation above, if there exists a local isometry of g fixing x
whose differential at x is hyperbolic, then there exists a Ḡ-invariant C∞ rigid geometric
structure ḡ on Ḡ�H̄ locally isometric to g|�. Moreover, by taking local isometries as
charts, we obtain a (I (ḡ), Ḡ�H̄)-structure on �, where I (ḡ) denotes the isometry group
of ḡ.

5. Topological completeness
Throughout this section, we suppose that g is a locally homogeneous and normal C∞

rigid geometric structure on a manifold M . Therefore, by Proposition 4, there exists a
Ḡ-invariant C∞ geometric structure ḡ on Ḡ�H̄ locally isometric to g. Moreover,
by taking the local isometries from (M, g) into (Ḡ�H̄ , ḡ) as charts, we obtain a
(I (ḡ), Ḡ�H̄)-structure on M , where I (ḡ) denotes the isometry group of ḡ. In this section,
we formulate a notion of completeness for (M, g) which ensures that this (I (ḡ), Ḡ�H̄)-
structure on M is complete, i.e. its developing map is a surjective covering map.
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5.1. Geodesic structure. There are several well-known notions of completeness for
different types of rigid geometric structures. But most of them (if not all) are purely
geometric, which are not adapted to the study of global rigidity of differential dynamical
systems. Here we give an axiomatic approach to completeness, which is intuitive and
adequate for the study of locally homogeneous rigid geometric structures.

Let us begin with the following simple example to illustrate the idea: let A be
a C∞ complete parallelism on M given by pointwise independent C∞ vector fields
{X1, . . . , Xn}. The main feature of A is the presence of a family of C∞ curves in M :
the orbits of the vector fields aX i , where a ∈ R and i = 1, . . . , n. Let us denote by C
this family of C∞ curves. It is clear that local isometries of A preserve C. In addition,
C verifies the following condition: for any x, y ∈ M , there exist a continuous curve
c : [a, b] → M and a partition a0 = a < a1 < · · ·< am = b such that c(a)= x, c(b)= y
and c|[a j ,a j+1] ∈ C for any j = 0, . . . , m − 1. It is natural to define A to be complete if
each curve in C can be extended to a curve in C defined over R. The following definition
is motivated by this example.

Definition 5.1. Let g be a C∞ rigid geometric structure on a manifold M . A geodesic
structure of (M, g) is given by a family of C∞ curves C in M , defined on connected
intervals, verifying the following conditions:
(a) local isometries of (M, g) preserve the curves in the family C as parametric curves;
(b) for any x ∈ M , the constant curve at x is contained in C, denoted by cx ;
(c) the restriction of a curve in C to a connected subinterval is still contained in C;
(d) let c1, c2 : [a, b] → M be two curves in C. If c1(a) is close to c2(a), then the curves

c1 and c2 are close to each other;
(e) let c1 and c2 be two curves in C. If c1 and c2 coincide on a non-empty open

subinterval, then they coincide on their common connected interval of definition.
Furthermore, let C̄ be the family of continuous curves composed by pieces of curves in C.
For any c ∈ C̄, if c is not differentiable at a, then a is said to be a singular point of c.
(f) For any x ∈ M and any open neighborhood V of x , there exists an open

neighborhood U of x contained in V such that any two points in U can be joined by
at least a curve in C̄ contained in U and defined on [0, 1]. In addition, let C̄U be the
space of such curves and πU be the projection of C̄U onto U ×U sending each curve
in C̄U to its extremities; then there exists a continuous section σU :U ×U → C̄U of
πU such that the numbers of singular points of the curves in the image of σU are
bounded above and σU (x, x)= cx .

5.2. Existence of geodesic structure. Let us begin with the case of complete parallelism:
let A be a complete parallelism on M given by pointwise independent C∞ vector fields
{X1, . . . , Xn}. Let C be the set of integral curves of the vector fields aX i , where a ∈ R
and i = 1, . . . , n. Since for any x ∈ M , {X1(x), . . . , Xn(x)} is a basis of Tx M , it is easy
to verify that C is a geodesic structure of A.

Now let us consider the case of linear connection. Let ∇ be a C∞ linear connection on
an n-dimensional manifold M . It is well known that ∇ defines a horizontal distribution H
on the frame bundle L(1)(M), which is invariant under the right action of the general linear
group Gl(1)(n). For the sake of completeness, let us recall the classical construction of
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complete parallelisms associated to ∇: for any u contained in the Lie algebra of Gl(1)(n),
the fundamental vector field corresponding to u is defined as the vector field on L(1)(M)
induced by the right action of the one-parameter subgroup exp(tu), which is denoted by u∗.
For any ξ ∈ Rn , the standard horizontal vector field B(ξ) corresponding to ξ is defined as
Dπ((B(ξ)α))= α · ξ for any α ∈ L(1)(M). Now let {u1, . . . , un2} be a basis of the Lie
algebra of Gl(1)(n) and {ξ1, . . . , ξn} a basis of Rn . We obtain the following complete
parallelism of L(1)(M):

A = (u∗1, . . . , u∗n2 , B(ξ1), . . . , B(ξn)).

Let f be a local diffeomorphism of M . It is well known that f is a local isometry of ∇
if and only if the induced action of f on L(1)(M) preserves this complete parallelism
(see [19]). Now let C be the projections in M of the integral curves of vector fields
defining A. It is evident that the projections of the integral curves of fundamental vector
fields are points in M , while the projections of those of standard horizontal vector fields
are classical geodesics of ∇. Therefore, C is a geodesic structure of ∇.

The general case can be treated similarly due to the following interesting result of
Candel and Quiroga-Barranco [7]: let g be a C∞ geometric structure of order k on M . If g
is (k + i)-rigid, then there exists a C∞ complete parallelism A on L(k+i+1)(M) verifying
the following condition: for any local isometry f of g, its induced local diffeomorphism
of L(k+i+1)(M) preserves A.

Now let C be the projections in M of the integral curves of vector fields composing this
complete parallelism A. By the construction of A in [7], it is straightforward to verify that
C gives a geodesic structure of g. Therefore, we have the following proposition.

PROPOSITION 6. Let g be a C∞ rigid geometric structure on M. There exists at least one
geodesic structure of (M, g). Moreover, if the rigid structure g is preserved by a group
action, then the geodesic structure constructed above is also invariant.

5.3. Non-uniqueness of geodesic structure. Given a C∞ rigid geometric structure g,
there exist usually several geodesic structures. For example, let g = (∇, E+, E−) on M ,
where ∇ is a C∞ linear connection and E+ and E− are complementary C∞ ∇-parallel
subbundles of T M . It is clear that g is a rigid geometric structure on M . A natural
geodesic structure C1 of (M, g) is simply given by the geodesics of ∇. Another more
interesting geodesic structure C2 is given by ∇-geodesics tangent either to E+ or to E−

(see [4, 5] for applications of C2 to Anosov systems).
More examples about non-uniqueness of geodesic structures are given by generalized

connections. Let M be a C∞ manifold of dimension n and k ∈ N. Let H be a connection in
the principal fiber bundle L(k)(M), which means that H is a C∞ n-dimensional distribution
on L(k)(M) transverse to the fibers and invariant under the natural right action of Gl(k)(n).
For k = 1, H is nothing but the usual linear connection on M . Therefore, connections in
frame bundles are said to be generalized connections. It is easy to verify that H is a rigid
geometric structure of order k + 1.

A geodesic structure of H is given by Proposition 6 via the general construction in [7].
Another more interesting geodesic structure is given by the following observation: let π
be the natural projection from L(k)(M) onto L(1)(M). It is easy to verify that Dπ(H) is
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well defined and gives a horizontal distribution on L(1)(M) invariant under the right action
of Gl(1)(n). Therefore, Dπ(H) is a linear connection on M and the geodesics of Dπ(H)
define a geodesic structure of H .

In a concrete dynamical context, the essential point is to find the best geodesic structure
adapted to the situation.

5.4. Definition of topological completeness. Given a rigid geometric structure g and a
geodesic structure C of (M, g), curves in the family C are said to be geodesics of g. Curves
in C̄ are said to be piecewise geodesics of g. For any c ∈ C, there exists by condition (e)
above a unique geodesic c̄ containing c and defined on a maximal interval. Such a geodesic
c̄ is said to be a maximal geodesic.

Definition 5.2. Let g be a C∞ rigid geometric structure on a manifold M . A geodesic
structure of (M, g) is said to be topologically complete if and only if all of its maximal
geodesics are defined over R. The rigid geometric structure g is said to be topologically
complete if and only if (M, g) admits at least one topologically complete geodesic
structure.

Let g be a generic rigid geometric structure on M . Generally speaking, g does not
have any local isometry. So, it is clear that by considering the geodesics of an arbitrary
complete Riemannian metric on M , g is topologically complete in our sense. Therefore,
our topological completeness is useless for generic rigid geometric structures. However,
in the case that g admits plenty of local isometries, the topological completeness becomes
useful and induces an interesting topological property to be proved below.

5.5. Topological completeness and the developing map.

PROPOSITION 7. Let g1, g2 be locally homogeneous C∞ rigid geometric structures
on connected manifolds M1 and M2. Let f : (M1, g1)→ (M2, g2) be a C∞ local
diffeomorphism sending g1 to g2. If g1 is topologically complete, then f is a surjective
covering map.

Proof. Let C1 be a topologically complete geodesic structure of (M1, g1). Since g1 and g2

are both locally homogeneous, and f is a local isometry sending g1 to g2, it is easy to
see that f pushes forward C1 to a well-defined geodesic structure of (M2, g2), denoted
by C2. It is clear that f sends geodesics in C1 to geodesics in C2. For any x, y ∈ M2,
because of condition (f) in Definition 5.1, there exists a piecewise geodesic γ in C̄2 joining
y to x . Since C1 is topologically complete, we can lift γ to a piecewise geodesic γ̂ in C̄1.
Therefore, f is a surjective map.

For any x ∈ M2, take a small open neighborhood U of x verifying condition (f) of
Definition 5.1. The set f −1(U ) is decomposed as the disjoint union of its connected
components

f −1(U )=
⋃

Ui .

By lifting piecewise geodesics in C̄2, it is easy to see that f (Ui )=U for any i . So, in order
to prove that f is a covering map, it is enough to show that for any i , f |Ui :Ui →U is
injective.
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Take y, z ∈Ui such that f (y)= f (z). Take a C∞ curve γ in Ui such that γ (0)= y
and γ (1)= z. Define γ̄ = f ◦ γ and ȳ = γ̄ (0). Since f (y)= f (z), γ̄ is a closed curve.
By condition (f) in Definition 5.1, there exists a continuous family of piecewise geodesics
ct (s) in C̄2, defined on [0, 1], and verifying the following conditions:
(1) for any t ∈ [0, 1], ct (0)= ȳ and ct (1)= γ̄ (t);
(2) c0(s)≡ ȳ and c1(s)≡ ȳ.
Then, by conditions (d), (e) and (f) in Definition 5.1 and the topological completeness
of C1, we can lift this family of piecewise geodesics to a continuous family of piecewise
geodesics ĉt (s) in C̄1 such that ĉt (0)≡ y for any t ∈ [0, 1]. Therefore, we get a continuous
curve γ̂ = ĉt (1) in M1 such that f ◦ γ̂ = γ̄ . It is clear that γ̂ (0)= γ̂ (1)= y. Moreover,
we can see as follows that γ̂ = γ .

Define 3= {t ∈ [0, 1] | γ̂ (t)= γ (t)}, which is not empty and closed in [0, 1]. Since f
is a local diffeomorphism and

f ◦ γ̂ = γ̄ = f ◦ γ,

3 is also open in [0, 1]. We deduce that 3= [0, 1], i.e. γ̂ = γ .
Therefore, y = γ̂ (1)= γ (1)= z, which implies that f |Ui is injective. The proof is

complete. 2

Now let us prove Proposition 1: let C be a topologically complete geodesic structure of
(M, g) which satisfies the conditions of Proposition 1. It is clear that we can pull back C to
a topologically complete geodesic structure C̃ of g̃ on M̃ . Therefore, g̃ is also topologically
complete. Since g is supposed to be locally homogeneous, by Corollary 1 there exists a
Ḡ-invariant C∞ rigid geometric structure ḡ on Ḡ�H̄ locally isometric to g̃. Moreover, by
taking local isometries as charts, we obtain a (I (ḡ), Ḡ�H̄)-structure on M̃ , where I (ḡ)
denotes the isometry group of ḡ.

Since g̃ is topologically complete, by Proposition 6 the developing map of this
(I (ḡ), Ḡ�H̄)-structure, D : M̃→ Ḡ�H̄ , is a surjective covering map. Since Ḡ�H̄
is simply connected, the developing map D is a C∞ diffeomorphism sending g̃ to ḡ.
Therefore, any local isometry of g̃ defined on a connected open subset of M̃ can be
extended to a C∞ global isometry of g̃ on M̃ (see Remark 2). Since local isometries
are determined by finite-order isometric jets, the global extension of any local isometry of
g̃ is unique. The proof of Proposition 1 is complete.

6. Applications to expanding maps
6.1. Preliminaries. Let M be a closed C∞ manifold. A C∞ map ϕ : M→ M is said to
be expanding if there exist a Riemannian metric on M and two constants C > 0 and λ > 1
such that

‖Dϕn(u)‖ ≥ C · λn
‖u‖ for all u ∈ T M, for all n ∈ N.

Algebraic examples of expanding maps can be constructed as follows: let N be a connected
and simply connected nilpotent Lie group. Denote by Aut(N ) the group of automorphisms
of N . Let C be a compact subgroup of Aut(N ) and 0 a torsion-free uniform lattice of
N o C , which is a closed subgroup of the semidirect product N o Aut(N ). If ψ ∈ Aut(N )
verifies the condition

ψ ◦ 0 ◦ ψ−1
⊆ 0,
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then there exists a well-defined smooth map ψ̄ : 0�N → 0�N defined as

ψ̄(0 · a)= 0 · ψ(a) for all a ∈ N .

If the moduli of the eigenvalues of Deψ are all greater than one, then ψ̄ is expanding, and
is said to be an expanding infra-nilendomorphism. In the case that N is the Abelian group
Rn and ψ is given by a matrix A ∈ GL(n, Z), the induced map Ā : Tn

→ Tn is said to be
an expanding linear endomorphism.

The dynamical and topological study of expanding maps began with the fundamental
work of Shub [20]. The complete topological classification of expanding maps was
obtained by Gromov in [16], where it was shown that any expanding map is C0 conjugate
to an expanding infra-nilendomorphism. This means that for any expanding map φ,
there exist an expanding infra-nilendomorphism ψ and a homeomorphism H such that
φ ◦ H = H ◦ ψ .

A natural problem worthy of consideration is the problem of classifying expanding
maps up to Ck conjugacies, for any k ≥ 1. However, the picture in this context is far
from clear. Here are two reasons: firstly, it is clear that a generic C1 perturbation of an
expanding map is not C1 conjugate to the initial one because of the modulus at periodic
points. Secondly, there exist plenty of C∞ expanding maps on exotic tori (see [10])
which are not even C1 diffeomorphic to any infra-nilmanifold. So, a complete differential
classification of expanding maps seems to be totally out of reach. However, in the context
of the Zimmer–Gromov program, the following elegant one-dimensional result was proved
by Feres in [11].

THEOREM 6.1. Let ϕ be a C∞ expanding map of S1. If ϕ preserves a C∞ linear
connection, then ϕ is C∞ conjugate to an expanding linear endomorphism of S1.

Motivated by Theorem 6.1 and inspired by [5], we prove in this section the following
result.

THEOREM 6.2. Let ϕ be a C∞ expanding map of a closed manifold. If ϕ preserves
a topologically complete C∞ rigid geometric structure, then ϕ is C∞ conjugate to an
expanding infra-nilendomorphism.

It is well known that expanding maps are covering maps. So, in particular, expanding
maps are local diffeomorphisms. Now, let g be a C∞ rigid geometric structure on M .
By definition, g is said to be preserved by an expanding map ϕ of M if and only if for
any x ∈ M there exists an open neighborhood U of x such that ϕ|U :U → ϕ(U ) is a C∞

diffeomorphism and ϕ sends g|U to g|ϕ(U ). The proof of Theorem 6.2 will be given in the
following subsections.

6.2. A global homogeneous structure. Let ϕ be a C∞ expanding map of M . Let g be a
topologically complete C∞ rigid geometric structure on M preserved by ϕ.

PROPOSITION 8. Under the notation above, g is locally homogeneous on M.

Proof. Since ϕ is expanding, ϕ admits a dense orbit in M (see [20]). Therefore, the
pseudogroup of local isometries I loc(g) of g admits a dense orbit. We deduce by the

https://doi.org/10.1017/S0143385711000010 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000010


954 Y. Fang

open-dense theorem that I loc(g) admits a unique open-dense orbit � in M . Since ϕ is
expanding, for any integer m large enough, ϕm(�)= M . Therefore, �= M , i.e. g is
locally homogeneous. 2

Since ϕ is expanding, ϕ admits fixed points in M . Let x ∈ M be a fixed point of ϕ. The
germ of ϕ at x is a local g-isometry whose differential at x has no eigenvalue of modulus
one. Therefore, we deduce from Proposition 1 the following proposition.

PROPOSITION 9. Under the notation above, let M̃ be the universal covering space of M
and g̃ the lifted rigid geometric structure of g on M̃. Then any local isometry of g̃ defined
on a connected open subset of M̃ can be uniquely extended to a global isometry of g̃ on
M̃. In particular, the isometry group of g̃ acts transitively on M̃.

Let x ∈ M be a fixed point of ϕ. Let x̃ ∈ M̃ be such that π(̃x)= x , where π : M̃→ M
denotes the canonical projection. Since ϕ is a covering map, there exists uniquely a lifted
map ϕ̃ : M̃→ M̃ of ϕ, which is a C∞ diffeomorphism and satisfies ϕ̃(̃x)= x̃ . Let G be
the isometry group of g̃ and H the isotropy subgroup of x̃ in G. Then, by Proposition 8,
M̃ is C∞ diffeomorphic to G�H . Let 0 be the fundamental group of M , which is a
discrete subgroup of G. We have M ∼= 0�G�H .

By Proposition 8 and the open-dense theorem, H is canonically identified to I r
x̃ for

any r large enough. Therefore, H is a naturally a real algebraic group, which implies
that H has finitely many connected components. Since M̃ ∼= G�H is connected and
simply connected, H and G have the same number of connected components. Therefore,
He = Ge ∩ H , where He and Ge denote the identity components of H and G. Since G
acts transitively on M̃ , Ge also acts transitively on M̃ . We deduce that M̃ ∼= Ge�He.

Since G has finitely many connected components, 0 ∩ Ge is a finite-index subgroup of
0. So, up to finite covers, we can suppose in the following that 0 ⊆ Ge. Therefore, up to
finite covers, M is identified to 0�Ge�He.

Since ϕ̃ ∈ H and H has finitely many connected components, there exists m > 0 such
that ϕ̃m

∈ He. It is clear that once ϕm is proved to be C∞ conjugate to an expanding
infra-nilendomorphism, we can deduce easily that ϕ itself is also an expanding infra-
nilendomorphism. Therefore, without any loss of generality, we can suppose in the
following that ϕ̃ ∈ He.

6.3. A subgroup of the isometry group. Let us illustrate firstly the idea of this subsection
by a simple example: let ϕ̃ : R2

→ R2 be defined as ϕ̃(x, y)= (2x, 2y). It is clear that ϕ̃
induces an expanding map of the torus T2, denoted by ϕ. Let ∇ be the canonical flat
connection on T2, which is preserved by ϕ. The isometry group of the lifted connection ∇̃
is the group of affine maps R2 o GL(2, R), which is a real algebraic group. Let 0 = Z2 be
the fundamental group of T2. The Zariski closure of 0 in the isometry group of ∇̃ is the
subgroup of translations R2, which also acts transitively on R2.

In the general case, we shall obtain a similar subgroup of the isometry group I (g̃ ) by
using the Zariski topology. Let us begin with the following definition.

Definition 6.3. Let V be a finite-dimensional real vector space and GL(V ) the general
linear group. A subgroup of GL(V ) is said to be almost real algebraic if and only if it is
the union of finitely many connected components of a real algebraic group (see [22]).
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PROPOSITION 10. Under the notation above, let Ad : G→ Aut(g) be the adjoint
representation. The groups Ad(Ge) and Ad(He) are both almost real algebraic.

Proof. Since H is a real algebraic group and Ad|H : H → Aut(g) is a morphism of real
algebraic groups, by [22] Ad(H) is almost real algebraic in Aut(g). Moreover, since by
Lemma 4.2 the center of g is trivial, Ad(He) is also almost real algebraic in Aut(g).

Let ϕ̃h be the hyperbolic part in the real Jordan decomposition of ϕ̃ ∈ H . Let Lh be
the logarithm of ϕ̃h in h. Since Ad|H : H → Aut(g) is a morphism of real algebraic
groups, by [22] Ad(ϕ̃h) is a hyperbolic element in Aut(g). Moreover, since ad(Lh) is
the logarithm of Ad(ϕ̃h) and ϕ is expanding, ad(Lh) is diagonalizable over R with strictly
positive eigenvalues. Therefore, we get the decomposition

g=
⊕

i

gλi ,

where gλi = {Y ∈ g | [Lh, Y ] = λi Y }. If λi 6= 0, then, for any Yi ∈ gλi and any j ,

ad(Yi )(gλ j )⊆ gλ j+λi .

Therefore, ad(Yi ) is a nilpotent element in GL(g).
If [Lh, Y ] = 0, then, as in the proof of Lemma 4.2, we can show that Y (x)= 0,

i.e. Y ∈ h. Therefore, g0 ⊆ h. We deduce that

ad(g)= ad(h)+
∑
λi 6=0

ad(gλi ).

Since we have shown above that Ad(He) is almost real algebraic, we can conclude that
Ad(Ge) is also almost real algebraic by using the following result in [8].

PROPOSITION 11. Let V be a finite-dimensional real vector space. A connected Lie
subgroup of GL(V ) is almost real algebraic if and only if there exists a basis {X1, . . . , Xn}

of its Lie algebra such that for any i = 1, . . . , n, either X i is nilpotent or X i is semisimple,
and their eigenvalues generate a Q-vector space of dimension one. 2

Since Ad(Ge) is almost real algebraic, then we can consider the Zariski topology of
Ad(Ge). Recall that 0 ⊆ Ge by §6.2. Then Ad(0)⊆ Ad(Ge). Let Ad(0) be the Zariski
closure of Ad(0) in Ad(Ge). We define U = (Ad−1(Ad(0)))e, which is a connected closed
Lie subgroup of Ge.

6.4. A transitive nilpotent group action. In this subsection, we prove the following
result.

PROPOSITION 12. Under the notation above, the connected Lie group U is simply
connected and nilpotent, which acts transitively on M̃.

We shall prove this proposition via several lemmas. Let 00 = 0 and, for any n ≥ 1, let
0n = ϕ̃

−n
◦ 0 ◦ ϕ̃n . We define 3=

⋃
n≥0 0n . Since 0 ⊆ Ge and ϕ̃ ∈ Ge by §6.2, for any

n ≥ 0, 0n is a discrete subgroup of Ge. It is easy to see that ϕ̃ ◦ 0 ◦ ϕ̃−1
⊆ 0. Therefore,

00 ⊆ 01. We deduce that

00 ⊆ 01 ⊆ 02 ⊆ 03 ⊆ · · · ⊆3⊆ Ge.
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LEMMA 6.4. Under the notation above, 3 acts minimally on M̃, i.e. each orbit of 3 is
dense in M̃.

Proof. Take y ∈ M̃ . For any n ≥ 0 and any z ∈ M̃ , there exists γ ∈ 0 such that

d(γ (φ̃n(y)), φ̃n(z))≤ diam(M),

where d is the distance on M̃ induced by the lift of an arbitrary Riemannian metric on M .
We deduce that

d(φ̃−n(γ (φ̃n(y))), z)≤
1

cλn diam(M).

Therefore, the orbit of y with respect to the 3-action is dense in M̃ . The proof is
complete. 2

LEMMA 6.5. Under the notation above, the Zariski closure Ad(0) coincides with the
Zariski closure Ad(3).

Proof. Since, for any n ≥ 0, 0n = ϕ̃
−n
◦ 0 ◦ ϕ̃n , we have

Ad(0n)= Ad(ϕ̃)−n
· Ad(0) · Ad(ϕ̃)n .

In particular, Ad(0n) and Ad(0) have the same dimension and the same number of
connected components. Moreover, we have the evident inclusion Ad(0)⊆ Ad(0n), since
0 ⊆ 0n . We deduce that

Ad(0)= Ad(0n) for all n ≥ 0.

Therefore,

Ad(3)=
⋃
n≥0

Ad(0n)⊆
⋃
n≥0

Ad(0n)= Ad(0)⊆ Ad(3),

which implies that Ad(3)= Ad(0). The proof is complete. 2

LEMMA 6.6. Under the notation above, U is a connected and simply connected nilpotent
subgroup of Ge.

Proof. It is well known that ϕ has only finitely many fixed points in M , say
{x0, x1, x2, . . . , x p} with x0 = x . For any i ∈ {0, 1, . . . , p}, we take a lift of xi in M̃
denoted by x̃i . We can suppose that x̃0 = x̃ . Let θi denote the lifted map of ϕ fixing x̃i .
Therefore, we have θ0 = ϕ̃. Denote by 〈0, ϕ̃〉 the subgroup of Ge generated by 0 and ϕ̃. It
is easy to see that {θ0, θ1, . . . , θp} ⊆ 〈0, ϕ̃〉.

For any γ ∈ 0, γ−1
◦ ϕ̃−1 is a contraction with respect to the lifted metric of a Lyapunov

metric on M . Therefore, ϕ̃ ◦ γ admits a unique fixed point in M̃ , say y ∈ M̃ . So,

π(y)= π(ϕ̃ ◦ γ (y))= ϕ(π(y)).

Therefore, there exist i ∈ {0, 1, . . . , p} and γ ′ ∈ 0 such that y = γ ′(̃xi ). We deduce that
(γ ′
−1
◦ ϕ̃ ◦ γ ◦ γ ′)(̃xi )= x̃i . Therefore,

θ0 ◦ γ = γ
′
◦ θi ◦ γ

′−1
.
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So, we get

Ad(θ0) · Ad(0) ⊆
⋃

0≤i≤p

{Ad(γ ′) · Ad(θi ) · Ad(γ ′)−1
| γ ′ ∈ 0}

⊆

⋃
0≤i≤p

{g · Ad(θi ) · g−1 | g ∈ Ad(0)}.

Let Ĝ = 〈Ad(θ0), Ad(0)〉 be the Zariski closure of the subgroup generated by Ad(θ0) and
Ad(0). Since, for any i ∈ {0, . . . , p}, θi is contained in the subgroup generated by ϕ̃ and
0, we have Ad(θi ) ∈ Ĝ for any i ∈ {0, . . . , p}.

Since ϕ̃ normalizes 3, Ad(θ0) normalizes Ad(3). Moreover, since, by Lemma 6.5,
Ad(0)= Ad(3), Ad(0) is a normal subgroup of Ĝ. We shall apply the following group-
theoretical result obtained in [5, p. 21] to conclude the proof.

PROPOSITION. Let G be a real algebraic group, δ0 ∈ G and G1 a normal subgroup in G.
We suppose that G is the Zariski closure of the group generated by δ0 and G1. If, in
addition, there exist δ1, . . . , δp ∈ G such that

δ0G1 ⊆
⋃

0≤i≤p

{gδi g−1 | g ∈ G1},

then (G1)e is a unipotent subgroup.

We deduce from this proposition that (Ad(0))e is unipotent, i.e. (Ad(0))e is conjugate
to a subgroup of the group of lower-triangular matrices with 1’s on the diagonal. Therefore,
(Ad(0))e is simply connected and nilpotent. Since g has trivial center by Lemma 4.2,
U = (Ad−1(Ad(0)))e is also simply connected and nilpotent. 2

LEMMA 6.7. Under the notation above, U acts transitively on M̃.

Proof. It is easy to see that the action of Ad(0) on Ad(Ge)�Ad(He) is algebraic. Even
though Ad(Ge)�Ad(He) is not necessarily affine algebraic, we can show that each orbit
of Ad(0) is open in its closure with respect to the analytic topology of Ad(Ge)�Ad(He)

(see [3, 21]).
Since 3 acts minimally on Ge�He by Lemma 6.4, Ad(3) also acts minimally on

Ad(Ge)�Ad(He). Moreover, since, by Lemma 6.5, Ad(0)= Ad(3), each orbit of Ad(0)
is open dense in Ad(Ge)�Ad(He). So, Ad(0) acts transitively on Ad(Ge)�Ad(He).
We deduce that Ad−1(Ad(0)) acts transitively on M̃ ∼= Ge�He. Therefore, U also acts
transitively on M̃ . 2

The proof of Proposition 11 is complete by the lemmas above.

6.5. The end of the proof of Theorem 6.2. Denote by Aff(U, M̃) the group of diffeo-
morphisms of M̃ normalizing the action of U . Since, by Proposition 11, U is simply
connected and nilpotent, Aff(U, M̃) is naturally a real algebraic group. In addition, the
group generated by ϕ̃ and 0 is included in Aff(U, M̃).

Let N = (0)e be the identity component of the Zariski closure of 0 in Aff(U, M̃).
By the same arguments as in the proof of Lemma 6.6, we can show that N is unipotent.
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Therefore, N is connected, simply connected and nilpotent. Now, by the same group-
theoretical arguments as in [5, Section 4.3.4], we obtain the following lemma.

LEMMA 6.8. Under the notation above, N is included in G and acts freely and transitively
on M̃. Moreover, 0 ∩ N is of finite index in 0 and cocompact in N.

Therefore, up to finite covers, M is identified to the closed nilmanifold (0 ∩ N )�N .
Moreover, since it is clear that ϕ̃ normalizes N (see Lemmas 6.5 and 6.6) and ϕ̃ ◦ 0 ◦
ϕ̃−1
⊆ 0, up to finite covers, ϕ is C∞ conjugate to the expanding nilendomorphism of

(0 ∩ N )�N induced by the group automorphism 8 ∈ Aut(N ) defined as

8(ξ)= ϕ̃ ◦ ξ ◦ ϕ̃−1 for all ξ ∈ N .

The proof of Theorem 6.2 is complete. 2

7. Invariant generalized connections
In §5.3, we have seen that invariant generalized connections project naturally to invariant
linear connections. Therefore, to prove Corollary 1, we need only consider the case
of invariant linear connections. Moreover, by Theorem 1.2, it is enough to show the
completeness of invariant linear connections.

LEMMA 7.1. Let ϕ be a C∞ expanding map of M. If ϕ preserves a C∞ linear connection
∇, then ∇ is complete, i.e. maximal geodesics of ∇ are all defined over R.

Proof. Let ϕ̃ : M̃→ M̃ be a lift of ϕ on the universal covering space. Let g be an arbitrary
C∞ Riemannian metric on M . Since M is closed, there exists ε > 0 such that any geodesic
γ of ∇ verifying ‖γ ′(0)‖< 1 is defined at least over ]−ε, ε[. Therefore, any geodesic γ̄
of the lifted connection ∇̃ verifying ‖γ̄ ′(0)‖< 1 is defined at least over ]−ε, ε[.

For any v ∈ T M̃ , let γ̄ be the ∇̃-geodesic verifying γ̄ ′(0)= v. Since ϕ̃ is expanding
and preserves ∇̃, for any integer n large enough, ϕ̃−n

◦ γ̄ is a ∇̃-geodesic and verifies

‖(ϕ̃−n
◦ γ̄ )′(0)‖ = ‖Dϕ̃−n(v)‖< 1.

Therefore, ϕ̃−n
◦ γ̄ is defined over ]−ε, ε[. We deduce that γ̄ is defined at least on ]−ε, ε[,

which implies that ∇̃ is complete. Therefore, ∇ is complete. 2

Our Corollary 1 gives a complete characterization of expanding infra-nilendomorphisms
because of the following well-known lemma.

LEMMA 7.2. Any expanding infra-nilendomorphism preserves a C∞ linear connection.

Proof. Let ψ̄ : 0�N → 0�N be an expanding infra-nilendomorphism, where 0 denotes
a uniform lattice of a subgroup N o C of N o Aut(N ). Take a basis of the Lie algebra of
N , {X1, . . . , Xn}, which are left invariant fields on N . It is clear that there exists a unique
C∞ linear connection ∇ on N verifying

∇X i X j = 0 for all 1≤ i, j ≤ n.

Since any element of Aut(N ) sends left-invariant fields to left-invariant fields,∇ is Aut(N )-
invariant. Moreover, since ∇ is left invariant, ∇ is N o Aut(N )-invariant. We deduce that
∇ is ψ-invariant and 0-invariant. Therefore, the quotient connection of ∇ is well defined
on 0�N , which is ψ̄-invariant. 2
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