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Nonlinear evolution of the centrifugal instability
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We study the nonlinear evolution of the axisymmetric centrifugal instability developing
on a columnar anticyclone with a Gaussian angular velocity using a semilinear
approach. The model consists of two coupled equations: one for the linear evolution
of the most unstable perturbation on the axially averaged mean flow and another for
the evolution of the mean flow under the effect of the axially averaged Reynolds
stresses due to the perturbation. Such a model is similar to the self-consistent model
of Mantič-Lugo et al. (Phys. Rev. Lett, vol. 113, 2014, 084501) except that the
time averaging is replaced by a spatial averaging. The nonlinear evolutions of the
mean flow and the perturbations predicted by this semilinear model are in very
good agreement with direct numerical simulations for the Rossby number Ro = −4
and both values of the Reynolds numbers investigated: Re = 800 and 2000 (based
on the initial maximum angular velocity and radius of the vortex). An improved
model, taking into account the second-harmonic perturbations, is also considered. The
results show that the angular momentum of the mean flow is homogenized towards a
centrifugally stable profile via the action of the Reynolds stresses of the fluctuations.
The final velocity profile predicted by Kloosterziel et al. (J. Fluid Mech., vol. 583,
2007, pp. 379–412) in the inviscid limit is extended to finite high Reynolds numbers.
It is in good agreement with the numerical simulations.

Key words: nonlinear instability, rotating flows, vortex instability

1. Introduction
Centrifugal instability, or inertial instability, is the most common instability

developing on vortices in a rotating medium. It is a local instability occurring
when the balance between the centrifugal force and the pressure gradient is disrupted,
i.e. when the square of the absolute angular momentum of the fluid decreases with
radius r in inviscid fluids (Rayleigh 1917; Synge 1933; Kloosterziel & van Heijst
1991). While this condition applies to axisymmetric disturbances, a generalized
criterion for non-axisymmetric perturbations has been derived by Billant & Gallaire
(2005).

† Email address for correspondence: eunok.yim@epfl.ch
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Linear stability analysis of a columnar vortex with Gaussian angular velocity in
inviscid fluids shows that the growth rate is maximum at infinite wavenumber (Smyth
& McWilliams 1998). However, as soon as viscous effects are taken into account,
short wavelengths are damped and the fastest growing mode has a finite wavenumber
(Lazar, Stegner & Heifetz 2013; Yim, Billant & Ménesguen 2016).

Kloosterziel, Carnevale & Orlandi (2007) and Carnevale et al. (2011) have analysed
the nonlinear evolution of the centrifugal instability in a rotating medium at high
Reynolds number. They have shown that the vortex saturates to a centrifugally stable
state where the Rayleigh instability condition is no longer satisfied, i.e. the square
of the axial average of the absolute angular momentum does not decrease with radius.
Hence, the instability redistributes the regions of positive and negative absolute angular
momentum under the constraint of absolute angular momentum conservation in the
inviscid limit.

The saturation of an instability towards a periodic limit cycle for which the
mean flow is stable has been recently described by means of a self-consistent
approach (Mantič-Lugo et al. 2014). In this approach, the flow is decomposed into
time-averaged mean flow and unsteady perturbations. Then, the nonlinear saturation
can be described by computing the mean flow distortion due to the Reynolds stresses
of the perturbation and the linear growth of the perturbation on the mean flow. Here,
we develop a similar approach for the centrifugal instability using a spatial average
instead of a time average since the instability is spatially periodic but not periodic in
time.

2. Governing equations

We consider the Carton and McWilliams vortex (Carton, Flierl & Polvani 1989)
with angular velocity (figure 1a)

Ω =Ω0 exp(−r2/R2), (2.1)

where Ω0 is the maximum angular velocity, r the radial coordinate and R the radius
of the vortex. Such an isolated profile is frequently observed (Ioannou et al. 2017)
and its stability has been extensively studied (Gent & McWilliams 1986; Carton et al.
1989; Smyth & McWilliams 1998; Billant & Gallaire 2005; Kloosterziel et al. 2007;
Yim & Billant 2015). The vortex (2.1) is a steady solution of the Euler equation since
it is axisymmetric and axially uniform. It is also an exact solution of the Navier–
Stokes equation when Ω0 and R are allowed to vary with time as follows: Ω0 =

Ωi(Ri/R)4 with R2
= R2

i + 4νt, where ν is the kinematic viscosity, t the time and Ωi,
Ri are the initial angular velocity and radius. In the following, the length and time are
non-dimensionalized with R and 1/Ω0, respectively. The governing equations for the
velocity field u= [u, v,w] in cylindrical coordinates (r, θ, z) and pressure p read

∂u
∂t
+ u · ∇u+ 2Ro−1ez × u=−∇p+ Re−1

∇
2u, (2.2)

∇ · u= 0, (2.3)

where ez is the unit vector in z direction and the Reynolds and Rossby numbers are
defined as Re=Ω0R2/ν and Ro= 2Ω0/f , respectively, with f the Coriolis parameter
measuring the background rotation about the z axis. The divergence-free condition
(2.3) is not further written in the following sections but is always guaranteed.
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FIGURE 1. (a) Angular velocity (Ω) and axial vorticity (ζ ) of the base flow. (b) Linear
growth rate as a function of the vertical wavenumber k for different azimuthal
wavenumbers: m= 0 (solid lines), m= 1 (dashed lines), m= 2 (dotted lines) for Re= 800
(black lines) and Re = 2000 (grey lines) for Ro = −4. The circles indicate the most
unstable modes. (c) Most unstable eigenmode for Re = 800. The shaded area indicates
the region where φ < 0.

2.1. Linear stability
The linear stability of the base flow (2.1) has been first studied by linearizing
(2.2)–(2.3) and assuming infinitesimal perturbations with axial wavenumber k,
azimuthal wavenumber m and growth rate σ :

[ũ, p̃](r, θ, z, t)= [u, p](r)eσ t+ikz+imθ
+ c.c., (2.4)

where c.c. indicates the complex conjugate, and gives

σu+Lm,k(ub)u= 0, (2.5)

where

Lm,k(ub)u≡ ub · ∇m,ku+ u · ∇ub + 2Ro−1ez × u+∇m,kp− Re−1
∇

2
m,ku, (2.6)

where ub=[0, rΩ,0]. Here, ∇m,k and ∇2
m,k are, respectively, the gradient and Laplacian

in cylindrical coordinates with the azimuthal derivative replaced by im and the vertical
derivative by ik.

In the inviscid limit, the necessary and sufficient condition for the instability of
axisymmetric perturbations is that the Rayleigh discriminant φ is negative (Rayleigh
1917; Synge 1933; Kloosterziel & van Heijst 1991):

φ ≡ 2
(
v

r
+

1
Ro

)(
ζ +

2
Ro

)
< 0. (2.7)

For the base flow (2.1), (2.7) is satisfied when Ro<−1 or Ro> exp(2). Figure 1(b)
shows the linear growth rate σ as a function of k for different azimuthal wavenumbers
m for Ro = −4 for two different Reynolds numbers, Re = 800 and Re = 2000. The
growth rate is maximum for the axisymmetric mode at km = 5.6 for Re = 800 and
km= 8.6 for Re= 2000. As predicted by the generalized criterion of Billant & Gallaire
(2005), only the first non-axisymmetric modes m= 1 and m= 2 are unstable, and their
maximum growth rate is lower than for m= 0. Hence, in the following, we will focus
on the axisymmetric mode at the most amplified vertical wavenumber km. Figure 1(c)
shows the most unstable eigenmode for Re= 800, Ro=−4. It is mostly localized in
the region where the Rayleigh discriminant is negative (shaded area).
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3. Semilinear formulation

We decompose the flow as

u(r, θ, z, t)= u(r, θ, t)+ û(r, θ, z, t), (3.1)

where u= z−1
max

∫ zmax

0 u dz is the axially averaged mean flow over the axial length zmax

(see § 3.3) and û the perturbation which is not assumed to be small as in the linear
stability analysis. Averaging (2.2) in z leads to

∂u
∂t
+ u · ∇u+ 2Ro−1ez × u+∇p− Re−1

∇
2u=−û · ∇û. (3.2)

Subtracting (3.2) from (2.2) yields the equation for the perturbation û:

∂û
∂t
+ u · ∇û+ û · ∇u+ 2Ro−1ez × û+∇p̂− Re−1

∇
2û=−û · ∇û+ û · ∇û. (3.3)

These mean and fluctuation equations are similar to those of the Reynolds decomposi-
tion (Reynolds & Hussain 1972). They involve several coupling terms between the
mean and the fluctuation. The right-hand side of (3.2) is the Reynolds stress due to
the fluctuations, which acts as forcing or added momentum to the nonlinear mean flow
equation (left-hand side of (3.2)). The amplitude of this forcing is proportional to the
square of the fluctuation amplitude. In turn, the fluctuation in (3.3) is affected by the
evolution of the mean flow through the advection operator (u · ∇û + û · ∇u). The
fluctuation also evolves due to nonlinear effects with zero mean (right-hand side of
(3.3)) (Mantič-Lugo et al. 2014, 2015).

3.1. Single harmonic
We introduce now the normal mode form of the perturbation for m= 0: û(r, θ, z, t)≡
û(r, z, t)'u1(r, t)exp(ikmz)+ c.c. where km is the most amplified wavenumber obtained
from the linear stability analysis. At t= 0, the perturbation is set as u1(r, 0)= A0um

where um is the dominant eigenmode and A0 the initial amplitude of the perturbation.
Neglecting the higher harmonics, the governing equations (3.2)–(3.3) reduce to

∂u
∂t
+ u · ∇u+ 2Ro−1ez × u+∇p− Re−1

∇
2u=−ξ(u1), (3.4)

∂u1

∂t
+L0,k(u)u1 = 0, (3.5)

where L0,k(u) is a linear operator defined in (2.6) with m= 0 and ξ(u1)=u1 ·∇−ku∗1+
u∗1 ·∇ku1 is the Reynolds stress. It is worth mentioning that (3.4)–(3.5) are now only a
function of time and the radial coordinate r. In addition, the divergence-free condition
reduces to (1/r)∂ru/∂r= 0 since ∂w/∂z= 0 due to the axial averaging. This implies
u= 0. It can also be shown that w remains identically zero for all time if w= 0 at
t = 0, since the Reynolds stress in the z-direction is zero. Thus, the mean flow has
only a component along the azimuthal direction u= [0, v, 0]T. Hence, (3.4) simplifies
to

∂v

∂t
= Re−1

[
∂2v

∂r2
+

1
r
∂v

∂r
−
v

r2

]
− ξ(u1)θ , (3.6)
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Semilinear model for the centrifugal instability 897 A34-5

which is a simple diffusion equation with a source term independent from the Rossby
number Ro. Using the axisymmetry of the mean flow and of the perturbation, (3.5)
can also be further reduced to

∂η1

∂t
−

(
2v
r
+ 2Ro−1

)
ikv1 − Re−1

[
∂2η1

∂r2
+

1
r
∂η1

∂r
−
η1

r2
− k2η1

]
= 0, (3.7a)

∂v1

∂t
+ (ζ + 2Ro−1)u1 − Re−1

[
∂2v1

∂r2
+

1
r
∂v1

∂r
−
v1

r2
− k2v1

]
= 0, (3.7b)

where η1 = ∂zu1 − ∂rw1 = iku1 − (i/kr)∂r((1/r)∂rru1) is the azimuthal component of
vorticity.

Therefore, our model consists of the semilinear one-dimensional equation (3.5), or
equivalently (3.7), for the evolution of the perturbation over the mean flow coupled to
(3.6) for the evolution of the mean flow under the effects of the Reynolds stresses of
the perturbation and viscous diffusion. The only difference compared to pure linear
equations is this evolution of the mean flow. Such a semilinear model is similar to
the self-consistent model proposed by Mantič-Lugo et al. (2014). The main difference
is that the Reynolds decomposition (Reynolds & Hussain 1972) to separate the flow
into a mean flow and a fluctuation is here based on spatial axial average, since the
perturbation is harmonic along the axis, while the self-consistent model relies upon
a time average because the perturbation is harmonic in time for the flows they have
considered. Another difference is that the perturbation equations are here simply
integrated in time, while, in the self-consistent model, an eigenvalue problem has to
be solved after each variation of the mean flow.

3.2. Two harmonics

One can easily include higher harmonics of the fundamental mode following the
same approach. For instance, taking into account the second harmonic in the velocity
perturbation: û=u1(r, t)exp(ikmz)+u2(r, t)exp(i2kmz)+ c.c., the perturbation equations
become

∂u1

∂t
+L0,k(u)u1 =−(u2 · ∇−ku∗1 + u∗1 · ∇2ku2), (3.8a)

∂u2

∂t
+L0,2k(u)u2 =−(u1 · ∇ku1). (3.8b)

The mean flow (3.6) is then forced by the Reynolds stress of both harmonics,

∂v

∂t
= Re−1

[
∂2v

∂r2
+

1
r
∂v

∂r
−
v

r2

]
− ξ(u1)θ − ξ(u2)θ . (3.9)

Higher harmonics 3km, 4km, . . . can be taken into account similarly. Since the
perturbations equations are integrated in time, there is no particular complexity arising
when several harmonics are considered. This is in contrast to the self-consistent
model (Mantič-Lugo et al. 2014) where the eigenvalue problems become increasingly
complicated when more than one harmonic is considered (Meliga 2017).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.335


897 A34-6 E. Yim, P. Billant and F. Gallaire

3.3. Numerical method
The semilinear numerical simulations have been performed with the FreeFEM++
software (Hecht 2012) for axisymmetric cylindrical coordinates (r, z). The velocity
and pressure are discretized with Taylor–Hood P2 and P1 elements, respectively. The
time is discretized using the first-order backward Euler formula. The total number
of degrees of freedom is 4687. Three-dimensional (3-D) direct numerical simulations
(DNS) have been performed using the open source spectral element code Nek5000
(Fischer, Lottes & Kerkemeier 2008) in Cartesian coordinates (x, y, z) in cylindrical
geometry. The domain is discretized by 120 000 hexahedral elements and each element
is composed of 8 (velocity) or 6 (pressure) Gauss–Lobatto–Legendre quadrature points
along each direction (resulting in 250 million degrees of freedom, i.e. 50 000 times
more than for the semilinear models). The time and the nonlinear convection terms
are discretized using third-order backward differentiation and third-order explicit
extrapolation formula, respectively.

Both DNS and semilinear models are initialized with the perturbation
û=A0umexp(ikmz)+ c.c. where A0= 0.001 is the initial amplitude and um is the most
unstable linear eigenmode (figure 1c) obtained by means of the restarted Arnoldi
method. The eigenmodes have been normalized so that the absolute maximum value
of the vertical velocity is unity, max(|wm|)= 1 such that max(|ŵ|)= A0.

The domain size for the semilinear model is chosen to be r=[0, rmax] where rmax=8.
Since the base angular velocity decays exponentially with r2, the radial extent does not
need to be large: the eigenvalues and eigenvectors are converged as soon as rmax >

5. Periodic boundary conditions are applied on z = 0 and z = zmax. The boundary
conditions at r = 0 are u = v = 0 since the flow is axisymmetric (Batchelor & Gill
1962). At r = rmax, all perturbations are enforced to vanish. The domain sizes in the
DNS are r = [−8, 8] along the horizontal with no-slip boundary conditions and z =
[0, 13× 2π/km] along the vertical with periodic boundary conditions. To validate the
numerical methods, some DNS and simulations with the semilinear models have also
been performed with an independent pseudo-spectral code NS3D (Deloncle, Billant &
Chomaz 2008). Identical results have been obtained.

4. Results
We consider a single Rossby number Ro=−4. This value has been chosen to be

sufficiently far from the marginal stability limit Ro = −1 so that the initial growth
rate and nonlinear effects are not weak. In other words, we are not in a weakly
nonlinear regime as assumed to derive asymptotically amplitude equations. Two
Reynolds numbers will be investigated: Re = 800 and Re = 2000, corresponding to
different viscous damping and, thus, to different values of the initial growth rates
(figure 1b). This allows us to test the semilinear models for two representative cases
where nonlinear effects and higher harmonics are expected to be moderate (Re= 800)
or more significant (Re= 2000). Alternatively, different growth rates could have been
obtained by varying Ro with Re fixed.

4.1. Three-dimensional DNS
Figure 2 shows snapshots of the azimuthal velocity v in a DNS for Ro=−4 and Re=
800. Only two wavelengths are displayed, although the computation is performed over
13 wavelengths. The vertical lines delimit the regions where the Rayleigh discriminant
φ̄ is negative, where φ̄ is based on the axially averaged azimuthal velocity v̄(t, r).
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FIGURE 2. Vertical cross-sections at x= 0 of the evolution of the azimuthal velocity field
v in DNS for km = 5.6, Ro=−4, Re= 800. The dashed lines delimit the regions where
φ̄ < 0, based on the mean azimuthal velocity v̄. Only two wavelengths are shown whereas
the full domain contains 13 wavelengths along the vertical (see § 3.3).

At t= 10, a slight deformation can be seen in the region where φ̄ < 0. Subsequently,
the perturbation grows and rearranges the distribution of azimuthal velocity (20< t<
30). For t> 30, the ‘mushrooms’ start to fade out. Finally, vertical deformations are
no longer visible by t= 100 so that the vortex then evolves only by viscous diffusion.

The solid lines in figure 3(a) show the evolution of the corresponding mean
azimuthal velocity v̄. The mean flow profile first decays by viscous diffusion until
t = 10. A distortion of the mean flow due to the instability can be seen at t = 20.
At t = 30 and t = 40, it becomes strong and the profile exhibits two distinct peaks
near r= 0.4 and r= 1. Then, the peak at r∼ 0.4 disappears and the mean azimuthal
velocity profile becomes linear for r< 1 for t> 60. During this process, the maximum
velocity has decreased from max(v̄(t = 0)) = 0.47 to max(v̄(t = 80)) = 0.23 and the
corresponding radius has moved from r= 0.7 to r= 1.2. The corresponding Rayleigh
discriminant is shown in figure 3(b) (solid lines). At t= 0, φ̄ is minimum at r= 0.95
and is negative for 0.75< r< 1.18. For t= 20, the region where φ̄ < 0 has enlarged,
but the minimum of φ̄ has decreased in absolute value. At t = 30, there exist two
regions where φ̄ < 0: near r = 0.3 and r = 0.8, while between these regions φ̄ > 0.
The minimum value decreases and then increases again subsequently. By comparing
figures 3(a) and 3(b), we can see that the mean flow is mostly deformed near the
negative peaks of φ̄, at least until t= 40. At t= 60, min(φ̄) is no longer negative.

The evolution of the instability is qualitatively similar for the higher Reynolds
number Re = 2000 (figure 4). For this DNS, full vertical cross-sections of the
azimuthal velocity and horizontal cross-sections of the vertical velocity are displayed
at three selected times. As can be seen, the flow seems to remain axisymmetric and
no subharmonic modulations of the primary wavelength are visible along the vertical.
This is confirmed quantitatively in figure 5(a,b), which shows the averaged azimuthal
Pθ(m, t) and axial Pz(k, t) Fourier spectra defined as

Pθ(m, t)=
1

rmaxzmax

∫ rmax

0

∫ zmax

0
FTθ [w(r, θ, z, t)]FT∗θ [w(r, θ, z, t)] dz dr, (4.1)

Pz(k, t)=
1

rmax

∫ rmax

0
FTz[w(r, [0,π], z, t)]FT∗z [w(r, [0,π], z, t)] dr, (4.2)
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FIGURE 3. (a) Mean azimuthal velocity v̄ from DNS (solid lines) and the semilinear
model with single harmonic (SL-1km) (dashed lines). (b) Corresponding Rayleigh
discriminant φ̄ and (c) perturbation amplitudes A as a function of time for Ro=−4 and
Re= 800.
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FIGURE 4. Evolution of the azimuthal velocity (a–c) and axial velocity (d–f ) in a DNS
for km = 8.6, Ro = −4, Re = 2000. For (a,d) t = 20, (b,e) t = 30 and (c, f ) t = 50. The
vertical cross-sections (a–c) are at x= 0 and the horizontal cross-sections (d–f ) at z= 1.83.
The location of the different cross-sections are indicated by the dashed lines.

where FTθ [w(r, θ, z, t)] and FTz[w(r, θ, z, t)] are the azimuthal and axial Fourier
transforms of the axial velocity w. The axisymmetric m = 0 mode remains always
largely dominant (figure 5a) and only the fundamental mode km and higher harmonics
grow significantly (figure 5b). This legitimates the assumptions behind the semilinear
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averaged axial spectral amplitude, Pz(k, t) of axial velocity w for times t= 0, 20, 30 and
50 for Re= 2000, Ro=−4.
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FIGURE 6. (a) Mean azimuthal velocity from DNS (solid lines) and semilinear model
SL-1km (dashed lines) and (b) for SL-2km (dashed lines). (c) The perturbation amplitudes
A as a function of time for Ro=−4 and Re= 2000 for both SL-1km and SL-2km.

models where only the most amplified axisymmetric mode, and possibly higher
vertical harmonics, are taken into account.

The evolution of the mean azimuthal velocity v̄ for Re = 2000 (solid lines in
figure 6a) resembles the one for the lower Reynolds Re = 800 (figure 3a). The
deformations at intermediate times are nevertheless more pronounced for Re= 2000.

4.2. Semilinear model with single harmonic (SL-1km)
The dashed lines in figure 3(a) represent the mean azimuthal flow predicted by the
semilinear model with one harmonic, abbreviated as SL-1km, for Re = 800. The
agreement with the DNS is almost perfect for t = 10, 20 while some discrepancies
can be seen at t = 30, 40. It becomes excellent again for t > 60. Similar agreement
and discrepancies are also observed for the Rayleigh discriminant φ̄ (figure 3b).
Figure 3(c) shows the amplitude of the velocity perturbation A = max(|w|), in the
DNS (black solid line) and the semilinear model. The amplitude first increases
exponentially from its initial value A0 = 0.001. The linear prediction (dotted line)
agrees with the DNS only at early points in time (t < 10). Then, the growth rate
becomes smaller than the linear growth rate. The perturbation grows until t= 30 and
then decreases. The amplitude of the first and second harmonics A(km), A(2km) have
been decomposed using fast Fourier transform (broken lines). The amplitude of the
second harmonic is around 15 % of the amplitude of the first harmonic. The amplitude
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FIGURE 7. Mean Reynolds stresses in the azimuthal direction from DNS and semilinear
models at (a) t= 16, (b) t= 22 and (c) t= 28.

of the perturbation in the semilinear model SL-1km (blue thick line) is in very good
agreement with the one in the DNS until t = 30. Then, it slightly overestimates the
amplitude extracted from the DNS.

For the higher Reynolds number Re = 2000, the evolution of the mean azimuthal
flow and amplitudes of the perturbation in the DNS and SL-1km model are also
globally in good agreement (figure 6a,c). Nevertheless, some deviations can be seen
at t = 30, 40, in particular, the first peak at small radius is not captured at t = 40.
In addition, the maximum amplitude of the second harmonic reaches 1/3 of the
maximum amplitude of the fundamental harmonic (figure 6c).

4.3. Semilinear model with two harmonics (SL-2km)
As seen in figures 3(c) and 6(c), the second harmonic is triggered and reaches a
non-negligible amplitude for both Re = 800 and Re = 2000. Its effect can be taken
into account by means of the semilinear model (3.8)–(3.9), called SL-2km. Since the
perturbation is initialized by only the leading eigenmode, the initial amplitude of the
second harmonic is set to zero. Therefore, even if it is also unstable (figure 1b), its
initial evolution is only due to the forcing by the fundamental harmonic.

For Re = 800 (figure 3c), the evolution of the amplitude of the first harmonic
predicted by the SL-2km model (red continuous line) is slightly closer to the amplitude
A(km) in the DNS (black dashed line) than for the SL-1km model (blue continuous
line). However, for Re= 2000 (figure 6c), the SL-2km(km) amplitude is not closer to
A(km) in the DNS than the SL-1km model for 20 . t . 30. The amplitudes of the
second harmonic are also well predicted by the SL-2km model. It reaches 15 % and
26 % of the amplitude of the fundamental harmonic for Re = 800 and Re = 2000,
respectively.

For Re=2000, the predicted profiles for the mean azimuthal velocity for the SL-2km

model (figure 6b) are smoother than for the SL-1km model (figure 6a). However, the
first peak near r∼ 0.3 at t= 30 is less pronounced. To understand this discrepancy, we
have plotted the Reynolds stresses in the θ -direction in the DNS and the semilinear
models (figure 7). At t = 16, the SL-2km model is in excellent agreement with the
DNS, while at t= 22 and t= 28, there are some departures, especially at small radius
(r≈0.5). This is the reason why the SL-2km model does not capture the first peak of
the mean azimuthal velocity (figure 6b).

Including higher harmonics might further improve the predictions. However, this
would complicate the models, and the primary goal of the present approach is the
simplicity rather than the accuracy.
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FIGURE 8. Mean azimuthal velocity in the DNS and semilinear models at t = 60 for
Ro=−4 for Re= 800 and Re= 2000. The velocity distribution predicted by Kloosterziel
et al. (2007) in the inviscid limit is indicated by KCO. Viscous-KCO corresponds to the
velocity profile (5.11) which takes into account viscous effects.

5. Final profiles of azimuthal velocity

The profiles of mean azimuthal velocity observed at time t= 60, once the instability
has ceased, have been compared to the theory of Kloosterziel et al. (2007) and
Carnevale et al. (2011). As mentioned in the introduction, this theory states that the
centrifugal instability homogenizes negative and positive absolute angular momentum
L = r(v + r/Ro) so as to suppress negative gradients of L2 under the constraint of
absolute angular momentum conservation. For anticyclones, the final profile of L in
the inviscid limit is such that L is zero until a radius rc given by

∫ rc

0 rLi dr= 0, where
Li is the initial absolute angular momentum. Beyond this radius, the velocity profile
remains identical to the initial one. Therefore, the theoretical angular velocity is

Ω(r< rc)=−
1

Ro
, Ω(r > rc)= exp(−r2). (5.1a,b)

This profile (labelled KCO) is compared to those observed in the DNS and SL models
for Re= 800 and Re= 2000 in figure 8. It is close to the observed profiles except in
the vicinity of the radius rc where the latter are smooth, while the theoretical profile is
discontinuous due to the inviscid approximation. In order to take into account viscous
effects, we have further considered the viscous diffusion of (5.1). For large Reynolds
number, the diffusion equation

∂Ω

∂t
= Re−1

[
∂2Ω

∂r2
+

3
r
∂Ω

∂r

]
(5.2)

shows that the angular velocity should decay slowly everywhere except in the vicinity
of rc, where radial derivatives are expected to be large because of the discontinuity.
To describe the local viscous evolution near rc, we, therefore, define a rescaled radial
coordinate r̃=

√
Re(r− rc) and we assume that Ω depends both on r̃ and the unscaled

radius r. We also introduce a slow time τ = Re−1t. Hence, (5.2) becomes

∂Ω

∂t
+

1
Re
∂Ω

∂τ
=
∂2Ω

∂ r̃2
+

1
√

Re

(
2
∂2Ω

∂ r̃∂r
+

3
r
∂Ω

∂ r̃

)
+

1
Re

(
∂2Ω

∂r2
+

3
r
∂Ω

∂r

)
. (5.3)
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Then, the solution is sought as an expansion in Reynolds number

Ω =Ω0 + Re−1/2Ω1 + Re−1Ω2 + · · · . (5.4)

The zeroth and first-order problems are

∂Ω0

∂t
=
∂2Ω0

∂ r̃2
and

∂Ω1

∂t
−
∂2Ω1

∂ r̃2
= 2

∂2Ω0

∂ r̃∂r
+

3
r
∂Ω0

∂ r̃
. (5.5a,b)

The solutions are chosen as

Ω0 = A(r, τ )erf
(

r̃
2
√

t

)
+H(r, τ ), and Ω1 =

(
2
∂A
∂r
+ 3

A
r

)√
t
π

exp
(
−

r̃2

4t

)
,

(5.6a,b)
where A and H are arbitrary functions of r and τ . These functions are found by
considering the problem at order Re−1:

∂Ω2

∂t
−
∂2Ω2

∂ r̃2
=−

∂Ω0

∂τ
+
∂2Ω0

∂r2
+

3
r
∂Ω0

∂r
+ 2

∂2Ω1

∂r∂ r̃
+

3
r
∂Ω1

∂ r̃
. (5.7)

It can be shown that the solution Ω2 presents secular growth unless we set

∂A
∂τ
=
∂2A
∂r2
+

3
r
∂A
∂r

and
∂H
∂τ
=
∂2H
∂r2
+

3
r
∂H
∂r
. (5.8a,b)

The solutions are taken as

A=
D exp

(
−

r2

B+ 4τ

)
(B+ 4τ)2

+C and H =
E exp

(
−

r2

G+ 4τ

)
(G+ 4τ)2

+ F, (5.9a,b)

where B,C, D, E, F and G are constants. We then impose that Ω0 at t= τ =0 matches
the profile (5.1). This implies B = G = 1, E = D = 1/2, F = −C = −1/(2Ro). Then,
the solution of (5.7) can be found:

Ω2 =−
1
√

π

(
∂2A
∂r2
+

3
r
∂A
∂r
+

3
4r2

A
)

r̃
√

t exp
(
−

r̃2

4t

)
. (5.10)

Finally, the complete solution for Ω up to order Re−1, written in terms of the original
variables r and t, reads

Ω = Aerf

(√
Re(r− rc)

2
√

t

)
+ A−

1
Ro
+

[
2
∂A
∂r
+

3
r

A

−

(
∂2A
∂r2
+

3
r
∂A
∂r
+

3
4r2

A
)
(r− rc)

]√
t

πRe
exp

(
−

Re(r− rc)
2

4t

)
, (5.11)

where A is given by (5.9a,b) with the substitution τ = Re−1t. The azimuthal velocity
profiles corresponding to (5.11) are plotted with dotted lines (Viscous-KCO) in
figure 8. The time in (5.11) has not been set to t = 60 but to t = 20. Indeed, since
the profile (5.1) is the outcome of the centrifugal instability, we have assumed that
it is virtually formed only at t = 40 once the instability has almost ceased. These
viscous profiles are in much better agreement with the DNS than the inviscid profile
of Kloosterziel et al. (2007) and Carnevale et al. (2011). Besides, we emphasize that
the profiles in the DNS and SL models are in excellent agreement.
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6. Conclusion

We have studied the nonlinear growth of the centrifugal instability in an anticyclone
with Gaussian angular velocity in rotating fluids for Ro = −4. We have used an
approach similar to the one behind the self-consistent model (Mantič-Lugo et al.
2014). Using Reynolds decompositions (Reynolds & Hussain 1972) based upon a
time average, Mantič-Lugo et al. (2014) have separated the flow into mean flow and
time harmonic fluctuations. These two components are coupled via Reynolds stresses
in the mean flow equation and via the evolution of the mean flow in the fluctuation
equation. In the present study on the centrifugal instability, we have used a spatial
average instead of a time average and separated the flow into axially averaged mean
flow and spatial harmonic fluctuation. As for the self-consistent model, the fluctuation
grows over an evolving mean flow while the mean flow is forced by the Reynolds
stresses due to the fluctuations. They contribute to the progressive smoothing of the
destabilizing vorticity, thereby reducing the instantaneous growth of disturbances. A
similar saturating or stabilizing effect is encountered in supercritical instabilities such
as vortex shedding behind a cylinder and flow over a cavity, although the Reynolds
stresses can also be further destabilizing in subcritical flows such as wall-bounded
shear flows. The present semilinear model with one harmonic is in very good
agreement with DNS for Re= 800 and Re= 2000 with regards to the time evolution
of both the fluctuation amplitude and the mean flow profiles. Including a second
harmonic 2km into the model improves the predictions slightly.

We have also compared the ‘final’ azimuthal velocity profile observed in the
DNS and semilinear models when the instability has disappeared to the inviscid
profile proposed by Kloosterziel et al. (2007) based on homogenization of angular
momentum towards a centrifugally stable flow. They agree except in the neighbourhood
of the radius where the inviscid profile is discontinuous. To improve the prediction,
we have computed asymptotically for large Reynolds number the viscous diffusion of
the theoretical profile of Kloosterziel et al. (2007). The discontinuity is then smoothed
and the predicted profiles are in much better agreement with the profile observed in
the DNS and semilinear models.

The main interest of the present semilinear models is their simplicity, which may
enable a deeper understanding of the underlying physics. In addition, we emphasize
that they are very cheap in terms of computational cost. Indeed, the computing time
for the present 3-D DNS with the Nek5000 code takes 18 h (elapsed real time) with
168 processors for 13 vertical wavelengths and for 100 time units. In contrast, a run
of the semilinear model with one or two harmonics only takes 6 min or 10 min,
respectively, with a single processor. This dramatic decrease in the computing time
comes from the reduction of the problem to only a few one-dimensional equations.

In the future, it would be interesting to investigate the connection between
semilinear models and amplitude equations derived from weakly nonlinear analyses.
In addition, it would be interesting to develop similar models for non-axisymmetric
centrifugal instabilities since they can be dominant in the presence of background
stratification (Lahaye & Zeitlin 2015; Yim et al. 2016; Yim, Stegner & Billant 2019).
A similar approach could also be attempted for the two-dimensional shear instability
by means of an azimuthal average.

Declaration of interests

The authors report no conflict of interest.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.335


897 A34-14 E. Yim, P. Billant and F. Gallaire

REFERENCES

BATCHELOR, G. K. & GILL, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid
Mech. 14 (4), 529–551.

BILLANT, P. & GALLAIRE, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal
instabilities. J. Fluid Mech. 542, 365–379.

CARNEVALE, G. F., KLOOSTERZIEL, R. C., ORLANDI, P. & VAN SOMMEREN, D. D. J. A. 2011
Predicting the aftermath of vortex breakup in rotating flow. J. Fluid Mech. 669, 90–119.

CARTON, X., FLIERL, G. R. & POLVANI, L. M. 1989 The generation of tripoles from unstable
axisymmetric isolated vortex structures. Europhys. Lett. 9 (4), 339–344.

DELONCLE, A., BILLANT, P. & CHOMAZ, J.-M. 2008 Nonlinear evolution of the zigzag instability
in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229–239.

FISCHER, P. F., LOTTES, J. W. & KERKEMEIER, S. G. 2008 Nek5000 Web page. Available at:
http://nek5000.mcs.anl.gov.

GENT, P. R. & MCWILLIAMS, J. C. 1986 The instability of barotropic circular vortices. Geophys.
Astrophys. Fluid Dyn. 35 (1–4), 209–233.

HECHT, F. 2012 New development in freefem++. J. Numer. Math. 20 (3–4), 251–265.
IOANNOU, A., STEGNER, A., LE VU, B., TAUPIER-LETAGE, I. & SPEICH, S. 2017 Dynamical

evolution of intense Ierapetra eddies on a 22 year long period. J. Geophys. Res. 122 (11),
9276–9298.

KLOOSTERZIEL, R. C., CARNEVALE, G. F. & ORLANDI, P. 2007 Inertial instability in rotating and
stratified fluids: barotropic vortices. J. Fluid Mech. 583, 379–412.

KLOOSTERZIEL, R. C. & VAN HEIJST, G. J. F. 1991 An experimental study of unstable barotropic
vortices in a rotating fluid. J. Fluid Mech. 223, 1–24.

LAHAYE, N. & ZEITLIN, V. 2015 Centrifugal, barotropic and baroclinic instabilities of isolated
ageostrophic anticyclones in the two-layer rotating shallow water model and their nonlinear
saturation. J. Fluid Mech. 762, 5–34.

LAZAR, A., STEGNER, A. & HEIFETZ, E. 2013 Inertial instability of intense stratified anticyclones.
Part 1. Generalized stability criterion. J. Fluid Mech. 732, 457–484.
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