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We consider the time-dependent flow of a fluid of density ρ1 in a vertical cylindrical
container embedded in a fluid of density ρ2 (<ρ1) whose side boundary is
suddenly removed and the fluid drains freely from the edge. We show that in
the inertial–buoyancy regime (large initial Reynolds number) the flow is modelled
by the shallow-water equations and bears similarities to a gravity current released
from a lock (the dam-break problem) driven by the reduced gravity g′= (1− ρ2/ρ1)g.
This formulation is amenable to an efficient finite-difference solution. Moreover, we
demonstrate that similarity solutions exist, and show that the flow created by the
dam break approaches the predicted self-similar behaviour when the volume ratio
V(t)/V(0) ≈ 1/2 where t is time elapsed from the dam break. We considered two
cases of drainage: (i) outward from the outer boundary in a full-radius reservoir;
and (ii) inward from the inner radius in an annular-shaped reservoir. For the first
case the similarity solution is expressed analytically, while the second case is more
complicated and requires a numerical solution. In both cases V(t)/V(0) decays
like t−2, but the details are different. The similarity solutions admit an adjustable
virtual-origin constant, which we determine by matching with the finite-difference
solution. The analysis is valid for both Boussinesq and non-Boussinesq systems,
and a wide range of geometric parameters (inner and outer radii, and height). The
importance of the neglected viscous terms increases with time, and eventually the
inertial–buoyancy model becomes invalid. An estimate for this occurrence is also
provided. The predictions of the model are compared to results of direct numerical
simulations; there is good agreement for the position of the interface and for the
averaged radial velocity, and excellent agreement for V(t)/V(0). A box model is
used for estimating the effect of a partial (over a sector) dam break. This study is an
extension of the work for a rectangular reservoir of Momen et al. (J. Fluid Mech.,
vol. 827, 2017, pp. 640–663). We demonstrate that there are some similarities, but
also significant differences, between the rectangular and the cylindrical reservoirs
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concerning the velocity, shape of the interface and rate of drainage, which are of
interest in applications. The overall conclusion is that this simple model captures very
well the flow field under consideration.

Key words: geophysical and geological flows, gravity currents, shallow water flows

1. Introduction
Reservoirs (or tanks) with vertical walls and a flat horizontal bottom are of interest

in industrial and environmental applications, as storage devices for water, oil and
various chemicals. The fluid in the reservoir is of density ρ1, and the system is
embedded in an ambient fluid of density ρ2 < ρ1. Here we focus attention on the
motion of the dense fluid which occurs upon the collapse or removal of a vertical
boundary. This event is usually referred to as dam break.

There are numerous studies of various aspects concerning the design and routine
usage of such reservoirs, from the stress on the boundaries (e.g. Ray & Raba 1991),
to the withdrawal of the stored fluid in the presence of stratification and rotation
(e.g. Monismith, Mcdonald & Imberger 1993). These reservoirs or tanks are also
under consideration in strategies for managing hazards of collapse due to earthquakes,
accidents or material failures. In normal circumstances, the fluid in the reservoir
is static and its upper interface is horizontal at z = h0 (the vertical coordinate z
is measured from the bottom). The excess hydrostatic pressure (ρ1 − ρ2)g(h0 − z)
over the ambient is counteracted by the sidewall(s) of the container; here g is the
gravitational acceleration. Upon dam break (i.e. collapse of a side boundary) the
excess hydrostatic pressure sets the fluid into a quick motion toward the broken
boundary, which is accompanied by the change of the slope, and decrease of height,
of the upper interface. The spillage of large amounts of fluids may produce damage
and pollution to the nearby inhabitants, animals, vegetation and infrastructure, and
therefore such reservoirs are usually under supervision (Simpson 1997). For the
preparation of the necessary disaster-rescue procedures and means, it is essential
to know what is the dam-break time behaviour of the reservoirs under supervision.
This of course projects back on the decisions of the shape, size and location of the
reservoirs, and means of protection (i.e. pumps and pipes that can remove the spilled
fluid). The major questions are concerned with the behaviour of some global variables,
such as the position of the top surface, the horizontal velocity and in particular the
fluid volume V at time t after the collapse. The desideratum is a simple model for
understanding and fast prediction of these variables. Such a model is expected to be
beneficial for both the early planning of the location and size of the reservoir, and for
the handling of the site in case of emergency. The flow of the dense fluid generated
by the dam break is usually referred to as a gravity current.

The flows covered by these generic names, dam break and gravity current, differ
significantly in important physical (and mathematical) details. The geometry of the
reservoir system is expected to play an essential role in the analysis and results.

The common dam-break system considers drainage from the reservoir over a
horizontal boundary which is a smooth extension of the bottom. This creates a
standard lock-release gravity current of the type discussed in detail by Simpson
(1997), Ungarish (2009) and the references therein. Typically, the entire volume of
the fluid in the reservoir turns into a thin and long layer (of two-dimensional or
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axisymmetric projection) whose front propagates with speed uN . The typical speed in
the system is U = (g′h0)

1/2, where

g′ =
(

1−
ρ2

ρ1

)
g (1.1)

is the reduced gravity. Note that for g′/g>0.05,h0>20 cm and ν <1 cm2 s−1 (oil) the
Reynolds number Re=Uh0/ν >95, and hence the inertial terms dominate. The flow of
the inertial current released from the reservoir provides feedback (by pressure waves
called characteristics) to the fluid left behind in the reservoir and affects the rate of
drainage. If the ground is porous, the volume of the propagating current decreases, but
this is a slow process with small effect on the drainage of the reservoir (see Ungarish
& Huppert 2000, Acton, Huppert & Worster 2002). The essential analysis of such
systems, in two-dimensional and axisymmetric geometries, is presented in Ungarish
(2009, 2010) and the references cited there (we emphasize that this is a broad topic
and many other studies are available).

Suppose that the bottom of the reservoir/tank is at some significant height above
the ground, supported by some pillars or a grid of horizontal bars, see figure 1(a,b).
In this case, the collapse of a side boundary will produce a ‘drainage from the edge’
type of flow. The fluid that flows out from the reservoir is deflected downward. The
motion of the fluid in the reservoir (including the rate of drainage) is expected to be
determined by the internal conditions, with no feedback from the spilled-out part. This
flow is different from the classical dam break over a horizontal boundary, and requires
a dedicated analysis, which uses the same initial conditions, but different boundary
conditions.

The drainage from the edge of a two-dimensional (2-D) reservoir has been
recently investigated by Momen et al. (2017) using experiments, direct Navier–Stokes
simulations (DNS) and shallow-water (SW) theory (a thin-layer inertia–buoyancy
approximation). The fluid in the reservoir is of height h0 and length L, with the top
open to the embedding ambient. The flow starts when the right (say) boundary x= L
collapses. The major (and realistic) assumptions are that the Reynolds number is large,
the lock aspect ratio of height to length h0/L is small and that the typical height of the
ambient, H, is large compared to h0. One conclusion was that the simple SW theory
provides reliable insights and fairly accurate predictions of the flow field, in particular
the shape of the interface and the volume of the fluid present in the reservoir at a
given time. The long-time behaviour is amenable to an analytical self-similar solution.
In addition, the dimensionless problem has no free input parameters. In particular, the
volume V(t)/V(0) displays a universal decay function where t is the time scaled with
L/(h0g′)1/2. The simplified results are valid for both Boussinesq and non-Boussinesq
systems. Eventually the viscous effects become relevant and the SW approximation
becomes invalid, but at this stage V(t)/V(0) is insignificant. The experiments and
DNS provided convincing support for the SW predictions. The same analysis can be
applied to the collapse of the left x= 0 boundary, or of both boundaries x= 0, L.

Since cylindrical reservoirs are common in practice, it is both of academic and
practical interest to extend the investigation to the cylindrical geometry. In this case
the curvature terms (i) play an important role in the balance between height and
volume, which is essential in this problem; and (ii) produce a significant difference
between outward (diverging) and inward (converging) drainage possibilities, which has
no counterpart in the 2-D problem.

We use a cylindrical r, θ, z coordinate system, and assume axial symmetry. Our
study considers two cases, see figure 1. In both cases the outer radius of the reservoir
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FIGURE 1. (Colour online) Schematic description of the reservoir (tank) filled with fluid
of density ρ1 embedded in a fluid of density ρ2. (a,b) Schematic: the horizontal bottom
is held above the ground by some device that allows free spillage over the edge, such as
a tripod (here) or a horizontal coarse mesh/array of beams. (c,d) The rz section of the
axisymmetric reservoir. (c) The drainage from the outer boundary r0; (d) drainage from
the inner boundary ri. The dashed lines indicate the volume V(0) before the dam break.

is r0 and the initial height of the fluid is h0. In the first case the reservoir has no inner
radius. After the removal of the confining boundary r = r0, the fluid is accelerated
outward, and drains freely from the outer edge, r = r0. In the second case, there is
an inner radius ri. After the removal of the inner boundary r = ri (while the outer
confining boundary remains), the fluid is accelerated inward, and drains freely from
the inner edge, r = ri. The objective is to predict the major features of the time-
dependent behaviour of the fluid in the reservoir, mainly the shape of the top interface,
radial velocity and the volume ratio V(t)/V(0). We shall show that this goal can be
achieved fairly well with a simple model, while more accurate DNS require many
hours of ‘number crunching’. Note that for the large-Reynolds-number regime the
results for axisymmetric flows apply to a full-circle reservoir, and to a reservoir shaped
as a wedge of angle Θ < 2π between lateral vertical plane boundaries, and radial
curved ri, r0 boundaries.

The structure of the paper is as follows. The full-cylinder outward flow is
considered in § 2. We introduce the SW model equations and boundary conditions, and
discuss briefly the limits of validity due to viscous effects. We present finite-difference
and self-similar solutions. Next we corroborate the SW solution by comparison
with DNS data. In § 3 we consider the inward-drainage flow. We present SW
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finite-difference and self-similar solutions, and comparisons to DNS. The results
depend on the parameter ri/r0. Concluding remarks are presented in § 4. Some details
of the 2-D counterpart SW problem are summarized in appendix A, and a box model
for a partial dam break (over a sector) is developed in appendix B.

2. Outward flow
2.1. Shallow-water model

The work of Momen et al. (2017) demonstrated that the inertial flow in a 2-D
rectangular reservoir is captured well by the simplified equations and methodology
used for the investigation of inertial gravity currents. Here we use the framework
of the axisymmetric gravity current, which has been discussed in the literature (see
Ungarish (2009) and the references therein). Briefly, the model is derived as follows,
using a cylindrical coordinate system as mentioned above. Assuming that the dense
fluid is a thin layer (i.e. h0/r0� 1) while the ambient is much deeper, and the flow is
axisymmetric, it is convenient to describe the flow in terms of the thickness (height
of interface) h and the height-averaged radial speed u, as functions of r and t. The
volume continuity provides the equation of motion of the interface

∂h
∂t
+

1
r
∂(rhu)
∂r
= 0. (2.1)

Since the layer is thin, the inertial z acceleration terms are small and the z momentum
balance is well approximated by the hydrostatic ∂pi/∂z = −ρig, supplemented by
pressure continuity at z= h. We conclude that the driving pressure term in the dense
fluid layer is ∂p1/∂r = (ρ1 − ρ2)g∂h/∂r, which is also referred to as the radial
buoyancy term. Finally, we use the radial momentum equation, with ∂p1/∂r replaced
by the buoyancy term neglecting the viscous terms, which are of the order of 1/Re,
where Re is the Reynolds number defined below. By z averaging over the thickness
h we obtain the equation of motion for u,

∂u
∂t
+ u

∂u
∂r
=−g′

∂h
∂r
. (2.2)

It is convenient to introduce the velocity and time scales

U = (g′h0)
1/2, T =

r0

U
. (2.3a,b)

We now switch all dimensional variables, denoted below by an asterisk, to
dimensionless variables as follows:

{r∗, z∗, h∗, t∗, u∗, p∗} = {r0r, h0z, h0h, Tt,Uu, ρ1U2p}. (2.4)

The Reynolds number is defined as Re=Uh0/ν where ν is the kinematic viscosity
of the dense fluid. This is a formal parameter; a sharper estimate of the ratio of inertial
to viscosity effects will be presented later in § 2.1.4.

The dimensionless equations of continuity and r-momentum can be expressed as[
ht
ut

]
+

[
u h
1 u

] [
hr
ur

]
=

[
−uh/r

0

]
. (2.5)
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The system is hyperbolic and the characteristics give

dh± h1/2du=−
uh
r

dt on
dr
dt
= c± = u± h1/2. (2.6a,b)

The initial conditions at t=0 are h=1,u=0 for 06 r<1. The dam-break condition
is applied at r = 1. We argue that when the motion starts the curvature terms are
negligible. Therefore, as in the classical Cartesian inertial dam-break problem, the
height at the removed gate drops instantaneously to h(r = 1, t = 0+) = 4/9 (see
Ungarish (2009) §2.5 and appendix A).

The boundary condition at the centre is simply u(r = 0, t) = 0. We next consider
the outflow boundary condition at r= 1. There is a significant difference between the
classical gravity current and the present flow. For the classical inertial current, a jump
condition of the type u=Fr h1/2 is applied at the moving nose r= rN(t)> 1, where Fr
is a Froude number whose value is obtained from volume and momentum balances
in an attached control volume, as indicated in Benjamin (1968). Here we do not, and
actually cannot, follow the ‘nose’ of the fluid beyond the broken dam. We apply the
boundary condition at the fixed r = 1, the position of the gate. We implement the
insights and results of Momen et al. (2017), who demonstrate that the lifted gate is
replaced by the stationary characteristic with speed c−= 0. In view of (2.6b), this can
be expressed as the critical outflow condition

u= h1/2 (r= 1, t> 0). (2.7)

(We note that such a condition has been used also by Hogg, Baldock & Pritchard
(2011) for a gravity current on an inclined boundary.)

Formally, this is an asymptotic one-layer model for h0/r0→ 0 and Re→∞. The
one-layer name emphasizes the assumption that the effect of the flow of the ambient
fluid in the domain z > h, called the ‘return flow’, is negligible. Suppose that the
ambient fluid extends to z=H. The flow of the current with speed u is accompanied
by a return flow in fluid 2 of speed u2 = uh/(H − h) evaluated by continuity of
volume. The ratio of the inertial terms of ambient to current in the reservoir is of
the order of (ρ2/ρ1)(u2/u)2. This ratio is an estimate of the hindrance effected by
the flow of the less dense fluid 2 on the flow of the denser current. We conclude
that the present one-layer model is a good approximation for (ρ2/ρ1)(h0/H)2� 1. A
more rigorous two-layer SW formulation is feasible (see Ungarish 2009), but this is
not pursued here because it complicates the analysis and obscures the insights. Note
that the accuracy of the one-layer assumption improves during the drainage process
because h/H decreases.

A sharp analytical estimate for the error is unavailable. Instead, the assessment is
performed by comparisons of the model prediction with realistic data (of laboratory
experiments and Navier–Stokes simulations). There is a large body of evidence from
the realm of gravity currents that these models provide correct qualitative insights
and fairly accurate quantitative results for many problems of interest with practical
moderately small h0/r0 and moderately large Re. (The typical quantitative benchmark
for gravity currents is the speed of propagation. SW models overpredict this variable
by approximately 5 %–15 % compared to experimental data (see Ungarish (2009)
and the references therein.) The discrepancy is attributed mainly to viscous effects.
This suggests that the present SW solution will overpredict the rate of drainage by
5 %–15 %.) The SW approximation is apparently useful for a lock aspect ratio up to
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approximately 1, see Bonometti, Ungarish & Balachandar (2011). When h0/r0 > 1,
approximately, the gravity current release problem turns into a problem of the
‘collapse of a column of fluid’. In this case the acceleration of the fluid in the vertical
z direction delays the radial drainage at the bottom, and the analysis is complicated
by non-hydrostatic z-dependent terms, see Martin & Moyce (1952a,b). However, these
papers indicate, by theory and experiment for h0/r0 = 1, that the scaling of the SW
model remains relevant. (A direct comparison with these experiments is not possible
because the outflow was not over the edge.) The dam-break motion starts from rest,
and thus there is an initial short time interval t1 during which the interface has a
sharp slope near the outflux position, while z accelerations and viscous effects help
to adjust the stationary fluid to a situation in which in the thin-layer assumption is
acceptable and the boundary condition (2.7) must exist. Supposing that the slope of
the interface becomes 1 at t1, we obtain the dimensionless estimate t1≈ 0.5(h0/r0). In
the asymptotic sense, t1= 0 for (h0/r0)→ 0, but in a practical situation the predictions
of the SW model for this time interval must be regarded as qualitative only.

Further confirmation on the accuracy of the SW approach is provided by Momen
et al. (2017) for the 2-D drainage problem. Since the main dynamic balances in
cylindrical problems are the same as in the previously tested 2-D cases, we can
expect the same order of magnitude of the error. The main advantage of the SW
model is its simplicity, which allows for efficient solutions and insights.

In general, the solution of the SW model in the cylinder is obtained by a numerical
method. For large times, an analytical self-similar solution exists, also noted by
Momen et al. (2017).

2.1.1. Finite-difference solution
We use a standard discretization of the h, u variables with fixed δr intervals

and δt time steps. The time marching is performed with an explicit MacCormack
method (Anderson, Tannehill & Pletcher 1984). Artificial diffusion terms bδr2hrr and
bδr2urr, with b of the order 1, were added to the continuity and momentum equations,
respectively. The results presented below use δr of 1/400–1/200, and δt≈ 0.8δr.

Results are shown in figure 2. Qualitatively, the resulting flow is simple. The
dam break of the outer boundary (r = 1) generates a pressure decrease wave (c−
characteristic) that is propagated inward as a decrease of h (the radial pressure
gradient is ∝−∂h/∂r). This is accompanied by the appearance of a radial motion (a
positive u) in the domain activated by that pressure gradient. At t= 1 (approximately)
all the fluid in the reservoir is in motion, and the inclination of the interface decays.
Subsequently (t > 2) the interface is nearly flat and u is linear with r. The fluid is
squeezed out of the reservoir as between two disks.

The quantitative details are given by the finite-difference solution in figure 2. We
observe some wiggles at r≈ 1, which is a spurious by-product of the truncation errors
(numerical diffusion and dispersion, see Morton & Mayers (1994)), and has negligible
influence on the accuracy of the solution at other points, as confirmed later in § 2.2.

2.1.2. Similarity solution
Inspection of the finite-difference profiles of h(r, t) and u(r, t) suggest that, for

large t, these variables obey a self-similar behaviour of the type ∼ t−pf (r). Using the
governing equations (2.5) and boundary conditions we find that a solution of this type
must satisfy

h(r, t)= (t+ γ )−2H(r), u(r, t)= (t+ γ )−1U(r), (2.8a,b)
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FIGURE 2. (Colour online) SW finite-difference results. (a) h(r, t) and (b) u(r, t) at
t= 0.5, 1, 1.5 . . . 4.

where the functions H(r),U(r) are determined by the reduced form of the continuity
and momentum equations

− 2H+ (UH)′ =−HU/r, −U + UU ′ +H′ = 0, (2.9a,b)

subject to the boundary conditions U(0) = 0 and U(1) = [H(1)]1/2. Here the prime
denotes derivative with respect to r. The constant γ can be estimated by matching the
similarity prediction to the finite-difference solution of the SW dam-break problem at
some non-small time t1.

Surprisingly, an analytical solution exists: H = 1, U = r. This flow field satisfies
the equations (2.9) and the boundary conditions. We observe that the finite-difference
solution in figure 2(a) displays a nearly flat interface for t & t1 ≈ 2. Matching the
numerical mid-reservoir h = 0.1536 at t1 = 2 with the similarity solution we obtain
γ = 0.559. The comparison of the h and u solutions for the subsequent flow is shown
in figure 3(a,b).

2.1.3. Volume decay
The volume V(t) is straightforwardly calculated from the finite-difference solution,

either by the integral of h(r, t)r dr over [0, 1], or by using the integral of the outflux
u(1, t)h(1, t) dt over [0, t]. The agreement between the methods is very good (the
discrepancy increases with time due to accumulation of errors).

The value of V(t)/V(0) decreases rapidly to 0.72 at t = 1 and 0.16 at t = 2. For
larger t it is convenient to use the self-similar solution, which gives V(t)/V(0)= (t+
γ )−2
= (t+ 0.559)−2. Comparing with the results of Momen et al. (2017) we note that

the major difference between the rectangular and cylindrical reservoir is during the
initial ‘slumping’ phase, t6 2. The former reservoir contains 0.41V(0) at t= 2. This is
a result of the geometry: in the initial stage, the height of the interface decreases first
near the edge. In the cylinder the volume is distributed like r2, while in the rectangle
like x (the distance from the back wall). At larger times, t> 2, in both reservoirs the
volume decays like t−2.

The similarity solution overestimates the volume left in the reservoir, but the
drainage is fairly well captured. For example, the finite-difference solution predicts
that at t= 5, 98 % drainage has been achieved, while similarity gives 97 %. We keep
in mind that this result uses the value of γ fitted to the finite-difference solution.
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FIGURE 3. (Colour online) Comparison of finite-difference solution (solid line) with the
similarity solution with γ = 0.559 (dash-dot line); (a) h(r, t) at various t; (b) u(r, t) at
various t; (c) volume decay V(t)/V(0) versus t.

2.1.4. Transition to the viscous regime
The formal criterion for the validity of the SW formulation is Re= (g′h0)

1/2h0/ν�1.
During the process the speed and thickness decrease, and hence the ratio of inertia
to viscous forces decreases. A more stringent criterion is needed, the time dependent
effective Reynolds number, Ree = Ree(t).

We make the following estimate. Let u∗(r0, t) and h∗(r0, t) be the dimensional values
at the edge. The inertia per unit volume is ρ1[u∗(r0, t)]2/r0, while the viscous force
per unit bottom area is ρ1ν[u∗(r0, t)]/h∗(r0, t). The integral over the dense fluid then
gives the ratio of inertial to viscous effects as

Ree =
u∗(r0, t)[h∗(r0, t)]2

νr0
. (2.10)

Switching to the dimensionless u and h yields

Ree =

[
Re

h0

r0

]
u(r= 1, t)[h(r= 1, t)]2 =

[
Re

h0

r0

]
Γ (t), (2.11)

where Γ is of the order of unity at the beginning of the process, but decreases with
time. Eventually, the SW inertial–buoyancy flow is expected to undergo transition to a
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viscous–buoyancy regime when Ree≈ 1. Γ can be calculated from the finite-difference
solution, and for t > 2 we can use the similarity solution and find Γ ≈ (t + γ )−5.
Thus, even for a moderately large Reh0/r0 & 103, a very significant inertial draining is
expected to occur for approximately 4–5 time units, during which the volume decays
to less than 5 % of V(0).

2.2. Comparison to direct numerical Navier–Stokes simulations
For assessing the reliability of the predictions of the simplified SW model it is
necessary to perform comparisons with realistic ‘experimental’ data. Here we use a
numerical simulation of the Navier–Stokes equations for the two-fluid configuration.
In the Momen et al. (2017) investigation of the 2-D reservoir, both laboratory
experiments and DNS have been used. There was excellent agreement between the
data used for comparison with the SW model, and actually the DNS data turned out
to be more reliable and flexible for processing for the task of comparison. Based on
this evidence, we decided to compare the predictions of the model with DNS data of
the type used by Momen et al. (2017). We proceed as follows.

We use an open-source toolbox OpenFOAMr (Weller et al. 1998) to conduct DNSs
for the two-phase flow problem. We solve the incompressible, isothermal Navier–
Stokes equations by using the ‘interIsoFoam’ solver (an extension of OpenFOAM),
equipped with a novel volume-of-fluid (VOF) method ‘isoAdvector’ (Roenby,
Bredmose & Jasak 2016) to capture and advect the interfaces between the two
phases.

Following Momen et al. (2017), we perform simulations for a realistic, axisymmetric
configuration, where we choose water of density ρ1 = 998 kg m−3 and air of density
ρ2 = 1.2 kg m−3 as the two fluids. The kinematic viscosities are ν1 = 10−6 m2 s−1,
and ν2 = 1.5 × 10−5 m2 s−1, respectively. To stabilize the simulations, we also use
a realistic surface tension coefficient of 0.07 N m−1. At time zero, fluid in the
cylindrical reservoir is of radius r0 = 0.2 m and height h0 = 0.02 m (see figure 4).
A solid domain of height hs = 0.04 m is imposed beneath the reservoir such that
its bottom satisfies a no-slip boundary condition. The reservoir and its solid support
are embedded in a much larger box-like computational domain, which contains the
‘ambient’ fluid, similar to that of Momen et al. (2017). The boundary conditions
imposed on the large ambient are: no slip at the bottom and lateral sides of the
domain, and a constant pressure at its top. The size of this entire computational
domain is r∈ [0, 4]m and z∈ [−2, 2]m, much larger than the size of the reservoir, and
hence the DNS mimics an ‘unbounded’ ambient fluid. The switch to dimensionless
variables, using (1.1)–(2.4), is straightforward. For generality and a convenient
comparison with the theory, hereafter the DNS variables and results will be reported
in dimensionless form.

We note that the simulated system provides good compatibility with the assumptions
of the SW model: the ratio h0/r0 = 0.1 is small, the formal Re = (g′h0)

1/2h0/ν1 =

8.9× 103 is large and the flow in the large ambient is expected to be weak because
the dimensionless computational domain is r ∈ [0, 40], z ∈ [−100, 100].

We use a grid resolution of 1r = 5 × 10−4, 1z = 5 × 10−3, which seems to
be sufficient as indicated a posteriori by the satisfactory comparison between the
numerical and theoretical results. It it noteworthy that to build an axisymmetric
set-up in OpenFOAM, a wedge-shaped Cartesian grid (see the inset of figure 4) is
required, where we adopt a wedge angle of 0.5◦ and one cell layer distribution in
the azimuthal direction. The ‘wedge’ boundary conditions need to be specified at the
two vertical planes.
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Ambient pressure
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z

z

Wedge One grid

g

FIGURE 4. (Colour online) DNS approach: sketch of the three-dimensional axisymmetric
numerical configuration. The blue area denotes the cylindrical reservoir of radius r0 and
height h0 at time zero, and the black area indicates a solid domain of height hs. The
inset shows the wedge-shaped Cartesian grid required by OpenFOAM for an axisymmetric
set-up.

We use an open-source visualization tool of Childs et al. (2012) to analyse the DNS
data. As shown in figure 5, we extract the contour level, 0.5, of the volume fraction
representing the interface (red curves) between the two phases. Based on the extracted
profile h(r, t) with r ∈ [0, 1], we compute the volume V(r, t)= 2π

∫ r
0 sh(s, t) ds of the

remaining water inside a cylindrical domain of radius r in the reservoir. The depth-
averaged velocity u(r, t) can be calculated by

u(r, t)=−
1

2πrh
dV
dt
. (2.12)

As expected, this velocity agrees well with that obtained by directly depth integrating
the horizontal velocity field of the DNS at the radial position r. One single case
of the simulations required approximately two days based on two nodes (each is
equipped with an Intel Xeon E5-2690v4 CPU) of the Kebnekaise cluster of HPC2N
at Umeå University.

2.2.1. Results
The comparisons for the height and velocity (z-averaged) profiles h(r, t) and u(r, t)

at various t are shown in figure 6(a,b). Overall, there is very good agreement for both
variables. At the outflow edge r ≈ 1 we observe a discrepancy between the model
and the data. We must keep in mind that r ≈ 1 is a sub-domain of the complex
flow, which defies simple modelling. The drained fluid turns over a sharp edge, and
local acceleration and vorticity terms are expected to influence the dynamics. The SW
model is based on z-averaged inviscid balances that are bound to miss these local,
strongly z-dependent, effects. Therefore, the discrepancy in the edge domain should
be considered as an expected feature of the model: loss of accuracy of the averaged
variables in a region of a sharp change of flow conditions.
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FIGURE 5. (Colour online) DNS interfacial profiles at dimensionless times (a) t = 0.63,
(b) t= 1.06 and (c) t= 1.54, where the red curves represent the water–air interfaces. Here
r, z and t are dimensionless see (2.3)–(2.4).

The important variable of the reservoir flow is the volume decay, for which the
comparison is shown in figure 6(c). The comparison is shown until t=6 at which 99 %
of V(0) has been drained out. The agreement is very good for the entire period of
time: the difference between the SW and the DNS volume predictions is smaller than
0.5 % of V(0). This demonstrates that the averaging method used for the SW model is
actually more robust than could be inferred from figure 6(a,b). The edge discrepancies
of u and h compensate each other, and the net outflow uh is accurate (as compared
to the DNS data). We could not find any analytical justification of this behaviour
(i.e. robust/accurate uh in spite of discrepancies and wiggles in u and h). In any
case, the comparisons presented in figure 6 provide strong support to the predictive
power of the SW model with the critical height-averaged outflux condition (2.7) for
the reservoir-drainage problem, for the entire period of practical interest.

3. Inward drainage

In this section we consider that the projection of the reservoir is an annulus r ∈
[ri, 1] (scaled with the outer radius r0), and the initial height is 1 (scaled with h0).
The dam break occurs at the inner wall, and we expect a negative u. The scaling of
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FIGURE 6. (Colour online) Comparison of DNS and SW results for outward drainage:
(a) h(r, t); (b) u(r, t) at t= 1, 2, 3, 4; and (c) V(t)/V(0) versus t.

velocity, height, radius and time is as before, see (2.3). Here it is also convenient to
use the time t̃ scaled with the reference time T̃ = (r0 − ri)/U. The interpretation is
that the gap r0 − ri is the relevant distance for the propagation of the fluid (and of
the characteristics). The conversion is t̃= t/(1− ri).

Assuming that the ratio of gap r0 − ri to height h0 is large, and Re� 1, we can
apply the SW simplifications for the domain r ∈ [ri, 1]. The SW equations of motion
(2.5), and the corresponding characteristics (2.6), are valid, and the initial conditions
are again h= 1, u= 0. The boundary conditions are now: u(r= 1, t)= 0 and u(ri, t)=
−[h(ri, t)]1/2. The flow is converging, from the periphery to the centre.

The finite-difference method used for the full cylinder is straightforwardly applied
to this problem. Figure 7 displays results for the behaviour of V(t̃)/V(0) for various ri,
and the results for a rectangle of length r0− ri (see appendix A) are also shown. We
observe that for ri= 0.9 the flow is as in the rectangular reservoir, because the effect
of the curvature terms is small when (r0− ri)/r0 is small. As ri decreases, the rate of
drainage is reduced. The interpretation is mostly geometrical: the outflux q= riuihi is
restricted by the value of ri.

The profiles of h and u for ri= 0.5 and 0.1 are shown in figures 8 and 9. Typically,
the interface is higher in the bulk of the fluid, and lower at ri. A wave shape appears
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FIGURE 7. (Colour online) Inward drainage, V/V(0) at a function of time t̃ for various
ri. Also shown is the rectangular case (dash line).
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FIGURE 8. (Colour online) Inward drainage, ri = 0.5: (a) h(r, t) and −u(r, t) profiles
versus r at various t̃.

during the initial stage (t̃ ≈ 1.5), then a monotonic decrease with 1− r prevails. We
note that −u increases fairly linearly with the distance from the outer boundary 1− r
in the main reservoir, but has a sharp increase as r− ri→ 0+.

3.1. Similarity

Inspection of the finite-difference solutions suggests that the flow tends to a
self-similar behaviour for large t. Actually, the similarity formulation (2.8)–(2.9)
applies to the present problem for r ∈ [ri, 1], while the inward flow imposes the
boundary conditions U(1) = 0 and U(ri) = −[H(ri)]

1/2. We could not find a simple
analytical solution, and hence we provide a numerical calculation of the functions
H(r) and U(r).
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FIGURE 9. (Colour online) Inward drainage, ri = 0.1: (a) h and (b) −u(r, t) profiles
versus r at various t̃.

For the numerical solution, we first rewrite the system (2.9) in the form

U ′ =
1− U/r

1− U 2/H
+ 1, (3.1)

H′ = U(1− U ′)=−U
1− U/r

1− U 2/H
. (3.2)

A continuous solution requires U 2/H< 1 over the gap (ri, 1]. The boundary condition
U(ri)=−[H(ri)]

1/2 introduces a singularity of the derivatives at ri. Using an expansion
about this point, we find that the leading-order behaviour for (r− ri)→ 0 is

H(r)=Hi +H1/2
i C(r− ri)

1/2, U(r)=−H1/2
i +C(r− ri)

1/2, (3.3a,b)

where Hi =H(ri) and C = (2/3)1/2H1/4
i (1+H1/2

i /ri)
1/2 (the error is O(r − ri)). (It is

apparently strange that the outward drainage has no such singularity. This is because
in the outward case the curvature term U/r is positive, and the 1 − U/r numerator
in (3.1)–(3.2) can vanish, while for the inward case U/r is negative and 1−U/r> 1.
Note that in the definition of the coefficient C the term 1+H1/2/ri stands for 1−Ui/ri,
and this is >1 for an inward flow with U < 0. On the other hand, in the outward flow
solution, Ui/ri = 1 and hence the coefficient C vanishes.) The solution is attained by
a shooting method: using U(1)= 0 and a guessed H(1), we integrate (3.1)–(3.2) from
r=1 to ri+∆, where ∆ is a small interval, i.e. 10−3(1− ri). Combining with (3.3), we
check the fulfilment of the boundary condition −U(ri)/[H(ri)]

1/2
= 1; the guess H(1)

is corrected as necessary. This method has been applied for various ri, and we found
convergence in all tested cases. In general, H(1) increases strongly as ri decreases.
On the other hand, the more significant value H(ri)/H(1) is quite robust: it decreases
from 0.75 to 0.69 as ri decreases from 0.99 to 0.1. Typical values are given in table 1;
the typical profiles are displayed in figure 10.

The similarity solution is validated by comparison with the finite-difference solution
of the SW equations. Figure 10 shows that the profiles of h(r, t)/h(1, t) and
u(r, t)/h1/2(ri, t) approach the similarity curves H(r)/H(1) and U(r)/H1/2(ri) for
large t. Figure 10 is for a system with ri = 0.9, and we emphasize that tests with
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FIGURE 10. (Colour online) Inward drainage, ri= 0.9: (a) h(r, t)/h(r= 1, t) versus r, and
(b) −u(r, t)/[h(ri, t)]1/2 versus r, at various t̃ = 6, 10, 20. The similarity solution (blue
solid line) is also shown. The similarity curve and t̃= 20 finite-difference line coincide.

ri H(1) H(ri)/H(1) K tm t̃m γ

0.9 0.09880 0.74248 0.9505 0.44 4.4 0.2888
0.5 6.0060 0.71599 0.9672 3.5 7.0 2.46
0.1 319.0 0.69351 0.9952 25. 28. 18.27

TABLE 1. Values of the self-similar radial profile, obtained by numerical solution of the
reduced system, and γ from finite-difference SW solution.

other systems, not shown here, reveal the same pattern. This confirms the spatial
behaviour.

The time-dependent similarity is tested in figure 11. Here we use the SW results
h(1, t). We see that h(1, t)(t + γ )2 is close to a constant C for a significant span
of time (roughly, while V(t)/V(0) decreases from 0.4 to 0.01). The value of γ is
fitted. The results of figure 11 confirm the time dependency predicted by the similarity
solution.

Consequently, a good approximation for the volume in the reservoir is

V(t)
V(0)

=KH(1)(t+ γ )−2, K =
2

H(1)(1− r2
i )

∫ 1

ri

H(r)r dr. (3.4a,b)

The value of K=K(ri) is calculated numerically (as a simple extension of the solution
for H(r), U(r)), and typical values are given in table 1. Note that these values are
close to 1. Comparisons of the result (3.4) with SW calculations (not shown here)
display good agreement for large t, as expected.

We observe in table 1 that the numerical values of H(1) increase sharply as ri
decreases. We verified that this is a mathematical result of the self-similar formulation,
and does not imply a physical behaviour. In the physical variable h, the large values
of H(1) are counteracted by the virtual-origin ingredient of the similarity solution. It
turns out that the value H(1) is connected with the time tm at which the similarity
solution becomes relevant (and a matching with the initial-value problem can be
performed). We argue as follows: H(1)/(tm + γ )

2
≈ h(1, tm). Since during the initial
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FIGURE 11. (Colour online) Inward drainage, Ψ (t)= h(r= 1, t)(t+ γ )2/H(1) (solid line)
and V(t)/V(0) versus t̃= t/(1− ri) for ri = 0.1, 0.5, and 0.9. The values of H(1) and γ
are given in table 1.

(or slumping) phase of a dam-break flow h(1) > 4/9, we can estimate that the
self-similar flow becomes relevant when h(1, tm) ≈ 0.5, and hence we obtain the
estimate

tm ≈
[

1
2H(1)

]1/2
, (3.5)

which is also given in table 1. The estimate is not sharp, because we have omitted
the unknown virtual-origin coefficient γ . However, we argue that γ < tm, and hence
(3.5) remains a useful estimate. Some care is needed in the interpretation of tm when
ri is close to 1 (e.g. 0.9). In these cases tm is small, but t̃m = tm/(1− ri) is typically
4. This behaviour could be expected from the 2-D analysis of Momen et al. (2017).
Comparisons with the finite-difference solution show that (3.5) captures well the trend.
For example, in figure 10 for ri= 0.9, we see that at t̃= 6 there is good agreement for
both h and u variables, and for t> 10 the finite-difference and similarity curves almost
coincide. The same behaviour has been found for other values of ri, not shown here.

The transition to the viscous regime is estimated with the same arguments as used
in § 2.1.4. We find that it is necessary to replace r0 by the gap r0− ri in the definitions
(2.10) and (2.11). Upon this change, the same conclusions follow.

3.2. Comparison to DNS
DNS was performed for the inward-drainage problem, for two cases: ri = 0.1 and
ri = 0.5. The details of the numerical approach are similar to § 2.2, and will not be
repeated here.

Snapshots of the DNS position of the dense fluid at various times are displayed in
figure 12, for ri= 0.5. We observe that the interface is inclined toward the edge. With
time, the height decreases and the inclination becomes milder.

The comparisons for the height, velocity (z-averaged) and volume results are shown
in figures 13 and 14, for two values of the inner radius ri. Overall, there is fair-to-good
agreement. The radial velocity u(r, t) has a large slope for r ≈ ri. The realistic flow
in such a domain is expected to contain axial acceleration, and hence some deviation
from the hydrostatic balance used in the SW model. This explains the discrepancies
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FIGURE 12. (Colour online) Inward drainage ri = 0.5. DNS interfacial profiles at
dimensionless time (a) t̃ = 0.76, (b) t̃ = 1.64 and (c) t̃ = 3.96, where the red curves
represent the water–air interfaces. Here r, z and t̃ are dimensionless.

between the SW and DNS predictions observed in the figures, in particular concerning
the variable u, and the behaviour of h at early times. Nevertheless, the SW analysis
provides the correct scalings of the flow and the influence of ri, and predicts well the
trends of the variables with r and time, and in particular the decay of V(t̃)/V(0).

4. Concluding remarks
We investigated the drainage flow in a cylindrical reservoir in the inertial–buoyancy

regime (large Reynolds number), from an initial stationary state, starting with the
removal of the curved side boundary. The driving force is the buoyancy represented
by the reduced gravity g′. We show that this flow bears similarities with a gravity
current released from a lock (dam break), and can be modelled with the same set
of shallow-water (SW) PDE equations for the thickness h and radial height-averaged
speed u as functions of r and t. However, there is an essential difference in the
boundary conditions. We considered two cases of drainage: (i) outward from the outer
boundary r0 in a full-radius reservoir; and (ii) inward from the inner radius ri in an
annular-shaped reservoir. The boundary condition at the edge is the critical u= (g′h)1/2
at r0 in case (i), and u=−(g′h)1/2 at ri in case (ii). We focused attention in particular
on the decay in time of the volume, V(t)/V(0). This work is a consistent extension of
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FIGURE 13. (Colour online) Comparison of DNS and SW results for inward drainage
ri = 0.1 (a) h(r, t), (b) u(r, t) at t̃= 1, 3, 5; and (c) V(t̃)/V(0) versus t̃.

the 2-D rectangular reservoir problem studied by Momen et al. (2017). The scales of
velocity and time are the same for both geometries. However, the cylindrical geometry
introduces significant differences.

Consider case (i). The dimensionless problem has no free input parameters.
In particular, the curve V(t)/V(0), where t is time scaled with r0/(g′h0)

1/2, is
universal. The SW equations admit a similarity solution, valid for large t (but
a fair approximation for t > 2): h decays like t−2 and u decays like t−1. The same
qualitative long-time behaviour appears in the 2-D reservoir. Surprisingly, the r-profile
of the similarity solution is simple: flat h and linear u. This is in strong contrast with
the downward curved h and upward curved u, both with singular slope at the edge,
which appear in the 2-D reservoir. The SW model predictions were compared with
the DNS solution. The agreement is very good for the V(t)/V(0) variable and good
for h and u. This agreement provides strong support to the model used in this study.
Also, the outward drainage in the cylindrical geometry is more rapid than in the 2-D
counterpart: for example, at t = 2 the value V/V(0) is 0.16 in the former and 0.41
in the latter geometry.
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FIGURE 14. (Colour online) See previous caption, here for ri = 0.5.

Consider case (ii). The reduced problem, and the curve V(t)/V(0), depends on the
ri/r0 input parameters. Both h and u have (r − ri)

1/2 singularities as r → ri. The
SW equations admit a similarity solution, valid for large t, and, again, h decays like
t−2, u decays like t−1. The r-dependence of the similarity profiles must be calculated
numerically. Again, the SW solution has been corroborated by comparisons with DNS
results. When ri/r0 is small the drainage is slow because of the small riuihi outflux,
the main motion occurs in a small region close to ri, while in the bulk of the reservoir
(r>2ri say) the interface is close to horizontal and the velocity is small. When the gap
(r0 − ri)/r0 is small, the curvature terms are unimportant and the present SW results
are very close to the 2-D SW solution of Momen et al. (2017). This compatibility
provides further support to our model, because the 2-D model has been corroborated
by both experiments and DNS.

The SW results are valid for both Boussinesq and non-Boussinesq systems. The
inertial model is relevant when (g′h0)

1/2h2
0/(νL)� 1, where L is the gap r0 − ri. The

effective Reynolds number decreases with time, but even for modestly large values of
(g′h0)

1/2h2
0/(νL)� 1 a significant discharge occurs in the inertial domain. Our results

provide insight, and a simple quantitative prediction, of the behaviour of the volume
V(t)/V(0), which is a major concern in practical reservoir-break problems.
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We showed that such fairly complex fluid-dynamical systems are amenable to a
reduction to simple analytical models. We followed the method used by Momen et al.
(2017). First, we use the SW formulation of a gravity current. This model provides
the critical boundary condition at the edge, u=±(g′h)1/2 (the sign depends on the out-
or inward case). Moreover, this model can be solved by a standard finite-difference
method (in insignificant CPU time). Second, we reduce the SW PDE formulation to
a self-similar form that requires the solution of ODEs. This reduction is insightful
concerning the radial profiles and the time decay. However, this solution is not a
self-contained prediction model, because: (i) the self-similar flow becomes valid after
some adjustment time, tm, during which the PDEs require a numerical solution; (ii) the
time dependence of the similarity function includes a virtual-origin shift γ , which
eludes analytical prediction. We estimated γ by fitting to the numerical solution at
some intermediate time.

We do not claim that the SW model is a substitute for the DNS of the problem.
When small-scale details such as mixing, Kelvin–Helmholtz vortices at the interface,
the z-profile of the velocity or deviations from axial symmetry are needed, DNSs (or
experiments) are unavoidable. However, in many cases an estimate is needed for the
global behaviour of the flow in a dam-break case, and for this task the present SW
analysis can be recommended.

A serious limitation of the simple SW models is the geometry, two-dimensional
or axisymmetric. The dam break is assumed to occur all over the width in the 2-D
case, and over the entire curved boundary in the axisymmetric case. This can be
modelled by a one-dimensional horizontal coordinate equation. In practical situations,
the lateral boundary may collapse in some parts only, and the resulting flow cannot
be described by a one-dimensional equation with a critical outflux condition. The
available SW models may be helpful for some estimates of the more complex cases.
First, we can suggest dividing the tank into wedges by radial walls. Drainage occurs
only for the wedge whose wall is damaged, and can be estimated by the present
results for V(t)/V(0), with the corresponding V(0). Second, consider a container
whose basis is a rectangle of side a. If all four boundaries collapse, the fluid will
propagate away from the centre, and the full-cylinder axisymmetric approximation is
expected to be relevant. We notice in this context that there is evidence from gravity
currents that corners become rounded after release (see Simpson (1997) and Zgheib,
Bonometti & Balachandar (2015) figures 6.6 and 6.7). Third, when only a sector
Θ of the cylindrical boundary of an axisymmetric tank collapses, the volume decay
will be significantly smaller than in the standard case. A box-model estimate for this
case is given in appendix B; interestingly, for the half-broken Θ =π case, V(t)/V(0)
behaves like a 2-D solution. The accurate modelling and clarification of these issues
requires a good deal of additional analytical, DNS and experimental research, which
must be left for future work. We hope that the present paper will provide motivation
and guidelines for the additional progress.
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Appendix A. Two-dimensional reservoir
For the convenience of the reader, we present a short summary of the SW 2-D

counterpart case, following Momen et al. (2017). The r coordinate is replaced by the
Cartesian x∈[0, x0], and the height is again h0. The scaling is as in (2.3)–(2.4), with r0
replaced by x0. In this case the break of the x=0 or x=1 boundary is interchangeable
as concerns the drainage process. For definiteness, we consider outflux from x=1, and
a fixed wall at x= 0.

The SW equations are (2.5) without the curvature terms[
ht
ut

]
+

[
u h
1 u

] [
hx
ux

]
=

[
0
0

]
. (A 1)

The system is hyperbolic and the characteristics give

dh± h1/2 du= 0 on
dx
dt
= c± = u± h1/2. (A 2a,b)

The initial conditions are h= 1, u= 0 and the boundary conditions are u(x= 0, t)= 0,
and u= h1/2 at x= 1.

This system admits an analytical solution for t < 1. The integration along the
characteristics provides analytical connections between u and

√
h, which subject to

the simple initial conditions yield explicitly h(x, t) and u(x, t). This is exactly the
dam-break flow in the reservoir, see Ungarish (2009). (After the removal of the gate
at t= 0, a current propagates to x> 1, but this flow is not of interest in the present
case.) In particular, along a c+ characteristic we obtain u = 2(1 − h1/2). Combining
with the critical c− = u− h1/2

= 0 at x= 1, we find the at this position the constant
h= 4/9, u= 2/3 and the outflux q= uh= 8/27.

A rarefaction wave propagates from x=1 into the reservoir with speed −1; the fluid
at x < 1− t is unperturbed. In the activated region 1− t < x < 1, h decreases and u
increases with x. At t= 1 this wave is reflected from the x= 0 wall, and will reach the
x= 1 boundary at t= 1.8. Therefore, until t= 1.8, the outflux condition q= uh= 8/27
remains valid. It is now evident that V(t)/V(0) = 1 − (8/27)t during this stage, and
V(2)/V(0)≈ 0.41.

For larger t a self-similar behaviour appears. The formulation is close to (2.8)–(2.9),
but without the curvature terms, as follows

h(x, t)= (t+ γ )−2H(x), u(x, t)= (t+ γ )−1U(x), (A 3a,b)

where the functions H(x),U(x) are determined by the reduced form of the continuity
and momentum equations

− 2H+ (UH)′ = 0, −U + UU ′ +H′ = 0, (A 4a,b)

subject to the boundary conditions U(0) = 0 and U(1) = [H(1)]1/2. Here the prime
denotes derivative with respect to x.

Momen et al. (2017) derived the analytical solution. Letting w=w(x)=H(x)/H(0),
this can be expressed in the implicit form

x
√
H(0)

=−
1
2
π+ 2

√
w(1−w)+ arctan

√
w/(1−w),

U(w)
√
H(0)

= 2
√

w(1−w).

(A 5a,b)
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The w(x) profile decreases from 1 to 3/4, while U increases from 0 to U(1) =
√
H(1) = 2.53. Both H and U have singular derivatives at x = 1. The outflux

(rate of discharge) is q = [2.53/(t + γ )]3. We match this result at t = 1.8 with
the dam-break/slumping phase known solution q = 8/27, and obtain γ ≈ 2.0. The
finite-difference solution recovers very well these analytical features, and also provides
the u(x, t) and h(x, t) behaviour for t > 1 which is not covered by the simple
dam-break results.

The 2-D flow is expected to be a good approximation to the inward draining case
with small 1− ri, where the curvature terms are small (subject to the interpretation that
x is in the direction −r, and the length of the reservoir x0= r0− ri (dimensional)). This
is illustrated in figure 7 for ri = 0.9. Also, in table 1, we report the interface height
ratio H(ri)/H(1) = 0.742 for ri = 0.9, which is close to the 2-D value 3/4. In all
other cases, and in particular for the outflow from a full cylinder, the presence of the
curvature term produces significant differences from the 2-D flow.

Appendix B. Partial-break box model

We consider the outward flow case. The reservoir is a full cylinder, but dam break
occurs for only a part of the boundary represented by the sector Θ . The objective is
to estimate V(t)/V(0). We use the scaling (2.3)–(2.4).

The ‘box model’ is an accepted simplified tool of analysis of gravity currents (see
Ungarish 2009). The major assumption is that the interface between the dense and
ambient fluid is a simple geometric shape, typically a simple box. The motion of
this box is governed by volume continuity and boundary conditions derived from
momentum balances, or given by some known jump conditions. This method lacks
rigor, and its major justification is the evidence that the parameter dependency of the
results is usually consistent with more rigorous results and experimental data.

In the spirit of that method, we argue as follows. The fluid in the reservoir can be
represented, approximately, by a cylinder box of height h(t). In the realistic system
the dam break will cause inclination of the interface toward the exit. Supposing that
the gap is not very wide (Θ 6π say), the average slope over the area is not expected
to be large, and hence this approximation makes sense. Consequently, the volume of
the fluid in the box, scaled with h0r2

0 is given by V(t)=πh(t), and initially h(0)= 1.
Next, we claim that the outflux is governed by the local behaviour of the

characteristics, and hence the u = h1/2 condition, with the initial hI = 4/9, can
be applied over the broken boundary r= 1, 0<θ <Θ . Therefore the rate of drainage
of volume is given by

qΘ = uhΘ =

{
(4/9)3/2Θ (t 6 tI)

[h(t)]3/2Θ (t> tI),
(B 1)

where tI is the time at which h(t) attains hI = 4/9.
Finally, we apply the volume conservation π(dh/dt) = −qΘ , and integrate. After

some algebra we obtain

h(t)=
V(t)
V(0)

=


1−

Θ

π

8
27

t (t 6 tI)

4
9

[
1+

1
3
Θ

π
(t− tI)

]−2

(t> tI)

(B 2)
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and the relationship h(tI)= hI = 4/9 yields

tI =
15
8
Θ

π
. (B 3)

The qualitative behaviour is a quick initial drainage, followed by a ∼t−2 decay. The
agreement with the rigorous SW results is encouraging. Moreover, this simple estimate
indicates the effect of the part break via the parameter Θ/π. The rate of drainage in
both stages decreases when Θ/π decreases. This could be expected.

It is interesting to consider the half-broken Θ/π = 1 case. Substitution into the
previous solution gives: tI = 1.9 and

V(t)
V(0)

= 1−
8
27

t (t 6 1.9). (B 4)

This is almost identical with the 2-D exact result, see appendix A. In both cases,
V(2)/V(0)≈ 0.41. The subsequent decay of volume is also very similar.
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