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Abstract

In this note, we provide a simple example of regulation risk. The idea is that, in certain situations, the
very prudential rules (or, rather, some of them) imposed by the regulator in the framework of the
Basel II/IIT Accords or Solvency II directive are themselves the source of a systemic risk. The instance
of regulation risk that we bring to light in this work can be summarised as follows: wrongly
assuming that prices evolve in a continuous fashion when they may in fact display large negative
jumps, and trying to minimise Value at Risk (VaR) under a constraint of minimal volume of activity
leads in effect to behaviours that will maximise VaR. Although much stylised, our analysis highlights
some pitfalls of model-based regulation.
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1. Introduction

Financial regulations have fundamentally changed since the Basel IT Accords. Among other evolutions,
Basel II and III explicitly impose that computations of capital requirements be model-based. This
paradigm shift in risk management has been the source of strong debates among both practitioners
and academics, who question whether such model-based regulations are indeed more efficient.

A common feeling in the industry is that regulations will sometimes give a false impression of security:
risk managers tend to think that a financial company that would fulfil all the criteria of, say, the Basel
III Accords on capital adequacy, is not necessarily on the safe side. This is so mainly because many
risks, and most significantly systemic or system-wide risks, are not properly modelled, and also
because it is easy to manipulate to some extent various risk measures, such as Value at Risk (VaR).

In parallel, a fast growing body of academic research provides various arguments explaining why current
regulations are not well fitted to address risk management in an adequate way, and may even, in certain
cases, worsen the situation. This negative unintended effect may be described by the phrase regulation
risk, which refers to the fact that prudential rules are sometimes themselves a source of systemic risk.

In Lévy Véhel & Walter (2014), it was shown that a wrong model of price dynamics coupled to the
regulatory VaR constraint tends to systematically increase Tail Conditional Expectation. In the
present work, using elementary arguments, we show how a combination of model risk and
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regulation risk leads to an effect which is exactly the opposite of what the regulator tries to enforce.
More precisely, we explain how wrongly assuming a Gaussian dynamics (or, more generally, a light
left-tailed one) when the “true” one is pure jump with heavy left tails, and trying to minimise VaR
and under a constraint of minimal volume of activity results in effect in movements that will
maximise VaR.

Although much more elementary, our approach is inspired by several articles by Danielsson et al.: in
Danielsson et al. (2001), the authors elaborate on the idea that “regulations fail to consider the fact
that risk is endogenous. Value-at-Risk can destabilise an economy and induce crashes when they
would not otherwise occur”. A number of qualitative arguments are then put forward to support this
claim, and in particular the fact that VaR is a misleading risk measure when the returns are not
Gaussian.

In Danelsson & Zigrand (2001) and Danelsson et al. (2001), a general equilibrium model is
proposed that provides a possible explanation of why VaR-based regulation raises such difficulties.
In essence, this model shows that VaR constraints tend to increase the degree of risk-aversion of all
actors. As a consequence, liquidity in the market is lowered when prices fall. As a noteworthy output
of these studies, numerical simulations show that reactions to shocks are both more accentuated and
extended under VaR regulation.

In the present work, we highlight a plausible mechanism through which this specific last effect takes
place, resulting in an increase of endogenous risk due to VaR constraint. In a nutshell, the idea is
simply that, by treating jumps in the evolution of prices as exceptional events and essentially ignoring
them in model-based VaR computations, one misses an essential dimension of risk, and acts in a way
that will in effect favour sudden large movements in the markets and ultimately increase VaR. Our
simple setting allows us to quantify precisely this effect. Similarly to Danelsson et al. (2001), an
important assumption in our approach is that actors on the market share the common practice of
managing risk in a variance/covariance framework. However, contrarily to Danelsson ez al. (2001),
our mechanism predicts that VaR constraints result in an increased intensity of jumps and a decrease
in volatility — a fact confirmed experimentally on certain data sets (El Mekeddem & Lévy Véhel,
2013) — where the model in Danelsson et al. (2001) results in increases on both aspects. This
discrepancy is may be only apparent: the model in Danelsson ez al. (2001) is conditionally Gaussian,
and thus a larger risk mechanically translates into a larger volatility, as this is the only variable
determining risk. In our framework, however, risk is a function of both volatility and jump intensity,
and a greater risk may be obtained with a smaller volatility, provided the intensity of jumps
undergoes a sufficient increase. By modelling in a more realistic way prices movements, we are able
to distinguish the effects of VaR regulation on volatility from those on jump intensity, and give a
mathematical translation to the common feeling of practitioners that regulations give a false
impression of security characterised by low volatility but increased risk of sudden large movements.

We mention in passing that our results are an instance of the fact mentioned in Danielsson et al.
(2013) that, contrarily to intuition, a situation where every institution tries to act in a prudent way
does not automatically ensure safety of the whole financial system.

Numerous other recent works point to some form of regulation risk related to Basel III/Solvency II.
Let us briefly mention (Al-Darwish et al., 2011), which points to unintended consequences for cost of
capital, funding patterns, interconnectedness and risk migration (Aggarwal et al., 2015), where
model risk is emphasised in view of the fact that Solvency Capital Requirement calculations under
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Solvency II, requiring the quantification of extreme loss percentiles, are subject to a very high degree
of model uncertainty and Bank of England which examines procyclical behaviours entailed by the
regulations and provides some interesting stylised examples.

The remainder of this work is organised as follows: in section 2, we present our model for price
formation and we formulate our program as an optimisation problem. Section 3 provides the
solution to this problem in the case where individual trades are independent, both in the Gaussian
(section 3.1) and stable (section 3.2) frameworks. These computations allow us to explain, in section
4, how actions taken under Gaussian beliefs when the market is in fact governed by stable
non-Gaussian movements leads to maximising VaR instead of minimising it. A case where trades are
fully correlated instead of being independent is briefly studied in section 5. Section 7 draws some
conclusions and proposes perspectives for further studies. Finally, recalls on some basic notions on
stable random variables (RV) are gathered in an Appendix.

2. General framework

We formalise the situation as follows: our starting point is a very simple model of price formation
which is a particular case of the one in Bayraktar et al. (2006). We stress the fact that the con-
tribution of this work is not about a model of price formation, and that this particular model was
chosen for convenience. Other models could be considered, which would probably require more
convoluted mathematical tools, and thus obscure the main message of this article.

We consider 7,4 actors. Over a given time period, each actor i=1, ..., 14 places trades on the market
at discrete times. These trades are modelled as RV and are denoted X ,i=1, ... i . A positive
(respectively negative) X/( " means that the ac;or 1s buymg (resp. selling). The holding of actor 7 at the
end of the time period is then equal to Z X and the total activity in the perlod or “market
imbalance” at the end of the period, is subsumed by the quantity > /4, E/- X . In the model of
Bayraktar et al. (2006), market imbalance is the only component driving the dynamlcs of prices, and
it is assumed that all the orders are received by a single market maker who clears the trades and sets
prices as to reflect the incoming order flows. The following pricing rule is then considered for the
logarithmic price at the end of the period:

(I)
S&WZZX (1)

i=1j=1

As explained in Bayraktar et al. (2006), this is the simplest mechanism by which prices reflect the
extent of market imbalance, with incoming buy orders increasing the price and sell orders decreasing
it. In the sequel, the value of Sy will be of no importance, and thus we set So=0.

We wish to examine the effect of a VaR constraint under various assumptions on the RV X;i). Recall
that VaR at confidence level p over one period is defined by

P(S<—VaR)=1-p (2)

The confidence level p is fixed once and for all in the sequel, but its particular value is of no relevance
for us, as long as it is large enough.

The regulator imposes that financial firms secure an amount of capital that is an increasing function
of VaR, and so these firms will try to act in a way that minimises VaR. Of course, an absolute
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minimum on VaR may be reached by taking no risks at all, that is placing no trades. To avoid such a
trivial but unrealistic behaviour, we must take into account the fact that firms must maintain an
overall level of activity. A simple way to do so is to impose that the overall mean volume of trades
must remain above a certain amount over the considered period'. Our optimisation program then
reads: minimise VaR while ensuring a minimal mean volume of activity. A first but reasonable
approximation of the overall volume of activity during the considered period is

I
1
V=35 3
i=1j=1
We need to take into account a final fact: the number of trades that may possibly be placed by all
actors during the considered period cannot be arbitrarily large. We will then require that n <#* as a
further constraint, where #* is a fixed (large) number that represents a physical limit on the total
number of trades. In practice, most portfolio managers typically try to limit the number of their
trades in order to reduce transactions costs, and for these managers, a bound like n(T') <n} will hold?.
In this situation, 7#* =n4 n%, but we will only need a global bound.

To sum up, our program reads:

Minimise VaR defined by (2) under the volume constraint E(V)>K and the number of trades
constraint n <n*, where S is given by (1), V is given by (3) and K, n* are positive constants.

In the next sections, we derive the solution to this problem under certain assumptions on the RV X;i) .
We will assume in a first version (section 3) that all actors have, at all times, the same statistical
behaviour, and that all trades are independent. In other words, all the XI@ are supposed to be inde-
pendent and identically distributed (iid). The assumption of identical distribution is not
essential, and serves mainly to avoid cumbersome notations. The independence hypothesis is useful so
that computations remain at an elementary level. It is well known that it becomes specially unrealistic in
period of crises. To account for this fact, we study briefly, in a second version (section ), the case of
“total correlation”, that is, when all investors are fully synchronised so that they behave as a single
actor. While a general analysis could be performed incorporating a more reasonable degree of
dependence, it would introduce some mathematical complications and would not add much insight.

The core of our work is to contrast two situations for the law of the X/@: in the first one, we assume
that they are normally distributed (section 3.1). Not only is this the simplest situation, but also, and
more importantly, as the log price then also follows a Gaussian distribution, it corresponds to the
general belief among actors and regulators. This is, for instance, witnessed by the widespread use of
tools such as RiskMetricsTM, or the very fact that volatility (understood as the instantaneous
variance) is widely considered a valid global measure of risk. This aspect is discussed, for example, in
Danelsson & Zigrand (2001), Danelsson ez al. (2001), Danielsson ezt al. (2001), Le Courtois &
Walter (2014), Lévy Véhel & Walter (2014).

In the second situation (section 3.2), we assume that individual trades follow a stable RV
with jump intensity a € (1,2) (see the Appendix for recalls on stable RV). Stable RV and motions
were introduced in financial modelling in Mandelbrot (1963) and Fama (1965), and have

! This assumption is not unlike the full investment constraint of Markowitz portfolio theory.
2 One may argue that such a limit does not exist for high frequency trading. A specific analysis may be
required in this case.
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been studied since in many connections, including pricing (Popovalina & Ritchken, 1998;
Carr & Wu, 2002; Miyahara & Moriwaki, 2009) and VaR computation (Khindanova et al., 2001;
Mittnik et al., 2002).

We would like to emphasise here that the Gaussian/stable assumptions are mainly made
for mathematical simplicity: they allow the logarithmic price to follow the same law as individual
trades. However, the main conclusions below would remain qualitatively the same if, instead of a
dichotomy characterised by the couple (Gaussian/stable) distributions, one would contrast
two laws such that the second one displays a significantly fatter left tail than the first one. For
instance, one could consider a couple (Poisson jumps + Gaussian component/CGMY RV)
(Carr et al., 2002). This would enable to incorporate moderate jumps in the first situation
and to deal with RV with moments of all orders in the second one (note that the finite moment
log stable process of Carr & Wu (2002), that fits in our present analysis, already has moments
of all orders).

3. Computations in the independent case

3.1. Gaussian framework

We assume in this section that X/@=N(0,a), that is, individual trades follow a centred
normal law with s.d. equal to 6>0. We will denote the logarithmic price by Sg to emphasise
the fact that we are in the Gaussian case. By assumption, Sg follows an N(0,+/7n6) law, where
n= 304 nr(i).

The expectation V¥ of the “Gaussian volume” V¢ reads

¢ =EVe) =n0\/% (4)

As is well known, VaR in the Gaussian case is a constant multiple of standard deviation:
VaRg¢ = Cy0+/n, with C,>0. Our optimisation program thus read:

minimize 6+/7
subject tone > K (5)

and n<n*

The concrete meaning of (5) is as follows: each actor 7 places trades and he controls the number n(T’)
of these trades as well as their mean value, which is a\é. He then tries to tune these two variables in

order to minimise VaR.

Note that, without the constraint on the maximum number of trades, the program would amount to
minimising \/ia Since 14 is not a variable that actors can influence, this would be the same as
maximising #7. One could then reach individual zero risk by increasing nr without limit.

As is easily seen, the optimum is realised when both constraints bind. This can be proved, for
instance, by taking the logarithms of (5), which turns the problem into a linear one.

Minimising VaR while maintaining a fixed minimum mean overall activity is thus achieved by setting

n=n"
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and
constant
=—

that is, the smallest possible 6. This corresponds to the intuitively obvious fact that the smallest risk
will be reached by placing “many small” orders rather than a “few large” ones.

To sum up, under a Gaussian assumption, minimising VaR does correspond to minimising volatility:
we recover the fact that volatility is indeed implicitly identified with risk by the regulator. We
emphasise that, since Gaussianity is common belief, both the regulator and financial actors will
typically tend to act in a way that will match the results above.

3.2. Stable framework

We assume now that individuals trades are iid and follow an S,(c,3,0) law, that is, a stable law with
jump intensity a€(1,2), scale parameter ¢>0, skewness parameter f€[-1,1] and location
parameter u=0 (see the Appendix for recalls on stable RV).

0
The logarithmic price Sg= Y4, Z?L X;l) is now a stable RV S, (n%a, B, O). Using the last formula
in Samorodnitsky & Taqqu (1994: 18), one computes:

VIt = (V) =n[E(|x§1>\)

2 1 : 1
= %r(l - a) (1 + /% tan? ?) cos (E arctan(ﬂ tan?))

. 2no

==~ H(a,f) (6)

To compute VaR, we assume that the confidence level p is large enough and use Formula 1.2.8 in
Samorodnitsky & Taqqu (1994: 16):

lim 27P(Ss<~2) = C, ! 5 b e (7)

where 1—qa
Ca= I['(2—a)cos (za/2)

Note that, in practice, even for a very large confidence level, we may be still far from the regime
where the asymptotic expression (7) holds. Thus, the following computations should be taken as an
indication of a general behaviour rather than as strict equalities.

By definition of VaR, one has

(VaRs)*(1—p) ~ C, ! gﬁmf“
or
_ (nCa(1-p)\F
vaks = o "1 )
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6000 5000

Figure 1. Isochore Value at Risk as a function of »n ranging in [500,10,000] and « ranging in
[1.1,1.9] for p=0, p=0.95.

The minimum mean overall volume of activity constraint reads

on> SV (8)

~ H(a,p)

where Cy is a positive constant.

In contrast to the Gaussian situation, we have now four variables in our program: #n, o, a
and . We will assume here for simplicity that 8 is fixed exogenously rather than by the behaviours
of investors, and we will consider various values of interest for this parameter. The general
case, which will be presented elsewhere, leads to qualitatively similar conclusions. An explanation
of how the decisions of actors influence the values of #, ¢ and @, and in particular how
they “choose” the scale parameter and jump intensity, is provided in Samorodnitsky &
Taqqu (1994: 12).

It is not hard to verify that, as in the Gaussian case, the constraints are binding. Minimising VaR at
minimal volume then amounts to minimising the following quantity:

e (35)

In Figures 1-3, we display isochore VaR — that is (9) — as function of 7z and a for =0, -0.3 to 1: the
first choice for f# corresponds to the symmetric case, while the two other ones are consistent with the

)

negative skewness typically encountered on markets. Putting = -1 yields the finite moment log
stable process (Carr & Wu, 2002). As one can see, VaR is a decreasing function of # (which is
obvious) and also a decreasing function of @ when a> 1.1 in the case =0, or when « is sufficiently
large (about 1.3) when f is negative. More precisely, one can prove that, provided # is sufficiently
large, VaR is decreasing as a function of a>1.1. When 7 is not large enough, VaR increases for
1<a<a* and then decreases, where a* decreases as 7 tends to infinity and increases as f increases.
In practice, 7 is very large, so we will assume in the sequel that we are in a situation where VaR is
indeed decreasing with a.
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Figure 2. Isochore Value at Risk as a function of # ranging in [500,10,000] and « ranging in
[1.1,1.9] for = -0.3, p=0.95.
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Figure 3. Isochore Value at Risk as a function of # ranging in [500,10,000] and @ ranging in
[1.1,1.9] for = -1, p=0.95.

Minimising VaR thus requires to choose the largest possible # and a. As a consequence,
one needs to set #=n* as in the Gaussian case. Then, one deduces from Figures 4 to 6,
which display isochore ¢ — that is (8) but with an equal sign rather than an inequality — that
this in turn means choosing an intermediate value for the volatility o: indeed, as is clear
from the version of (8) with an equal sign, ¢ is a decreasing function of # and an increasing
function of a.

To sum up, minimising VaR wunder a constraint of minimum volume when the distribution
of trades are stable requires doing as many trades as possible with largest possible a and intermediate
o: The optimal behaviour consists in maximising the number of trades, as in the Gaussian
case, but, this time, instead of minimising the volatility, one minimises the intensity of jumps.
Volatility is then fixed by the isochore constraint (i.e. the minimal volume of activity one). Note that
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Figure 4. Isochore ¢ as a function of # ranging in [500,10,000] and a ranging in [1.1,1.9] for
f=0, p=0.95.

Figure 5. Isochore ¢ as a function of # ranging in [500,10,000] and a ranging in [1.1,1.9] for
f=-0.3, p=0.95.

this strategy makes intuitive sense: to control risk under a stable market, it is more important to keep
the intensity of jumps small, at the expense of letting price movements “breathe” through a medium
volatility.

4. Regulation risk: isochore minimisation of VaR with stable log-prices under
Gaussian belief

Assume now that actors wrongly believe in a Gaussian market, while the actual dynamics is stable
non-Gaussian. As computed above, they will tend to maximise their number of trades, keeping
volatility as small as possible. In doing so, they will also select mechanically the smallest

241

https://doi.org/10.1017/5174849951800009X Published online by Cambridge University Press


https://doi.org/10.1017/S174849951800009X

J. Lévy Véhel

Figure 6. Isochore ¢ as a function of n ranging in [500,10,000] and a ranging in [1.1,1.9] for
p= -1, p=0.95.

reachable a: in the end, this will result in the worst possible VaR for this particular number of trades.
Indeed, here is the detail of what will happen in the situation we consider:

A. Gaussian belief
1. Individual trades or log-price movements are believed to be Gaussian.

2. Actors aim at minimising their VaR in a way that preserves a minimum volume
of activity. As we have seen, since all constraints are binding, this amounts to an isochore
constraint.

3. In that view, they will tend to place “many” trades (i.e. n will be large), and keep ¢ small
(using the notations above), as shown in section 3.1.

B. Stable movements

1. Actual movements are stable non-Gaussian. Although this assumption is certainly
wrong, we recall that qualitatively similar results hold as soon as the distribution of movements
has sufficiently fat left tails, a fact which is widely recognised both in the literature and by
practitioners.

2. Because of Gaussian belief, point A.3 above says that investors tend to trade with a small 6.

3. As is indicated by Figure 7, the curve a=a(s) at constant minimal volume (this constraint is
binding) is increasing. As a consequence, and because of the isochore constraint, a small ¢
translates into trades being performed with a small a.

C. Resulting regulation risk
1. Point A.3 tells us that the largest possible # will be chosen.

2. Since investors try to place many trades with a small ¢, Point B.3 imposes that also a small a
will govern transactions.

3. For n big enough, VaR is a decreasing function of « (see Figures 1-3).
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Figure 7. a as a function of ¢ as constant volume.

4. As a result, with n=n*, and smallest ¢ chosen by the investor and consequently smallest a
imposed by the isochore constraint, we see from Figures 1-3 that, at the end, the largest
possible VaR for this number of trades will occur.

It is perhaps worthwhile to comment a little bit on what our results reveal about the behaviour of investors
in practice. As we have mentioned, under the common belief in Gaussian dynamics,
actors try to place “many small trades”. More precisely, they decide that the typical absolute size of their
trades is of the order of 6, where ¢ is a “small” positive number. Now, if the Gaussian assumption was
correct, fluctuations around this value would also be of the order of 6. However, under stable dynamics,
while the average value of the trades will still be of the order of & — because this is the decision taken by the
actors (as an example, for a =1.5, f= -0.5, the mean value of a trade is 1.90), the fluctuations around it
will be extremely large: because of the VaR and minimum volume of activity constraints, investors, who
try to put trades with given “small” average absolute value, will be forced to depart very significantly from
this value much more often than if, as they believe, the markets were Gaussian. In other words, as soon as
the market may jump, the Gaussian beliefs of actors coupled with the minimum volume of activity and
VaR constraints will lead to a market with large intensity of jumps: actors trying to fulfil their constraints
will try to place trades with small o, but they will “often” have to put orders with wildly varying
magnitude. This is the mechanism through which « is decreased: it is due to positive actions of investors
even though they have no intention to fix it in this way. Thus, while o is governed by the mean value of
trades, a is fixed by the way in which the magnitude of these trades varies in time. Alternatively, it may be
deduced from the distribution of the iid trades of the various actors at a given time.

5. Case of full correlation

In periods of crises, actors on the markets tend to trade in a correlated way. We briefly examine in
this section how our results are modified if, instead of assuming independence of individual
trades, we hypothesise to the contrary that they are “fully correlated” in the sense that all
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actors, at all times, behave exactly in the same way. In other words, during the considered period,
each of the 7,4 actors places the same trade at each time: X]@ = X;i,) foralli, /=1, ... ,ns. We shall
denote their common value by X;. Admittedly, this is a rather extreme case of correlation, but it
allows us to understand in which direction the results above get modified in situations of crises.
(1) transforms into

nr
S=SO+nAZXj (10)
j=1
where nt = n(Tl), and (3) becomes
nr
V=na) |X| (11)

j=1

Though successive trades are probably also correlated during crises, we ignore this fact below.

In the Gaussian case, the log-price now follows an N(0, \/#7140) law. As a consequence, VaR is
proportional to \/zrns0. However, the expected volume is still 7o, /2, where, in keeping with the
notations of the independent case, n =#n,4 1. [Isochore minimisation of VaR amounts to minimisation
of \/in_T: here again, the optimal solution is to maximise the number of trades, that is, to set nr =, as
in section 3.1. The minimum volume constraint then yields as before that actors choose the smallest
possible 6.

Let us turn to the case where individual trades follow a stable law. The log-price is then distributed as
an S, (naTnAa, B, 0) RV. The volume still reads

VS = zndH(aa/})
T
while
_ (mC(1=p)\*
vaks=mo( "5 1)

Constraints are still binding. At constant minimum volume, minimising VaRg then amounts to
minimising the quantity

e (S65)

Not surprisingly, this is the same as (9) except that 7 is replaced by 7. Comparing with the Gaussian
case, we see that the dichotomy in the particular situation of correlation considered here is the same
as in the independent framework of section 3 with the only difference that # has to be substituted
everywhere with 77. Thus the analysis of section 4 holds without modification: correlations do not
qualitatively alter our conclusions.

6. Expected Shortfall (ES) instead of VaR as a measure of risk

VaR is simple to understand, and it reflects adequately certain aspects of risk. It does, however, present
some well-known shortcomings (Embrechts et al., 1999; Danielsson et al., 2001; International
Actuarial Association (IAA), 2010). First, it is not a coherent measure of risk, in the sense that it is in
particular not sub-additive: in general, the VaR of X7+ Y7 is not necessarily smaller than or equal to
the sums of the VaRs of X+ and of Yr. This is counter-intuitive, for instance, because it does not
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account for the reduction in risk typically entailed by diversification. In this respect, we note, however,
that, in our frame where X7t follows an a-stable distribution, this problem does not arise: as shown in
Sy (2006), VaR is a coherent risk measure for sums of independent stable RV when a> 1.

Another significant limitation of VaR is that it does not give any indication of what happens beyond
VaR, although this is crucial information. This is why various other risk measures are used to
complement it. We consider briefly in this section if and how our analysis is modified if we consider
the risk measure called ES instead of VaR. ES was recommended by the IAA (2010) report and has
recently been adopted by the Basel regulation (Basel Committee on Banking Supervision, 2010).
ES at confidence level 1-p and horizon T is defined as:

ES= [E(XT |XT < —VaR)

In words, ES gives the mean loss beyond VaR. It is a coherent risk measure.

In the stable case, and assuming a> 1, it can be shown (Zhu & Li, 2010; Le Courtois & Walter,
2014) that, when p tends to 1

ES ~ — 2 VaR (12)

a—1

Armed with this formula, the interested reader will easily convince himself that results qualitatively
similar to those of section 4 still hold for ES. In other words, measuring risk with ES rather than with
VaR does not make the situation any better: even though individual actors try to minimise ES, an
erroneous Gaussian assumption on price movements will lead them to take actions that in fact
maximise it if those movements are stable.

7. Conclusions and perspectives

In the previous sections we arrived at the result that minimisation of VaR under a constraint of
minimum volume of activity and Gaussian belief, when actual movements are stable, results in
maximising VaR. Let us stress again that the Gaussian/stable assumptions are not strictly required
for the mechanism sketched above to hold. A similar scenario occurs as soon as trades/log-prices
have significantly fatter left tails than is commonly believed. Moreover, the more robust ES measure
of risk does not lead to qualitatively different conclusions. Since (a) the VaR constraint is thought of
essentially in a Gaussian universe in the current regulations and (b) it is commonly acknowledged
that actual price movements display jumps and follow skewed distributions, it is likely that today’s
markets are indeed in a configuration that fits our analysis. Indeed, fundamentally, our contribution
is summarised as follows:

e regulations are typically conceived under an (often hidden) postulate that market dynamics obey a
geometric Brownian motion (or, more generally, a continuous diffusion with “moderate ” - e.g.
Poisson — jumps);

e the actual dynamics contains jumps of all sizes and are fat left-tailed;

o this discrepancy between actual and modelled dynamics, plus the fact that regulations are model-
based, propagates model risk to a regulation risk.

In the situation analysed here, the propagation is mediated by the constraint on VaR. Other elements
in the prudential rules may also give rise to regulation risk, such as, for instance, the particular value
of the confidence level or the length of the holding period. Undertaking studies in this direction may
be worthwhile.
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From a broader perspective, we would like to stress that not only regulations, but also many actions
taken by financial authorities are designed in a conceptual framework where volatility is all there is
to risk. As we show in this work, incorporating at least another dimension related to jumps is
essential for proper control. In this respect, it would certainly be interesting to analyse quantitatively
what is the impact on market stability of the various measures taken by central banks in recent years,
such as Zero Interest Rates Policies, Large Scale Assets Purchases, Forward Guidance or Long Term
Refinancing Operations, when one takes into account the jump dimension of risk. Such measures led
to typically very low volatility on the markets. But, as C. Borio of Bank for International
Settlements (BIS) recently stated, “history teaches us that low volatility and risk premia are not the
signs of smaller risk, but rather that investors are ready to take large risks. The less investors fear
risk, the more dangerous the situation is” (2014). In terms of our analysis above, recent monetary
policies seem to lower o at the expense of decreasing also a. This view is supported by a number of
studies in recent years by the BIS. For instance, BIS Monetary and Economic Department (2014)
argues that the accommodative monetary policy pushed volatility to low levels in various ways:
directly by reducing the amplitude of interest rate movements and by removing to a large
extent uncertainty about interest rate changes; and indirectly because an environment of low yields
on high-quality benchmark bonds favours risk-taking. Investors then tend to have a lower
perception of risk, and thus be inclined to take riskier positions. Again, in our framework, this
corresponds to a situation with potentially smaller scale parameter (or volatility) but larger
intensity of jumps. It would certainly be worthwhile to pursue further work on a quantitative
modelling of the mechanisms just mentioned that tend to diminish both ¢ and a using the apparatus
set in this article.
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Appendix: Stable RV

The use of stable RV allows us to take into account jumps in movements of prices. Indeed, almost
surely, a stable motion (i.e. a stochastic process with iid increments following a stable law) have
everywhere dense jumps. Stable motions, and more generally, pure jumps processes with infinite
activity (infinite number of jumps), offer an alternative way to model activity on markets as
compared to continuous diffusions such as Brownian motion. Indeed, in practice, prices do evolve in
a discrete, discontinuous fashion, with most jumps being “small ones”. This is exactly how pure
jumps processes considered in financial modelling move. These are thus fitted to describe the
dynamics both in “calm” as well as in “agitated” periods.

Recall that a RV follows a stable law if its characteristic function ¢ reads(sign(#) denotes the sign of )
(Sato 1999):

exp{ipu — o®|u|* [1—ifsign(u)tan ()] } ifa#1 3
Y= exp{ipu — olu|[1+ipsign(u) 2In(u)]} fa=1 (1)

Choosing a=2 above yields the characteristic function of a Gaussian RV, a case we exclude from
now on. As the definition of ¢ shows, stable laws are characterised by four parameters:

1. The number a ranges between 0 and 2, and it quantifies the distribution of the size of jumps:
within a given period of time, and for any integer j, the mean number of jumps of a stable motion,
whose increments follow a stable law with parameter a, that are of size of order 2/ is proportional
to 27, In particular, the mean number of jumps larger than any non-zero threshold is always
finite: “most” jumps are “small” as announced above. Besides, when «a is large (close to 2), the
mean number of jumps decreases fast when their size increases, while, when a is close to 0, it
decreases slowly: a large a corresponds to a small jump intensity, and vice-versa.

2. The positive real o is a scale parameter: multiplying the RV by a > 0 transforms ¢ into ac (in the
Gaussian case, 20> is the variance). One may thus identify ¢ as governing volatility.

3. The real number y is a location parameter: adding a to the RV transforms u into u + a. Also, when
a> 1, u coincides with the expectation of the RV.

4. The real number B, which ranges in [-1,1], is a skewness parameter. A distribution that is
symmetric around u has =0.

Finally, we recall that the sum of 7 indep1endent stable RV X; with parameters (a, o, §, 0) is again a
stable RV with parameters (a, (3.7~ 6%)", 3, 0).

Our main focus in this work is on the parameters a and o, which we recall account, respectively, for

the jump intensity and the volatility. We also briefly analyse the influence of 8, which controls the
skewness found in empirical returns.
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