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We present explicit constructions of universal homogeneous objects in categories of domains

with stable embedding–projection pairs as arrows. These results make use of a

representation of such domains through graph-like structures and apply a generalization of

Rado’s result on the existence of the universal homogeneous countable graph. In particular,

we build universal homogeneous objects in the categories of coherence spaces and

qualitative domains, introduced by Girard (Girard 1987; Girard 1986), and two categories

of hypercoherences recently studied by Ehrhard (Ehrhard 1993). Our constructions rely on

basic numerical notions. We also show that a suitable random construction of Rado’s graph

and its generalizations produces with probability 1 the universal homogeneous structures

presented here.

1. Introduction

A leading theme in the mathematical study of the semantics of programming languages

is the search for smooth techniques for solving recursive domain equations. The basic

method stems from the work of Scott on models of the λ-calculus (Scott 1972), which was

further developed in Wand (1979) and Smyth and Plotkin (1982). Basically, it consists

of forming, for a (cartesian closed) category of domains C, a new category Ce having

the same objects as C and whose arrows witness a relation of approximation between the

objects of C¶. These are the embeddings , that is, arrows e : X → Y of C that appear in

pairs

¶ The issue of what properties a reasonable category of domains should possess, though an important one, will

not be pursued here. In the rest of this paper we shall use categorical concepts only relative to categories

whose arrows are basically set-theoretic functions.
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and satisfy the equations p ◦ e = 1X , e ◦ p vY Y 1Y where vY Y is a suitable ordering on

the exponential object Y Y . In these formulas, p is the projection and it turns out to be

uniquely determined by e. The passage from C to Ce is motivated by the need to turn the

function space constructor into a functor that is covariant in both arguments. This allows

us to define solutions of recursive domain equations as fixed points of functors over Ce.
Given an expression T (X) involving domain constructors, one method for solving an

equation of the form

X ∼= T (X), (1)

builds the solution as lim−→(Tn(1), T n(!)), where 1 is the initial† object of Ce with the

unique arrow ! : 1 → T (1). This makes use of the observation that T can be seen as an

endofunctor on Ce preserving colimits of chains of embeddings of the form

X0
e0→ X1

e1→ · · · en−1→ Xn

en→ Xn+1

en+1→ · · · (2)

and that (Tn(1), T n(!)) is such a chain.

A related method, and one we shall be interested in throughout this paper, can be used

whenever the category Ce contains a universal domain , which is an object U such that

for every object X of C there is an embedding e : X → U (with associated projection

p : U → X). Then X can be represented as (the range of) a mapping πX =def e◦p : U → U

such that πX = πX ◦πX vUU 1U and im[πX] ∼= X, which is also called a projection (Amadio

et al. 1986). Projections π : U → U such that im[π] is an object of C are called finitary ,

and form a cpo Fp[U] with the remarkable property that the approximation relation

on domains is represented faithfully by the partial order relation on the representing

projections. Another essential property of projections is that each of the standard domain

constructors used in denotational semantics, seen as a functor T : Ce → Ce, is representable

as a continuous functional

RT : Fp[U]→ Fp[U]

in such a way that im[RT (πX)] ∼= T (im[πX]). Furthermore, for a chain of embeddings of

the form (2), we have lim−→(Xn, en) ∼= im[
⊔
n∈N πXn ], where the least upper bound is taken

in the cpo Fp[U]. In particular, the domain im[fix(RT )] solves equation (1).

The first results on universal domains consisted of proving that some familiar structure

had the desired property of universality within some category of interest. In his pioneering

work, Scott (Scott 1976) observed that the powerset of natural numbers Pω is a universal

domain in the category of ω-algebraic lattices with continuous closures as arrows, and

† Note that 1 is indeed the terminal object in the original category C.
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at the same time a universal continuous lattice (Scott 1972) if continuous retractions are

taken as arrows. Plotkin (Plotkin 1978a) generalized Scott’s work to cpo’s by replacing Pω
with Tω , the direct product of denumerably many copies of the flat cpo of truth values.

Further, Scott (Scott 1982) used properties of boolean algebras to prove the existence of

a universal Scott domain (that is, a consistently complete, ω-algebraic cpo).

A different approach was initiated by Gunter (Gunter 1987), who used model-theoretic

methods in the construction of domains, forcing them to have the universality property (in

the category of profinite domains). His work has been pursued in Gunter and Jung (1990),

and especially in Droste and Göbel (1993) which presented a technique for building

universal homogeneous domains through the amalgamation property in a wide range of

categories of domains, including categories in which arrows are stable embeddings (see

also Droste (1991), Droste (1992) and Droste and Göbel (1991)).

In this paper we show that, for important categories of domains with stable embeddings

as arrows, universal homogeneous objects exist as a consequence of general results in the

theory of graphs. In particular, we start from the observation that Rado’s universal

homogeneous countable graph (Rado 1967) can be used directly to build the universal

homogeneous countable coherence space (Girard 1987) (that is, a universal coherent

atomic dI-domain). We then extend Rado’s construction to hypercoherences, introduced in

Ehrhard (1993) to build a model of classical linear logic (Girard 1987) from an extensional

notion of sequential function. The same construction is carried out for hypercoherences

for which consistency is downward closed. These are essentially the qualitative domains of

Girard (1986) (that is, the atomic dI-domains), so we obtain a direct proof of the existence

of a universal homogeneous qualitative domain. As a matter of fact, the straightforward

use of graph-theoretic techniques is made possible exactly because we consider domains

with strong atomicity properties; for constructions of universal domains without atomicity

property see Droste and Göbel (1993). The present universal homogeneous objects can

also be shown to exist using the more abstract results proved in Droste and Göbel (1993).

But we would like to stress that the universal homogeneous structures presented in this

paper all have the set of natural numbers as carrier, and their construction makes use

only of very basic number-theoretic notions. We also briefly discuss probabilistic versions

of these constructions. These proceed as follows: as underlying set we again take the

set ω of natural numbers. Let p ∈ (0, 1) be fixed: for any finite subset of ω having at

least two elements, decide with probability p to put it into the hypercoherence. We then

show that with probability 1 we obtain the uniquely determined (up to isomorphism)

universal homogeneous hypercoherence. This shows that, instead of pursuing more or less

complicated constructions, in the present categories it suffices to perform our construction

in a purely random manner and we obtain (somehow surprisingly) with probability 1 the

required universal homogeneous object.

2. An introduction to universality

In this section, we give an introduction to universality using categorical ideas, and present

some basic facts that we shall use in the following; we refer the reader to Droste and

Göbel (1993) for some of the intuitions behind the following definitions. The underlying
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idea is that objects in our categories are relational structures and arrows are embeddings.

Let C be a category where all arrows are monic, and let C∗ be a full subcategory of C. An

arrow f : A → B in C is an increment iff f is not an isomorphism but f = g ◦ h implies

that either g or h is an isomorphism. An object U ∈ Obj(C) is:

— C∗-universal iff for every object A ∈ Obj(C∗) there is an arrow f : A→ U; for example,

when C is a preordered set, a C∗-universal object is the same as an upper bound of

C∗. For relational structures this means that any object A ∈ Obj(C∗) can be embedded

into U;

— C∗-homogeneous iff for any A ∈ Obj(C∗) and for any two arrows f, g : A → U

there exists an automorphism h of U (that is, an arrow h : U → U of C that is an

isomorphism) such that h ◦ g = f (in other words, every time an object of C∗ can

be ‘mapped’ into U using two arrows, these arrows just differ for the composition by

an automorphism of U). For relational structures this means that any isomorphism

between two C∗-substructures of U can be extended to an automorphism of U;

— C∗-saturated iff for any A,B ∈ Obj(C∗) and for any two arrows f : A → U and

g : A→ B there is an arrow h : B → U such that h ◦ g = f (this can be interpreted as

follows: if an object A of C∗ can be mapped to U via f, and if it can also be mapped

to some other object B, then f can be naturally extended to a map from B to U);

— C∗-stepwise-saturated iff for any two objects A,B ∈ Obj(C∗) and any two arrows

f : A→ U and g : A→ B such that g is an increment, there exists an arrow h : B → U

with h ◦ g = f. (Notice that every C∗-saturated object is also C∗-stepwise-saturated).

In analogy with the definition of a finite (or compact, or isolated) element of a partially

ordered set, we say that an object B of a category C is finite (in C) if, for every ω-chain

(Ai, fi : Ai → Ai+1) in C with colimit A, and every arrow g : B → A, there is an i ∈ ω such

that there is a unique h : B → Ai satisfying g = fi∞ ◦ h, where fi∞ : Ai → A is the i-th

component of the universal cone with vertex A. A category is semi-algebroidal if every

ω-chain of finite objects has a colimit, and, moreover, every object is the colimit of an

ω-chain of finite objects.

We say that C is incremental iff it contains a weakly initial object and for any

arrow f : A → B between two finite objects A,B ∈ Obj(Cf) there exists a finite chain

(Ai, fi)i=0,... ,n−1 such that A = A0, B = An, f = fn−1 ◦ · · · ◦ f1 ◦ f0 and each fi : Ai → Ai+1

is an increment.

We shall only be interested in the case in which C is a semi-algebroidal category with

initial object and C∗ is the subcategory of all finite objects. We then have the following

proposition.

Proposition 2.1. Let C be a semi-algebroidal category with initial object, U be an object

of C and Cf be the full subcategory of its finite objects.

1 U is a C-universal Cf-homogeneous object if and only if U is a Cf-saturated object.

Moreover, in this case U is unique up to isomorphism.

2 If C is incremental and U is Cf-stepwise-saturated, then U is Cf-saturated as well.

Proof. (1) was proved in Droste and Göbel (1993). For (2), suppose that f : A → U

and g : A → B are arrows, where A and B are two finite objects. Since the category
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is incremental, there exists a finite chain A = A0

g0→ A1

g1→ · · ·An−1

gn−1→ An = B where

g = gn−1 ◦ · · · ◦ g1 ◦ g0 and each gi is an increment. Now let f0 = f. By definition of

stepwise-saturation, we obtain an arrow f1 : A1 → U such that f1 ◦ g0 = f0, as in the

commutative diagram

A = A0
g0 //

f=f0

��

A1
g1 //

f1

{{wwwwwwwww
A2 · · · An−1

gn−1 // An = B

U

Proceeding in this way, we finally obtain an arrow fn : B → U with fn◦gn−1◦· · · g1◦g0 = f.

Letting h = fn we have h ◦ g = f, as required.

According to this result, in order to prove that a certain object U is universal and

homogeneous we just have to show that, whenever we have an embedding f : A→ U of

a finite object A, and whenever A is embeddable into B, there is an embedding g : B → U

through which f factors. In particular, if the category is incremental, an inductive proof

of saturation is possible.

In Droste and Göbel (1993), necessary and sufficient conditions for the finite objects of

an algebroidal† category C were given so that C contains a C-universal Cf-homogeneous

object U. These abstract conditions (the ‘amalgamation property’) can be shown to

be satisfied in the categories studied in this paper and thus could be used to ensure

the existence and uniqueness, and even to construct such an object U. However, that

construction would be of very high complexity. The present proofs will provide explicit

and easy definitions of objects U that are Cf-saturated. Then, from Proposition 2.1 (which

itself has an easy proof) it follows that U is universal and homogeneous.

In this paper, we will provide, for several categories C, explicit descriptions of universal

homogeneous objects U in C. Here and in the following, the words ‘universal’ and

‘homogeneous’ will always mean C-universal and Cf-homogeneous, respectively.

3. Universal domain constructions

3.1. Graphs and coherence spaces

In this subsection we shall recall Rado’s result on the existence of a universal homogeneous

(countable) graph, and see how this yields a construction for a universal homogenous

coherence space.

In the present paper, a graph is given by a pair G = (G,∼G), where G is a non-empty

set of vertices and ∼G is a reflexive and symmetric adjacency relation‡, the adjacency

relation. A graph homomorphism f from the graph G to the graph G′ is a map f : G→ G′
such that f(x) ∼G′ f(y) whenever x ∼G y. We shall say that G is an induced subgraph

(or, simply, a subgraph) of G′ if G ⊆ G′ and ∼G=∼G′ ∩(G× G).

† A category is algebroidal if it is semi-algebroidal, the subcategory of finite objects has a countable skeleton

and the Hom-set between any two finite objects is countable.
‡ Observe that we are dealing here with reflexive graphs, that is, graphs with a self-loop at each vertex.
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A (graph) embedding† is a homomorphism f : G → G′ of graphs that is injective and

such that

∀x, y ∈ G. x ∼G y iff f(x) ∼G′ f(y).

Of course, a graph can be embedded into another one iff the former is isomorphic to a

subgraph of the latter.

We let ω-Graph be the category of countable graphs with embeddings as arrows; the

main properties of this category are listed in the following proposition.

Proposition 3.1. In the category ω-Graph every arrow is monic, and an object is finite iff

it has a finite underlying set. Moreover, ω-Graph is an algebroidal, incremental category,

where f : G → G′ is an increment iff G′ = f[G] ∪ {g}, with g 6∈ f[G].

The important property of the category ω-Graph we are interested in was studied in

Rado (1967), where it is proved by means of an explicit construction that a universal

homogeneous graph exists. We shall give essentially the same proof, exploiting the fact

that ω-Graph is an incremental category and using Proposition 2.1 (for more on Rado’s

graph, see Cameron (1990)). In the following, let ℘fin(ω) be the collection of finite subsets

of ω, and let Φ : ℘fin(ω) → ω be the bijection that assigns to u ∈ ℘fin(ω) the natural

number

Φ(u) =def

∑
n∈u

2n.

Theorem 3.2. (Rado 1967) Let GU be the graph having U = ω as underlying set, and

with compatibility relation ∼U defined as follows:

n ∼U m iff n = m or min{n, m} ∈ Φ−1(max{n, m}).
Then GU is the universal homogeneous object of the category ω-Graph.

Proof. Note that, for n, m ∈ U with n < m, we have n ∼U m if and only if 2n occurs in

the unique expansion of m as a sum of distinct powers of 2. We show that GU is stepwise

saturated. The conclusion then follows from Proposition 3.1, using Proposition 2.1. Let G

be finite, f : G → GU be an embedding and g : G → G′ be an increment. We may assume

that f is the identity, that is, that G is an induced subgraph of GU . Since g is an increment,

we can write G′ as g[G]∪̇{y}, and put A = {x ∈ G | g(x) ∼G′ y}. Let r = max f[G] + 1 and

z =
∑

x∈A 2x + 2r; clearly, z ∈ GU \ G and for any x ∈ G we have

x ∼U z iff x ∈ A iff g(x) ∼G′ y. (3)

Now define h : G′ → GU by

h(w) =

{
g−1(w) if w ∈ g[G]

z if w = y.

Clearly, by (3), h is a graph embedding, and h ◦ g = f.

† These homomorphisms are called ‘strong embeddings’ in Rado (1967) and ‘rigid embeddings’ in Boldi et

al. (1993).
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Rado’s construction of a universal homogeneous graph can be used in a rather straight-

forward way to obtain a universal homogeneous coherence space. We can do this by

exploiting the equivalence between the category ω-Graph and that of coherent atomic

dI-domains, that is, coherence spaces: this equivalence associates to each graph the partial

order of its cliques (with respect to inclusion), and, conversely, to each coherence space the

countable graph (called the web of the coherence space in Girard (1987)) whose vertices

are the atoms, two atoms being coherent iff they are compatible.

Let us first recall some domain-theoretic terminology that we shall use below. For more

standard definitions we refer the reader to Plotkin (1978b) and Droste (1991). A Scott

domain (D,v) is an algebraic cpo in which any upper bounded subset has a supremum.

An atom of D is a minimal element of D strictly above ⊥. Furthermore, a Scott domain

is:

— coherent if every pairwise compatible set has a least upper bound; that is, if A ⊆ D

is such that every pair x, y ∈ A is compatible (that is, has an upper bound), then tA
exists;

— distributive if, for every x, y, z ∈ D, the equality

x u (y t z) = (x u y) t (x u z)
holds whenever y and z are compatible;

— finitary if every compact element dominates at most finitely many elements;

— atomic if every element is the least upper bound of the set of atoms it dominates.

A distributive finitary Scott domain is often called a dI-domain. Observe that a Scott

domain D is an atomic dI- domain if and only if, for each x ∈ D, the set {d ∈ D | d v x},
with the induced partial order, is a powerset Boolean algebra.

Scott-continuous functions are not the appropriate maps on dI-domains, as they do

not preserve the finitary character in general. Rather, continuity has to be strengthened

to stability (Berry 1978). Accordingly, the order relation among stable functions is not

the pointwise order but a stronger one: if D,E are dI-domains, a continuous function

f : D → E is stable if, for all x, x′ ∈ D, if x and x′ are compatible, then

f(x u x′) = f(x) u f(x′).

If f, g : D → E are stable functions, then f is stably less than g (written f vs g) if and

only if, whenever x, x′ ∈ D are such that x v x′, we have

f(x) = f(x′) u g(x).

Now, coherence spaces (in the sense of Girard (1987)) are precisely the coherent atomic

dI-domains. To explain this, for each graph G we let Clique(G) be the set of cliques of

G, ordered by inclusion (a clique is a set of vertices that is complete with respect to

the adjacency relation). It is easy to prove that Clique(G) is indeed a coherent atomic

dI-domain, for each graph G, and conversely every such domain D can be seen in that

way: just take a graph G that has one vertex for each atom, and where adjacent vertices

are compatible atoms. Then, clearly, Clique(G) ∼= D.

We can go further in this analogy, and turn it into a categorical equivalence. In order

to do this, we recall the well-known notion of stable embedding–projection pair, or SEPP
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for short (Kahn and Plotkin 1978). A pair 〈e, p〉 of continuous functions between domains

e : (D0,v0) → (D1,v1) and p : (D1,v1) → (D0,v0) is called an embedding–projection

pair iff p ◦ e = 1D0
and e ◦ p v 1D1

(here v denotes the pointwise ordering among

continuous maps). It is a stable embedding–projection pair iff, moreover, for all x0 ∈ D0

and x1 ∈ D1, if x1 v1 e(x0), then x1 = e(p(x1)). It is not difficult to see that 〈e, p〉 is a

stable embedding–projection pair if and only if

p ◦ e = 1D0
e ◦ p vs 1D1

.

Moreover, stable embeddings map atoms to atoms and preserve compatibility.

The category of coherent atomic dI-domains with countably many atoms, and with

stable embedding–projection pairs as arrows, is denoted by ω-CAdIDom. Therefore, if

Coh denotes the category of coherence spaces with countably many atoms and stable

functions as arrows, the category ω-CAdIDom is simply the (non-full) subcategory Cohe

of Coh that has the same objects as Coh and whose arrows are embeddings.

We can now turn Clique(−) into a functor from ω-Graph to ω-CAdIDom as follows:

if f : G → G′ is a graph embedding, we let Clique(f) = 〈ef, pf〉 : Clique(G)→ Clique(G′)
be defined as follows: ef(C) = {f(x) | x ∈ C} = f[C] for each clique C of G, and

pf(C
′) = f−1[C ′] for each clique C ′ of G (note that this definition is well-given, because

of the properties of graph embeddings). The following result is a formal statement of an

observation that is basically due to Girard (1987).

Theorem 3.3. The functor Clique gives a categorical equivalence between ω-Graph and

ω-CAdIDom.

Proof. It is routine to check that Clique is indeed a functor – the only non-trivial

part is that Clique(f) is in fact stable: suppose that f : G → G′ is an embedding, and

let C ′ ⊆ ef(C) = f[C] (where C is a clique of G). Then clearly f[f−1[C ′]] = C ′, so

ef(pf(C
′)) = C ′.

As noted before, for every object D of ω-CAdIDom, there is a graph G such that

Clique(G) ∼= D. So, we are left to prove that Clique is full and faithful. Faithfulness

is easy: if Clique(f) = Clique(g), then, in particular, for each vertex x one has

ef({x}) = eg({x}), that is, {f(x)} = {g(x)}, hence f = g. For fullness, let G,G′ be

two graphs and 〈e, p〉 : Clique(G)→ Clique(G′) be a SEPP; since stable embeddings map

atoms to atoms, for each x ∈ G we let f(x) be the only element of e({x}). Now, for every

clique C of G we have ef(C) = f[C] = {f(x) | x ∈ C} = ∪x∈Ce({x}) = e(C) and thus also

pf = p, since a stable embedding determines the corresponding projection in a unique

way. So Clique(f) = 〈e, p〉.
As a consequence, we have the following corollary.

Corollary 3.4. Clique(GU) is the universal homogeneous object of ω-CAdIDom.

A more restricted universality result for the same class of domains is proved in Asperti and

Longo (1991, §2.4.2), using Plotkin’s domain Tω . There, it is shown that Tω is universal

for coherence spaces with a denumerable web.
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3.2. Hypercoherences and hereditary hypercoherences

In this section, we aim to generalise the notion of graph by replacing the adjacency

relation (which is a binary one) with a finitary predicate, along the lines of Girard (1987).

Recall that one possible way to interpret the adjacency relation of a graph is to treat

it as a binary consistency predicate; reflexivity of this relation is thus quite a natural

requirement, since it means that every point is self-consistent. We shall describe two ways

of generalizing such a notion.

3.2.1. Hypercoherences Hypercoherences were introduced in Ehrhard (1993) on the basis

of previous work he did with Bucciarelli (Bucciarelli and Ehrhard 1994) on the notion

of strong stability as an extensional theory of sequential functions. In the following, let

A ⊆+
fin B denote the fact that A is a finite non-empty subset of B.

A hypercoherence X = (X,Γ(X)) consists of a countable set X (the web of X ) together

with a family Γ(X) of finite, non-empty subsets of X defining what is called the atomic

coherence of X , such that for all a ∈ X we have that {a} ∈ Γ(X). Given hypercoherences

X ,Y , define an embedding of X into Y as an injective mapping f : X → Y such that for

all u ⊆+
fin X

u ∈ Γ(X)⇔ f[u] ∈ Γ(Y ).

It is routine to check that the following property holds for the category ω-HCoh whose

objects are hypercoherences and whose arrows are embeddings.

Proposition 3.5. In the category ω-HCoh every arrow is monic, and an object is finite iff

it has a finite underlying set. Moreover, ω-HCoh is an algebroidal, incremental category,

where f : X → Y is an increment iff Y = f[X] ∪ {y} for some y 6∈ f[X].

Using the coding apparatus of Theorem 3.2, we can show that ω-HCoh has a universal

homogeneous object U , defined as follows:

— U = ω;

— A ∈ Γ(U) if and only if:

– either A = {n} for some n ∈ ω, or

– the Φ(A \ {maxA})-th bit in the formal infinite binary expansion of maxA is 1;

in other words, if k = Φ(A \ {maxA}), then 2k occurs in the unique expansion of

maxA as a sum of distinct powers of two.

Theorem 3.6. U is the universal homogeneous object in the category ω-HCoh.

Proof. We follow the same strategy as for Theorem 3.2 and prove that U is stepwise

saturated. The result follows by an appeal to Proposition 3.5 and Proposition 2.1. Let

X be a finite hypercoherence, let f : X → U be an embedding and g : X → Y be an

increment. We may assume that f is an inclusion, so that X is a substructure of U . Write

Y = g[X]∪̇{y}. Let X = {C ⊆+
fin X | g[C] ∪ {y} ∈ Γ(Y )} and put

z =
∑
C∈X

2Φ(C) + 2Φ(X)+1.
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Clearly, z ∈ U \X and for any C ⊆+
fin X we have Φ(C) < z, so

C ∪ {z} ∈ Γ(U)⇔ C ∈ X ⇔ g[C] ∪ {y} ∈ Γ(Y ). (4)

Now define h : Y → U by

h(w) =

{
g−1(w) if w ∈ g[X]

z if w = y.

Obviously, h is an embedding by (4), and h ◦ g : X → X is the identity, showing that U is

stepwise saturated.

3.2.2. Hereditary hypercoherences A natural condition that can be imposed on a hyperco-

herence X is that the atomic coherence Γ(X) of X be downward closed, in the sense that

u ⊆+
fin v ∈ Γ(X) implies u ∈ Γ(X). The hypercoherences in which this condition is satisfied

are the hereditary hypercoherences.

We let ω-HCohh be the full subcategory of ω-HCoh consisting of hereditary hyperco-

herences. Also in this case, we have the following proposition.

Proposition 3.7. In the category ω-HCohh every arrow is monic, and an object is finite iff

it has a finite underlying set. Moreover, ω-HCohh is an algebroidal, incremental category.

We are now ready to prove a generalization of Rado’s theorem to hereditary hyper-

coherences. Let U = (U,Γ(U)) be the universal homogeneous object in the category

ω-HCoh from Theorem 3.6. Let U h be the hereditary hypercoherence (Uh,Γ(Uh)) where:

— Uh = U;

— A ∈ Γ(Uh) if and only if, for all u ⊆+
fin A, u ∈ Γ(U).

This is clearly hereditary. We prove that U h is indeed the universal homogeneous

hereditary hypercoherence.

Theorem 3.8. U h is the universal homogeneous object of the category ω-HCohh.

Proof. We follow exactly the proof of Theorem 3.6, starting, of course, with finite

hereditary hypercoherences X , Y and an embedding f into U h. Observe that in this case

X is closed downwards and X ⊆ Γ(X). We have to show that, for any C ⊆+
fin X and z as

defined above, we have

C ∪ {z} ∈ Γ(Uh)⇔ C ∈ X. (5)

The implication from left to right is clear. So assume C ∈ X. Then C∪{z} ∈ Γ(U). Choose

any u ⊆ C . Clearly, u ∈ X, so u∪{z} ∈ Γ(U). Also, u ∈ Γ(X), and hence u = f(u) ∈ Γ(Uh).

Thus C ∪ {z} ∈ Γ(Uh), proving equation (5). The rest of the proof proceeds as before.

Remark. It would be interesting if one could derive Theorem 3.8 directly from Theo-

reom 3.6. However, note that a hereditary hypercoherence which is a substructure of U h

via an embedding f in general is not a substructure of U via the same embedding. An

important point to keep in mind here is that coherence in U is a consequence of the

coding, whereas in U h it is forced a posteriori .
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We now prove the equivalence between the category of hereditary hypercoherences with

embeddings, and the category of atomic dI-domains, with stable embedding–projection

pairs as arrows. A consequence of this result is an explicit construction of the universal

homogeneous atomic dI-domain, which exactly mimics what we did for the coherent case.

We let ω-AdIDom be the category of atomic dI-domains with countably many atoms,

and stable embedding–projection pairs as arrows. We first define a functor

qD : ω-HCoh→ ω-AdIDom

as follows:

— for each hypercoherence X ,

qD(X ) = {x ⊆ X | ∀u ⊆+
fin x.u ∈ Γ(X)}

— if f : X → Y is an embedding of hypercoherences, we let qD(f) = 〈ef, pf〉 where,

for any A ∈ qD(X ) and B ∈ qD(Y ), we define ef(A) = {f(x) | a ∈ A} = f[A] and

pf(B) = {x ∈ X | f(x) ∈ B} = f−1[B].

We shall prove that qD gives an equivalence between ω-AdIDom and the subcategory

ω-HCohh of ω-HCoh. The fact that it is indeed a functor is routine: just note that if

B ⊆ ef(A) = f[A], then ef(pf(B)) = f[f−1[B]] = B, as required.

Furthermore, we also have the following property, which was noted originally in

Girard (1986).

Theorem 3.9. qD gives a categorical equivalence between ω-HCohh and ω-AdIDom.

Proof. If D is an atomic dI-domain, define X to be the hereditary hypercoherence having

as web the set of atoms of D, and with atomic coherence defined by letting A ∈ Γ(X) if

and only if A is a compatible subset of D. Now define the map ϕ : qD(X )→ D as follows

ϕ : qD(X ) → D

A 7→ tA.
Observe that, if A is a consistent subset of X, then it is a compatible subset of D, and

so tA exists. We must prove that ϕ is an order-isomorphism. Surjectivity of ϕ directly

follows from atomicity. For injectivity, suppose ϕ(A) = ϕ(B), that is, tA = tB. This

implies that tA and tB dominate the same set of atoms, and thus necessarily A = B. It

is then easy to show that ϕ is actually an order-isomorphism, and thus qD(X ) ∼= D.

The proof of fullness and faithfullness for qD is analogous to the case of graphs, and

is thus omitted.

Finally, we obtain the following corollary.

Corollary 3.10. qD(U h) is the universal homogeneous atomic dI-domain.

Now observe that atomic dI-domains are essentially the same as the qualitative domains

in the sense of Girard (1986).

Definition 3.11 (Qualitative domains). A qualitative domain Q = (|Q| , Q) consists of a

countable set |Q| and a collection Q of subsets of |Q| satisfying the conditions:
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— if a ∈ |Q|, then {a} ∈ Q;

— if x ∈ Q and y ⊆ x, then y ∈ Q;

— if D ⊆ Q is ⊆-directed, then
⋃
D ∈ Q.

If Q and R are qualitative domains, then a stable function f : Q→ R is a stable function

from (Q,⊆) to (R,⊆).

Therefore, we obtain from the above corollary the existence of a universal homogeneous

object in the category of qualitative domains with stable embedding–projection pairs.

3.2.3. A note on probabilistic constructions In this section, we discuss briefly a probabilistic

technique that can be used as an alternative way to show the existence of universal

homogeneous representations; in particular, our starting point will be the result of Erdős

and Rényi (1963) (discussed in more detail in Cameron (1990); see also Erdős and

Spencer (1974)), where a probabilistic construction of Rado’s universal graph is given.

For a fixed probability p ∈ (0, 1), consider the graph built by using the following

probabilistic procedure: take ω as vertex set, and choose, for every pair of distinct

vertices, independently with probability p whether to join them or not. It turns out that

the resulting graph is isomorphic to U with probability 1, whatever value was chosen for

p.

Before proceeding, a few remarks are in order. First, this heuristic construction can be

phrased in a mathematically precise way. One considers the space of all binary graphs

on ω and defines on it a probability measure. The result stated above means that in this

space the subset of all graphs that are universal and homogeneous has measure 1. The

details are technically involved, we just refer the reader to Boldi (1997), Cameron (1990)

and Erdős and Spencer (1974).

Intuitively, the construction is clear but surprising. Homogeneity of U means that each

isomorphism between two finite substructures of U can be extended to an automorphism

of U. Hence, U bears a high amount of symmetry. The above result says that as long

as we construct U in a purely but consistently random (hence, ‘chaotic’) fashion, we will

obtain this high degree of symmetry with probability 1.

We can rephrase the argument of Erdős and Rényi (1963) as follows. First observe that,

by virtue of Proposition 2.1, if the random graph is universal and homogeneous, it must

be isomorphic to U . Thus, we can limit ourselves to proving that the random graph is

not universal homogeneous (or, equivalently, not stepwise-saturated) with probability 0.

Suppose that the random graph GR = (ω,∼R) obtained by the previous procedure

is not stepwise-saturated. This means that there is a finite subgraph G of GR and an

increment g : G → G′ such that there does not exist any embedding h : G′ → GR for

which h ◦ g is the identity on G. Write G′ = G∪̇{y}, and let A = {x ∈ G | g(x) ∼G′ y}.
Thus, by the argument in the proof of Theorem 3.2, there is no z ∈ ω \ G such that,

∀x ∈ G. x ∼R z ⇔ x ∈ A.
But since the set ω \ G is infinite whereas G is finite, the probability of this happening is

0.
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The above construction can be turned into a similar probabilistic procedure for build-

ing the universal homogeneous hypercoherence, as well as the universal homogeneous

hereditary one. We will only present the construction for the latter, which is just slightly

more complex than the former. Consider a fixed enumeration A0, A1, A2, . . . of the finite

non-empty subsets of ω satisfying the following constraints:

1 The enumeration is injective; that is, Ai 6= Aj whenever i 6= j.

2 If B ⊂ Ai, then there exists j < i such that B = Aj .

Such an enumeration can be built step by step by the following recursive procedure:

— First step Set A−1 =6 and put S = ω;

— Inductive step Suppose that you have already built the subsequence A−1, . . . , Ak , and

let n = min S . Then, for each i = −1, . . . , k, define Ak+i+2 = Ai ∪ {n}; moreover, delete

n from the set S .

This procedure produces the sequence A0 = {0}, A1 = {1}, A2 = {0, 1}, A3 = {2},
A4 = {0, 2} etc.

Now, build a random hereditary hypercoherence XR = (ω,Γ(XR)) as follows. For each

i ∈ ω, decide whether Ai ∈ Γ(XR) using the following randomized algorithm:

1 If |Ai| = 1, then put Ai in the consistency predicate.

2 Otherwise, consider all the indices j < i such that Aj ⊂ Ai. If there is an index for

which Aj 6∈ Γ(XR), then do not put Ai in Γ(XR), otherwise, put it in with probability

p.

The procedure is defined in such a way that the resulting structure is necessarily hereditary.

Now we only have to prove that XR is stepwise saturated with probability 1.

Suppose that Y is a finite substructure of XR , and that g : Y → Y ′ is an increment

(write Y ′ = Y ∪̇{y}). Also let

X = {C ⊆+
fin Y | g[C] ∪ {y} ∈ Γ(Y ′)}.

For each z ∈ ω \ Y such that

∀C ⊆+
fin Y . C ∪ {z} ∈ Γ(XR)⇔ C ∈ X

the map hz : Y ′ → XR defined by

hz(x) =

{
g−1(x) if x ∈ g[Y ]

z if x = y

is such that hz ◦ g = idY . So, if XR is not stepwise saturated, then no such z exists. But,

since X is finite, there are infinitely many one-element extensions of the sets of X (and

also of the sets C ⊆+
fin Y such that C 6∈ X and |C| > 1) appearing in the enumeration.

Hence the probability that no such z exist is 0. Consequently, with probability 1, XR is

stepwise saturated.

3.3. Categories of hypercoherences

3.3.1. Linear morphisms There are two interesting categories that have hypercoherences as

objects. We shall prove that the universal hypercoherence U is the universal homogeneous
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object in both of them. In the following, if u ⊆ X × Y , for any two sets X,Y , we let

u1 =def {a ∈ X | ∃b ∈ Y .(a, b) ∈ u} and, similarly, u2 =def {b ∈ Y | ∃a ∈ X.(a, b) ∈ u}.
Definition 3.12 (Linear function space). The hypercoherence X −◦ Y is defined as follows:

– X −◦ Y =def X × Y .

– w ∈ Γ(X −◦ Y ) if and only if w is a non-empty and finite subset of X −◦ Y such that

w1 ∈ Γ(X) implies both that w2 ∈ Γ(Y ) and that if w2 is a singleton, then w1 is also.

Now define a linear morphism between hypercoherences X ,Y to be an element of

qD(X −◦ Y ). We write f : X −◦ Y to mean that f is a linear morphism from X to

Y . Furthermore, defining idX as the set {(a, a) | a ∈ X} and using ◦ to denote the

composition of relations (that is, R ◦ S = {(a, c) | ∃b.(a, b) ∈ S, (b, c) ∈ R}), we get a

(monoidal) category ω-HCohL of hypercoherences with linear morphisms, which is a

model of classical linear logic (Girard 1987).

If f : X → Y is an embedding, we define f+ ⊆ X×Y as the graph of f, and f− ⊆ Y ×X
as the graph of the inverse of f. (Observe that the sets f+, f− are the traces (Girard 1986)

of stable (and linear) functions from qD(X ) to qD(Y ) and vice-versa, respectively.) The

definition of embedding–projection pair in the category ω-HCohL is obvious.

Definition 3.13. Given linear morphisms e : X −◦ Y and p : Y −◦ X , we say that 〈e, p〉
form an embedding–projection pair from X to Y if p ◦ e = idX and e ◦ p ⊆ idY .

We obtain then a category ω-HCohLe whose objects are hypercoherences and whose

arrows are (linear) embedding–projection pairs.

It is easy to see that given two arbitrary relations R ⊆ A × B and S ⊆ B × A, the

following two properties are equivalent:

— S ◦ R = idA and R ◦ S ⊆ idB .

— R is the graph of an injective function, and S is the graph of its inverse.

Using this fact, the following lemma is immediate.

Lemma 3.14. For any two hypercoherences X ,Y and any embedding f : X → Y , we

have that f+ : X −◦ Y , f− : Y −◦ X and f− ◦ f+ = idX , f+ ◦ f− ⊆ idY . Furthermore, the

construction of f+, f− from f defines a functor L : ω-HCoh → ω-HCohLe, which is the

identity on objects.

In order to define an equivalence between the categories ω-HCoh and ω-HCohLe we

still need the following lemma.

Lemma 3.15. If 〈e, p〉 is an embedding–projection pair from X to Y , then there is a unique

embedding of hypercoherences fe,p : X → Y such that e = f+
e,p and p = f−e,p. Furthermore,

this construction defines a functor E : ω-HCohLe → ω-HCoh, which is the identity on

objects.

Proof. Given an embedding–projection pair 〈e : X −◦ Y , p : Y −◦ X〉 in ω-HCohLe,

by the above remark we have an injection fe,p : X → Y (whose graph is e). We have

to show that u ∈ Γ(X) if and only if fe,p[u] ∈ Γ(Y ). For the direct implication, let w =

{(a, fe,p(a)) | a ∈ u}. Then w ⊆+
fin e and u = w1 ∈ Γ(X), so fe,p[u] = w2 ∈ Γ(Y ). Conversely,
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take v = {(fe,p(a), a) | a ∈ u} and observe that v ⊆+
fin p. Therefore fe,p[u] = v1 ∈ Γ(Y )

implies u = v2 ∈ Γ(X). Functoriality of this construction is straightforward.

We have thus proved the following result.

Theorem 3.16. The categories ω-HCoh and ω-HCohLe are equivalent. Moreover, U is the

universal homogeneous object in the category ω-HCohLe.

3.3.2. Strongly stable maps A different category of hypercoherences can be defined by

passing from linear morphisms to strongly stable maps (Bucciarelli and Ehrhard 1994;

Ehrhard 1993). In order to define these, we need to extend our analysis of the qualitative

domain qD(X ) canonically associated with a hypercoherence X.

In the following, we shall make use of the following auxiliary notation: if C is a set

and A,B ⊆ ℘(C), we write B v A if and only if

– for all x ∈ A there exists y ∈ B such that x ⊆ y,

– for all y ∈ B there exists x ∈ A such that x ⊆ y.

It should be noted that v is the reverse Egli–Milner ordering (see Plotkin (1976), for

example).

Definition 3.17 (Qualitative domain with coherence (Ehrhard 1993)). A qualitative domain

with coherence (qDC) is a pair

Q = (Q,C(Q))

consisting of a qualitative domain Q = (|Q|, Q) and a family C(Q) of finite, non-empty

subsets of Q satisfying the following constraints:

1 If x ∈ Q, then {x} ∈ C(Q).

2 If A ∈ C(Q) and B ⊆+
fin Q is such that B v A, then B ∈ C(Q).

3 If ∆1, . . . ,∆n are directed subsets of Q such that, for all x1 ∈ ∆1, . . . , xn ∈ ∆n we have

{x1, . . . , xn} ∈ C(Q), then {⋃∆1, . . . ,
⋃

∆n} ∈ C(Q).

Definition 3.18 (Strongly stable map). For qDC Q,R, a strongly stable map from Q to R

is a (Scott) continuous function f : Q→ R such that, if A ∈ C(Q), then:

– f[A] ∈ C(R),

– f(
⋂
A) =

⋂
f[A].

A hypercoherence X determines a qDC, as follows.

Definition 3.19 (qDC induced by a hypercoherence). Let X be a hypercoherence. Then we

can build a qualitative domain with coherence

qDC(X ) = ((X, qD(X )),C(X ))

where

C(X ) =def {A ⊆+
fin qD(X ) | ∀u ⊆+

fin X.u� A⇒ u ∈ Γ(X)},
where u� A if and only if ∀x ∈ u.∃d ∈ A.x ∈ d and ∀d ∈ A.∃x ∈ u.x ∈ d.
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We can now define a strongly stable map f from a hypercoherence X to a hypercoherence

Y to be a strongly stable map f : qDC(X ) → qDC(Y ). The resulting category will be

called ω-HCohFS. The proof of the following proposition is straightforward.

Proposition 3.20. A strongly stable map f : X → Y is a stable map from qD(X ) to

qD(Y ). In particular, it is possible to define its trace

tr(f) =def {(x, b) ∈ qD(X )× Y | b ∈ f(x) and x is minimal with this property}.
We can therefore consider the stable ordering among strongly stable maps, and define

the category ω-HCohFSe whose objects are hypercoherences and whose arrows are pairs

of strongly stable maps 〈e : X → Y , p : Y → X〉 that form stable embedding–projection

pairs, that is, they are such that p ◦ e = idX and e ◦ p vs idY .

We now want to show that there is an equivalence between the categories ω-HCoh and

ω-HCohFS. To this end, we shall define two functors

S : ω-HCoh→ ω-HCohFSe T : ω-HCohFSe → ω-HCoh.

Lemma 3.21. The mapping S : ω-HCoh → ω-HCohFSe that is the identity on objects

and transforms an embedding f : X → Y into

S(f) =def 〈f+ : X → Y , f− : Y → X〉,
where

f+ : qD(X ) → qD(Y )

x 7→ {f(a) | a ∈ x} = f[x]

f− : qD(Y ) → qD(X )

y 7→ {a ∈ X | f(a) ∈ y} = f−1[y]

defines a functor.

Proof. Let us first show that f+, f− are well-defined. If x ∈ qD(X ), then f+(x) ∈ qD(Y ):

observe that u ⊆+
fin f

+(x) implies u = f+(v), where v = {a ∈ X | f(a) ∈ u}. As v ∈ Γ(X),

we have f[v] = f+(v) ∈ Γ(Y ) because f is an embedding of hypercoherences. Also, if

y ∈ qD(Y ), then f−(y) ∈ qD(X ): let v ⊆+
fin f

−(y), then f[v] ⊆+
fin y, so f[v] ∈ Γ(Y ) and

therefore v ∈ Γ(X).

Assume now that A ∈ C(X ). We have to show first that f+[A] = {f+(x) | x ∈ A} =

{f[x] | x ∈ A} ⊆+
fin qD(Y ) is an element of C(Y ). Let v ⊆+

fin Y be such that v�f+[A], that

is, ∀b ∈ v.∃d ∈ f+[A].b ∈ d and ∀d ∈ f+[A].∃b ∈ v.b ∈ d. We show that v ∈ Γ(Y ). Define

u = f−1[v]. Then, clearly v = f[u], and it is straightforward to show that

(1) ∀a ∈ u.∃x ∈ A.a ∈ x.

(2) ∀x ∈ A.∃a ∈ u.a ∈ u.
Therefore u ∈ Γ(X), because u� A. Hence v = f[u] ∈ Γ(Y ).

Finally, we have to show that, for all A ∈ C(X ),

f+(
⋂
A) =

⋂
f+[A].

The left to right inclusion is easy. Conversely, b ∈ ⋂ f+[A] means that b ∈ f[x] for all
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x ∈ A. Then b = f(a) for a unique a ∈ X, as f is injective, and this implies that a ∈ ⋂A,

so f(a) = b ∈ f[
⋂
A] = f+(

⋂
A). This concludes the proof that f+ is strongly stable.

Let us now show that f−[B] ∈ C(X ) whenever B ∈ C(Y ). For this, we have to show

that for all u ⊆+
fin X, if u � f−[B], then u ∈ Γ(X). But this is easy, as it can readily be

checked that u � f−[B] implies f[u] � B. Now f[u] � B implies that f[u] ∈ Γ(Y ), so

u ∈ Γ(X) because f is an embedding, and this shows that f−[B] ∈ C(X ). Finally, it is also

easy to show that f−(
⋂
B) =

⋂
f−[B] for all B ∈ C(Y ).

Clearly, f−(f+(x)) = f−1[f[x]] = x for all x ∈ qD(X ), so f− ◦ f+ = idX , and, in order

to prove that f+ ◦ f− vs idY , we have to show that

∀y, y′ ∈ qD(Y ).y ⊆ y′ ⇒ f+(f−(y)) = y ∩ f+(f−(y′)),

but this is obvious, as is the functoriality of the construction.

The construction of a functor in the reverse direction T : ω-HCohFSe → ω-HCoh

closely follows the pattern of the analogous constructions for coherence spaces or qual-

itative domains (Girard 1987; Girard 1986), and uses the fact that the trace of a stable

embedding e of qD(X ) into qD(Y ) is determined by a set of pairs of the form (a, b) where

a ∈ X, b ∈ Y and e[{a}] = {b}. We will just state the result in the following lemma.

Lemma 3.22. Let T : ω-HCohFSe → ω-HCoh be the identity on objects and assign to a

(strongly) stable embedding–projection pair 〈e : X → Y , p : Y → X〉 the embedding of

hypercoherences fe,p : X → Y defined by fe,p(a) = b if (a, b) ∈ tr(e). Then T is a functor.

Finally, we have also proved the following results.

Corollary 3.23. The categories ω-HCoh and ω-HCohFSe are equivalent.

Theorem 3.24. U is the universal homogeneous object in the category ω-HCohFSe.

4. Conclusions

We have built three universal objects in categories of domains arising at the confluence

of important areas of research in the semantics of programming languages and the logic

of computation, namely the study of sequentiality and linear logic. Our results exploit a

direct correspondence between the objects of these categories and graph-like structures,

and are all based on Rado’s construction of a universal graph (Rado 1967) and its

generalizations, which also seem to have an interest independently of their application

to domain theory. (For this reason, they are somewhat in between the two approaches

to the construction of universal domains mentioned in the introduction). As shown in

Boldi (1997), the same technique can be applied to other categories, notably a suitable

class of event structures with minimal enabling (Winskel 1980): in this case, though, the

natural functor associating the domain of configurations to a given event structure is not

an equivalence, and thus homogeneity of the universal domain cannot be proved by the

methods used in this paper.

We have not dealt in this paper with the applications of our results, which are expected

to be found in the solution of recursive domain equations, as is usual for universal
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domains (see, for example, Scott (1976), Plotkin (1978a) and Scott (1982)). Rather, we

have limited ourselves to the study of their basic mathematical aspects, focussing on the

use of elementary combinatorial techniques in the construction of domains. However,

one point should at least be mentioned as an open problem: homogeneity is a desirable

property of a universal domain because it ensures its uniqueness, and it means that the

domain has a very high degree of symmetry, and hence a large automorphism group.

However, it would be quite interesting to find out a different motivation for homogeneity

relevant to the computational features of the universal domain. Finally, it is known that

in cartesian closed categories, a universal object gives rise to a model of the untyped

λ-calculus. Hence, what does the homogeneity of the present universal objects mean for

the associated model of the untyped λ-calculus?
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