
ON A STOCHASTIC INVENTORY
MODEL WITH DETERIORATION

AND STOCK-DEPENDENT
DEMAND ITEMS

LAAAKKKDDDEEERRREEE BEEENNNKKKHHHEEERRROOOUUUFFF AAANNNDDD LAAAKKKHHHDDDAAARRR AGGGGGGOOOUUUNNN
Department of Mathematics and Statistics

Sultan Qaboos University
Sultanate of Oman

E-mail: lakdereb@squ.edu.om

In this article, we propose a new continuous-time stochastic inventory model with
deterioration and stock-dependent demand items+We then formulate the problem of
finding the optimal impulse control schedule that minimizes the total expected re-
turn over an infinite horizon, as a quasivariational inequality ~QVI! problem+ The
QVI is shown to lead to an ~s,S! policy, where s and S are determined uniquely as
a solution of some algebraic equations+

1. INTRODUCTION

In this article,we will be concerned with a single-item inventory model in which the
product experiences some kind of perishability over time+ To name a few for which
this phenomenon occurs, there are food products, blood, perfumes, photographic
films, and electronic components+ For more details about inventory models in the
literature treating perishable items, see Raafat @14# , Nahmias @12# , and Goyal and
Giri @7# +

In the model of this article, an extra complication is added by assuming that the
demand for the product is related to the amount of stock on hand+ This is motivated
by the fact that it is well known in the marketing literature that demand of certain
products is affected by the quantity displayed on the shelf+ Levin et al+ @9# state “At
times, the presence of inventory has a motivational effect on people around it+ It is a
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common belief that large piles of goods displayed in a supermarket will lead the
customer to buy more+” A number of deterministics mathematical inventory models
dealing with this phenomenon were suggested ~see, e+g+, Corstjens and Doyle @5#
and Mandal and Phaujdar @11# !+

The model of this article combines perishability, stock-dependent demand rate,
and randomness+We do this by modeling the plant equation governing the changes
of the inventory level as a stochastic differential equation+ Some of the previously
treated models are obtained as a special case of the proposed model+

Let x~t ! denote the level of stock at time t and assume that we are allowed to
intervene at any time to increase stock to any level that we wish with setup cost
k � 0, unit cost c � 0, and holding costs given by

f ~x! � ��px for x � 0 ~shortage cost!

qx for x � 0 ~holding cost!,

with p � 0 and q � 0+
We also assume that costs are exponentially discounted at a rate a � 0+
In the model treated in this article, unmet demand is backlogged+ The case of

lost sale of partially backlogged demand is not treated+
A replenishment policy consists of a sequence ~ti ,Qi !, i � 1, + + + , where ti rep-

resents the ith time of ordering and Qi represents the quantity ordered at time ti ,
where t1 � t2 � {{{+

Let

Vn � $~ti ,Qi !%i�1, + + + , n + (1)

Policies described by ~1! are called impulse-control policies+We shall assume
that plant equation of our inventory model is given by

dx~t ! � �~g � $ax~t !b � ux~t !%I ~x~t ! � 0!! dt � s dwt �(
i�0

Qi d~t � ti !, (2)

where I ~A! is the indicator function of the set A and d is the Dirac function+ The
quantities g, a, u, and s are all strictly positive real-valued parameters, 0 � b � 1,
and $wt % is a standard Brownian motion+ Let

Fn � s$x~s!, s � tn % (3)

be the s-algebra generated by the history of the inventory level x~t ! up to time tn+
Note that if a �u� 0, then the model represented by ~3! reduces to the standard

model where demand is driven by a Brownian motion with drift g and variance s 2 +
This model has been examined by Bather @1# , Sulem @15# , and Harrison et al+ @8# +
The model can be thought of as the usual deterministic demand model in which
demand is perturbed by a Brownian motion noise+ If s� 0, a � 0, and u � 0, then
~3! reduces to the model examined by Benkherouf and Mahmoud @2# , in which the
parameter u is interpreted as the deterioration rate+ These models were first sug-
gested by Ghare and Schrader @6# and are known in the literature as exponential

152 L. Benkherouf and L. Aggoun

https://doi.org/10.1017/S0269964802162024 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802162024


decay models @12# + Also, the model implicitly assumes that when x~t ! � 0, short-
ages have no effect on the demand as well as deterioration+ If s � 0, a � 0, and
u� 0, then the term reflecting the stock-demand phenomena is captured by ax~t !b+
The parameter a interpreted as a scale parameter,whereas b is interpreted as a shape
parameter ~see Goyal and Giri @7# !+ The form ax~t !b may be found in @11# + For our
case, this form is convenient for technical reasons, as will become apparent later+

Note that between interventions, ~2! gives

dx~t ! � �~g � $ax~t !b � ux~t !%I ~x~t ! � 0!! dt � s dwt + (4)

The plant equation ~4! can be thought of as the usual plant equation of the
deterministic model ~s� 0, a � 0, and u� 0! perturbed by Brownian motion+Also,
note that the form ~g� $ax~t !b�ux~t !%! and the fact thats is constant guarantee the
existence of a unique nonexploding solution of ~4!+

Assume that Vn is Fn-measurable+ Then, the optimal replenishment schedule
that minimizes the total discounted costs over an infinite horizon may be stated as
that of finding the sequence V * that solves

y~x! � inf
V
�E��

0

`

f ~x~t !!e�at dt �(
i�0

~k � cQi !e
�ati 6x~0!� x��, (5)

where the expectation is taken over all possible realizations of the process x~t ! under
policy V+Also, let

V` � lim
nr`

Vn � V+

The main contributions of the article are twofold:

1+ It formulates the problem stated in ~5! as a quasivariational inequality ~QVI!
problem following Bensoussan and Lions @3# +

2+ It shows that the QVI has a unique optimal solution if and only if ~�p �
ac!� 0+ This solution is of ~s,S! type+ The values of s and S are obtained as
a unique solution of some algebraic equations+ This generalizes an earlier
work of Sulem @15# to the current setup+

Before we embark on dealing with objectives ~1! and ~2!, we note that although
our results are similar in nature to those obtained by Constantinides and Richard @4#
and Sulem @15#, our approach is different in a number of places and is very general
and could form a basis for a general approach for tackling inventory control models
whose dynamics are more general than those in ~3!+

In the next section, we formulate the problem addressed in ~5! as a QVI prob-
lem+ Section 3 is concerned with the issue of existence and uniqueness of the solu-
tion of the QVI problem+The article concludes with some remarks on the problem of
finding a replenishment schedule that minimizes the total cost per unit time+
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2. FORMULATION OF THE QVI PROBLEM

This section is concerned with formulating the problem of finding the optimal re-
plenishment schedule described in Section 1 that minimizes the total expected dis-
counted costs over an infinite horizon addressed in ~5! as a QVI problem+

Fix t and observe the inventory level in a short time interval of length t+ Thus,
we have two cases:

1+ If x~t ! � 0 and no order is made in the interval ~t, t � t!, then ~3! and ~4!
imply that

y~x! � E��
t

t�t

f ~x~t !!e�a~s�t ! ds � y~x~t � t!!e�at 6x~t !� x�+ (6)

Write

x~t � t! � x~t !� �xt

and use the fact that for a standard Brownian motion wt ,E @wt # � 0 and
E @wt

2#� t+ The Taylor expansion of the right-hand side of ~6! gives

y~x! � tf ~x~t !!� y~x~t !!� E @�xt #y
'~x~t !!

�
1

2
E @�xt #

2 y ''~x~t !!� aty~x~t !!� atE~�xt !y
'~x~t !!

�
1

2
atE~~�xt !

2 !y ''~x~t !!� O~t2 !,

leading to

0 � tf ~x~t !!� ~g � ax~t !b � ux~t !!ty '~x~t !!�
1

2
s 2ty ''~x~t !!

� aty~x~t !!� O~t2 !+

Dividing by t and letting tr 0 gives

�
1

2
s 2 y ''~x~t !!� ~g � ax~t !b � ux~t !!y '~x~t !!� ay~x! � f+

2+ If x~t ! � 0 and no order is made in the interval ~t, t � t!, then a similar
argument to that used in case 1 gives

�
1

2
s 2 y ''~x~t !!� gy '~x~t !!� ay~x~t !! � f+

3+ If an order of size Q is placed at time t, then the inventory level jumps from
x~t ! to x~t !� Q+ This means

y~x~t !! � k � inf
Q
@CQ � y~x~t !� Q!# +
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Now, define two operators A and M as follows:

Ay~x! � ��
1

2
s 2 y ''~x!� ~g � ax b � ux!y '~x!� ay~x! if x � 0

�
1

2
s 2 y ''~x!� gy '~x!� ay~x! if x � 0+

(7)

My~x! � k � inf
Q
@CQ � y~x~t !� Q!# + (8)

Then, it follows from ~7! and ~8! that the optimal solution of ~5! is given as a
solution of the QVI problem:

Ay � f,

y � My, (9)

~Ay � f !~ y � My! � 0+

In the next section,we shall show that QVI ~9! has a unique solution if and only
if ~�p � ac! � 0+ This solution is characterized by a pair ~s,S! which is obtained
from a unique solution of some algebraic equations+

3. SOLUTION OF THE QVI PROBLEM

Our approach in solving ~9! will initially follow that of Sulem @15# + We postulate
that the optimal solution to ~9! is characterized by two values s and S, where S � s+
These values divide the inventory space into two regions: the continuation region

C � $x � R; y~x! � My~x!%� $x � R; x � s%,

where no order is made, and

Ay � f,

where A is defined in ~7!+ The complement

OC � $x � R; y~x!� My~x!%� $x � R; x � s%,

where M is given by ~8!, corresponds to the states in which an order is made+
In OC, we have

y~x! � k � inf
Q
@cQ � y~x � Q!# (10)

� k � c~S � x!� y~S!+ (11)

To find the values of s and S, we argue as follows:

1+ The solution to the QVI problem ~9! is continuously differentiable and con-
tinuity at the boundary point s gives, from ~11!, that

y '~s! � �c+ (12)
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2+ The infinimum in ~10! is attained at S+ Hence,

y '~S! � �c+ (13)

3+ Also, y is continuous at s, given from ~11! that

y~S! � y~s!� k � c~S � s!+ (14)

4+ Also, we require for some technical reasons ~see Bensoussan and Lions @3# !
that

lim
xr�`

y~x!

f ~x!
� `+ (15)

Condition ~15! will be called the growth condition, as it is easily seen that it
means that the expected return y~s! has a growth that is at most linear at `+

Theorem 1: There exists a unique solution to the (QVI) problem (9) if and only if
~�p � ac! � 0 .

The proof of Theorem 1 is lengthy and technical and proceeds in two main
stages+ In the first stage, we show that ~10!–~15! lead to a unique pair ~s,S!, where
S � s+ The technical machinery needed to prove this result relies heavily on asymp-
totic analysis of differential equations—in particular, the WKB method ~see Olver
@13# for more details!+ In the second stage, we show that this pair characterizes
uniquely the solution of the QVI problem ~9!+

Before we proceed to the proof, note that when the state variable x~t ! lies be-
tween ~s,S!, then the system is left to move freely ~without intervention!; in this
case, the dynamics of the system evolves like the differential equation Ay � f+ Now,
if s is strictly positive, we get s � S from ~12!, ~13!, and ~15!+ This means that k � 0
by ~14!, contradicting the assumption that k � 0+ Hence, s must be strictly negative+

Let

L~x! � y~x!� cx+ (16)

Also, write

y~x! :� �y�~x! if x � 0

y�~x! if x � 0

for the solution

Ay~x! :� ��px if x � 0

qx if x � 0,
(17)

where A is given by ~7!+
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Theorem 2: If ~�p � ac! � 0 , then

(i) limxr�`L~x!� �`
(ii) limsr�`L~s!� �`+

Proof: Note from ~7! that for x � 0 we have

�
1

2
s 2 y ''~x!� ~g � ax b � ux!y '~x!� ay~x! � qx+ (18)

Rewrite ~18! as

�y ''~x!� 2
~g � ax b � ux!

s 2 y '~x!� 2
a

s 2 y~x! � 2
q

s 2 x+

Let

P~x! �
2

s 2 ~g � ax b � ux!,

Ta � 2
a

s 2 , Sq � 2
q

s 2 +

Then, ~18! reduces to

�y ''~x!� P~x!y~x!� Tay~x! � Sqx+

Let

y~x! � z~x!exp � 1

2
�

0

x

P~t !dt� +
Then, it can be shown that ~18! gives

�z ''~x!� z~x!Q~x! � Sqx exp �� 1

2
�

0

x

P~t ! dt� , (19)

with

Q~x! �
1

4
P 2~x!�

1

2
P '~x!� Ta

�
1

s 4 ~g � ax b � ux!2 �
1

s 2 ~abx b�1 � u!� Ta+ (20)
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Using the WKB method ~see Olver @13# !, the complementary solutions of ~19! are
asymptotic, as xr � `:

z1~x! � Q�104~x!exp ���
0

x

MQ~t ! dt� ,
z2~x! � Q�104~x!exp ���

0

x

MQ~t ! dt� ,
from which we get

y1~x! � z1~x!exp ��
1

2
�

0

x

P~t ! dt�
� Q�104~x!exp ��

0

x�MQ~t ! �
1

2
P~t !�dt� , (21)

y2~x! � z2~x!exp ��
1

2
�

0

x

P~t ! dt�
� Q�104~x!exp ��

0

x��MQ~t ! �
1

2
P~t !�dt� + (22)

Note that, in general, when xr 0,M1 � x �1 � 1
2
_ x, and recall ~20! and the fact that

P~x! � 2
g � ax b � ux

s 2

and

P '~x! � 2
abx b�1 � u

s 2 +

This means that both P '~x!0P 2~x! and Ta0P 2~x! go to zero as xr `, leading to

MQ~x! � 	 1

4
P 2~x!�

1

2
P '~x!� Ta � 	 1

4
P 2~x! �1 � 2

P '~x!

P 2~x!
� 4

Ta
P 2~x!

� ,
�

1

2
P~x! �1 �

P '~x!

P 2~x!
� 2

Ta
P 2~x!

� +
Thus,

MQ~x! �
1

2
P~x! � P~x!�

P '~x!

2P~x!
�

Ta
P~x!

(23)
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and

MQ~x! �
1

2
P~x! �

P '~x!

2P~x!
�

Ta
P~x!

+ (24)

It follows from ~21! and ~23!, after some algebra, that

y1~x! � exp � u
s 2 x 2� +

Also, it can be shown, using ~22! and ~24!, that y2~x!r 0 as xr `+
Now, note that asymptotically the general solution has the form

y~x! � c1 y1~x!� c2 y2~x!� Iyp , (25)

where y1~x! and y2~x! are given by ~21! and ~22!, respectively, and Iyp is the asymp-
totic particular solution to be found later+ The symbols c1 and c2 refer to some
coefficients+

Now, the growth condition ~15! implies that c1 � 0+ This means that in order to
show that part ~i! is true, we only need to check that Iyp is well behaved+ To this end,
we only need to look for a formal solution Iyp � ( x t (n�0~an 0x n !, which is an
asymptotic series ~see Olver @13# !+Also, keep in mind that an asymptotic series may
not converge+ There are several ways of finding the coefficients an+We shall use an
iterative method+ Rewrite ~19! as

y~x! �
q

a
x �
s 2

2a
y '' �

g � ax b � ux

a
y '

and set

yn�1~x! �
s 2

2a
yn
''~x!�

g � ax b � ux

a
yn
' ~x!,

with

y0 �
q

a
x+

It follows that

y1~x! � �
g � ax b � ux

a

q

a
� �

u

a

q

a
x

and

yn�1~x! � �� u
a
�xyn

' ~x!� ~�1!n�1� u
a
�n�1 q

a
x+
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It follows that the particular solution is asymptotic such that

Iyp �
q

a
x+

It follows from ~25! that limxr�` y~x!� cx � �`+
Next, we proceed to the proof of part ~ii!+ The form ~25! indicates that the

solution y�~x! is of the type

y�~x! � ef1~x!� yp�~x!, (26)

where f1~x! is the complementary solution and yp�~x! is a particular solution+
Note that f1~x!r 0 as xr` as shown in part ~i!+Also, note that when x � 0,

y�~x! ~the solution to Ay � px when x � 0! has an explicit form:

y�~x! � ael1~x�s! � bel2~x�s! � k1 x � k2 , (27)

where

l1 �
1

s 2 ~g � Mg2 � 2as 2 !, l2 �
1

s 2 ~g � Mg2 � 2as 2 !,

with k1 � �~ p0a!, k2 � gp0a 2 , and a and b are real coefficients to be determined+
The solution y~x! of Ay � f is continuously differentiable at the point 0+ By

matching y�~0!� y�~0! and y�
' ~0!� y�

' ~0!, we get

ae�l1 s � be�l2 s � k2 � ef1~0!� yp�~0!,

al1 e�l1 s � bl2 e�l2 s � k1 � ef1
' ~0!� yp�

' ~0!+

Using condition ~12!, y�
' ~s!� �c, leads, after some tedious but direct algebra, to

y~s!� k1 s as sr �`+ It follows that if ~c � k1! � 0, we get

L~s! � y~s!� cs � ~c � k1!sr �` as sr �`+

This completes the proof+ �

The next two lemmas pave the way for the main result of the article+

Lemma 3: If ~�p � ac! � 0 , then the solution ~s,S! satisfying (12)–(15) exists.

Proof: Write the solution of ~17! as y~x, s!+ Let

L~x, s! � y~x, s!� cx+

Then, it follows from ~11!, ~13!, and ~14! that the problem of finding ~s,S!
reduces to the problem of solving the system of nonlinear equations given by

L'~S, s! � 0,

L~s, s! � k � L~S, s!+
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First, we show that S r 0 as s r 0+ Assume that L''~s! � 0 and S � 0; this
implies that there exists some x * � ~0, S!, such that L'~x *!� 0 and L~x *! � L~S!
with L''~x *! � 0 and L''~S! � 0+ It follows from ~17! that

aL~x * ! � ~q � ac!x * � ~g � ax *b � ux * !�
1

2
s 2L''~x * !

� ~q � ac!S � ~g � aS b � uS!�
1

2
s 2L''~S!� aL~S!,

contradicting the fact that L~x *! � L~S!+ Hence, Sr 0 as sr 0+
Now, if L''~s!� 0, then the same argument used above shows that Sr 0 as sr

0+ In other words, as sr 0, we have

L~s, s! � k � L~S, s!+

Also, we know by Theorem 2 that L~s, s!r�` as sr�` and k � L~x, s!r
�` as x r �`+ This means there exists some S~s * ! � ~�`,�`! such that
L'~S *~s!, s! � 0 and L~S *~s!, s! � `, implying that as s r �`, L~s, s! � k �
L~S *~s!, s!+ The lemma is then immediate+ �

Lemma 4: Assume that ~�p � ac! � 0 and ~s,S! found from solving (12)–(15).
Then, L''~s!� 0 .

Proof: Assume that L''~s!� 0+ Note that L~S!� L~s! from ~10! implies that there
exists some x *� ~s,S! such that L'~x *!� 0+However, L'~s!� 0; hence, there exists
some Z � ~s, x *! such that L''~Z!� 0 and L'~Z!� 0 and Z is a local maximum of the
function L'+

Suppose first that x * � 0, then ~17! with x � 0 implies that L'''~Z! � 0, con-
tradicting the assertion that Z is a local maximum+

Now, if x * � 0, then ~18! gives

aL~x * ! � ~q � ac!x * � c~g � ax *b � ux!�
1

2
s 2L''~x * !

with L''~x *!� 0+ However, L'~S!� 0+ This implies that there exists a turning point
Z * � ~x *,S! such that L'~Z *!� 0 and L''~Z *! � 0, meaning that

~q � ac!x * � c~g � ax *b � ux!�
1

2
s 2L''~x * !

� ~q � ac!Z * � c~g � aZ b* � ux!�
1

2
s 2L''~Z * !,

which contradicts the fact that L~x *! � L~Z *!+ This completes the proof+ �

Lemma 5: Under the assumptions of Lemma 3, we have

(i) L'~x!� 0, s � x � S
(ii) L'~x!� 0, x � S+

The proof is similar to that of Lemma 1+
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The following corollary is immediate from Lemma 4+

Corollary 6: If ~�p � ac! � 0 , then if s is known, S is uniquely determined.

Theorem 7: Under the assumptions of Lemma 2, the ~s,S! policy is optimal for the
QVI problem (9).

Proof: We need to check that the inequalities y � My for x � s and Ay � f for
x � s are satisfied+

Now, Lemma 4 implies that the infinimum of the expression My~x! in ~8! is
achieved at the point j� S � x, s � x � S, and at j� 0 for x � S+ It follows that
My~x!� K � c~S � x!� y~S! for s � x � S and My~x!� K � y~x! for x � S+

If s � x � S, we thus have

y~x!� My~x! � y~x!� K � c~S � x!� y~S!+ (28)

It follows that

~ y~x!� My~x!!' � y '~x!� c � L'~x!� 0,

by Lemma 4+This means that y~x!� My~x!� y~S!� My~S!+Also, y~x!� My~x!�
�k for x � S+ Hence, y~x!� My~x! � 0 for x � s+

Next, we show that Ay � f for x � s+ Note that for x � s, we have

y~x! � K � c~S � x!� y~S!� y~s!� c~s � x!+

However, Ay � f, when x � s, leads to

�gc � ay~s!� acs � ~�p � ac!x+

Since ~�p � ac! � 0 and x � s � 0, it is enough to show that

�gc � ay~s!� acs � ~�p � ac!s

or, equivalently,

�gc � ay~s! � �ps+

Now, ~7! with Lemma 3 gives the result+ �

Lemma 8: If ~�p �ac!� 0 and ~s,S! is a solution obtained from solving (12)–(15).
Then, ~s,S! is the unique solution of the QVI problem (9).

Proof: Assume that we have two solutions ~s1,S~s1!! and ~s2,S~s2!!, with s1 � s2+
This means that L'~s1! � L'~s2! � 0, and L''~s1! � 0 and L''~s2! � 0 by ~12!
and Lemma 3, respectively+ This implies that there exists x * � ~s1, s2! such that
L''~x *!� 0 and L'~x *! � 0+ Also, we have Ay~x *!� f ~x *!, giving

aL~x * ! � ~�p � ac!x * � gc+
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Also, we have Ay~x *!� f ~x *! since s1 � s2, giving

�
1

2
s 2L''~x * !� gL'~x * !� aL~x * ! � ~�p � ac!x * � gc+

This is in contradiction with the assertion that L'~x *! � 0 and L''~x *!� 0+
This completes the proof+ �

Lemma 9: If ~�p � ac!� 0 , then the QVI problem (9) admits no solution.

Proof: Assume that there is a solution ~s,S! to the ~QVI! problem ~9!+ Then,

Ay � f for x � s

or, equivalently,

L~x! �
1

a
~�p � ac!x �

gc

a
+ (29)

If ~�p �ac!� 0, then, clearly, ~29! is violated when xr�`+ Therefore, ~s,S!
cannot be a solution to the QVI problem ~9! in this case+

Now, assume that ~�p � ac!� 0; then, Ay � f when x � s gives

L~S! �
gc

a
,

which, in turn, leads by ~14! and ~16! to

L~S! �
gc

a
� K+

Using the fact that Ay~S!� f ~S! and L'~S!� 0, we get

�
1

2
s 2L''~S!� aK � �~�p � ac!S if S � 0

~q � ac!S � ~aS b � uS!c if S � 0+

The left-hand side of the above inequality is strictly negative and the right-hand
side is strictly positive, which leads to a contradiction+ Theorem 1 follows from
Theorem 2 and Lemmas 1– 6+ �

Assume that we are interested in impulse-control policies of the form V �
$~ti ,Qi !%i�1, + + + , where the ti ’s represent the ordering times and the Qi ’s represent the
quantity ordered, with total cost per unit time given by

yV ~x! � lim
Tr`

Ex��
0

T

f ~x~t !! dt � (
ti�T

~K � cQi !�
T

,
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where the dynamics of the process are given by ~3! and the expectation is taken with
respect to all realizations of the process+Then,we say that V * is average cost optimal
if

yV * ~x! � inf
V

yV ~x!+

Let µ�yV * ~x!+Then, it is known ~see Lions and Perthame @10# ! that the optimal
cost y in ~2! behaves like ~~µ0a!�y0!,where y0 satisfies some QVI problem that can
be obtained from ~7!+Also, it is known that the optimal ~s,S! policy obtained from
~5! converges to the optimal policy minimizing the expected average future costs+

In this article, we proposed a new continuous-time stochastic inventory model
for stock-dependent demand items+We then formulated the problem of finding the
optimal impulse-control schedule that minimizes the total expected return over an
infinite horizon, as a quasivariational inequality problem+ The QVI was shown to
lead to an ~s,S! policy, where s and S are determined uniquely as a solution of some
algebraic equations+

We would like to point out two interesting questions that could form the basis
for some nice research problems:

1+ How much can we modify the plant equation ~4! while retaining the nice
structure of the solution?

2+ What happens if the cost function is modified to be general ~convex or
otherwise!?
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