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In this article, we propose a new continuous-time stochastic inventory model with
deterioration and stock-dependent demand items. We then formulate the problem of
finding the optimal impulse control schedule that minimizes the total expected re-
turn over an infinite horizon, as a quasivariational inequality (QVI) problem. The
QVI is shown to lead to an (s, S) policy, where s and S are determined uniquely as
a solution of some algebraic equations.

1. INTRODUCTION

In this article, we will be concerned with a single-item inventory model in which the
product experiences some kind of perishability over time. To name a few for which
this phenomenon occurs, there are food products, blood, perfumes, photographic
films, and electronic components. For more details about inventory models in the
literature treating perishable items, see Raafat [ 14], Nahmias [12], and Goyal and
Giri [7].

In the model of this article, an extra complication is added by assuming that the
demand for the product is related to the amount of stock on hand. This is motivated
by the fact that it is well known in the marketing literature that demand of certain
products is affected by the quantity displayed on the shelf. Levin et al. [9] state “At
times, the presence of inventory has a motivational effect on people around it. It is a
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common belief that large piles of goods displayed in a supermarket will lead the
customer to buy more.” A number of deterministics mathematical inventory models
dealing with this phenomenon were suggested (see, e.g., Corstjens and Doyle [5]
and Mandal and Phaujdar [117).

The model of this article combines perishability, stock-dependent demand rate,
and randomness. We do this by modeling the plant equation governing the changes
of the inventory level as a stochastic differential equation. Some of the previously
treated models are obtained as a special case of the proposed model.

Let x(7) denote the level of stock at time 7 and assume that we are allowed to
intervene at any time to increase stock to any level that we wish with setup cost
k > 0, unit cost ¢ > 0, and holding costs given by

—px for x = 0 (shortage cost)

f) {qx for x > 0 (holding cost),
withp > 0 and g > 0.

We also assume that costs are exponentially discounted at a rate a > 0.

In the model treated in this article, unmet demand is backlogged. The case of
lost sale of partially backlogged demand is not treated.

A replenishment policy consists of a sequence (7;,Q;), i = 1,..., where t,; rep-
resents the ith time of ordering and Q; represents the quantity ordered at time #;,
where t; <1, < ---.

Let

V, ={(t:,0)}i=1,.. n- (0]

Policies described by (1) are called impulse-control policies. We shall assume
that plant equation of our inventory model is given by

dx(t) = —(g + {ax(t)? + Ox(t)}H (x(t) > 0)) dt + o dw, + >, 0;6(t —t;), (2)
i=0
where I(A) is the indicator function of the set A and & is the Dirac function. The
quantities g, a, 6, and o are all strictly positive real-valued parameters, 0 < 8 < 1,
and {w,} is a standard Brownian motion. Let

Fo=oix(s),s=1,} (©)

be the o-algebra generated by the history of the inventory level x(#) up to time 7,,.

Note that if a = 6 = 0, then the model represented by (3) reduces to the standard
model where demand is driven by a Brownian motion with drift g and variance o 2.
This model has been examined by Bather [1], Sulem [15], and Harrison et al. [8].
The model can be thought of as the usual deterministic demand model in which
demand is perturbed by a Brownian motion noise. If ¢ = 0, @ = 0, and 6 > 0, then
(3) reduces to the model examined by Benkherouf and Mahmoud [2], in which the
parameter 6 is interpreted as the deterioration rate. These models were first sug-
gested by Ghare and Schrader [6] and are known in the literature as exponential
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decay models [12]. Also, the model implicitly assumes that when x(z) < 0, short-

ages have no effect on the demand as well as deterioration. If o = 0, a > 0, and

6 > 0, then the term reflecting the stock-demand phenomena is captured by ax()”.

The parameter a interpreted as a scale parameter, whereas £ is interpreted as a shape

parameter (see Goyal and Giri [7]). The form ax(¢)” may be found in[11]. For our

case, this form is convenient for technical reasons, as will become apparent later.
Note that between interventions, (2) gives

dx(t) = —(g +{ax(t)? + 0x()} (x(¢) > 0)) dt + o dw,. ()]

The plant equation (4) can be thought of as the usual plant equation of the
deterministic model (o =0, a > 0, and 6 > 0) perturbed by Brownian motion. Also,
note that the form (g + {ax(¢)# + 0x(¢)}) and the fact that o is constant guarantee the
existence of a unique nonexploding solution of (4).

Assume that V, is F,-measurable. Then, the optimal replenishment schedule
that minimizes the total discounted costs over an infinite horizon may be stated as
that of finding the sequence V* that solves

y(x) = iI"l/f(E [foof(x(t))e‘” dt + 2 (k+cQ;)e i |x(0) = x}), 5)

i=0

where the expectation is taken over all possible realizations of the process x () under
policy V. Also, let

V,=limV,=V.

n—oo
The main contributions of the article are twofold:

1. It formulates the problem stated in (5) as a quasivariational inequality (QVI)
problem following Bensoussan and Lions [3].

2. It shows that the QVT has a unique optimal solution if and only if (—p +
ac) < 0. This solution is of (s, S) type. The values of s and S are obtained as
a unique solution of some algebraic equations. This generalizes an earlier
work of Sulem [15] to the current setup.

Before we embark on dealing with objectives (1) and (2), we note that although
our results are similar in nature to those obtained by Constantinides and Richard [4]
and Sulem [15], our approach is different in a number of places and is very general
and could form a basis for a general approach for tackling inventory control models
whose dynamics are more general than those in (3).

In the next section, we formulate the problem addressed in (5) as a QVI prob-
lem. Section 3 is concerned with the issue of existence and uniqueness of the solu-
tion of the QVI problem. The article concludes with some remarks on the problem of
finding a replenishment schedule that minimizes the total cost per unit time.
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2. FORMULATION OF THE QVI PROBLEM

This section is concerned with formulating the problem of finding the optimal re-
plenishment schedule described in Section 1 that minimizes the total expected dis-
counted costs over an infinite horizon addressed in (5) as a QVI problem.

Fix r and observe the inventory level in a short time interval of length 7. Thus,
we have two cases:

1. If x(¢) > 0 and no order is made in the interval (¢, ¢ + 7), then (3) and (4)
imply that

y(x) = E[fmf(x(t))e‘““‘” ds +y(x(t+7)e *|x(t) =x|. (6)

Write
x(t+7)=x(1)+ Ax,

and use the fact that for a standard Brownian motion w,, E[w,] = 0 and
E[w?] = t. The Taylor expansion of the right-hand side of (6) gives

y(x) = 7f(x (1)) + y(x(1)) + E[Ax, ]y" (x(1))

1
+ J E[Ax 1Py (x(1)) = ary(x(1) = arE(Lx,)y" (x(1))

1
5 atE((Ax.)?)y" (x(1)) + O(1?),

leading to

1
0 =7f(x(1)) = (g + ax(t)” + Ox(1) 7y’ (x(1)) + 5 o?7y" (x(1))
—ary(x(2)) + O(7?).
Dividing by 7 and letting 7 — 0 gives
1
> a?y"(x(1) + (g + ax(t)? + 0x(1)y" (x(1)) + ay(x) = f.

2. If x(t) = 0 and no order is made in the interval (7,7 + 7), then a similar
argument to that used in case 1 gives

1
—5 0" () + gy (x(1) + ay(x(1)) = f.

3. If an order of size Q is placed at time ¢, then the inventory level jumps from
x(t) to x(z) + Q. This means

y(x(2) = k+ iréf[CQ +y(x(r) + Q)]
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Now, define two operators A and M as follows:

1
——a?y"(x) + (g + ax? + 0x)y'(x) + ay(x) ifx>0
Ay(x) = (7)
3 a?y"(x) + gy’ (x) + ay(x) ifx=0.

My(x) = k+iréf[CQ+y(X(l) +0)1. ®

Then, it follows from (7) and (8) that the optimal solution of (5) is given as a
solution of the QVI problem:

Ay =,
y =My, )
(Ay = f)(y — My) = 0.
In the next section, we shall show that QVI (9) has a unique solution if and only
if (—p + ac) < 0. This solution is characterized by a pair (s, S) which is obtained
from a unique solution of some algebraic equations.

3. SOLUTION OF THE QVI PROBLEM

Our approach in solving (9) will initially follow that of Sulem [15]. We postulate
that the optimal solution to (9) is characterized by two values s and S, where S > s.
These values divide the inventory space into two regions: the continuation region

C={xER;y(x) <My(x)} ={x ER; x> s},
where no order is made, and
Ay =1,
where A is defined in (7). The complement
C={xER;y(x) =My(n)} ={x ER; x =5},

where M is given by (8), corresponds to the states in which an order is made.
In C, we have

y(x) =k + infleQ + y(x + Q)] (10)
=k+c(S—x)+y(S). (11
To find the values of s and S, we argue as follows:

1. The solution to the QVI problem (9) is continuously differentiable and con-
tinuity at the boundary point s gives, from (11), that

y'(s) = —c. (12)
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2. The infinimum in (10) is attained at S. Hence,

y'(8) = —c (13)
3. Also, y is continuous at s, given from (11) that
y(8) =y(s) —k—c(S—s). (14)
4. Also, we require for some technical reasons (see Bensoussan and Lions [3])
that

x
lim 20 < co. a1s)

x—+oo f(x)

Condition (15) will be called the growth condition, as it is easily seen that it
means that the expected return y(s) has a growth that is at most linear at co.

THEOREM 1: There exists a unique solution to the (QVI) problem (9) if and only if
(=p + ac) <0.

The proof of Theorem 1 is lengthy and technical and proceeds in two main
stages. In the first stage, we show that (10)—(15) lead to a unique pair (s, S), where
S > s. The technical machinery needed to prove this result relies heavily on asymp-
totic analysis of differential equations—in particular, the WKB method (see Olver
[13] for more details). In the second stage, we show that this pair characterizes
uniquely the solution of the QVI problem (9).

Before we proceed to the proof, note that when the state variable x(z) lies be-
tween (s, S), then the system is left to move freely (without intervention); in this
case, the dynamics of the system evolves like the differential equation Ay = f. Now,
if 5 is strictly positive, we get s = S from (12), (13), and (15). This means that k = 0
by (14), contradicting the assumption that k > 0. Hence, s must be strictly negative.

Let

L(x) = y(x) + cx. (16)
Also, write

_ y_(x) ifx<0
y(x) = {y+(x) ifx=0

for the solution

—px ifx<O0

Ay(x) = [qx ifx=0, a7n

where A is given by (7).
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THEOREM 2: If (—p + ac) < 0, then

(i) lim,_, o, L(x) = +o0
(ii) lim,_,_. L(s) = +oo.

Proof: Note from (7) that for x > 0 we have
1
3 o%y"(x) + (g + ax? + 0x)y'(x) + ay(x) = gx. (18)

Rewrite (18) as

(g + axP + 6x)

" ! a p— q
—y"(x) +2 o2 y(x)+2?y(x)—2?x.

Let

2
P(x) = — (g + ax® + 0x),
o

_ a q
a = 2 _2’ q — 2 _2'
Then, (18) reduces to

—y"(x) + P(x)y(x) + ay(x) = gx.

Let

1 X
y(x) = Z(X)eXp{EJO P(t)dt}.

Then, it can be shown that (18) gives

—7"(x) +z(x)0(x) = c]xexp{—% foxP(t) dt}, (19)
with
— 1 2 l ’ P~
0(x) = ZP (x) — EP (x)+a

—L B 2 L B—1 ~ )
—04(g+ax + 6x) —o_z(aﬁx +0)+a. (20)
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Using the WKB method (see Olver [13]), the complementary solutions of (19) are

asymptotic, as x — + co:

zi(x) = Q'/“(x)eXP{Jr f:\/Q(t)dt},

25(x) = Q"“(X)GXP{— fx\l o(r) dt},

from which we get

~ 1 *
B =z (exp  + f P(t)dt}

~ Q1/4(x)exp{fx<\]Q(t) + %P(t))dt}, 21
~ 1 *
ya(x) = Zz(X)eXp{JrE JO P(z)dt}
(22)

~ Q'/“(x)exp{LX(—\/Q(t) + %P(t))dt}.

Note that, in general, whenx - 0,1 +x~1+ %x, and recall (20) and the fact that

g+ axP +0x
px)=2 87T
o

and
aBxP '+ 6
P'(x) = 2B—2.
o

This means that both P'(x)/P?(x) and &/P?(x) go to zero as x — oo, leading to
1 1 1 P'(x) a
o\ = /=P (x)— <P +_=/—P2 1-2 +4 ,
Q(x) \/4 (x) > (x) +a 1 (x){ P (x) Pz(x)}

~Lp {1—P/(x)+2 - }
= PO ) e [

Thus,

1 P'(x) a
VO (x) + EP(x) ~ P(x) — 2P(x) + ﬁ 23)
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and

P &
2P(x) P(x)’

1
VO (x) — 5 P(x) ~ (24)

It follows from (21) and (23), after some algebra, that

6
yi(x) =~ exp{;xz}.

Also, it can be shown, using (22) and (24), that y,(x) — 0 as x — oo.
Now, note that asymptotically the general solution has the form

y(-x) ~ Clyl(x) + Cz)’z(x) + yp’ (25)

where y;(x) and y,(x) are given by (21) and (22), respectively, and ¥, is the asymp-
totic particular solution to be found later. The symbols ¢; and ¢, refer to some
coefficients.

Now, the growth condition (15) implies that ¢; = 0. This means that in order to
show that part (i) is true, we only need to check that j, is well behaved. To this end,
we only need to look for a formal solution j, ~ > x" >,-(a,/x"), which is an
asymptotic series (see Olver [13]). Also, keep in mind that an asymptotic series may
not converge. There are several ways of finding the coefficients a,. We shall use an
iterative method. Rewrite (19) as

q o gtaxf+6x |
Y0 = Tad oy Sy
o 2a o
and set
o? gtaxf +6x |
yn+1(x) _yn (x) fyn(xl
with
q
Yo= — X
o

It follows that

and

0 6\ g
yn+1<x>~—(;>xy;,<x>~<—1>"+'(;) L4
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It follows that the particular solution is asymptotic such that
. 4
¥, ~ —x.
a

It follows from (25) that lim,_,, o, y(x) + cx = +oo.
Next, we proceed to the proof of part (ii). The form (25) indicates that the
solution y, (x) is of the type

Vi (x) = €di(x) + y,. (%), (26)

where ¢(x) is the complementary solution and yp+(x) is a particular solution.
Note that ¢;(x) — 0 as x — oo as shown in part (i). Also, note that when x < 0,
y—(x) (the solution to Ay = px when x < 0) has an explicit form:

y_(x) = aeM*7) + be2 7+ x + ks, 27)
where
1 1
A== (g+Ng>+2a0?), A= —(g—Ng*+2a0?),
o o
with k, = —(p/a), ky = gp/a?, and a and b are real coefficients to be determined.

The solution y(x) of Ay = fis continuously differentiable at the point 0. By
matching y_(0) = y, (0) and y’ (0) = y (0), we get

ae "5 + be M2 + ky = €, (0) + Yp+ 0),
Cl)‘lei/\]s + b)‘zeﬂ\zs +k = e(f)i(O) + y,’,+(0)-

Using condition (12), y’ (s) = —c, leads, after some tedious but direct algebra, to
y(s)~ ks as s — —oo. It follows that if (¢ + k;) < 0, we get

L(s) =y(s) +cs~(c+kj)s— +oo ass— —oo.
This completes the proof. u
The next two lemmas pave the way for the main result of the article.
LEMMA 3: If (—p + ac) < 0, then the solution (s,S) satisfying (12)—(15) exists.
PrOOF: Write the solution of (17) as y(x,s). Let
L(x,s) = y(x,s) + cx.

Then, it follows from (11), (13), and (14) that the problem of finding (s, S)
reduces to the problem of solving the system of nonlinear equations given by

L'(S,s) =0,
L(s,s) =k+ L(S,s).
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First, we show that § — 0 as s — 0. Assume that L”(s) > 0 and § > 0; this
implies that there exists some x* € (0, S), such that L'(x*) = 0 and L(x*) > L(S)
with L (x*) < 0 and L"(S) > 0. It follows from (17) that

1
aLl(x*) = (g + ac)x* + (g +ax*® + 6x*) + 5 o’L"(x*)

1
<(g+ac)S+ (g+aSP+6S)+ > o2L"(S) = aL(S),

contradicting the fact that L(x*) > L(S). Hence, S — 0 as s — 0.
Now, if L (s5) = 0, then the same argument used above shows that S — 0 as s —
0. In other words, as s — 0, we have

L(s,s) <k+ L(S,s).

Also, we know by Theorem 2 that L(s,s) — +ooas s — —ooand k + L(x,s) —
+o00 as x = +oo. This means there exists some S(s*) € (—oo,+00) such that
L'(S*(s),s) = 0 and L(S*(s),s) < oo, implying that as s — —oo, L(s,s) > k +
L(S*(s),s). The lemma is then immediate. u

LEMMA 4: Assume that (—p + ac) < 0 and (s,S) found from solving (12)—(15).
Then, L"(s) =< 0.

PrOOF: Assume that L"(s) > 0. Note that L(S) < L(s) from (10) implies that there
exists some x™ € (s, S) such that L' (x™) = 0. However, L' (s) = 0; hence, there exists
some Z € (s, x*) such that L"(Z) =0and L' (Z) > 0 and Z is a local maximum of the
function L'.

Suppose first that x* < 0, then (17) with x < 0 implies that L"'(Z) > 0, con-
tradicting the assertion that Z is a local maximum.

Now, if x* > 0, then (18) gives

1
aL(x*) = (g + ac)x* + c(g + ax™ + 0x) + 2 o?L"(x*)

with L”(x*) = 0. However, L' (S) = 0. This implies that there exists a turning point
Z* € (x*,S) such that L'(Z*) = 0 and L"(Z*) > 0, meaning that

1
(g + ac)x* + c(g + ax™ + 0x) + > o?L" (x*)

1
<(q+ac)Z*+c(g+aZP + 0x) + 2 o?L"(Z%),

which contradicts the fact that L(x*) > L(Z*). This completes the proof. u
LEMMA 5: Under the assumptions of Lemma 3, we have

(i) L'(x) =0, s=x=S§
(i) L'(x) =0, x=S§.

The proof is similar to that of Lemma 1.
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The following corollary is immediate from Lemma 4.
COROLLARY 6: If (—p + ac) < 0, then if s is known, S is uniquely determined.

THEOREM 7: Under the assumptions of Lemma 2, the (s, S) policy is optimal for the
QVI problem (9).

ProOOF: We need to check that the inequalities y < My for x > s and Ay = f for
Xx = s are satisfied.

Now, Lemma 4 implies that the infinimum of the expression My(x) in (8) is
achieved at the point § =S5 — x, s =x = §, and at £ = 0 for x = S. It follows that
My(x) =K+ c(S—x) + y(S) fors = x = Sand My(x) = K + y(x) for x = S.

If s = x = S, we thus have

y(x) = My(x) = y(x) = K —c(S —x) — y(S5). (28)
It follows that
(y(x) = My(x))" = y'(x) —c=L'(x) =0,

by Lemma 4. This means that y(x) — My(x) = y(S) — My(S). Also, y(x) — My(x) =
—k for x = S. Hence, y(x) — My(x) < 0 for x > s.
Next, we show that Ay = ffor x = 5. Note that for x = 5, we have

v(x) =K+ c(S—x)+y(S)=y(s) + c(s — x).
However, Ay =< f, when x = s, leads to

—gc + ay(s) + acs = (—p + ac)x.
Since (—p + ac) < 0 and x = s =0, it is enough to show that

—gc+ ay(s) +acs = (—p + ac)s
or, equivalently,

—gc+ ay(s) = —ps.

Now, (7) with Lemma 3 gives the result. u

LEMMA 8: If (—p + ac) < 0and (s,S) is a solution obtained from solving (12)—(15).
Then, (s,S) is the unique solution of the QVI problem (9).

PrOOF: Assume that we have two solutions (s, S(s;)) and (s,,S5(s,)), with s; < s,.
This means that L'(s;) = L'(s,) = 0, and L"(s;) = 0 and L"(s,) = 0 by (12)

and Lemma 3, respectively. This implies that there exists x* € (s;,s,) such that
L"(x*)=0and L'(x*) < 0. Also, we have Ay(x*) < f(x*), giving

aL(x*) < (—p+ ac)x™ + gc.
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Also, we have Ay(x*) = f(x*) since s, < s,, giving

1
~3 oL (x*) + gL' (x*) + aL(x*) = (=p + ac)x* + gc.

This is in contradiction with the assertion that L'(x*) < 0 and L"”(x*) = 0.
This completes the proof. u

LEMMA 9: If (—p + ac) = 0, then the QVI problem (9) admits no solution.
PROOF: Assume that there is a solution (s, S) to the (QVI) problem (9). Then,
Ay=f forx=s

or, equivalently,
1 gc
L(x)=—(—p+ac)x+ —. (29)
a a

If (—p + ac) > 0, then, clearly, (29) is violated when x — —oo. Therefore, (s,5)
cannot be a solution to the QVI problem (9) in this case.
Now, assume that (—p + ac) = 0; then, Ay = f when x =< s gives

c
L) =%,
a
which, in turn, leads by (14) and (16) to
L) = -k
a

Using the fact that Ay(S) = f(S) and L'(S) = 0, we get
(=p + ac)S if§<0

1
——0o?L"(S)—aK = .
2 (g+ac)S+ (aSP+6S)c if $>0.
The left-hand side of the above inequality is strictly negative and the right-hand
side is strictly positive, which leads to a contradiction. Theorem 1 follows from
Theorem 2 and Lemmas 1-6. u

Assume that we are interested in impulse-control policies of the form V =
{(#;,0:)}i=1...., where the #;’s represent the ordering times and the Q,’s represent the
quantity ordered, with total cost per unit time given by

E, Tf(x(r)) dt+ 2, (K + cQ,)

;=T

= i
YV(X) Tgrc}o T
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where the dynamics of the process are given by (3) and the expectation is taken with
respect to all realizations of the process. Then, we say that V* is average cost optimal
if

yy(x) = iI‘l/ny(x).

Letu = yy+(x). Then, it is known (see Lions and Perthame [10]) that the optimal
costyin (2) behaves like ((u/a) + y,), where y, satisfies some QVI problem that can
be obtained from (7). Also, it is known that the optimal (s, S) policy obtained from
(5) converges to the optimal policy minimizing the expected average future costs.

In this article, we proposed a new continuous-time stochastic inventory model
for stock-dependent demand items. We then formulated the problem of finding the
optimal impulse-control schedule that minimizes the total expected return over an
infinite horizon, as a quasivariational inequality problem. The QVI was shown to
lead to an (s, S) policy, where s and S are determined uniquely as a solution of some
algebraic equations.

We would like to point out two interesting questions that could form the basis
for some nice research problems:

1. How much can we modify the plant equation (4) while retaining the nice
structure of the solution?

2. What happens if the cost function is modified to be general (convex or
otherwise)?
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