
Probability in the Engineering and Informational Sciences, 32, 2018, 323–339.

doi:10.1017/S0269964817000286

MULTI-CLASS RESOURCE SHARING WITH
PREEMPTIVE PRIORITIES

ISI MITRANI

School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK

E-mail: isi.mitrani@ncl.ac.uk

Different virtual machines can share servers, subject to resource constraints. Incoming jobs
whose resource requirements cannot be satisfied are queued and receive service according
to a preemptive-resume scheduling policy. The problem is to evaluate a cost function,
including holding and server costs, with a view to searching for the optimal number of
servers. A model with two job types is analyzed exactly and the results are used to develop
accurate approximations, which are then extended to more than two classes. Numerical
examples and comparisons with simulations are presented.

Keywords: queueing theory, simulation, stochastic modeling

1. INTRODUCTION

This paper is concerned with the provision of several classes of service, with different pat-
terns of demand and different resource requirements. To run a job of a given type, a virtual
machine (VM) of that type is instantiated on one of the available servers. The resource
capacity of a server is bounded, so that the ability of allocating a VM to it depends
both on the type of the new job and on the numbers and types of the other jobs already
running.

The quality of service offered to the different classes is regulated by a queueing policy
based on preemptive priorities. There are costs associated, on the one hand, with holding
jobs in the system, and on the other hand, with operating the servers. In the applications we
have in mind, servers are hired from a cloud. Hence, the numbers involved are not considered
to be large. They tend to be of the order of tens, rather than the thousands that are typically
available in a service center. The number of job types is also, typically, not large. In the
Amazon cloud, for example, the M3 family of VM instances has four types: medium, large,
extra-large and extra-extra-large (https://aws.amazon.com/ec2/instance-types/).

In order to evaluate the server allocation trade-offs, it is necessary to analyze a multi-
class queueing model with multiple shared servers. The purpose of that analysis is to provide
exact and approximate procedures for computing the cost function for a given set of param-
eters. Those procedures would then be used to search for the optimal number of servers,
whenever an allocation decision is to be made.
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324 I. Mitrani

The assumption is that the traffic parameters (arrival and service rates) remain fixed
for periods that are long enough for the system to be treated as having reached steady
state. In practice, the resource provisioning policy would have to be supplemented by some
monitoring and parameter estimation mechanism that would estimate those parameters and
detect when they change. At the beginning of each such period, one would decide how many
servers to allocate by applying a solution algorithm and searching for the optimum.

A model with two job types, formulated as a two-dimensional Markov process infinite
in both directions, is solved exactly using a combination of one-dimensional and two-
dimensional generating functions. The analysis also suggests an accurate approximation
which is less complex, more numerically stable and more scalable than the exact solution.
The solutions are then generalized recursively to more than two job types, by means of
aggregations based not on total offered load but on previously computed average queue
sizes.

The novel feature of our models is that, because VMs with different resource require-
ments share a server, an incoming higher priority job may interrupt and displace more
than one lower priority jobs simultaneously. Similarly, the completion of a higher prior-
ity job may allow several lower priority jobs to enter service simultaneously. Therefore,
although the methodology of transforming balance equations into generating functions has
been applied before, the present analysis is different. The approximate solution and the
generalization to more than two job types are also new.

The special case when each server can accommodate only one VM at a time, that
is, the multi-class M/M/n preemptive priority queue, has been studied quite extensively.
Harchol-Balter et al. [6] used phase-type distributions to approximate various busy periods
and recursively reduce the dimensionality of the model to one. The resulting QBD process
is solved by matrix-analytic methods. The numerical complexity of that approach increases
quite rapidly with the number of servers, the number of job types and the number of phases
in the PH distribution. In Mitrani and King [12] and Gail, Hantler and Taylor [5], the
two-class case was solved by means of generating functions. A similar approach was taken
by Kao and Narayanan [8]. A variant of the preemptive-priority policy involving queue size
thresholds was examined by Feng, Kawada, and Adach [3].

The multi-class M/M/n model with non-preemptive priorities is also interesting. The
two-class case was analyzed by Gail, Hantler, and Taylor [4] and Kao and Wilson [7], and (in
the threshold variant) by Feng, Kawada, and Adach [2]. Kella and Yechiali [10] considered
the special case where the average service times for all job types are the same. Some of those
approaches could possibly be adapted to our system, assuming that VMs are allocated to
servers according to a non-preemptive priority policy. However, that analysis would be
rather complex and should be deferred to a separate undertaking.

Other, more distantly related works have sought to circumvent the difficulties of multi-
dimensional processes by restricting the state space, so that only a finite number of jobs
of certain types are allowed in the system. This was done by Kao and Narayanan [8,9] for
both the preemptive and non-preemptive cases.

The optimization problem with respect to the number of servers has not received much
attention, except in comparing the performance of the n-server system against that of a
single server with an equivalent total service capacity (Harchol-Balter et al. [6], Wierman
et al. [14]). The maximization of profit in a multi-class system where jobs that cannot enter
service on arrival are rejected, was examined by Ezhilchelvan and Mitrani [1].

The exact analysis of the two-class model is presented in Section 2, while Section 3
describes the approximations and generalizations to more than two classes. Section 4
contains some numerical and simulation results aimed at evaluating the accuracy of the
approximations.
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2. TWO JOB TYPES: EXACT RESULTS

We start by assuming that a server may be shared by VMs of two different types, 1 and 2, and
that type 1 jobs have preemptive-resume priority over type 2. Instantiations, interruptions
and resumptions of service are instantaneous (in practice, of course, they take some time,
but those overheads are assumed sufficiently small to be neglected; see Voorsluys et al.
[13]). Jobs of types 1 and 2 arrive in independent Poisson streams with rates λ1 and λ2,
respectively; their service times are independent random variables distributed exponentially
with means 1/μ1 and 1/μ2, respectively.

The computational resources of a server may be expressed in terms of “virtual proces-
sors” (or vCPU), of which the total number available is V . The resource requirements of
the two job types are v1 and v2, respectively. Hence, i jobs of type 1 and j jobs of type 2
can share the server without interference, provided that iv1 + jv2 ≤ V . Typically v1 > v2,
since higher priority is usually given to the jobs that bring in bigger revenues, and those
tend to be the more demanding ones.

Thus, one type 1 job uses as much resource as k type 2 jobs, where k = v1/v2. Assume,
to begin with, that that number is an integer. The maximum possible number of type 1
jobs in service is s1 = V/v1, also assumed to be an integer. The corresponding number for
type 2 is s2 = s1k. In the Amazon example mentioned in the “Introduction”, if the two
job types are, say, “extra-extra-large” and “large”, then their requirements are v1 = 8 and
v2 = 2, respectively. Hence, for a server with 16 vCPU, s1 = 2, k = 4 and s2 = 8. That is,
such a server can be shared by a maximum of two type 1 and zero type 2 jobs, or one type
1 and four type 2 jobs, or zero type 1 and eight type 2 jobs.

In a system containing n-identical servers, the total amount of vCPU available is nV
and the maximum number of type 1 jobs in service is m = ns1. Moreover, if i type 1 jobs
are being served, then the maximum number of type 2 jobs in service is k(m − i). Any job
that cannot be admitted into service joins an unbounded queue of its type.

The two numbers, m and k, together with the job arrival rates and average service times,
are the parameters of our model. Note that in this formulation, the nature of the physical
resource requirements, be they processors, memory, bandwidth, etc., is not important. It is
enough to know the bound m on the number of type 1 jobs in service and the equivalence
of 1-to-k between the two types. These two quantities will be referred to as the “type 1
service capacity” and the “type 2 equivalence”, respectively. The product mk is the type 2
service capacity.

Suppose that each type 1 (type 2) job incurs a holding cost of c1 (c2) per unit time
spent in the system. Each server incurs cost c3 per unit time. The total long-term average
cost incurred per unit time in an n-server system is then

C = c1L1 + c2L2 + c3n, (1)

where L1 and L2 are the steady-state average numbers of type 1 and 2 jobs present in the
system. The objective of the analysis is to provide algorithms for computing the right-hand
side of (1), so that C can be minimized with respect to the number of servers, n.

We have no formal proof that the cost function (1) has a single minimum in terms of
n, but that is invariably observed to be the case. Intuitively, if the cost of adding an extra
server exceeds the benefit derived from it, then adding even more servers is not going to
help. Therefore, the search for the best n can stop as soon as C starts increasing.

Since type 1 jobs have preemptive priority, they are not affected in any way by the
existence of type 2. When there are i type 1 jobs present, their instantaneous completion
rate is iμ1 if i < m and mμ1 if i ≥ m. Hence, the type 1 queue behaves like an M/M/m queue
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with offered load ρ1 = λ1/μ1; steady-state exists when ρ1 < m and there is a well-known
closed-form expression for L1 (see, e.g., Mitrani [11]).

The difficulty is in computing L2. For that, it is necessary to consider the joint equilib-
rium distribution of the type 1 and 2 jobs in the system. Intuitively, both queues are stable
if the total offered load, expressed in terms of type 2 job equivalents, is lower than the type
2 service capacity:

ρ1k + ρ2 < mk, (2)

where ρ2 = λ2/μ2. This inequality implies ρ1 < m, which is the stability condition for an
isolated queue 1.

We shall establish later that (2) is indeed the ergodicity condition for the two-
dimensional Markov process.

Denote by pi,j the steady-state probability that there are i type 1 and j type 2
jobs present (i, j = 0, 1, . . .). When i < m, these probabilities satisfy the following balance
equations:

[λ1 + λ2 + iμ1 + μ2(i, j)]pi,j = λ1pi−1,j + λ2pi,j−1 + (i + 1)μ1pi+1,j

+ μ2(i, j + 1)pi,j+1; j = 0, 1, . . . , (3)

where a probability with a negative index is 0 by definition, and

μ2(i, j) =

{
jμ2 if j < (m − i)k
(m − i)kμ2 if j ≥ (m − i)k.

(4)

When i ≥ m, the servers are fully occupied by type 1 jobs and the service rate for type
2 is 0. The balance equations become

[λ1 + λ2 + mμ1]pi,j = λ1pi−1,j + λ2pi,j−1 + mμ1pi+1,j ; j = 0, 1, . . . . (5)

To determine pi,j , introduce the generating functions

gi(z) =
∞∑

j=0

pi,jz
j ; i = 0, 1, . . . . (6)

We shall also need the bi-variate generating function corresponding to the states where
i ≥ m:

g(y, z) =
∞∑

i=m

gi(z)yi−m. (7)

Consider first the region i ≥ m. Multiplying (5) by zj and summing over all j, those
equations are transformed into

[λ1 + λ2(1 − z) + mμ1]gi(z) = λ1gi−1(z) + mμ1gi+1(z); i = m,m + 1, . . . . (8)

Now, multiplying (8) by yi−m and summing over i ≥ m, yields after a little manipulation,

a(y, z)g(y, z) = λ1ygm−1(z) − mμ1gm(z) (9)

where
a(y, z) = λ1y(1 − y) + λ2y(1 − z) + mμ1(y − 1). (10)

Note that, for every z in the interval [0,1), the quadratic a(y, z) is negative at y = 0,
positive at y = 1 and negative at y = ∞. Therefore, for each such value of z, it has exactly
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two real zeros, 0 < y1(z) < 1 and 1 < y2(z). The smaller of these is given by

y1(z) =
d −

√
d2 − 4λ1mμ1

2λ1
, (11)

where d = λ1 + λ2(1 − z) + mμ1. At z = 1, y1(1) = 1.
Since g(y, z) is the generating function of part of a stationary distribution, it is finite

at y = z = 1. Therefore, the right-hand side of (9) must vanish at points [z, y1(z)], for all
0 ≤ z ≤ 1. This gives a relation between gm(z) and gm−1(z):

mμ1gm(z) = λ1y1(z)gm−1(z). (12)

Substituting (12) back into (9), and remembering that a(y, z) can be written as λ1(y −
y1(z))(y2(z) − y), we obtain a simple expression for g(y, z) in terms of gm−1(z):

g(y, z) =
gm−1(z)
y2(z) − y

. (13)

When i < m, there is service capacity available to type 2 jobs. Moreover, the dependency
of μ2(i, j) on j, in states where j < (m − i)k, means that the probabilities of those states
remain explicit after the balance equations are transformed using the generating functions
gi(z). For each i = 0, 1, . . . ,m − 1, multiply (3) by zj and sum over all j ≥ 0. This yields
the following set of equations:

ai(z)gi(z) = λ1zgi−1(z) + (i + 1)μ1zgi+1(z) + qi(z); i = 0, 1, . . . ,m − 1, (14)

where g−1(z) = 0 by definition,

ai(z) = (λ1 + iμ1)z + λ2z(1 − z) + (m − i)kμ2(z − 1); i = 0, 1, . . . ,m − 1, (15)

and

qi(z) = μ2(z − 1)
(m−i)k−1∑

j=0

[(m − i)k − j]pi,jz
j . (16)

In the last of Eq. (14), when i = m − 1, gm(z) can be eliminated by means of (12),
leading to

bm−1(z)gm−1(z) = λ1zgm−2(z) + qm−1(z), (17)

where

bm−1(z) = λ1z(1 − y1(z)) + (m − 1)μ1z + λ2z(1 − z) + kμ2(z − 1), (18)

with y1(z) given by (11).
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This set of simultaneous equations can be written in matrix and vector form as

A(z)g(z) = q(z), (19)

where g(z) = [g0(z), g1(z), . . . , gm−1(z)], q(z) = [q0(z), q1(z), . . . , qm−1(z)] (both are col-
umn vectors), and A(z) is the tri-diagonal matrix

A(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0(z) −μ1z

−λ1z a1(z) −2μ1z

−λ1z a2(z) −3μ1z

. . .

−λ1z am−2(z) −(m − 1)μ1z

−λ1z bm−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The solution of (19) is given by

gi(z) =
Di(z)
D(z)

; i = 0, 1, . . . , m − 1, (20)

where D(z) is the determinant of A(z) and Di(z) is the determinant of the matrix obtained
from A(z) by replacing its (i + 1)st column with the column vector q(z).

In the right-hand side of (20), there are km(m + 1)/2 unknown constants, the probabili-
ties pi,j for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , k(m − i) − 1. However, in order to determine
them, it is necessary to include among the unknowns all probabilities pi,j for i = 0, 1, . . . ,m
and j = 0, 1, . . . , km − i − 1. This is a larger set when k > 1. It contains (2k − 1)m(m + 1)/2
unknowns.

The (2km − m − 1)m/2 balance Eq. (3), for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , km −
i − 2 involve these unknowns. In addition, relation (12) between gm(z) and gm−1(z)
yields (km − m) equations expressing pm,j (j = 0, 1, . . . , km − m − 1) in terms of pm−1,j .
Specifically,

pm,j =
λ1

mμ1

j∑
s=0

vspm−1,j−s; j = 0, 1, . . . , km − m − 1, (21)

where vs = y
(s)
1 (0)/s! are the Maclaurin expansion coefficients for y1(z). These are easily

calculated by means of recurrences. Expression (11) gives

v0 =
u −

√
u2 − 4λ1mμ1

2λ1
,

with u = λ1 + λ2 + mμ1. Then, equating (10) to 0 and taking derivatives at z = 0, we obtain

vj(u − 2λ1v0) = λ2vj−1 + λ1

j−1∑
s=1

vj−svs; j ≥ 1. (22)

There is now a shortfall of m equations with respect to the number of unknowns. One
more equation is provided by the normalization condition: all probabilities pi,j must add
up to 1:

m−1∑
i=0

gi(1) + g(1, 1) = 1. (23)

An equivalent way of formulating this equation is by remembering that the marginal
distribution, pi,·, of type 1 jobs in the system is that of an M/M/m queue. Hence, the value
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of g0(1), say, is given by the known expression for the probability that the M/M/m queue
is empty. Equating that expression to the right-hand side of (20), for i = 0 and z = 1, and
performing manipulations in order to avoid an indeterminacy and to simplify the result,
produces a rather intuitive equation for the steady-state average number of type 2 service
vacancies, in terms of the two offered loads:

m−1∑
i=0

(m−i)k−1∑
j=0

((m − i)k − j)pi,j = mk − ρ1k − ρ2. (24)

The derivation of (24) is shown in more detail in the Appendix.
Equation (24) also establishes the necessity of condition (2) for the stability of the

queueing process. Clearly, if a normalizable steady-state distribution pi,j exists, then the
right-hand side of (24) must be positive.

The sufficiency of (2) is implied by the following result.

Lemma 2.1: If condition (2) holds, then D(z) has exactly m − 1 real and distinct zeros in
the interval (0,1), in addition to the zero at z = 1.

The proof of the lemma is in the Appendix.
Consider one of the generating functions, say g0(z). It is finite on the interval (0,1), so

the numerator D0(z) must vanish at the m − 1 zeros of D(z) on that interval. Those m − 1
equations, together with the others described earlier, provide a set of (2k − 1)m(m + 1)/2
equations, which determines the (2k − 1)m(m + 1)/2 unknown constants.

Using other generating functions would not provide new independent equations because
of the relations between them.

Since (2) enables the determination of a normalizable stationary distribution, it is a
sufficient condition for the stability of the process.

Having computed the unknown probabilities, the average number of type 2 jobs present
in the system is obtained from

L2 =
m−1∑
i=0

g′i(1) +
∂

∂z
g(1, 1). (25)

The derivatives g′i(1) can be computed either by applying the rule for differentiating a
determinant, or more simply by using the definition of a derivative:

g′i(1) ≈ gi(1) − gi(δ)
1 − δ

, (26)

for some value of δ suitably close to 1. The last term in the right-hand side of (25) involves
the larger zero, y2(z), of a(y, z), defined by (10). That function can be shown to satisfy

y2(1) =
mμ1

λ1
; y′

2(1) = − λ2mμ1

λ1(mμ1 − λ1)
. (27)

The cost function (1) can now be evaluated for different values of n, in order to find
the optimal number of servers to hire.
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3. APPROXIMATIONS AND GENERALIZATIONS

The bulk of the computational effort expended in the evaluation of (1) goes into finding the
m − 1 zeros of D(z) in the interval (0,1), and solving the set of (2k − 1)m(m + 1)/2 linear
equations. That effort grows quite steeply with m and k; its numerical complexity is on the
order of O(k3m6). Moreover, the exact solution may have problems with instability. As m
increases, some of the zeros of D(z) tend to bunch together, causing the matrix of the set
of linear equations to become ill-conditioned. It is therefore highly desirable to develop an
approximate solution that is faster and more stable. This is what we now propose.

The idea is to make an accurate guess for the probabilities that appear in the right-hand
side of (20). We shall assume that the values of pi,j , for i ≤ m − 1 and j ≤ (m − i)k − 1,
have the form

pi,j = H
ρi
1ρ

j
2

i!j!
, (28)

where H is an appropriately selected constant. These expressions satisfy some of the bal-
ance equations for pi,j , namely all those where both pi+1,j and pi,j+1 belong to the set of
unknowns.

The normalization constant H is chosen so that (24) is satisfied:

H = (mk − ρ1k − ρ2)

⎡
⎣m−1∑

i=0

(m−i)k−1∑
j=0

((m − i)k − j)
ρi
1ρ

j
2

i!j!

⎤
⎦
−1

. (29)

From this point on, the computation proceeds as in the exact solution. Equations (20)
and (26) are used to compute g′i(1), and (25) provides the value of L2. It turns out that the
choice of estimates (28), together with the exact normalization (29), produces a very good
approximation. Its accuracy will be illustrated in Section 4.

3.1. More than Two Job Types

Consider now an n-server system with three preemptive priority job types and unbounded
queues, under Markovian assumptions. The arrival rates are λ1, λ2, λ3, and the average
service times are 1/μ1, 1/μ2, 1/μ3, respectively.

As before, assume that each server can accommodate a maximum of s1 jobs of type
1, that is, up to m = s1n such jobs can be in service at any one time. Each type 1 job
is equivalent, in terms of resources required, to k1 jobs of type 2, and each type 2 job is
equivalent to k2 jobs of type 3. Hence, the product mk1k2 is the service capacity available
to type 3.

All three queues are stable when the total offered load, expressed in terms of type 3 job
equivalents, is lower than the type 3 service capacity:

ρ1k1k2 + ρ2k2 + ρ3 < mk1k2. (30)

This condition implies the stability of queue 1 isolated from queues 2 and 3 (ρ1 < m), and
also of queues 1 and 2 isolated from queue 3 (ρ1k1 + ρ2 < mk1).

The exact solution of the above model is currently intractable. There is no known
methodology for tackling a three-dimensional Markov process where all three dimensions
are infinite. We therefore propose an approximation based on aggregating types 1 and 2
into a single higher priority job type, called type h, with exponentially distributed service
times. One would then apply either the exact or the approximate solution to the system
consisting of the two priority types, h and 3.
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The arrival rate for jobs of type h is clearly equal to λh = λ1 + λ2. However, it is far
from obvious how best to set the other parameters associated with type h: the average
service time, 1/μh, the type h service capacity, mh, and the type 3 equivalence, kh, of one
type h job.

These parameters should, ideally, satisfy the following conditions:

(a) mhkh = mk1k2. The type 3 service capacity can be expressed in terms of either
equivalent type h jobs or equivalent type 1 and 2 jobs.

(b) ρhkh = ρ1k1k2 + ρ2k2 (where ρh = λh/μh is the offered load of type h). The type 3
service capacity occupied by higher priority jobs can be expressed in terms of either
type h or types 1 and 2.

(c) The average number of jobs, Lh, in the M/M/mh queue with offered load ρh, is equal
to L1 + L2, where the latter is obtained by solving the model with the two priority
types 1 and 2.

Unfortunately, these three conditions are not, in general, compatible. For example, if
k1 = k2 = 1, then kh = 1 and (b) suggests the standard aggregation ρh = ρ1 + ρ2. This
leads to a value for Lh which tends to underestimate the known total L1 + L2 (because a
hyperexponential service time distribution is replaced by an exponential one with a lower
variance). Moreover, the requirement that both mh and kh should be integers is difficult to
satisfy.

The proposed approximation lays emphasis on (c), using that condition to calibrate the
behavior of type h. The reduction in the service time variance resulting from the aggregation
of types 1 and 2 is compensated by an appropriate choice of the type h service capacity and
offered load.

Eliminating kh from (a) and (b) yields

mh =
mk1

ρ1k1 + ρ2
ρh. (31)

Note that the value of of mh obtained from (31) is always larger than ρh, because of (30).
Find ρh, and m∗ such that (a) m∗ is given by the right-hand side of (31), and (b) the

average number of jobs in the M/M/m∗ queue with offered load ρh is equal to L1 + L2.
Note that this search does not require integer values for m∗. The M/M/m∗ queue is simply
a Birth-and-Death process where the instantaneous departure rate in state j is jμ if j < m∗

and m∗μ if j ≥ m∗.
The service capacity of type h is chosen as the integer part of m∗: mh = �m∗�. The

offered load ρh gives the service rate parameter for type h, μh = λh/ρh, while the equivalence
parameter kh is set according to (a):

kh =
mk1k2

mh
. (32)

This is not necessarily an integer. However, a review of the two-queue solution in the previous
section shows that it does not have to be. The definition of μ2(i, j) in (4) holds for non-
integer values of k, as do those of ai(z) and bm−1(z) in (15) and (18), respectively. The
unknown probabilities that appear in (16) are those for which j < �(m − i)k	, where �x	 is
the lowest integer greater than or equal to x. The application of the approximate solution
based on (28) is equally straightforward.

Thus, the approximate solution of the three-queue model proceeds in two steps. First,
the model consisting of types 1 and 2 is solved, in order to compute L1 and L2. These two
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types are then aggregated into type h, as described above, and the model consisting of types
h and 3 is solved in order to compute L3.

More generally, if there are T job types in the system, with type 1 service capacity
m and each type t job equivalent to kt jobs of type t + 1 (t = 1, 2, . . . , T − 1), then the
condition for stability is

T∑
t=1

ρtKt < mK1, (33)

where Kt = ktkt+1, . . . , kT−1 is the equivalence of a type t job in terms of type T jobs;
KT = 1.

The approximate solution has T − 1 steps. Step 1 yields L1 and L2. Step 2 aggregates
types 1 and 2 and computes L3, as described above. In step t (t ≥ 3), the previously aggre-
gated job types 1, 2, . . . , t − 1 represent type 1, type t is type 2 and type t + 1 is type 3. The
above procedure then produces a single high priority type, h, comprising types 1, 2, . . . , t.
The 2-type solution is applied to types h and t + 1, in order to compute Lt+1. In the last
step, T − 1, LT is computed after aggregating all the other job types 1, 2, . . . , T − 1 into a
single type.

4. ACCURACY OF THE APPROXIMATIONS

Our purpose in this section is to evaluate, numerically or by simulation, the accuracy of the
various approximate solutions that have been proposed.

The first experiment compares the exact and approximate solutions of the 2-type model,
for increasing offered load of type 2. In this example, the type 2 equivalence is k = 4, that
is, a type 1 job requires as much resource as four jobs of type 2. The maximum number
of type 1 jobs that can be in service is m = 6. This could represent a six-server system
with s1 = 1, or a three-server system with s1 = 2, or a two-server system with s1 = 3, or a
one-server system with s1 = 6. In all cases, the total type 2 service capacity is 24.

The fixed traffic parameters are λ1 = 3, μ1 = 1 and μ2 = 2. The system is stable as long
as ρ2 < 24 − 4ρ1, or λ2 < 24. The exact and approximate values of L2 are computed for 11
different type 2 arrival rates, ranging from λ2 = 2 to λ2 = 22. That is, the total utilization
of the system ranges from just over 50% to more than 90%.

The results are illustrated in Figure 1. It is notable that both the absolute and the
relative errors of the approximation are very small. That is true over the entire range of
offered loads. In fact, the relative errors decrease, from about 5% at the lower loads, to <2%
at the higher ones.

It can also be observed that the approximate solution is slightly pessimistic: it consis-
tently overestimates the average type 2 queue sizes, although by small amounts. We have
no intuitive explanation for this. It is somehow a consequence of the expressions (28) for
the probabilities pi,j .

The next example compares the exact and approximate values of the costs incurred
when the number of servers increases. The parameters are as in Figure 1, except that the
type 2 arrival rate is now fixed at λ2 = 4, and s1 = 1. That is, the maximum number of
type 1 jobs in service is equal to the number of servers, m = n. The type 1 holding costs
are twice as large as those for type 2: c1 = 2, c2 = 1. The cost of a server is c3 = 1.

The number of servers in Figure 2 varies between n = 4, which is the smallest number
that can cope with the offered load of 4ρ1 + ρ2, and n = 9. At the start of that range
the total cost incurred is high because the value of L2 is large and the holding cost
dominates. For large n, the increasing server cost dominates. The approximate costs are
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Figure 1. Two job types; increasing λ2. λ1 = 3, μ1 = 1, μ2 = 2, m = 6, k = 4.

almost indistinguishable from the exact ones and correctly predict the optimal number of
servers, n = 6.

It is worth pointing out the limitations of the exact solution with respect to the value
of m. In the above example, if the system with λ2 = 4 and m = 6 is scaled up by a factor of
5, to λ2 = 20 and m = 30, the solution still works. However, if it is scaled up by a factor of
10, to λ2 = 40 and m = 60, then the computation of the unknown probabilities fails. The
matrix of the set of simultaneous linear equations, whose dimensions are then 5490 × 5490,
becomes ill-conditioned. It is for that reason that the approximate solution is important. It
copes easily with the scaled system.

Next, we examine systems with three job types. Since there is no exact solution for
these models, the approximation proposed in the previous section will be compared against
simulations. Moreover, when evaluating the intermediate results for two job types that form

Figure 2. Two job types; increasing number of servers. λ1 = 3, λ2 = 4, μ1 = 1, μ2 = 2,
m = n, k = 4, c = (2, 1, 1).
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part of the three-type computation, we apply the approximate two-type solution. The exact
solution would make very little difference.

Again we use examples where a job of type 1 requires as much resource as four jobs of
type 2 (k1 = 4), but now a job of type 2 is equivalent to two jobs of type 3 (k2 = 2). Thus,
if the offered loads of types 1, 2, and 3 are ρ1, ρ2, and ρ3, respectively, then the total type
three-equivalent offered load is 8ρ1 + 2ρ2 + ρ3. For stability, that should be lower than the
type 3 service capacity, mk1k2 = 8m.

Figure 3 compares the estimated and simulated values of the average type 3 queue size,
L3, for increasing type 3 arrival rates. The other traffic parameters are: λ1 = 3, λ2 = 6,
μ1 = 1, μ2 = 2, μ3 = 3. The maximum number of type 1 jobs in service is m = 6. That
could represent, among others, a six-server system where s1 = 1. Consequently, the type 3
service capacity is 48, and types 1 and 2 utilize more than 60% of it. For the chosen values
of λ3, the total system utilization ranges between 65 and 85%.

Each simulated point corresponds to a run where about a million jobs of all types go
through the system. That run is divided into 10 portions of equal size for the purpose of
obtaining a sample of observations and computing 95% confidence intervals.

The figure shows a close agreement between approximation and simulation. Indeed, all
approximated points lie within the confidence intervals of the corresponding simulated ones.
The slight underestimation of L3 by the model at low to medium values of λ3 is probably
due to the fact that an aggregation of job types reduces the variability of the process. In fact,
we have observed in other examples that the underestimation becomes more pronounced
when the higher priority job types, 1 and 2, consume a bigger fraction of the type 3 service
capacity. There is no obvious explanation for the apparent crossover into an overestimation
at high values of λ3; this may be due to the particular way of constructing the aggregation.

Figure 4 compares the estimated and simulated costs of the three-type system for
increasing number of servers. There is a maximum of one type 1 job per server, that is,
m = n. The equivalence numbers are again k1 = 4, k2 = 2. The three arrival rates are λ1 = 2,
λ2 = 6 and λ3 = 12; the service rates are kept as before, μ1 = 1, μ2 = 2 and μ3 = 3. Hence,
the smallest number of servers that can cope with the offered load of 8ρ1 + 2ρ2 + ρ3 is
n = 4; the utilization of those four servers would then be more than 81%, and about 70%

Figure 3. Three job types; increasing λ3. (λ1, λ2) = (3, 6), μ = (1, 2, 3),
(m, k1, k2) = (6, 4, 2).
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Figure 4. Estimated and simulated costs; increasing n. λ = (2, 6, 12), μ = (1, 2, 3),
(m, k1, k2) = [n, 4, 2], c = [4, 2, 1, 1].

would be used by types 1 and 2. The holding costs are c1 = 4, c2 = 2, and c3 = 1, while the
server cost is c4 = 1.

The results of the approximation are now less accurate at the heavily loaded end of the
range. The first two estimated points are outside the 95% confidence intervals of the corre-
sponding simulated ones. However, the agreement between the two plots is still sufficiently
close for the optimal number of servers to be correctly predicted by the approximation.

The last experiment concerns a system with four job types. In Figure 5, the approx-
imated values of L4 are compared with the simulated ones, for increasing type 4 arrival
rates. The system parameters are specified in the caption. In this example, the type 4 ser-
vice capacity is 144, of which about 68% is consumed by types 1, 2, and 3. The type 4 traffic
makes the total utilization range from 69 to 78%.

Figure 5. Four job types; increasing λ4. (λ1, λ2, λ3) = (3, 6, 12), μ = (1, 2, 3, 4),
(m, k1, k2, k3) = [6, 4, 3, 2].
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We observe that the model consistently underestimates the values of L4. As the load
increases, the variability of the process increases considerably, as shown by the large confi-
dence intervals. Much of that variability is eliminated by the aggregation procedure. Hence,
the accuracy of the approximation has decreased. The relative errors are now on the order
of 10%. The absolute ones increase with the load.

It is clear that, in heavily loaded systems, the quality of the approximation would
deteriorate further with the addition of more job classes. However, at light to moderate
loads, the approximations we have proposed are adequate.

5. CONCLUSION

The contribution of this paper is threefold: first, it presents an exact solution for a model
where several servers are shared unequally between two preemptive priority job types with
different resource requirements. Second, an efficient and accurate approximation for the
same model is developed. This eliminates certain defects of the exact solution, such as high
numerical complexity and possible instability. Third, the generalization to more than two
job types is handled by an approximate solution, which relies on a non-standard aggrega-
tion of higher priority job types and consecutive applications of two-type solutions. That
approximation produces accurate estimates, as long as the offered loads are not too high.

Both the exact and the approximate solutions could be easily adapted to models where
higher priority jobs have lower resource requirements. That is, a type 2 job could be equiv-
alent to k type 1 jobs. The equations for the generating functions gi(z) would then be
different, but the solution methodology would still apply.

One of the assumptions of the model was that V/v1 is an integer. Otherwise, there
would still be some resource capacity available in the server when the maximum number,
s1 = �V/v1�, of type 1 jobs are being served (�x� is the integer part of x). If that leftover
capacity is not enough to run a type 2 job, then the analysis would remain the same.
However, if there is a non-zero service rate for type 2 when the maximum number of type
1 jobs are in service, then the treatment of the bi-variate generating function would be
considerably more complicated. That would be a topic for future research.

If, instead of a single resource type, there are R resource types, with a server capacity
Vr and a type 1 requirement v1,r for resource of type r, then the maximum number of type
1 jobs that can share a server would be

s1 = min
r

{⌊
Vr

v1,r

⌋}
,

and there would be an appropriate type 2 equivalence parameter k. As explained above, our
analysis would remain valid provided that, when there are s1 jobs of type 1 in the server,
the type 2 service rate is 0.

Another worthy topic for further research would be to solve this kind of model with
non-preemptive priorities. Again, the analysis would be more complicated because jobs of
type 2 may be in service regardless of how many type 1 jobs are present. However, it
may be possible to adapt the approach of Gail, Hantler, and Taylor [4], and to develop
approximations of the sort presented here.
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APPENDIX

Appendix A: Derivation of Eq. (24)

Consider first the numerator in the right-hand side of (20), for i = 0. According to (16), we can
write

D0(z) = μ2(z − 1)d0(z), (A.1)

where d0(z) is obtained from D0(z) by replacing the first column vector, q(z), with the vector
whose elements are

si(z) =

(m−i)k−1∑
j=0

[(m − i)k − j]pi,jz
j .

Adding all rows of d0(z) to the last row and setting z = 1 yields

d0(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s0(1) −μ1

s1(1) a1(1) −2μ1

s2(1) −λ1 a2(1) −3μ1

. . .

sm−2(1) −λ1 am−2(1) −(m − 1)μ1

s 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (A.2)

where |M | is the determinant of matrix M and s is the left-hand side of (24):

s =

m−1∑
i=0

si(1) =

m−1∑
i=0

(m−i)k−1∑
j=0

[(m − i)k − j]pi,j .
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Since the last row of D0(1) contains a single non-zero element and the corresponding minor is
triangular, we have

d0(1) = sμm−1
1 (m − 1)!. (A.3)

The denominator in the right-hand side of (20) also has μ2(z − 1) as a factor and can be written
as

D(z) = μ2(z − 1)d(z). (A.4)

This can be seen by adding all the rows of D(z) to the last one. The determinant d(z) has the form

d(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0(z) −μ1z

−λ1z a1(z) −2μ1z

−λ1z a2(z) −3μ1z

. . .

−λ1z am−2(z) −(m − 1)μ1z

b0(z) b1(z) b2(z) · · · bm−2(z) b(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (A.5)

where

bi(z) = (m − i)k − ρ2z; i = 0, 1, . . . , m − 2,

and

b(z) =
mk − kρ1 − mρ2z − ρ1ρ2z[1 − y1(z)]

m − ρ1
.

In writing this last expression, we have used the fact that y1(z) satisfies

a(y1(z), z) = 0,

with a(y, z) given by (10).
Setting z = 1 in (A.5) and expanding the determinant along the elements of its last row, we

obtain, after some work,

d(1) = aμm−1
1 (m − 1)!

⎡
⎣m−1∑

j=0

ρj
1

j!
+

mρm
1

(m − ρ1)m!

⎤
⎦ , (A.6)

where a = mk − kρ1 − ρ2 is the right-hand side of (24).
Thus, the marginal probability that the type 1 queue is empty is given by

p0,· =
s

a

⎡
⎣m−1∑

j=0

ρj
1

j!
+

mρm
1

(m − ρ1)m!

⎤
⎦
−1

. (A.7)

On the other hand, the reciprocal of the square bracket in the right-hand side of (A.7) is equal to
p0,·, according to the M/M/m result. Therefore, we must have s = a, which establishes (24).
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Appendix B: Proof of Lemma

We start by constructing a sequence of polynomials based on the principal diagonal minors of the
determinant D(z). Define

Q0(z) ≡ 1

Q1(z) = a0(z)

Qi(z) = ai−1(z)Qi−1(z) − (i − 1)μ1λ1z2Qi−2(z); i = 2, 3, . . . , m − 1.

Qi(z) is a polynomial of degree 2i, so it has 2i zeros. The following properties hold:

1. sign[Qi(0)] = (−1)i, i = 1, 2, . . . , m − 1.

2. sign[Qi(1)] = 1, i = 1, 2, . . . , m − 1.

3. sign[Qi(∞)] = (−1)i, i = 1, 2, . . . , m − 1.

4. If Qi−1(z) = 0 for some z, then Qi(z) and Qi−2(z) have opposite signs at that point,
i = 2, 3, . . . , m − 1.

Properties 1–3 follow directly from the form of the relevant determinants. At z = 0 only the
diagonal elements remain and they are negative. At z = 1, adding rows together also leads to
products of diagonal elements, which are now positive. At z = ∞ the dominant term is a product
of negative elements. Property 4 follows from the recurrence relations.

Starting with Q1(z), we note that according to properties 1-3, its two zeros, z1,1 and z1,2,
are real and satisfy 0 < z1,1 < 1 < z1,2. At those two points, Q2(z) is negative, according to prop-
erty 4. Hence, the four zeros of Q2(z), z2,1, z2,2, z2,3, and z2,4, are real and lie in the intervals
(0, z1,1), (z1,1, 1), (1, z1,2), and (z1,2,∞), respectively. Moreover, the sign of Q3(z) at point z2,s

(s = 1, 2, 3, 4), is (−1)3+s for s = 1, 2, and (−1)s−2 for s = 3, 4.
Continuing in this manner, we find that for i = 3, 4, . . . , m − 1, the 2i zeros of Qi(z), zi,1, zi,2,

. . ., zi,2i, are real and distinct; the first i of them lie in the consecutive intervals between points 0,
zi−1,1, zi−1,2, . . ., zi−1,i−1, 1; the second i are in the intervals between points 1, zi−1,i, zi−1,i+1,

. . ., zi−1,2(i−1), ∞. Moreover, the sign of Qi+1(z) at point zi,s is (−1)i+s+1 for s = 1, 2, . . . , i, and

(−1)s−i for s = i + 1, i + 2, . . . , 2(i − 1).
The determinant D(z) is given by

D(z) = bm−1(z)Qm−1(z) − (m − 1)μ1λ1z2Qm−2(z).

We have already seen that D(1) = 0. Direct evaluation and the above observations show that
sign[D(0)] = (−1)m, and sign[D(zm−1,s)] = (−1)m+s for s = 1, 2, . . . , m − 1. Therefore, D(z) has
a zero in each of the m − 1 intervals (0, zm−1,1), (zm−1,1, zm−1,2), . . ., (zm−1,m−2, zm−1,m−1).
Moreover, D(z) is negative at zm−1,m−1.

Whether there is another zero in the interval (zm−1,m−1, 1) depends on the value of the
derivative D′(1). That quantity can be obtained in closed form by adding all rows of D(z) to the
last one, dividing that row by z − 1, setting z = 1 and expanding the resulting determinant along
the elements of the last row. This yields, as we have already seen in the derivation of (24),

D′(1) = μm−1
1 (m − 1)!μ2(km − kρ1 − ρ2)

⎡
⎣m−1∑

j=0

ρj
1

j!
+

mρm
1

(m − ρ1)m!

⎤
⎦
−1

. (A.8)

If km − kρ1 − ρ2 > 0, then D′(1) > 0. Hence, for a sufficiently small ε, D(1 − ε) < 0 and D(1 +
ε) > 0. In that case, D(z) is negative on the interval (zm−1,m−1, 1), that is, there are no other zeros.
The Lemma is established and a normalizable solution to the balance equations exists.

If km − kρ1 − ρ2 = 0, then D(z) has a double zero at z = 1. There is no normalizable solution
and the queueing process is recurrent-null. If km − kρ1 − ρ2 < 0, then D(1 − ε) > 0 for some ε. In
that case, D(z) has an extra zero, in the interval (zm−1,m−1, 1). Again, there is no normalizable
solution and the process is transient.
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