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The scalar initial value problem

ut = ρDu + f(u),

is a model for dispersal. Here u represents the density at point x of a compact spatial region

Ω ∈ �n and time t, and u(·) is a function of t with values in some function space B. D is a

bounded linear operator and f(u) is a bistable nonlinearity for the associated ODE ut = f(u).

Problems of this type arise in mathematical ecology and materials science where the simple

diffusion model with D = ∆ is not sufficiently general. The study of the dynamics of the

equation presents a difficult problem which crucially differs from the diffusion case in that

the semiflow generated is not compactifying. We study the asymptotic behaviour of solutions

and ask under what conditions each positive semi-orbit converges to an equilibrium (as in

the case D = ∆). We develop a technique for proving that indeed convergence does hold for

small ρ and show by constructing a counter-example that this result does not hold in general

for all ρ.

1 Introduction

The present investigation is motivated by a class of models of non-local spatial dispersal

in which the dispersal operator D, say, involves an integral operator. For example

Du(x) =

∫ 1

0

k(x, y)[u(y) − u(x)] dy. (1.1)

Such models occur in the theory of phase transitions, ecology, genetics and neurology;

for further details and references see section 2. We consider here the scalar case with

governing equation

ut = ρDu + f(u), (1.2)

where u : Ω × [0,∞) → �, and the suffix t represents differentiation. Here Ω ⊂ �n is a

bounded spatial region, the parameter ρ is the dispersal strength, and f is the reaction

term.

There is now a considerable body of theory on this class of equation. However, there

remain several fundamental open questions even for the scalar case, among which those

concerning the asymptotic behaviour for a multi-stable reaction term are of particular

mathematical interest. To fix ideas let us suppose that f(u) is the cubic, f(u) = u(1 − u2).
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Then for the corresponding ordinary differential equation (ODE) with u : � → �

ut = u(1 − u2), (1.3)

±1 are attractors while 0 is a repellor. An analogous case, where D = ∆, the Laplacian,

and zero Neumann conditions are imposed, is a classical problem (PDE), which has been

much studied [3, 10, 14, 18].

The analysis of the asymptotic behaviour depends crucially on the compactifying

action of the semi-flow, and it is here that the present problem differs fundamentally,

as this property no longer holds. In the PDE case it is known that all orbits approach

an equilibrium. It is the purpose of this paper to show that an analogous result, with

pointwise convergence, holds in the present case for small ρ.

The bistable case has been studied from this point of view [5, 11, 19]. It is known

[5, 19] that for small ρ, equation (1.2) has an uncountable set of equilibria in L∞, almost

all of which are not continuous. Thus there are difficulties with proving compactness of

the global attractor in Lp spaces. In Grinfeld et al. [11] it was shown that for large ρ, for

a class of kernel leading to the analogue of the above PDE case (see Example 2.1), the

asymptotic behaviour follows that of ODE, with results analogous to those of Conway

et al. [4] for systems of PDEs, being obtained. A similar problem is considered in Feireisl

et al. [6] under the technical condition n � 3; using rather sophisticated techniques it was

shown [6, Theorem 1.2] that in the case when all stationary solutions of the governing

equation are continuous, all orbits converge in L2 to a stationary solution. This restriction

means that the result does not cover cases when ρ is not large. When k is a constant, it

was proved (Grinfeld et al. [11]) that for all ρ, for a wide class of initial condition, there is

pointwise convergence to an equilibrium. The argument depended on being able to show

that the positive semi-orbit is relatively compact. However, this argument has no obvious

extension to general k, and it is unknown at the present time whether, and under what

conditions, convergence holds; this question is further discussed in § 4. A different, but

related problem is considered in Bates & Chmaj [2], and the stability result in § 4 there

bears some similarities to that proved in Theorem 3.5 here.

Here we follow a completely different approach, which we hope will be useful for a

wide range of problems with rather general dispersal terms. No compactness either of

the operator K (see Example 2.1) nor of the semi-flow generated by D can be assumed,

so the standard methods for PDEs are not available. At first sight there seems to be a

possibility of using the variation of parameters formula for the operator ∂/∂t − ρD if

ρ is small, but it is not clear how the argument would go, and the literature does not

appear to give much guidance. Here, then, we present a method, essentially based on

a regular perturbation of the whole semi-orbit. This applies for quite general D if ρ is

small.

The background is outlined in § 2, and the main convergence result is given in § 3.

In section 4 possible extensions are examined and it is noted that convergence to an

equilibrium cannot hold for all ρ and general K since a Hopf bifurcation may occur.

However, it is conjectured that for a restricted class of K , say an integral operator with

a positive symmetric kernel k, the result given in Grinfeld et al. [11] for k = 1 may

generalise. Finally, we suggest that the current argument may extend to a whole class of

multi-stable systems.
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2 Basic assumptions

The aim is to treat a dispersal operator D satisfying only weak assumptions. The reaction

term f assumed leads to a bistable system, but the analysis would easily extend to an f

with multiple zeros, so long as these are hyperbolic.

With compact Ω ⊂ �n, ‖ · ‖p is the Lp norm for functions Ω → �. Ck(�) will be the

k-times continuously differentiable functions � → �. For functions Ω × �+ → �, the

suffix ‘t’ will denote differentiation with respect to time t with the space variable x ∈ Ω

fixed. m is Lebesgue measure on �n.

The governing equation is the following initial value problem:

ut = f(u) + ρ(Ku − Bu), (2.1)

where u : Ω × �+ → �, and u(x, 0) = u0(x), (x ∈ Ω), is given. Here B is a multiplication

operator:

Bu(x) = b(x) · u(x), (2.2)

and K is a linear bounded operator; precise conditions on B and K are given in H1

below. The linear dispersal operator D = K − B, and the dispersal rate is ρ � 0. Two

examples, which have been extensively discussed, are as follows.

Example 2.1 An integral dispersal operator, arising in the biological context, has been

considered in [11, 12, 13, 17]. One assumes for example that

Du(x) =

∫
Ω

k(x, y)u(y) dy − u(x),

so here B = I and

Ku(x) =

∫
Ω

k(x, y)u(y) dy.

Often k is taken to be positive and

∫
Ω

k(x, y) dy � 1. This last condition means that no new

individuals are created by the dispersal. In particular, there is a class of kernel, discussed

in Hutson et al. [13], leading to a condition of no dispersal across the boundary, which

yields the analogue of the PDE case D = ∆ with zero Neumann boundary conditions. In

an interesting neurological model (see Murray [16]), k need not be positive.

Example 2.2

Du(x) =

∫
Ω

k(x, y)[u(y) − u(x)] dy,

where K is as before and

Bu(x) = u(x)

∫
Ω

k(x, y) dy.

This model has been commonly used in the theory of phase transitions [5, 7, 8], and

the numerous references therein. For an up-to-date review which highlights the issue of

preservation of discontinuous profiles and discusses alternative formulations [9].
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Conditions H1 and H2 below will be assumed throughout.

H1(a) Ω is compact with m(Ω) = 1.

(b) b : Ω → � is continuous and |b(x)| � 1 (x ∈ Ω).

(c) The linear operator K : L1(Ω) → L∞(Ω) is bounded with bound 1:

‖Ku‖∞ � ‖u‖1 (u ∈ L1). (2.3)

H2(a) f ∈ C2(�).

(b) f has exactly 3 zeros α1, α2, α3 with α1 < α2 < α3 and |αi| < 1 (i = 1, 3).

(c) f′(α1) < 0, f′(α2) > 0, f′(α3) < 0.

The two conditions m(Ω) = 1 and |αi| < 1 in H1(a) and H2(b), respectively, simplify the

notation and of course only involve rescalings of the space variable x and of u respectively.

The following simple observation enables us to construct a positively invariant region.

From H2, there is an interval, say I = [l1, l2], with

|l1|, |l2| � 1, (2.4)

such that αi ∈ (l1, l2), (i = 1, 2, 3), and such that for some η > 0,

f(l2) � −η, f(l1) � η. (2.5)

Definition 2.3 Let Z be the set of measurable functions u : Ω → � such that

l1 � u(x) � l2 (for a.a. x ∈ Ω). (2.6)

Equip Z with the metric d induced by the L1 norm.

It will be useful later to note that, since m(Ω) = 1, from (2.3) and (2.4), for u ∈ Z ,

‖Ku‖∞ � ‖u‖1 � ‖u‖∞. (2.7)

Lemma 2.4 There exists ρ0 > 0 such that for 0 � ρ � ρ0, the initial value problem (2.1)

generates a semi-flow on Z .

Proof The global existence of orbits is proved in Duncan et al. [5] and Stoleriu [19]. For

the invariance, from H1 (b), (c), for x ∈ Ω,

|Du(x)| � 2‖u‖∞,

� 2max(|l1|, |l2|),
� 2

from (2.4). Hence from (2.5),

ut = f(u(x, t)) + ρDu(x, t),

� −η + 2ρ0

if u(x, t) = l2. Thus ut < 0 if u = l2 and ρ0 is small enough. A similar argument holds if

u = l1, and the invariance follows. �

For the dissipativity of (2.1), a slight strengthening of H2 is probably needed, but we

shall not consider this issue here, and the analysis will henceforth be restricted to Z .
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3 Convergence to an equilibrium

It will be shown in Theorem 3.5 that for small enough ρ, every solution of (2.1) converges

in L1 to an equilibrium; it is then an easy corollary that the convergence is pointwise. The

argument is intuitively straightforward and is based on being able to exploit the broad

idea that (2.1) is a small perturbation of the corresponding family of ordinary differential

equations ut = f(u) for each x.

Before embarking on the detailed analysis, we shall attempt to clarify the intuitive

idea behind the proof in the hope that this may be helpful to the reader. Note that for

the ODE u′ = f(u), α2 is unstable and α1, α3 are attractors with domains of attraction

[l1, α2) and (α2, l2], respectively. Further, for fixed small δ > 0, for any initial value

u(0) ∈ (α2 + δ, α3 − δ), u(t) increases and exits into the interval [α3 − δ, α3] after a fixed

maximum time. For the full equation (3.9), the behaviour is analogous. For a small

ρ, we can pick δ small small enough so that if u(x0, t0) is contained for some x0 in

a strip S = {α2(ρ) + δ � u(x, t) � α3(ρ) − δ}, it must exit S into some strip S3 close

to α3(ρ) in a fixed maximum time independent of x0. Having established that, it is a

straightforward if tedious exercise to show, by modifying the strip S and restarting the

flow at successively larger t, that the thickness of S3 and of the corresponding strips S1

and S2 near α1(ρ) and α2(ρ), respectively, may be successively decreased. We remark that

the proof is not constructive and provides no guidance as to the equilibrium to which the

solution converges.

A simple lemma concerning the perturbation of the roots of an equation in � is needed.

For z, v, b ∈ � define

Eρ(z) = f(z) + ρ(v − bz). (3.1)

We have E0(z) = f(z), and from H2, the roots, αi(ρ) say, of Eρ(z) = 0 depend smoothly

on ρ for small ρ, and are thus close to the αi(0) = αi. It is thus easy to establish the

next lemma using a Taylor series. Broadly, the lemma provides a means of using the

hyperbolicity to study the simple properties of the perturbed vector field.

Lemma 3.1 There exist ρ0 > 0, ε0 > ρ0, c > 0 such that the following holds. Given ε ∈
(0, ε0], ρ ∈ [0, ρ0], there exists δ > 0 such that for all v, b with |v| � 1, |b| � 1,

Eρ(z) > 0 (l1 � z � α1(ρ) − cε), (3.2)

Eρ(z) < 0 (α1(ρ) + cε � z � α2(ρ) − cε), (3.3)

Eρ(z) > 0 (α2(ρ) + cε � z � α3(ρ) − cε), (3.4)

Eρ(z) < 0 (α3(ρ) + cε � z � l2), (3.5)

and in each of these intervals,

|Eρ(z)| − ε � δ. (3.6)

As subsequently ρ will be fixed and b will be a fixed function, it is appropriate to

modify the notation and for v, z : Ω → � define

E(v(x), z(x), x) = f(z(x)) − ρb(x) · z(x) + ρv(x). (3.7)
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It is often convenient to contract the notation and to write E(v, z, x), the meaning being

clear from the context. For given v(x), let zi(x), (i = 1, 2, 3), with z1(x) < z2(x) < z3(x)

denote the solutions of the equation

E(v(x), z(x), x) = 0. (3.8)

The governing equation (2.1) becomes

ut = E(Ku, u, x). (3.9)

In order to tackle this, we consider the initial value problem

ut = E(v(x), u(x, t), x) + εg(x, t) (3.10)

for τ � 0 with u(x, τ) ∈ Z given. We wish to understand the behaviour of u for small ρ

and ε; the following result shows how the dynamics are qualitatively inherited from the

ρ = 0 case.

Proposition 3.2 Assume that

|v(x)| � 1 (x ∈ Ω), (3.11)

|g(x, t)| � 1 (x ∈ Ω, t � τ). (3.12)

Then there exist ε0, ρ0, c with

(a) 0 < ρ0 < ε0,

(b) 0 < cρ0 < 1/2,

such that the following holds. Take any ρ ∈ [0, ρ0], ε ∈ (0, ε0], and assume that u satisfies

(3.10) with u(x, τ) ∈ Z . Then there exist T � τ, ũ ∈ Z , and û such that

u(x, t) − ũ(x) = 2εcû(x, t), (3.13)

where

(i) E(v(x), ũ(x), x) = 0 (x ∈ Ω),

(ii) ‖û(·, t)‖1 � 1 (t � T ).

To clarify this result, we define disjoint subsets Ωi(t) of Ω with ∪Ωi(t) = Ω. The definition

is written down explicitly for Ω+
i (t) (i = 2, 3, 4), with u(x, t) > z2(x); the definitions of

Ω−
i (t) are analogous. Recall that the interval I = [l1, l2] is invariant.

Ω1(t) = {x : z2(x) − cε < u(x, t) < z2(x) + cε},
Ω+

2 (t) = {x : z2(x) + cε � u(x, t) � z3(x) − cε},
Ω+

3 (t) = {x : z3(x) − cε < u(x, t) < min[l2, z3(x) + cε]},
Ω+

4 (t) = {x : z3(x) + cε � u(x, t) � l2},
Ωj(t) = Ω+

j (t) ∪ Ω−
j (t) (i = 2, 3, 4).

Thus Ω1(t), Ω3(t) are sets where u(x, t) is ‘near’ an equilibrium of the reaction system,

whereas in Ω2(t), Ω4(t) this is not the case. The intuitive idea behind Proposition 3.2 is
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that from (3.2) to (3.6), for fixed x ∈ Ω, u(x, t) can only remain for a uniformly (in x)

limited time outside a small neighbourhood of an equilibrium.

We use the notation ↗,↘ for ‘increasing’ and ‘decreasing’ respectively in the sense of

set inclusion, without the implication of ‘strict’.

Lemma 3.3 The following hold under the conditions of Proposition 3.2.

(a) Ω1(·) ↘, Ω3(·) ↗.

(b) m(Ω2(t)), m(Ω4(t)) → 0 as t → ∞.

(c) Define sets Ω1(∞), Ω3(∞) (unique up to sets of measure zero) with the properties:

Ω1(t) ⊃ Ω1(∞) (t � τ), lim
t→∞

m(Ω1(t)) = m(Ω1(∞))

Ω±
3 (t) ⊂ Ω±

3 (∞) (t � τ), lim
t→∞

m(Ω±
3 (t)) = m(Ω±

3 (∞)),

respectively. Then

m(Ω1(∞) + m(Ω3(∞)) = 1. (3.14)

Proof From (3.10) and (3.12),

ut(x, t) � E(v(x), u(x, t), x) − ε.

Hence, from Lemma 3.1, (3.3) and (3.4) respectively, and (3.6), there exists δ > 0 such that

ut(x, t) � −δ (x ∈ Ω−
2 (t)), (3.15)

ut(x, t) � δ (x ∈ Ω+
2 (t)). (3.16)

If x ∈ Ω1(t0) for some t0, either this holds for all t > t0, or x ∈ Ω2(t1) for some t1 > t0.

Then from (3.15) and (3.16), x � Ω1(t) for t � t1. Therefore Ω1(·) ↘. Analogous arguments

complete the proof of (a).

The following is next established:

lim
t→∞

m(Ω+
2 (t)) = 0. (3.17)

Since (by assumption) l2 − l1 � 2, from (3.16),

x ∈ Ω+
2 (t0) ⇒ x ∈ Ω+

3 (t) (t > t0 + 2δ−1). (3.18)

If (3.17) does not hold, there exists a sequence {tn} → ∞, and an η > 0 such that

m(Ω+
2 (tn)) � η (∀n). Choose an infinite subsequence, still denoted by {tn} such that

tn − tn−1 > 2δ−1.

Then from (3.18)

Ω+
2 (tn) ∩ Ω+

2 (ti) = ∅ (i� n).

Therefore
n∑

j=1

m(Ω+
2 (tj)) � nη.
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However, this leads to a contradiction for n large enough, as m(Ω) < ∞. This proves (3.17).

An analogous argument gives the corresponding result for Ω−
2 (t), and so the first claim in

(b). A similar argument yields the second part of (b). (c) is an obvious consequence. �

Proof of Proposition 3.2 Define

ũ(x) =

⎧⎨
⎩
z1(x) (x ∈ Ω−

3 (∞)),

z2(x) (x ∈ Ω1(∞)),

z3(x) (x ∈ Ω+
3 (∞)).

By definition of the Ωi(t),

|u(x, t) − ũ(x)| < cε

for x ∈ Ω1(t) ∪ Ω3(t). From Lemma 3.3(b), for large enough t,

m(Ω2(t) ∪ Ω4(t)) < cε.

Since |u(x, t)| � 1 for all x and t, the result follows. �

Given u(x, 0), the construction above leads to unique ũ and û. To explain the argument

used in the proof of the next lemma, we introduce the somewhat cumbersome notation

P (τ, v, ε, g) for the initial value problem 3.10, with ũ = Ũ(τ, v, ε, g), û = Û(τ, v, ε, g) in

Proposition 3.2.

Lemma 3.4 below shows how Proposition 3.2 may be used iteratively to improve the

approximation to the solution of the governing equation (2.1). In terms of the semi-flow,

we are showing that for large t approximations to the positive orbit, uniform in t, may be

obtained.

If ρ = 0, it is of course a triviality to prove the main result, that is the L1 convergence

to an equilibrium, Theorem 3.5 below. However, since the approach to this theorem is via

a perturbation in ρ, we check that Proposition 3.2 gives the result if ρ = 0. For we may

take ρ = 0, g = 0 and the result will follow by choosing, for example, a sequence {εn} → 0.

It will indeed be assumed, for convenience in the notation, that ρ > 0 in the proof of

Lemma 3.4 below.

Lemma 3.4 There exist ρ0 > 0, c > 0 with 2ρ0c < 1 such that the following holds. Fix any

ρ ∈ [0, ρ0] and any u0 ∈ Z . Let u be the (unique) global solution of (2.1). Then there exist

sequences {t(n)}, {ũ(n)(x)}, {û(n)(x, t)} such that

u(x, t) − ũ(n)(x) = (2ρc)nû(n)(x, t)
(
n � 1, t � t(n)

)
, (3.19)

with

ũ(0) = 0, û(0) = u,

where

E
(
Kũ(n−1), ũ(n), x

)
= 0, (3.20)

and ∥∥û(n)(·, t)
∥∥

1
� 1. (3.21)
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Proof Recall from a previous remark that we are assuming that ρ > 0. The argument is

by induction, the first step being as follows. Rewrite (2.1) in the form

ut = E
(
Kũ(0), u, x

)
+ ρg(0)(x, t)

where t(0) = 0, ũ(0) = 0, û(0) = u and g(0) = Kû(0) = Ku. This gives the initial value problem

P (0, Kũ(0), ρ, Kû(0)). Since ‖u‖1 � 1, from (2.7),

∥∥g(0)(·, t)
∥∥

∞ � 1
(
t � t(0)

)
.

In Proposition 3.2, take v = 0, ε = ρ, obtaining for some t(1),

u(x, t) − ũ(1)(x) = (2cρ)û(1)(x, t)
(
t � t(1)

)
,

where

E
(
Kũ(0), ũ(1), x

)
= 0

and ∥∥û(1)(·, t)
∥∥

1
� 1.

Thus (3.19), (3.20), (3.21) hold with n = 1. Here

ũ(1) = Ũ
(
0, Kũ(0), ρ, Kû(0)

)
, û(1) = Û

(
0, Kũ(0), ρ, Kû(0)

)
.

Now assume that (3.19)–(3.21) hold for some j � 1, and define

v(j) = Kũ(j),

g(j) = Kû(j).

From (2.7), ∥∥v(j)(·)
∥∥

∞ � 1,

since ũ(j) ∈ Z , and ∥∥g(j)(·, t)
∥∥

∞ � 1
(
t � t(j)

)
since (3.21) holds. Now substitute (3.19) with n = j into (2.1) obtaining

ut = E
(
Kũ(j), u, x

)
+ ρ(2ρc)jg(j).

This gives the initial value problem P (t(j), Kũ(j), (2ρc)j , Kû(j)). We apply Proposition 3.2

again with v = v(j), g = g(j), ε = ρ(2ρc)j , and deduce that for some t(j+1),

u(x, t) − ũ(j+1)(x) = (2ρc)j+1û(j+1)(x, t)
(
t � t(j+1)

)
,

where

E(Kũ(j), ũ(j+1), x) = 0,∥∥û(j+1)(·, t)
∥∥

1
� 1.

Here

ũ(j+1) = Ũ
(
t(j), Kũ(j), (2ρc)j , Kû(j)

)
,

û(j+1) = Û
(
t(j), Kũ(j), (2ρc)j , Kû(j)

)
.
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Thus (3.19)–(3.21) hold with n = j + 1. The usual induction argument completes the

proof. �

Theorem 3.5 Choose any ρ ∈ [0, ρ0] and u0 ∈ Z . Then there is an equilibrium ũ of (2.1) in

Z such that u(t) → ũ in L1 as t → ∞.

Proof From (3.19),

ũ(n) + (2ρc)n û(n) = ũ(m) + (2ρc)mû(m),

where from (3.21), for t � max(t(n), t(m)),

∥∥û(j)(·, t)
∥∥

1
� 1 (j = n, m).

Thus, since 2ρc < 1, {ũ(n)} is a Cauchy sequence in Z; since Z is complete, the sequence

has a limit ũ, say, in Z . It follows from the continuity of E on Z that ũ is an equilibrium.

To prove the convergence, assume the contrary. Then there is a sequence {t(k)} → ∞
and ε > 0 such that ∥∥u(·, t(k)) − ũ(·)

∥∥
1

� ε (∀k). (3.22)

Since ũ(k) → ũ as k → ∞, there exists k1 such that

∥∥ũ(k) − ũ
∥∥

1
� ε/4 (k � k1). (3.23)

Choose k2 such that

(2ρc)k � ε/4 (k � k2), (3.24)

and set k3 = max(k1, k2). From (3.19)

u(x, t) − ũ(x) = ũ(k)(x) − ũ(x) + (2ρc)kû(k)(x, t).

Then for all k � k3, from (3.21),

∥∥u(·, t(k)
)

− ũ(·)
∥∥

1
�

∥∥ũ(k) − ũ
∥∥

1
+ (2ρc)k,

� ε/2

from (3.23) and (3.24). This contradicts (3.22). �

Corollary 3.6 The convergence is pointwise, that is there is a ũ ∈ Z such that

lim
t→∞

u(x, t) = ũ(x) (x ∈ Ω).

Proof By Theorem 3.5 and H1(c), there is a v ∈ L∞(Ω) such that, with convergence in L1,

lim
t→∞

Ku(t) = v.

Hence, for any fixed x ∈ Ω, (2.1) may be written as the non-autonomous ordinary

differential equation

u̇ = f(u) + ρ(v(x) − b(x)u) + h(x, t)

where limt→∞ h(x, t) = 0. The result follows from Artstein [1] or Mischaikow

et al. [15]. �
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4 Conclusions

We now enquire to what extent the main result, Theorem 3.5, may be extended and

generalised.

The most important query concerns the restriction of small ρ; we first note in passing

that in fact explicit bounds on ρ may be found rather easily for a given f. The following

example is instructive. In Example 2.1, take Ω = [0, 1],

k(x, y) =

{
−1 (y < x),

1 (y > x).

and f(u) = u(1 − u2). Linearisation about u = 0 leads to the eigenvalue problem:

ρ

[∫ 1

0

k(x, y)φ(y) dy − φ(x)

]
+ φ(x) = λφ(x).

Differentiation of this equation yields a first order ordinary differential equation, and it is

easy to show that the eigenvalues occur in complex conjugate pairs λj , λj where

λj = (1 − ρ) +
2ρi

(2j + 1)π
,

with corresponding eigenfunction φj(x) = exp{(2j + 1)iπx}. It appears that for ρ > 1, 0 is

(globally) asymptotically stable, and as ρ decreases through 1, 0 loses stability as pairs of

complex conjugate eigenvalues cross the imaginary axis. This suggests that at ρ = 1 there

is a (degenerate) Hopf bifurcation leading to the generation of a quasiperiodic orbit or

possibly even periodic cycles. If this tentative conclusion is correct, it will certainly not be

the case that convergence to an equilibrium holds for all ρ > 0. Thus Theorem 3.5 could

not be valid for all ρ, and the restriction to small ρ is reasonable.

However, it is tempting to speculate that the following may be valid.

Conjecture Suppose B = I and let K be the integral operator defined as follows:

Ku(x) =

∫ 1

0

k(x, y)u(y) dy,

where k is smooth. Then if k > 0 on [0, 1]× [0, 1] and k is symmetric, L1 (and so pointwise)

convergence to an equilibrium holds for all ρ > 0 if f satisfies H2.

It is known [11] that the conjecture is valid in the special case k ≡ 1. Also, in [6] it is

shown that it holds without the assumption of k > 0 if a certain invertibility condition

ensuring that all equilibria are continuous is imposed; unfortunately this condition means

that the results of Feireisl et al. [6] are not applicable for small ρ. In the present paper

we show that the result is true for very general k, which need be neither positive nor

symmetric, but only if ρ is small enough. On the other hand, the above example showing

that a Hopf bifurcation may occur, demonstrates that the conjecture fails for general k if

ρ is not restricted to be small. Thus there is some supporting evidence for the conjecture.

Our final speculation is that there is a natural extension to systems in which solutions

to the reaction system (ODE) converge to equilibria. Note that the proof in the scalar

case depends on the crucial condition that there is a ‘gap’ between equilibria, where the

orbits of ODE may not remain for more than a uniformly bounded time. This result
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essentially follows from the purely geometrical conclusion of Lemma 3.1. This observation

certainly suggests that some natural extension to systems with multistable reaction terms

is possible. For example, it may be enough if for the ODE the equilibria are hyperbolic

and there is a Morse decomposition.
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[18] Poláčik, P. (2002) Parabolic equations: asymptotic behaviour and dynamics on invariant

manifolds. Handbook of Dynamical Systems. Volume II. Section D. Elsevier.

[19] Stoleriu, I. (2001) Integro-differential equations in materials science. PhD thesis, University of

Strathclyde, Glasgow, Scotland.

https://doi.org/10.1017/S0956792506006462 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006462

