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Abstract

A continuous-state branching process with immigration having branching mechanism �

and immigration mechanism �, a CBI(�, �) process for short, may have either of two
different asymptotic regimes, depending on whether

∫
0

�(u)
|�(u)| du < ∞ or

∫
0

�(u)
|�(u)| du =

∞. When
∫

0
�(u)
|�(u)| du < ∞, the CBI process has either a limit distribution or a growth

rate dictated by the branching dynamics. When
∫

0
�(u)
|�(u)| du=∞, immigration overwhelms

branching dynamics. Asymptotics in the latter case are studied via a nonlinear time-
dependent renormalization in law. Three regimes of weak convergence are exhibited.
Processes with critical branching mechanisms subject to a regular variation assumption
are studied. This article proves and extends results stated by M. Pinsky in ‘Limit the-
orems for continuous state branching processes with immigration’ (Bull. Amer. Math.
Soc. 78, 1972).
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1. Introduction

Continuous-state branching processes with immigration (CBI processes) were defined by
Kawazu and Watanabe [23]. They are scaling limits of Galton–Watson Markov chains with
immigration; see e.g. [23, Theorem 2.2]. Recent years have seen renewed interest in this class
of Markov processes. They appear for example as strong solutions of some stochastic differen-
tial equations (SDEs) with jumps (see Dawson and Li [9]); from a more applied point of view,
they form an important subclass of the so-called affine processes, which are known in the
financial mathematics setting for modeling interest rates (see [11]). We mention for instance
the works in this direction of Jiao et al. [21] and Barczy et al. [2], where certain CBI processes
are studied from a statistical point of view.
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The asymptotic behaviors of Galton–Watson processes with immigration have been exten-
sively studied since the seventies. We refer to the works of Cohn [8], Heathcote [19], Heyde
[20], Pakes [31], and Seneta [34], and to their references. Transience and recurrence of CBI
processes have been characterized by Duhalde et al. [10]. Fine properties of the stationary
distributions of CBI processes, when they exist, have also been recently established in Chazal
et al. [7] and Keller-Ressel and Mijatovic [24]. In the case where no stationary distribution
exists, less attention has been paid to limit theorems for CBI processes. It will certainly not be
surprising that the results found in the seventies for Galton–Watson processes with immigra-
tion have counterparts in the continuous-state and continuous-time framework. A year after the
founding work of Kawazu and Watanabe, Pinsky published a short note [32], without proof, on
the limits of CBI processes. We believe it is of interest to write down some details and resume
in this article the study of limit theorems for CBI processes initiated by Pinsky.

We start by proving an almost-sure (a.s.) convergence for CBI processes by adapting Grey’s
approach [17] to the framework with immigration (Theorem 2). We then provide a gen-
eral nonlinear renormalization in law (Theorem 4). To the best of our knowledge this latter
renormalization does not appear in the literature about Galton–Watson processes with immi-
gration. We explain now our main results. Denote respectively by � and � the branching and
immigration mechanisms; we will recall their definitions in the next section. In the case of
supercritical branching, we show the existence of two distinct a.s. asymptotic regimes accord-
ing to the convergence/divergence of the integral

∫
0

�(u)
|�(u)|du. When this integral converges, i.e.∫

0
�(u)
|�(u)|du < ∞, the branching dynamics takes precedence over immigration and directs the

divergence of the process towards infinity. More precisely, under the classical L ln L moment
assumption (also called the Kesten–Stigum condition) over the branching Lévy measure, the
CBI process grows at the same exponential rate as the pure branching process. On the other
hand, when it diverges, i.e.

∫
0

�(u)
|�(u)|du = ∞, immigration is so substantial that the branching,

although supercritical, is somehow overtaken. Thus, the process typically grows faster than the
pure branching process on the event of its non-extinction.

A similar dichotomy occurs more generally for non-critical CBI processes when we
consider their long-term behavior in law. Our main contribution is to design a nonlinear time-
dependent renormalization in law of a non-critical CBI(�, �) process (Yt, t ≥ 0) satisfying∫

0
�(u)
|�(u)|du = ∞. We shall find (see Theorem 4) a deterministic function λ �→ rt(λ) depending

only on � and � such that
rt(1/Yt) −→

t→∞ e1 in law, (1)

where e1 is a standard exponential random variable. The latter renormalization is actually
equivalent to the following property; see Corollary 1. Given two independent CBI(�, �)
processes (Yt, t ≥ 0) and (Ỹt, t ≥ 0) such that

∫
0

�(u)
|�(u)|du = ∞, one has

Yt

Ỹt
−→
t→∞ � in law, (2)

where P(� = 0) = P(� = ∞) = 1
2 . As a consequence of (2), we shall see that no function

(η(t), t ≥ 0) exists such that η(t)Yt converges in law towards a nondegenerate random vari-
able (i.e. one whose support is not contained in {0, ∞}). This has been shown by Cohn [8] in
the setting of discrete time and space. The meaning of the limit in law (1) will be made more
explicit by introducing further assumptions on the rate of divergence of the integral

∫
0

�(u)
|�(u)|du,

namely on the speed at which
∫
ε

�(u)
|�(u)|du goes to ∞ as ε goes to 0. In the same vein as Pakes
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(see [31]), we design three regimes of divergence: slow (S), log (L), and fast (F). Each corre-
sponds to a specific renormalization and a specific limiting law. The faster the integral diverges,
the more the branching dynamics is overtaken by immigration. This is reflected by the different
renormalizations occurring in the three regimes. In particular, in the fast case (F) the branch-
ing mechanism plays no role in the renormalization. Pinsky’s result [32, Theorem 2], which
corresponds to the subcritical case under the condition (S), now has a proof (see Remark 9–ii),
and a misprint in his statement is corrected.

Notation: By
d−→ and

p−→, respectively, we denote convergence in law and convergence
in probability. We use the relation symbol ∼ when the ratio of the two terms on the two sides
of it converges to 1 (if either of the two terms is random, the convergence holds a.s.). The
probability measure and its expectation are denoted by P and E. For any x ≥ 0, Px denotes
the law of a CBI process started from x. The integrability of a function f in a neighborhood
of 0 is denoted by

∫
0 f (x)dx < ∞ (similarly

∫∞ f (x)dx < ∞ denotes the integrability of f in a
neighborhood of ∞). Last, we denote functions, either deterministic or random, vanishing in
the limit by o(1).

The paper is organized as follows. First we recall in Section 2 the definition of a CBI process
and some of its most fundamental properties. Our main results are stated in Section 3. We first
establish in Section 3.1 the a.s. convergence results in the supercritical case. Then, Section 3.2
is devoted to the study of convergence in law in the non-critical case when

∫
0

�(u)
|�(u)|du = ∞.

We define the three regimes (S), (L), (F) in Section 3.3. The last section treats some critical
branching mechanisms having certain regular variation properties.

2. Preliminaries

Here we recall the definition of a CBI process and some of its fundamental properties. Our
main references are Chapter 3 of Li’s book [29] and Chapter 12 of Kyprianou’s book [26]. We
say that a random variable is nondegenerate if its support is not contained in {0, ∞} and proper
if it is finite a.s.

Write π and ν for two σ -finite nonnegative measures on (0, ∞) satisfying respectively∫∞
0 (z ∧ z2) π ( dz) < ∞ and

∫∞
0 (1 ∧ z) ν( dz) < ∞. Consider a triple (σ, b, β) such that σ ≥

0, b ∈R, and β ≥ 0. Let � be the Laplace exponent of a spectrally positive Lévy process
with finite mean (here we assume |� ′(0 + )| < ∞, so that in particular the CBI process does
not explode) and whose characteristic triple is (b, σ, π). Let � be the Laplace exponent of a
subordinator with drift β and Lévy measure ν. These are specified by the Lévy–Khinchine
formula

�(q) = bq + 1

2
σ 2q2 +

∫ ∞

0
(e−qu − 1 + qu)π (du), q ≥ 0.

So � is convex (i.e., � ′′(q) ≥ 0 for all q ≥ 0) with �(0) = 0. Similarly,

�(q) = βq +
∫ ∞

0
(1 − e−qu)ν(du), q ≥ 0.

So � is a concave, continuous, strictly increasing function with �(0) = 0.
A CBI process with branching and immigration mechanisms � and � is a strong Markov

process (Yt, t ≥ 0) taking values in [0, ∞) whose transition kernels are characterized by their
Laplace transforms. So for λ ≥ 0 and x ∈R+,

Ex
[
e−λYt

]= exp

(
−xvt(λ) −

∫ t

0
�(vs(λ))ds

)
, (3)
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where the map t �→ vt(λ) is the solution to the differential equation

∂

∂t
vt(λ) = −�(vt(λ)), v0(λ) = λ. (4)

Note that vt+s(λ) = vt(vs(λ)) from the Markov property.
The existence and unicity of CBI processes have been established in [23, Theorem 1.1].
Recently Dawson and Li [9] (see also [22]) have shown that any CBI process is the strong

solution of a certain SDE with jumps.
Suppose that (
, Ft, P) is a filtered probability space satisfying the usual hypotheses. Let

{Bt}t≥0 be an (Ft)-Brownian motion. Let N0( ds, dz, du) and N1( ds, du) denote two (Ft)-
Poisson random measures on (0, ∞)3 and (0, ∞)2 with intensities ds π ( dz) du and ds ν( dz).
We assume that the Brownian motion and the Poisson random measures are independent of
each other. Let Ñ0( ds, dz, du) be the corresponding compensated measure of N0, namely
Ñ0( ds, dz, du) := N0( ds, dz, du) − ds π ( dz) du. The SDE

Yt = Y0 + σ

∫ t

0

√
Ys dBs

+
∫ t

0

∫ ∞

0

∫ Ys−

0
z Ñ0( ds, dz, du) +

∫ t

0
(β − bYs) ds +

∫ t

0

∫ ∞

0
zN1( ds, dz)

(5)

admits a unique strong solution whose law is that of a CBI process with branching mecha-
nism � and immigration mechanism �. When there is no immigration, that is to say � ≡ 0,
the drift β and the Poisson random measure N1 vanish and the process (Yt, t ≥ 0) solving (5)
is a continuous-state branching process (CB process) with branching mechanism �. When
� ≡ 0, only the immigration part remains and (Yt, t ≥ 0) is a subordinator with Laplace expo-
nent �. Lastly, we recall that a (sub-)critical CB(�) process conditioned on non-extinction is
a CBI(�, �) process with � = � ′ − � ′(0 + ); see Lambert [27], Li [28, Theorem 4.1], and
Fittipaldi and Fontbona [14]. From now on, unless explicitly stated otherwise, we consider
processes with immigration, namely �(q) > 0 for all q > 0.

Recall the form of the function � and notice that b = � ′(0 + ). A CBI process is said to be
critical, subcritical, or supercritical accordingly as b = 0, b > 0, or b < 0. Note that � has at
most two roots. Introduce

ρ = inf{z > 0, �(z) ≥ 0}, inf ∅= ∞.

We see that ρ = 0 if b ≥ 0 and ρ > 0 if b < 0. In particular, ρ = ∞ if and only if −� is the
Laplace exponent of a subordinator. By (4), if 0 < λ < ρ (resp. λ > ρ), then vt(λ) ∈ [λ, ρ] is
increasing (resp. vt(λ) ∈ [ρ, λ] is decreasing) in t. Then (4) implies∫ λ

vt(λ)

dz

�(z)
= t, ∀t ∈ [0, ∞), ∀λ ∈ (0, ∞)/{ρ}. (6)

Recall v̄t := lim ↑
λ→∞

vt(λ) ∈ [0, ∞] and set v̄ := lim ↓
t→∞

v̄t ∈ [0, ∞]. Grey shows in [17] that

v̄t < ∞ for all t > 0 if and only if
∫ ∞ dq

�(q)
< ∞ (Grey’s condition). (7)

Note that ρ ≤ v̄, and if v̄ < ∞ then v̄ = ρ.
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Recall (3). Define the map rt(λ) := ∫ t
0 �(vs(λ))ds. A simple change of variable gives

rt(λ) =
⎧⎨
⎩
∫ λ

vt(λ)
�(u)
�(u) du if � �≡ 0,

t�(λ) if � ≡ 0.
(8)

Then (3) can also be written as

Ex
[
e−λYt

]= exp (−xvt(λ) − rt(λ)) . (9)

Note also that for any t ≥ 0 and any n ∈N, Yt = Y1
t + · · · + Yn

t in law, where ((Yi
t )t≥0, 1 ≤

i ≤ n) are independent and identically distributed copies of a CBI(�, 1
n�) process. Thus, in

particular, Yt has an infinitely divisible law on R+, and λ �→ rt(λ) is the Laplace exponent of a
subordinator (with no killing term). For any t ≥ 0, we set

rt(∞) =
∫ ∞

v̄t

�(u)

�(u)
du ∈ (0, ∞],

where v̄t := lim
λ→∞ ↑ vt(λ), with the convention that if

∫∞ �(u)
�(u) du = ∞ then rt(∞) = ∞ for all

t > 0. From (8), we easily check that rt(∞) < ∞ as soon as
∫∞ �(u)

�(u) du < ∞. Letting λ tend
to ∞ in (9) readily implies that rt(∞) < ∞ if and only if Px(Yt = 0) > 0. We refer the reader
interested in the zero-set of CBI processes to [16].

We refer to [29, Section 3.2] for proofs of the following technical statements; see also [17].
We gather in the next lemma analytical results on the map λ �→ vt(λ) and its inverse (whenever
it exists).

Lemma 1. The map λ �→ vt(λ) is strictly increasing on [0, ∞). For any t ≥ 0, let λ �→ v−t(λ)
be the inverse map of λ �→ vt(λ). This is a strictly increasing function, well-defined on [0, v̄t),
which satisfies for all s, t ≥ 0 and 0 ≤ λ < v̄s+t

v−(s+t)(λ) = v−s(v−t(λ)).

For 0 ≤ λ < v̄t such that �(λ) �= 0, by (6) one has∫ v−t(λ)

λ

dz

�(z)
=
∫ v−t(λ)

vt(v−t(λ))

dz

�(z)
= t. (10)

In particular, in the supercritical case, i.e. b ∈ (− ∞, 0), for λ ∈ (0, ρ)

∂v−t(λ)

∂t
= �(v−t(λ)), v0(λ) = λ. (11)

The map t �→ v−t(λ) is decreasing, and by letting t → ∞ in (10) we see that v−t(λ) −→
t→∞ 0.

Moreover, v−(t+u)(λ)/v−t(λ) −→
t→∞ ebu for any u ≥ 0.

The following theorem was announced by Pinsky [32] and provides some initial infor-
mation on the growth rate. It has been established in the (sub-)critical case by Li (see [29,
Theorem 3.20, p. 66]) and by Keller-Ressel and Mijatović (see [24, Appendix]).

Theorem 1. (Pinsky [32], Li [29]) Let (Yt, t ≥ 0) be a CBI process with |� ′(0 + )| < ∞. Set
τ (t) = ebt if b < 0 and τ (t) = 1 if b ≥ 0. The process (τ (t)Yt, t ≥ 0) converges in law, as t → ∞,
towards a proper random variable if and only if∫

0

�(u)

|�(u)|du < ∞.
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If
∫

0
�(u)
|�(u)|du = ∞, then for all z ≥ 0, Px(τ (t)Yt ≤ z) −→

t→∞ 0; that is to say, (τ (t)Yt, t ≥ 0)

converges to ∞ in probability.

Our paper aims to enrich the above Theorem 1 by studying a.s. limits in the supercritical
case and finding new results on the growth rates when � is non-critical and

∫
0

�(u)
|�(u)|du = ∞. It

is clear that a supercritical CBI process (Yt, t ≥ 0) is transient, i.e. Yt −→
t→∞ ∞ a.s. The properties

of transience and recurrence for subcritical and critical CBI processes have been studied in
Duhalde et al. [10]. It is established in [10, Theorem 3] that a (sub-)critical CBI(�, �) process
is recurrent or transient accordingly as

E :=
∫

0

dx

�(x)
exp

(
−
∫ 1

x

�(u)

�(u)
du

)
= ∞ or < ∞. (12)

We see that the integral
∫

0
�(u)
|�(u)|du plays a crucial role in this integral test. In particular, it is

worth noticing that in the (sub-)critical case, the divergence of
∫

0
�(u)
|�(u)|du is necessary for the

CBI process to be transient, but not sufficient.
The notion of regularly varying functions will be used in several places. Recall that a

function R is regularly varying at ∞ (resp. at 0) with index θ ∈R if for any λ > 0

R(λx)

R(x)
→ λθ as x → ∞ (resp. 0).

The function R is said to be slowly varying if θ = 0. If R is regularly varying with index θ , then
R has the form R(x) = xθ L(x) for all x ≥ 0 with L a slowly varying function. We stress that such
functions occur naturally in the study of this subject; for instance, in the supercritical case,
i.e. b ∈ (− ∞, 0), Lemma 1 ensures that the function t �→ v− ln (t)(λ) is regularly varying at ∞
with index b. We refer the reader to Bingham et al. [4] for a reference on regularly varying
functions.

3. Results

3.1. Almost-sure limits

This section deals with the so-called Seneta–Heyde norming for CBI processes. We refer
to Seneta [34] and Heyde [20] for the seminal papers in the discrete setting; see also Lambert
[27]. For the case where no immigration is taken into account, i.e. � ≡ 0, this study was carried
out by Grey [17] and Bingham [5]. We refer the reader for instance to the end of Chapter 12 of
Kyprianou’s book [26].

Recall ρ ∈ [0, ∞] (the largest root of �), the map t �→ v−t(λ), and its equation (11).

Theorem 2. Let (Yt, t ≥ 0) be a CBI(�, �) process with a supercritical branching mechanism
�, i.e. b < 0. Let 0 < λ < ρ. Then the following hold:

(i) If
∫

0
�(u)
|�(u)|du < ∞, then v−t(λ)Yt −→

t→∞ Wλ
Px-a.s., where Wλ is a nondegenerate proper

random variable with Laplace exponent

Ex

[
e−θWλ

]
= exp

(
−xv− ln θ

b
(λ) +

∫ v− ln θ
b

(λ)

0

�(u)

�(u)
du

)
. (13)

(ii) If
∫

0
�(u)
|�(u)|du = ∞, then v−t(λ)Yt −→

t→∞ ∞ Px-a.s.
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Remark 1.

(i) It is worth mentioning that Grey [17, Theorem 2] found the same a.s. renormalization
v−t(λ) for the supercritical process without immigration, i.e. with � ≡ 0, on the event
of non-extinction. See also Duquesne and Labbé [12, Lemma 2.2] for the expression
for the Laplace transform (13) with � ≡ 0. As explained in the introduction, Theorem 2
reflects the fact that two regimes occur according to the convergence or divergence of
the integral

∫
0

�(u)
|�(u)|du. In Case (i), the branching dictates the growth of the process; in

Case (ii) it is overwhelmed by the immigration. Moreover, when
∫∞ (x ln x)π (dx) < ∞,

we have v−t(λ) ∼
t→∞ Kλebt for some constant Kλ > 0. So in this case, as mentioned in

the introduction, the CBI process grows a.s. exponentially fast.

(ii) In the non-critical case, |�(u)| ∼
u→0

|b|u, and the condition
∫

0
�(u)
|�(u)|du < ∞ is equivalent

to
∫∞ ln(u)ν(du) = ∞, where ν is the immigration measure ν; see Remark 7 below.

Proof. The proof follows from a simple adaptation of Grey’s martingales (see [17]) to the
setting of CBI processes. Consider (Yt, t ≥ 0), a CBI(�, �) process. Recall (9). Fix λ ∈ (0, ρ).
For every t ≥ 0, set

κλ(t) := exp

(∫ v−t(λ)

λ

�(u)

�(u)
du

)
.

We show that the process (Mλ
t , t ≥ 0) defined for any t ≥ 0 by Mλ

t = κλ(t) exp (−v−t(λ)Yt) is a
positive martingale. The random variables Mλ

t are plainly integrable, and for any s, t ≥ 0,

E[Mλ
t+s|Ft] = κλ(t + s)E[ exp (− v−(t+s)(λ)Yt+s)|Yt] (by the Markov property)

= κλ(t + s) exp

(
−Ytvs(v−(t+s)(λ)) −

∫ v−(t+s)(λ)

vs(v−(t+s)(λ))

�(u)

�(u)
du

)

= κλ(t + s) exp

(∫ v−t(λ)

v−(t+s)(λ)

�(u)

�(u)
du

)
exp

(− Ytv−t(λ)
)

= κλ(t) exp
(− Ytv−t(λ)

)= Mλ
t ,

where the second equality follows from (9) and the third from the fact that

vs(v−(t+s)(λ)) = vs(v−s ◦ v−t(λ)) = v−t(λ).

In particular, we see that the process (e−v−t(λ)Yt(x), t ≥ 0) is a positive supermartingale.
This implies that the process (v−t(λ)Yt, t ≥ 0) converges, as t goes to infinity, Px-a.s. in
R̄+ := [0, ∞]. Denote its limit by Wλ. We shall see that it is infinite a.s. in Case (ii).

Since � is supercritical, one has ρ > 0, and �(u) < 0 for 0 < u < ρ. By Lemma 1, we
know that when 0 < λ < ρ, v−t(λ) −→

t→∞ 0. For fixed θ > 0, we choose t large enough so that

v−t(λ), θv−t(λ) ∈ (0, ρ). Recall that by assumption b ∈ (− ∞, 0). Then it can be established
from Equations (4) and (10) (see e.g. [12, Lemma 2.2] and [29, Theorem 3.13] for details) that

vt(θv−t(λ)) −→
t→∞ v− ln θ

b
(λ). (14)

Note that the above convergence holds no matter the sign of − ln θ
b . By (9), one has for all t ≥ 0

Ex
[
e−θv−t(λ)Yt

]= exp (−xvt(θv−t(λ)) − rt(θv−t(λ))) ,
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and by letting t go to ∞ in the right-hand side above we get the expression (13) for the Laplace
transform of Wλ. It is not hard to see that

v− ln θ
b

(λ) ∈ (0, ρ)

as
∫

0
dz

�(z) = −∞ and
∫ ρ

λ
dz

�(z) = −∞. In fact, if ρ < ∞, then �(ρ) = 0; if ρ = ∞, then −�

is the Laplace exponent of a subordinator, which implies that
∫∞ dz

�(z) = −∞. Moreover,
by (10),

v− ln θ
b

(λ) −→
θ→0

0 and v− ln θ
b

(λ) −→
θ→∞ ρ. (15)

Using the first convergence in (15), we observe that if
∫

0
�(u)
|�(u)|du < ∞, then Wλ < ∞ Px-a.s.

Applying the second convergence in (15) and the fact that
∫ ρ du

�(u) = −∞, we get

P(Wλ
x = 0) = exp

(
−xρ +

∫ ρ

0

�(u)

�(u)
du

)
= 0.

If
∫

0
�(u)
|�(u)|du = ∞, then

∫
0

�(u)
�(u) du = −∞, as �(u) < 0 for 0 < u < ρ. We get from (13) that

Ex[e−θWλ
] = 0 for any θ > 0; therefore Wλ = ∞ a.s.

The next theorem sheds some light on what limit theorems can be expected in the case∫
0

�(u)
|�(u)|du = ∞. �

Theorem 3. Let (Yt, t ≥ 0) be a supercritical CBI(�, �) process. Assume
∫

0
�(u)
|�(u)|du = ∞. For

any positive deterministic function (η(t), t ≥ 0), if (η(t)Yt, t ≥ 0) converges a.s., then its limit is
either 0 a.s. or ∞ a.s.

Remark 2. Theorem 3 eliminates the hope of finding any law of large numbers and can be
seen as a starting point for a study through nonlinear renormalizations; see Section 3.2 below.

Proof. We shall use the framework of flow of SDEs as in Dawson and Li [9]. We recall that
by replacing, in the SDE (5), the Brownian motion (Bt, t ≥ 0) by a white noise M(ds, du) (see
[9, 30] for details), one can consider on the same probability space the SDEs

Y (n)
t (x) = x + σ

∫ n+t

n

∫ Y(n)
s (x)

0
M(ds, du) +

∫ n+t

n

∫ ∞

0

∫ Y(n)
s− (x)

0
z Ñ0(ds, dz, du)

+
∫ n+t

n
(β − bY (n)

s (x)) ds +
∫ n+t

n

∫ ∞

0
zN1(ds, dz).

(16)

These SDEs are known to have pathwise unique solutions. More precisely, this provides a

sequence of flows of CBI(�, �) processes
{

Y (n)
t (x), x ≥ 0, t ≥ 0, n ≥ 0

}
such that for any n ∈N

and any x ≥ y ≥ 0,
(

Y (n)
t (x) − Y (n)

t (y), t ≥ 0
)

is a CB process started from x − y with branching

mechanism � and is independent of
{

Y (n)
t (y), t ≥ 0

}
. We denote by (Yt(x), t ≥ 0) the process(

Y (0)
t (x), t ≥ 0

)
, the solution to (16) for n = 0. Pathwise uniqueness implies that Y (n)

t (Yn(x)) =
Yn+t(x) for any x ≥ 0, t ≥ 0, and n ∈N a.s. Let X(n)

t (x) = Y (n)
t (x) − Y (n)

t (0). Then

Yn+t(0) = X(n)
t (Yn(0)) + Y (n)

t (0).
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By Theorem 2(ii), v−t(λ)Y (n)
t (0) −→

t→∞ ∞ a.s., and applying Theorem 2(i) to the CB(�) pro-

cess
(

X(n)
t (Yn(0)), t ≥ 0

)
(see Remark 1(i)), we get v−t(λ)X(n)

t (Yn(0)) −→
t→∞ Wλ for some finite

random variable Wλ. Hence

Yn+t(0)

Y (n)
t (0)

= 1 + X(n)
t (Yn(0))

Y (n)
t (0)

−→
t→∞ 1 a.s. (17)

Assume that there exists some η(t) > 0 such that η(t)Yt(0) −→
t→∞ V0 a.s. Then by (17), η(n +

t)Y (n)
t (0) −→

t→∞ V0 a.s., and for � ∈N, η(n + l)Y (n)
� (0) −→

�→∞ V0 a.s. However, by iteration, it is not

hard to see that for � ≥ 1,

Y (n)
� (0) = X(n+1)

�−1

(
Y (n)

1 (0)
)

+ Y (n+1)
�−1 (0)

=
�∑

k=1

X(n+k)
�−k

(
Y (n+k−1)

1 (0)
)
,

(
Y (n+�)

0 (0) = 0
)

where
{

X(k)·
(

Y (k−1)
1 (0)

)}∞
k=1

is a sequence of independent CB(�) processes.

By the above iteration, for fixed n,
{

Y (n)
� (0), � ≥ 1

}
is measurable with respect to the

σ -algebra Gn generated by the sequence of independent processes{
X(k)

t

(
Y (k−1)

1 (0)
)

: t ≥ 0
}∞

k=n
.

Since, for any n, η(n + l)Y (n)
� (0) −→

�→∞ V0 a.s., we immediately have that V0 is measurable

with respect to the tail σ -algebra generated by the same sequence of independent processes{
X(k)

t

(
Y (k−1)

1 (0)
)

: t ≥ 0
}∞

k=1
, i.e. ∩∞

n=1Gn.

Kolmogorov’s zero–one law (see e.g. [13, Theorem 2.5.1]) asserts that V0 is a constant or
infinite a.s. Assume that V0 is a finite positive constant a.s. Since Y (n)· (0) has the same distri-
bution as Y·(0), we immediately have that η(t)Y (n)

t (0) −→
t→∞ V0 a.s. Then η(n + t)/η(t) −→

t→∞ 1,

which implies that η(t) ∼ L(et) for some slowly varying function L at ∞. However recall-
ing that v− ln t is a regularly varying function with index b (see Lemma 1), we have that
v−t(λ) ∼ ebtL∗(et) as t goes to ∞, where L∗( · ) is a slowly varying function at ∞ and thus
v−t(λ)/η(t) → 0. This leads to a contradiction. Thus V0 is 0 a.s. or ∞ a.s. �

3.2. A general limit in law for non-critical CBI processes when
∫

0
�(u)

|�(u)|du = ∞
This section focuses on the study of the long-term behavior of CBI(�, �) processes

satisfying the condition ∫
0

�(u)

|�(u)|du = ∞. (18)

By Theorem 1, in this case Yt converges in law to ∞ as t goes to ∞. We give a finer description
of the behavior of Yt through distributional, rather than a.s., limit theorems. In this section, we
prove the main convergence theorem below, which provides a nonlinear time-dependent renor-
malization in law of any non-critical CBI process. The three different regimes of convergence
in law mentioned in the introduction are designed in Section 3.3 below.
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Recall the definition of rt(λ) in (8) and that rt(∞) = ∞ if and only if Px(Yt = 0) = 0 for all
t > 0. In the next theorem, we take the convention 1/0 = ∞.

Theorem 4. Assume (18) holds and � is non-critical (b �= 0). Then, for all x ≥ 0, we have

rt(1/Yt) :=
∫ 1/Yt

vt(1/Yt)

�(u)

�(u)
du

d−→ e1, as t → ∞ under Px, (19)

where e1 is an exponential random variable with parameter 1.

Remark 3. The law of the limiting distribution in (19) does not depend on the initial state x of
the CBI process. It justifies the perception that in the regime (18), the dynamics is governed in
the long term by the immigration part and not by the branching part.

Proof. Recall the equations (3) and (9).
Step 1: We claim that for fixed λ > 0, rt(λ) → ∞ as t → ∞. In fact, in the subcritical case,

�(u) > 0 for u > 0. By (6), vt(λ) ↓ 0 as t → ∞, for any fixed λ > 0. According to (18) and the
second equality of (8), we have that rt(λ) → ∞ as t → ∞.

In the supercritical case, still by (6), vt(λ) → ρ as t → ∞ for fixed λ > 0. Then �(vt(λ)) →
�(ρ) > 0 as t → ∞. Combining this with the first equality of (8), we obtain that rt(λ) → ∞ as
t → ∞.

Step 2: Recall that λ �→ rt(λ) is the Laplace exponent of a subordinator with no killing
term. For all t, rt(0) = 0, and rt is strictly decreasing in λ. So we can define λ �→ ct(λ) as the
inverse of λ �→ rt(λ). Fix λ > 0. By Step 1, for any small ε > 0, we can find sufficiently large t
such that rt(ε) > λ = rt(ct(λ)), which implies that ct(λ) < ε. Thus

ct(λ) →
t→∞ 0, and vt(ct(λ)) →

t→∞ 0. (20)

The second limit follows from (18) and the second equality of (8) (replacing λ by ct(λ)).
Step 3: Notice that we can equivalently show that for any λ ≥ 0 and θ > 0,

lim
t→∞ Ex

[
e−θct(λ)Yt

]= e−λ. (21)

In fact, if (21) holds, then ct(λ)Yt converges in distribution to a random variable Z such that
P(Z = ∞) = 1 − P(Z = 0) = 1 − e−λ. Therefore, for λ > 0,

P(rt(1/Yt) > λ) = P(1/Yt > ct(λ)) = P(ct(λ)Yt < 1) −→
t→∞ e−λ, (22)

which implies (19).
Step 4: Note that

Ex
[
e−θct(λ)Yt

]= exp (−xvt(θct(λ)) − rt(θct(λ))) (23)

and

rt(θct(λ)) =
∫ θct(λ)

vt(θct(λ))

�(u)

�(u)
du

=
∫ θct(λ)

ct(λ)

�(u)

�(u)
du +

∫ ct(λ)

vt(ct(λ))

�(u)

�(u)
du︸ ︷︷ ︸

=rt(ct(λ))=λ

+
∫ vt(ct(λ))

vt(θct(λ))

�(u)

�(u)
du. (24)
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So to obtain (21), it suffices to prove that as t → ∞,

vt(θct(λ)) → 0 (25)

and ∫ θct(λ)

ct(λ)

�(u)

�(u)
du → 0,

∫ vt(θct(λ))

vt(ct(λ))

�(u)

�(u)
du → 0. (26)

By the monotonicity of �, we have, for small enough y,∣∣∣∣
∫ y

θy

�(u)

�(u)
du

∣∣∣∣≤ max (�(y), �(θy))

∣∣∣∣
∫ y

θy

1

�(u)
du

∣∣∣∣ . (27)

On the one hand
max (�(y), �(θy)) −→

y→0
0

as � is continuous and �(0) = 0. On the other hand, since � is non-critical, there exists some
constant h > 0 such that |�(u)| ≥ hu for u close enough to 0. This implies that∣∣∣∣

∫ y

θy

1

�(u)
du

∣∣∣∣≤ | ln θ |
h

, (28)

when y is small enough. Then by (27) and (20),∣∣∣∣
∫ θct(λ)

ct(λ)

�(u)

�(u)
du

∣∣∣∣≤ max (�(ct(λ)), �(θct(λ)))
| ln θ |

h
−→
t→∞ 0. (29)

So the first convergence in (26) is proved.
Note that∫ vt(θct(λ))

vt(ct(λ))

du

�(u)
=
∫ ct(λ)

vt(ct(λ))

du

�(u)
+
∫ θct(λ)

ct(λ)

du

�(u)
+
∫ vt(θct(λ))

θct(λ)

du

�(u)

= t +
∫ θct(λ)

ct(λ)

du

�(u)
− t

=
∫ θct(λ)

ct(λ)

du

�(u)
,

which implies that vt(θct(λ)) → 0 as t → ∞, since vt(ct(r)) → 0 by (20) and∣∣∣∣∣
∫ θct(λ)

ct(λ)

du

�(u)

∣∣∣∣∣≤ ln θ/h

by (28). So the convergence in (25) is proved. Then∣∣∣∣
∫ vt(θct(λ))

vt(ct(λ))

�(u)

�(u)
du

∣∣∣∣≤max{�(vt(ct(λ))), �(vt(θct(λ)))}
∣∣∣∣∣
∫ vt(θct(λ))

vt(ct(λ))

1

�(u)
du

∣∣∣∣∣
=max{�(vt(ct(λ))), �(vt(θct(λ)))}

∣∣∣∣∣
∫ θct(λ)

ct(λ)

1

�(u)
du

∣∣∣∣∣ ,
which goes to 0 similarly as in (29). Then the second convergence in (26) is proved. So both
conditions (25) and (26) hold, and we can conclude that (19) holds. �

https://doi.org/10.1017/apr.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.43


610 C. FOUCART ET AL.

Remark 4. Note that Steps 1 and 2 also work for the critical case. But Step 4 requires b �= 0.
However, the same line of argument as in this proof will be used in Section 3.4, where we
focus on the study of the critical case.

We now provide a corollary leading to a more intuitive probabilistic understanding of
Theorem 4. In particular it will shed new light on Theorem 3. We take the convention
0/0 = 0 × ∞ = 0.

Corollary 1. Assume (18) and that � is non-critical. Let (Yt, t ≥ 0) and (Ỹt, t ≥ 0) be two
independent CBI(�, �) processes started from 0.

Then
Yt/Ỹt −→

t→∞ � in law (30)

where � has law P(� = 0) = 1 − P(� = ∞) = 1/2. Moreover, there is no deterministic renor-
malization (η(t), t ≥ 0) such that (η(t)Yt, t ≥ 0) converges in law towards a nondegenerate
random variable.

Proof. By a similar argument as in Equation (22), since for any λ > 0, ct(λ)Yt −→
t→∞ Z in law

with Z such that P(Z = ∞) = 1 − P(Z = 0) = 1 − e−λ, one has for any θ > 0 that

P(rt(θ/Yt) > λ) = P(ct(λ)Yt < θ ) −→
t→∞ e−λ = P(e1 > λ),

with e1 a standard exponential random variable. Hence, for any θ ≥ 0 and for any t ≥ 0, we
apply (9) to obtain

E

[
e
−θ

Yt
Ỹt

]
= Ẽ0

[
E0

[
e
− θ

Ỹt
Yt
∣∣∣Ỹt

]]
= Ẽ

[
E

[
e−rt(θ/Ỹt)

∣∣∣Ỹt

]]

= Ẽ

[
e−rt(θ/Ỹt)

]
−→
t→∞ E

[
e−e1

]= 1

2
.

Therefore Yt/Ỹt −→
t→∞ � in law with P(� = 0) = 1

2 and P(� = ∞) = 1
2 .

We show now that there is no renormalization in law. For the sake of contradiction, assume
that there exists (η(t), t ≥ 0) such that η(t)Yt −→

t→∞ V in law with V a nondegenerate random

variable. Let b > a > 0 be any two values such that P(V ∈ [a, b]) > 0. Then

lim
t→∞

P

(
η(t)Yt

η(t)Ỹt
= Yt

Ỹt
∈ [a/b, b/a]

)
> 0,

but this is in contradiction to (30). Thus necessarily V is degenerate. �
Remark 5. The statement of Corollary 1 holds for CBI processes started from arbitrary ini-
tial values. Indeed if (Yt(x), t ≥ 0) and (Ỹt(y), t ≥ 0) are two independent CBI(�, �) processes
started respectively at x and y, then for any t ≥ 0, Yt(x) = Xt(x) + Yt(0) with (Xt(x), t ≥ 0) a
CB(�) process started from x and independent of (Yt(0), t ≥ 0). Similarly Ỹt(y) = X̃t(y) + Ỹt(0)
with (X̃t(y), t ≥ 0) a CB(�) process started from y and independent of (Ỹt(0), t ≥ 0). One
checks that

Yt(x)

Ỹt(y)
= Yt(0) (1 + Xt(x)/Yt(0))

Ỹt(0)
(
1 + X̃t(y)/Ỹt(0)

) p∼ Yt(0)

Ỹt(0)
as t → ∞.
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Indeed, on the one hand if � is (sub-)critical then both X̃t(x) and Xt(y) converge towards 0
a.s., and by Theorem 1, Yt(0) and Ỹt(0) go towards ∞ in probability. On the other hand if � is
supercritical then by Theorem 2, for any x ≥ 0,

Xt(x)

Yt(0)
= v−t(λ)Xt(x)

v−t(λ)Yt(0)
−→
t→∞ 0 a.s.

3.3. Three different regimes

Since the renormalization in Theorem 4 is nonlinear and time-dependent, it is rather an
intricate problem, at first sight, to deduce from it which explicit growth rates are possible. We
design here different regimes for which (18) holds and the rate can be found explicitly. This
establishes and completes [32, Theorem 2].

3.3.1. Definition of the regimes and preliminary calculations. Recall λ �→ ct(λ), the inverse of

λ �→ rt(λ) =
∫ λ

vt(λ)

�(u)

�(u)
du.

Theorem 4 indicates that Yt should grow at the speed of 1/ct(λ) as t → ∞. However, the
magnitude of ct(λ) is rather involved and deserves careful analysis. We shall simplify (19) to
more straightforward forms by imposing some additional conditions.

To start with, let us fix some constant λ0 such that λ0 ∈ (0, ∞) in the (sub-)critical case and
λ0 ∈ (0, ρ) in the supercritical case. Put

ϕ(λ) =
∫ λ0

λ

du

|�(u)| , 0 < λ < λ0. (31)

By assumption |� ′(0 + )| < ∞ and thus ϕ(λ) → ∞ as λ → 0. The mapping ϕ : (0, λ0) →
(0, ∞) is strictly decreasing, and we write g for its inverse mapping. It is easy to see that g
is a strictly decreasing continuous function on (0, ∞), and

lim
x→∞ g(x) = 0, lim

x→0
g(x) = λ0. (32)

By (6), if b ≥ 0, then � ≥ 0 and

ϕ(vt(λ)) =
∫ λ

vt(λ)

du

�(u)
+
∫ λ0

λ

du

�(u)
= t + ϕ(λ). (33)

Similarly if b < 0, then �(u) ≤ 0 for 0 ≤ u ≤ ρ, and provided that vt(λ) ∈ (0, λ0),

ϕ(vt(λ)) = −
∫ λ

vt(λ)

du

�(u)
−
∫ λ0

λ

du

�(u)
= −t + ϕ(λ). (34)

Applying g to both sides implies that if b ≥ 0, then

vt(λ) = g(ϕ(λ) + t), 0 < λ < λ0, t > 0, (35)

and if b < 0 and vt(λ) ∈ (0, ρ), then

vt(λ) = g(ϕ(λ) − t), 0 < λ < λ0, t > 0. (36)

https://doi.org/10.1017/apr.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.43


612 C. FOUCART ET AL.

Then, for any x, y > 0 such that � never attains zero between x and y, we obtain by a change
of variable that ∫ y

x

�(u)

|�(u)|du =
∫ g(ϕ(y))

g(ϕ(x))

�(u)

|�(u)|du =
∫ ϕ(x)

ϕ(y)
�(g(u))du. (37)

Inspired by Pinsky [32, Theorem 2], we introduce the following function to characterize the
divergence of the integral in (18):

H(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

|b|
∫ 1

e−x

�(u)

u
du if b ∈ (− ∞, 0) ∪ (0, ∞),

∫ λ0

g(x)

�(u)

|�(u)|du if b = 0,

x ≥ 0, (38)

where H(0) takes the value limx→0 H(x) = 0 (using (32)). It is not hard to check that the con-
dition (18) is equivalent to H(x) −→

x→∞ ∞. Based on (31), a simple calculation shows that H′ is

strictly decreasing and H′(x) → 0 as x → ∞. We now introduce different regimes of speed of
divergence of the function H at ∞. We refer the reader to Bingham et al. [4] for a reference on
these functions. The following three modes of convergence to 0 of H′ correspond to different
possible modes of divergence of H:

(S) Slow divergence: xH′(x) → 0 as x → ∞ and H(x) → ∞.

(L) Log divergence: xH′(x) → a for some constant a > 0 as x → ∞.

(F) Fast divergence: xH′(x) → ∞ as x → ∞ and H′ is regularly varying at ∞.

Note that Conditions (L) and (F) always entail H(x) −→ ∞ as x goes to ∞, while the limit
xH′(x) → 0 as x → ∞ in Condition (S) does not guarantee it. Since H′(x) → 0 as x → ∞,
Condition (F) can be given in the following equivalent form:

H′(x) = x−δ 1

L(x)
, (39)

where L is slowly varying at ∞ and 0 ≤ δ ≤ 1, and if δ = 0, L(x) → ∞ as x → ∞; if δ = 1,
L(x) → 0 as x → ∞.

Let h be the inverse map of 1/H′. Under (39) with δ > 0, t �→ h(t) is regularly varying with
index 1/δ at ∞, i.e. h(t) ∼ t1/δL∗(t) for some slowly varying function L∗(t). Moreover, since
H′(x) → 0 as x → ∞, we have

lim
t→∞ h(t) = ∞. (40)

It may be difficult to verify the three conditions. We provide a proposition below to study
the asymptotic behaviors of H and H′. For this purpose, recall the immigration mechanism

�(q) = βq +
∫ ∞

0
(1 − e−qu)ν(du).

As observed by Pinsky [32, p. 244], for a non-critical CBI process, a faster rate of divergence
in (18) implies heavier tails of the Lévy measure ν(du). The following result specifies this idea.

Proposition 1. Assume that b �= 0 and H(x) → ∞ as x → ∞. Denote by ν̄ the tail of ν: for all
u ≥ 0, ν̄(u) = ν([u, ∞)). Then

H(x) ∼ 1

|b|
∫ ex

1

ν̄(u)

u
du, as x → ∞.
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Moreover, H′(x) = �(e−x)/|b| for any x ≥ 0, and if u �→ ν̄(u) is slowly varying at ∞, then

H′(x) ∼ ν̄(ex)/|b| as x → ∞.

Remark 6. The tail u �→ ν̄(u) is slowly varying at ∞ if and only if � is slowly varying at 0;
see [4, Theorem 8/1/6, p. 333].

Proof. Note that �(u)/u = β + ∫∞
0 e−utν̄(t)dt. A simple calculation shows that for z ∈

(0, 1), ∫ 1

z

�(u)

u
du = β(1 − z) +

∫ ∞

0

ν̄(u)

u
(e−zu − e−u)du

= β(1 − z) +
( ∫ 1

0
+
∫ ∞

1

)
ν̄(u)

u
(e−zu − e−u)du.

Since ∫ 1

0
uν(du) < ∞,

∫ ∞

1

ν̄(u)

u
e−udu < ∞, and

∫
0+

�(u)

u
du = ∞,

we have that as z → 0, ∫ 1

z

�(u)

u
du ∼

∫ ∞

1

ν̄(u)

u
e−zudu, (41)

which implies
∫ x

1
ν̄(u)

u du → ∞ as x → ∞. It is not hard to see that
∫ x

1
ν̄(u)

u du is also slowly
varying at ∞. It follows from a Tauberian theorem (see e.g. Bertoin [3, p. 10]) that∫ x

1

ν̄(u)

u
du ∼

∫ ∞

1

ν̄(u)

u
e−u/xdu, x → ∞. (42)

The first result follows from (41) and (42). For the second result, note that H′(x) = �(e−x)/|b|.
Without loss of generality, we can assume that the parameter β in � equals zero. Applying the
Tauberian theorem implies that if ν̄(x) ∼ �(x) for some slowly varying function � at ∞, then

�(u)

u
∼ 1

u
�(1/u)

as u goes 0. Hence we have H′(x) ∼ ν̄(ex)/|b|, x → ∞. �
Remark 7. By letting z go to 0 in (41), we see that

∫
0

�(x)
x dx = ∞ if and only if

∫∞ ν̄(u)
u du =

∞; the latter is equivalent to
∫∞

1 ln x ν(dx) = ∞.
Proposition 1 allows us to reformulate the three regimes, in the non-critical case, in terms

of the tail of the immigration measure ν when the latter has a slowly varying tail:

(S) Slow divergence: ν̄(x) ln x → 0 as x → ∞ and
∫∞

1
ν̄(x)

x = ∞.

(L) Log divergence: ν̄(x) ln x → c for some constant c > 0 as x → ∞.

(F) Fast divergence: ν̄(x) ln x → ∞ as x → ∞.

The constant c in the regime (L) matches with a|b| where a := lim
x→∞xH′(x). We give below

some examples of explicit immigration measures ν for which the three different regimes may
occur in the non-critical cases.
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Example 1. Let b ∈ (− ∞, 0) ∪ (0, ∞).

1. If

ν̄(x) ∼ 1

ln x ln ln x

as x → ∞, then H(x) ∼ ( ln ln x)/|b| and H′(x) ∼ 1/(|b|x ln x). Condition (S) is satisfied.
This example corresponds to Example 3 of null-recurrent CBI process in [10].

2. If ν̄(x) ∼ c/ln x for some constant c > 0, as x → ∞, then H′(x) ∼ c/(|b|x). Condition (L)
is satisfied.

3. If

ν̄(x) ∼ ln ln x

( ln x)δ

(with 0 < δ ≤ 1) as x → ∞, then H′(x) ∼ (x−δ ln x)/|b|. If, as x → ∞, ν̄(x) ∼ 1/( ln ln x),
then H′(x) ∼ 1/(|b| ln x). Both cases satisfy Condition (F).

Remark 8. Recall the integral test E < ∞ or E = ∞ for transience or recurrence of
(sub-)critical CBI processes given in (12). Plainly, by a change of variable, E = ∫∞ e−H(x)dx.
If (F) holds, or (L) is satisfied with a > 1, then E < ∞ and the process is transient. In the case
(S), or (L) with a ≤ 1, E = ∞ and the process is null-recurrent.

We state now a side result on the growth rate of a subordinator whose Laplace exponent is
slowly varying at 0.

Proposition 2. Let (It, t ≥ 0) be a subordinator with Laplace exponent �. Assume that � is
slowly varying at 0; then

t�(1/It)
d−→ e1 as t → ∞.

Proof. This is reminiscent of Steps 1 and 2 in the proof of Theorem 4. Observe that the
stated convergence holds if and only if, for all λ > 0,

P(t�(1/It) > λ) = P(It < 1/�−1(λ/t)) = P(�−1(λ/t)It < 1) −→
t→∞ e−λ.

The latter will occur if for any θ > 0, E[e−θ�−1(λ/t)It ] −→
t→∞ e−λ. Since � is slowly varying at 0

and �−1(λ/t) −→ 0 as t → ∞, we have

t

λ
�(θ�−1(λ/t)) = �(θ�−1(λ/t))

�(�−1(λ/t))
−→
t→∞ 1.

Therefore

E[e−θ�−1(λ/t)It ] = e−t�(θ�−1(λ/t)) −→
t→∞ e−λ,

which finishes the proof. �
In the next subsection, we study how the convergence results can be made explicit by

combining Theorem 4 and the three conditions. These results can be seen as the continuous
analogues of those in [31].
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3.3.2. Non-critical case. Consider a non-critical CBI process (Yt, t ≥ 0), i.e. b �= 0. Recall
v−t(λ) defined by (11) and λ0 given in (31). Set

ρt :=
{

1 if b > 0,

v−t(λ0) if b < 0.

From Theorem 1 and Theorem 2(ii), if (18) holds, then ρtYt converges to ∞ at least in
probability.

Theorem 5. Assume that b �= 0.

(i) If Condition (S) holds, let

m(x) := exp

(∫ 1

1/x

�(u)

�(u)
du

)

for x > 0. Then

ln ρtYt

t

p−→ 0 and m(ρtYt)/m(e|b|t) d−→ U as t → ∞, (43)

where U is uniformly distributed on [0,1].

(ii) If Condition (L) holds, then

ln ρtYt

t
d−→ |b|UL as t → ∞, (44)

where

P(UL ≤ λ) =
(

λ

1 + λ

)a

, λ ≥ 0.

(iii) If Condition (F) holds (i.e. (39) holds with 0 ≤ δ ≤ 1), then

ln Yt

t

p−→ ∞ and t�(1/Yt)
d−→ e1 as t → ∞.

In particular, if 0 < δ ≤ 1 in (39), then we have

h(t) = t1/δL∗(t) and
ln Yt

h(|b|t)
d−→ UF as t → ∞, (45)

where L∗ is some slowly varying function at ∞ and UF follows the extreme distribution given
by P(UF ≤ λ) = exp (− 1/λδ), λ ≥ 0.

Remark 9.

(i) We observe from Proposition 2 that in the fast regime (F), the branching part plays
essentially no role in the growth of the non-critical CBI(�, �) process, since it has the
same growth rate as the immigration subordinator (It, t ≥ 0).

(ii) The statement (i) of Theorem 5 is given in Pinsky [32, Theorem 2], but with some errors.
The corrected convergence from [32, Theorem 2] reads as follows:

Px(m(Xt)/m(ect) ≥ u−1) → u, ∀0 < u ≤ 1, as t → ∞.

We will first prove the following lemmas.
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Lemma 2. Assume that b �= 0. Then

ϕ(λ) ∼
λ→0

− 1

|b| ln λ,

− ln g(x) ∼
x→∞ |b|x,

and

ln vt(λt) ∼ −b(t + ϕ(λt)) if b > 0; ln vt(ρtλt) ∼ ln λt if b < 0,

for any λt → 0+ as t → ∞.

Proof. Note that

ϕ(λ) =
∫ λ0

λ

du

|�(u)| ∼
λ→0

∫ λ0

λ

du

|b|u ∼
λ→0

− 1

|b| ln λ.

Since g is the inverse function of ϕ, we have − ln g(x) ∼
x→∞ |b|x. If b > 0, we establish the last

statement by plugging x = ϕ(λt) + t into (35). Now we turn to b < 0. It follows from (14) and
(15) that

vt(ρtλ) −→
t→∞ v− ln λ

b
(λ0) and v− ln λ

b
(λ0) −→

λ→0
0.

Recall that λ �→ vt(ρtλ) is non-decreasing. Recall also that if b > 0 then ρt ≡ 1; if b < 0 then
limt→∞ ρt = 0. Thus we have ρtλt, vt(ρtλt) ∈ (0, λ0) for sufficiently large t. Then by (36),

vt(ρtλt) = g(ϕ(ρtλt) − t) (46)

for large t. Recall that ρt = v−t(λ0). By (10), we obtain

ϕ(ρtλt) − t =
∫ ρt

ρtλt

(− 1/�(u))du ∼
∫ ρt

ρtλt

(− 1/bu)du = ln λt

b
, as t → ∞.

Putting x = ϕ(ρtλt) − t into ln g(x) ∼ bx (x → ∞) and using (46), we get the last statement for
b < 0. �
Lemma 3. If b < 0, then ln ρt ∼ bt as t → ∞.

Proof. Recall from Lemma 1 that ρt+s/ρt → ebs as t → ∞. Consider the function ρln t on
(1, ∞). We observe that ρln t is regularly varying with index b at ∞. By Bingham et al. [4,
Proposition 1.3.6(i)], we have ln ρln t ∼ b ln t (t → ∞). �

Proof. (Proof of Theorem 5.) Recall that under the assumption (18), the process (Yt, t ≥ 0)
goes to infinity in probability. By the Skorokhod representation theorem, there is a probability
space on which is defined a process whose one-dimensional laws are those of (Yt, t ≥ 0), which
tends to ∞ a.s. when t goes towards ∞. See [6, Corollary] for a continuous-time version of
the Skorokhod representation theorem, and apply it at time t = ∞. In the supercritical case, we
apply the Skorokhod representation theorem to the bivariate process (Yt, ρtYt)t≥0, so that on a
certain probability space, copies of both coordinates go to infinity a.s. We stress that our aim is
to establish some convergences in law. One can equivalently work along an arbitrary sequence
(tn)n≥1 which tends to ∞ and apply the usual Skorokhod representation theorem.
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By the definition of H and Theorem 4,

sgn(b)
[
H(− ln vt(1/Yt)) − H( ln Yt)

]
= (1 + o(1))

∫ 1/Yt

vt(1/Yt)

�(u)

�(u)
du

d−→ e1. (47)

(i) Applying first the mean value theorem, and then Condition (S), we see that there exists
θt between ln Yt and − ln vt(1/Yt) such that

H(−ln vt(1/Yt)) − H( ln Yt) =
∫ − ln vt(1/Yt)

ln Yt

uH′(u)

u
du

= H′(θt)θt ln

(
− ln vt(1/Yt)

ln Yt

)

= o(1) ln

(
− ln vt(1/Yt)

ln Yt

)
. (48)

We start with b > 0. In this case,

− ln vt(1/Yt)

ln Yt
≥ 1

for sufficiently large t. Then a comparison between (47) and (48) implies that

− ln vt(1/Yt)

ln Yt

p→ +∞.

It follows from Lemma 2 with λt = 1/Yt that

ln Yt

t

p→ 0 and − ln vt(1/Yt)
p∼ bt, t → ∞.

Based on the results above, again using Condition (S), there exists θ ′
t between bt and

− ln vt(1/Yt) such that

H(− ln vt(1/Yt)) − H(bt) = H′(θ ′
t)θ ′

t ln
(
− ln vt(1/Yt)

bt

)
p→ 0, t → ∞. (49)

Note that

m(Yt)

m(ebt)
= exp

(∫ e−bt

1/Yt

�(u)

�(u)
du

)
= exp{(H( ln Yt) − H(bt))(1 + o(1))}.

Combining this with (47) and (49), we have that

m(Yt)

m(ebt)
d→ exp (− e1).

We now turn to b < 0. In this case,

0 < − ln vt(1/Yt)

ln Yt
≤ 1
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for sufficiently large t. A comparison between (47) and (48) implies that

− ln vt(1/Yt)

ln Yt

p→ 0.

It follows from Lemma 2 with λt = 1/(ρtYt) and Lemma 3 that

− ln vt(1/Yt)
p∼ ln ρtYt and ln Yt

p∼ −bt, t → ∞.

Proceeding as in the case with b > 0, we have that

m(ρtYt)

m(e−bt)
d→ exp (− e1).

(ii) By Condition (L),

H(− ln vt(1/Yt)) − H( ln Yt) =
∫ − ln vt(1/Yt)

ln Yt

H′(u)du ∼ a
∫ − ln vt(1/Yt)

ln Yt

du

u
, t → ∞.

Using Lemma 2 with λt = 1/Yt if b > 0, and using Lemma 2 with λt = 1/(ρtYt) and
Lemma 3 if b < 0, we obtain

sgn(b)
∫ − ln vt(1/Yt)

ln Yt

du

u
= sgn(b) ln

(
− ln vt(1/Yt)

ln Yt

)
= ln

(
1 + |b|t

ln ρtYt
(1 + o(1))

)
+ o(1).

Then by (47), we have Theorem 5(ii).

(iii) The mean value theorem for integrals shows that there is some θ̄t between ln Yt and
− ln vt(1/Yt) such that

H(− ln vt(1/Yt)) − H( ln Yt) = H′(θ̄t)θ̄t ln

(
− ln vt(1/Yt)

ln Yt

)
.

By Condition (F) and (47), we have that − ln vt(1/Yt)
p∼ ln Yt. Then it follows from

Lemma 2 (together with Lemma 3 if b < 0) that

t/ ln Yt
p→ 0 and t/ϕ(1/Yt)

p→ 0, t → ∞. (50)

Applying (35), (36), and (37), we obtain, for large t,

∫ 1/Yt

vt(1/Yt)

�(u)

|�(u)|du =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ϕ(1/Yt)+t

ϕ(1/Yt)
�(g(u))du if b > 0,

∫ ϕ(1/Yt)−t

ϕ(1/Yt)
�(g(u))du if b < 0.

(51)

Note that �(g(u)) = bH′(− ln g(u)).

By the fact that − ln g(u) ∼ |b|u as u → ∞ and Condition (F), we have that �(g(u)) is
regularly varying at ∞; see [33, Proposition 0.8(iv)]. In the rest of the proof, we deal only with
b > 0. The proof for b < 0 is quite similar and therefore omitted.
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By changing variable and applying a mean value theorem to the right-hand side of (51), we
obtain ∫ 1/Yt

vt(1/Yt)

�(u)

�(u)
du = ϕ(1/Yt)

∫ t/ϕ(1/Yt)+1

1
�(g(ϕ(1/Yt)u))du

= t�(g(ϕ(1/Yt)θ̂t))
(
for some θ̂t ∈ (1, t/ϕ(1/Yt) + 1)

)
∼ t�(g(ϕ(1/Yt))) (t → ∞). (52)

The validity of the last equivalence is proved as follows: using (50), we have θt
p→ 1 as t → ∞.

Since � ◦ g is regularly varying, the last equivalence holds by locally uniform convergence;

see e.g. [4, Theorem 1.2.1]. Then t�(1/Yt) = t�(g(ϕ(1/Yt)))
d→ e1 from Theorem 4.

Now we focus on the case when δ > 0 in (39). Note that H′(x) = 1
b�(e−x). Since h is the

inverse function of 1/H′, we have H′(h(x)) = 1/x for any x > b/�(1). Then by Karamata’s
theorem (see [33, p. 23]), the statement on h(t) in (45) holds.

For λ > 0, we again use H′(x) = 1
b�(e−x), and apply (39) and (40) to obtain that

H′(ln Yt)

H′(h(bt)λ)
= t�(1/Yt)

H′(h(bt))

H′(h(bt)λ)
d→ λδe1 as t → ∞.

Hence, P(ln Yt/h(bt) ≤ λ) = P(H′(ln Yt))/H′(h(bt)λ) ≥ 1) −→
t→∞ exp (− 1/λδ). �

3.4. On the critical case

The study of the critical case, i.e. b = � ′(0 + ) = 0, is more involved, as vt(λ) may have
different asymptotics as t → ∞ and λ → 0 depending on the behavior of � near 0. We make
the following assumption on the Lévy measure π in the branching mechanism: suppose that π

satisfies

π̄(u) ∼
u→∞ − 1

�(− α)
u−1−α�(u), (53)

where π̄ (u) = π (u, ∞) for u > 0, 0 < α < 1, and � is slowly varying at ∞. By [4, Theorem
8.1.6], the above assumption is equivalent to

�(λ) ∼
λ→0

λ1+α�(1/λ). (54)

Recall that ϕ is defined by (31) and g is the inverse function of ϕ. It follows from Karamata’s
theorem (see [33, p. 17, p. 23]) that

ϕ(λ) ∼ λ−α

α�(1/λ)
and g(1/λ) ∼ λ1/α�∗(1/λ), as λ → 0, (55)

where �∗ is slowly varying at ∞. We denote by �−1 the inverse function of �.

Theorem 6. Assume that b = 0 and (53) holds.

(i) If Condition (S) holds, let m(x) be defined as in (43). Then

m(Yt)

m(1/g(t))
d−→ V as t → ∞,

where V is uniformly distributed on [0, 1].
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(ii) If Condition (L) holds, then

g(t)Yt
d−→ VL as t → ∞,

where E
[
e−λVL

]= (1 + λα)−a for all λ ≥ 0.

(iii) If Condition (F) holds with δ > 0 in (39), then

�tYt
d−→ VF as t → ∞, (56)

where E
[
e−θVF

]= exp (− θδα) for all θ ≥ 0, with �t = �−1(1/t) = t−1/(δα)�̄(t) as t →
∞ for some slowly varying function �̄ at ∞.

If Condition (F) holds with δ = 0 in (39), then t�(1/Yt)
d−→ e1 as t → ∞.

Remark 10. When δ ∈ (0, 1], the convergence (56) is equivalent to the following:

t�(1/Yt)
d−→ V−δα

F as t goes to ∞. Indeed, for any λ > 0, the property of regular variation
of �t implies that

P(t�(1/Yt) ≥ λ)

= P(�(1/Yt) ≥ λ/t) = P(1/Yt ≥ �t/λ)

= P(�t/λYt ≤ 1) ∼ P
(
λ1/(δα)�tYt ≤ 1

) →
t→∞ P

(
VF ≤ λ−1/(δα))= P((VF)−δα ≥ λ).

Since the random variable VF has a stable law, (VF)−δα is not a standard exponential ran-
dom variable. Therefore, unlike in the non-critical cases (see Theorem 5(iii)), for which

t�(1/Yt)
d−→ e1 holds when Condition (F) holds, no matter what value δ ∈ [0, 1] takes, in

the critical case the convergence to e1 holds only for δ = 0.

Proof. We start with some observations. By (35) and (37), we have∫ λ

vt(λ)

�(u)

�(u)
du =

∫ t+ϕ(λ)

ϕ(λ)
�(g(u))du, H(x) =

∫ x

ϕ(λ0)
�(g(u))du. (57)

Then H′(x) = �(g(x)). Note that we will use H′(x) or �(g(x)) in different contexts.
It was mentioned in Remark 4 that Steps 1 and 2 in the proof of Theorem 4 still hold for

the critical case. That is to say, recalling rt(λ) defined by (8) and λ �→ ct(λ) its inverse, for any
fixed λ > 0 we have ct(λ)→0 and vt(ct(λ))→0 as t → ∞. Therefore ϕ(ct(λ)) → ∞ as t → ∞.

(i) From (57) with λ replaced by ct(λ), by the mean value theorem, there exists θ̂t between
ϕ(ct(λ)) and t + ϕ(ct(λ)) such that

λ =
∫ ct(λ)

vt(ct(λ))

�(u)

�(u)
du =

∫ t+ϕ(ct(λ))

ϕ(ct(λ))
�(g(u))du = θ̂tH′(θ̂t)ln

(
t + ϕ(ct(λ))

ϕ(ct(λ))

)
. (58)

Together with Condition (S), this yields ϕ(ct(λ))/t → 0 as t → ∞. Then, still by the
mean value theorem and Condition (S), we obtain∫ vt(θct(λ))

vt(ct(λ))

�(u)

�(u)
du =

∫ t+ϕ(ct(λ))

t+ϕ(θct(λ))
� ◦ g(u)du = o(1) ln

(
t + ϕ(ct(λ))

t + ϕ(θct(θλ))

)
, (59)
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which goes to 0 as ϕ is regularly varying with index −α by (55). Similarly∫ ct(λ)

θct(λ)

�(u)

�(u)
du → 0.

Hence, by (24), (23), and (22),∫ 1/Yt

vt(1/Yt)

�(u)

�(u)
du =

∫ t+ϕ(1/Yt)

ϕ(1/Yt)
�(g(u))du

d−→ e1 as t → ∞. (60)

Applying the same transformation as in (59) to (60) shows that ϕ(1/Yt)/t
p→

0 as t → ∞. Again using Condition (S), we have∫ vt(1/Yt)

g(t)

�(u)

�(u)
du =

∫ t

t+ϕ(1/Yt)
�(g(u))du = o(1) ln

( t

t + ϕ(1/Yt)

)
p→ 0. (61)

Therefore, combining the above two displays (60) and (61) yields

− ln
( m(Yt)

m(1/g(t))

)
=
∫ 1/Yt

g(t)

�(u)

�(u)
du

d−→ e1.

This allows one to conclude that (i) holds.

(ii) By (9) and (37),

Ex
[
e−λg(t)Yt

]= exp
{
− xvt(g(t)λ) −

∫ t+ϕ(λg(t))

ϕ(λg(t))
�(g(u))du

}
.

We shall study the two terms in the exponential one by one. As t → ∞, g(t) → 0 and
consequently vt(g(t)λ) → 0. By Condition (L),∫ t+ϕ(λg(t))

ϕ(λg(t))
� ◦ g(u)du ∼ a

∫ t+ϕ(λg(t))

ϕ(λg(t))

dx

x
= a ln

(ϕ(g(t)) + ϕ(λg(t))

ϕ(λg(t))

)
,

which converges to a ln (λα + 1) by (55). So the statement in (ii) holds.

(iii) Applying the same proof as in (58), we have from Condition (F) that

t/ϕ(ct(λ)) → 0 as t → ∞. (62)

Since ϕ is regularly varying with index −α (see (55)), ϕ(θct(λ))/ϕ(ct(λ)) → θ−α for θ > 0.
Then t/ϕ(θct(λ)) → 0.

We also note that H′ = � ◦ g is regularly varying by (39). Based on the above results, a
similar proof as in (52) shows that for any θ > 0,∫ θct(λ)

vt(θct(λ))

�(u)

�(u)
du ∼ t� ◦ g(ϕ(θct(λ))) = t�(θct(λ)) as t → ∞. (63)

Letting θ = 1 and λ = 1, by the definition of rt(1), ct(1), the left term in the equivalence relation
above equals 1, and so we have

t�(ct(1)) → 1 as t → ∞. (64)
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If (39) holds, then � = H′ ◦ ϕ is regularly varying with index δα at 0 by (55) and [33,
Proposition 0.8(iv)]. Using the above two displays,∫ θct(1)

vt(θct(1))

�(u)

�(u)
du ∼ t�(ct(1))

�(θct(1))

�(ct(1))
∼ θδα, as t → ∞.

As ct(1) → 0, we also have vt(θct(1)) → 0 thanks to the above display. Then, using (23) and
(24), we conclude that

Ex
[
e−θct(1)Yt

]→ e−θδα

as t → ∞. By [33, Proposition 0.8(v)], the map �−1 is regularly varying with index 1/(δα)
at 0, and by (64), we have that ct(1) = �−1(�(ct(1))) ∼ �−1(1/t). Thus the first result in (iii)
holds.

If � ◦ g is slowly varying at ∞, then � ◦ g(ϕ(u)) is slowly varying at 0 by (55). Then it
follows from (63) that Ex[e−θct(λ)Yt ] → e−λ as t → ∞. As in (22), we have (19) in this case.
The second half of (iii) follows the very similar proof of Theorem 5(iii) and we omit it. �
Remark 11. Recall that in the critical case when � = � ′, the CBI(�, �) process has the same
law as the CB(�) processes conditioned on non-extinction. Moreover, we readily check that∫

0
�

′(u)
�(u) du = ∞. It follows that H′(x) = � ′(g(x)) for all x.

We apply now Theorem 1 and Theorem 6 to the case of stable branching and immigration
mechanisms, for which explicit calculations can be made.

Corollary 2. (Stable case) Assume �(q) = dqα+1 for d > 0 and α ∈ (0, 1], and �(q) = d′qβ

for d′ > 0 and β ∈ (0, 1]. Then the following hold:

(i) If β/α > 1, then Yt
d−→ Y∞ as t → ∞, where Y∞ has Laplace transform

E
[
e−λY∞]= e− λβ−α

β−α

for any λ ≥ 0.

(ii) If β/α = 1, then t− 1
α Yt

d−→ (αd)
1
α VL as t → ∞, where VL has Laplace transform

E
[
e−λVL

]= 1

(1 + λα)
d
′

αd

for any λ ≥ 0.

(iii) If β/α < 1, then t−
1
β Yt

d−→ (d′)1/βVF as t → ∞, where VF has Laplace transform
E
[
e−λVF

]= e−λβ
for any λ ≥ 0.

Remark 12. When β = α, the specific case d′ = (α + 1)d, which corresponds to � = � ′, has
been studied by Kyprianou and Pardo [25, Lemma 3] using other techniques.

Proof. First notice that
∫

0
�(u)
�(u) du = ∞ if and only if β

α
≤ 1. The statement (i) is a direct

consequence of Theorem 1. Let λ0 = 1; we compute

ϕ(x) = 1

αd

(
1

xα
− 1

)
and g(x) =

(
1

αdx + 1

) 1
α
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for x > 0. Moreover,

x�(g(x)) ∼ d′

(αd)β/α
x1−β/α

as x goes to ∞. If β/α = 1 then Condition (L) is fulfilled for a = d′
αd , and we deduce the

statement (ii) from Theorem 6. If β/α < 1, then Condition (F) and (39) are fulfilled with δ = β
α

.
Theorem 6 also applies. �

We have focused our study on CBI processes whose branching Lévy measure has finite
mean, i.e. � ′(0 + ) = b ∈R or equivalently

∫∞
1 zπ (dz) < ∞. The proofs of Theorem 4 and

Corollary 1, however, do not make use of this assumption. Thus they also hold in the case of
a non-explosive supercritical CBI(�, �) process with � ′(0 + ) = −∞. A similar dichotomy
occurs in the long-term behavior, depending on whether

∫
0

�(u)
|�(u)|du < ∞ or

∫
0

�(u)
|�(u)|du = ∞

when b = −∞. In the first case, some a.s. nonlinear renormalizations can be found; see [18]
and Foucart and Ma [15] for the case without immigration. In the case

∫
0

�(u)
|�(u)|du = ∞, there

exist regimes similar to those found in Section 3.3; see [1] for the case of processes with
discrete state space.
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