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Sea ripples are small-scale bedforms which originate from the interaction of an
oscillatory flow with an erodible sand bed. The phenomenon of sea ripple formation
is investigated by means of direct numerical simulation in which the sediment bed
is represented by a large number of fully resolved spherical grains (i.e. the flow
around each individual particle is accounted for). Two sets of parameter values
(differing in the amplitude and frequency of fluid oscillations, among other quantities)
are adopted which are motivated by laboratory experiments on the formation of
laminar rolling-grain ripples. The knowledge of the origin of ripples is presently
enriched by insights and by providing fluid- and sediment-related quantities that
are difficult to obtain in the laboratory (e.g. particle forces, statistics of particle
motion, bed shear stress). In particular, detailed analysis of flow and sediment bed
evolution has confirmed that ripple wavelength is determined by the action of steady
recirculating cells which tend to accumulate sediment grains into ripple crests. The
ripple amplitude is observed to grow exponentially, consistent with established linear
stability analysis theories. Particles at the bed surface exhibit two kinds of motion
depending on their position with respect to the recirculating cells: particles at ripple
crests are significantly faster and show larger excursions than those lying in ripple
troughs. In analogy with the segregation phenomenon of polydisperse sediments, the
non-uniform distribution of the velocity field promotes the formation of ripples. The
wider the gap between the excursion of fast and slow particles, the larger the resulting
growth rate of the ripples. Finally, it is revealed that, in the absence of turbulence,
the sediment flow rate is driven by both the bed shear stress and the wave-induced
pressure gradient, the dominance of each depending on the phase of the oscillation
period. In phases of maximum bed shear stress, the sediment flow rate correlates
more with the Shields number while the pressure gradient tends to drive sediment
bed motion during phases of minimum bed shear stress.
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1. Introduction
Sedimentary patterns in maritime environments are typically caused by different

morphogenetic phenomena and can exhibit a wide range of spatial scales varying
from a few centimetres to hundreds of metres. The capability to predict the evolution
of large-scale bedforms is necessary, for example, to guarantee the durability of
marine structures and infrastructures as well as the equilibrium of sensitive benthic
ecosystems, thereby preventing extraordinary catastrophic events. Nonetheless, the
contextual presence of smaller bedforms cannot be neglected since morphogenetic
processes occurring at different scales are not reciprocally independent. It is well
known that small-scale bedforms, like ripples, modify the structure of the flow in
the vicinity of the bed and they can significantly enhance the transport of sediments
and contaminants near the bed (e.g. Thibodeaux & Boyle 1987). It has also been
shown that model predictions of the sediment flux due to the flow induced by wind
waves on a plane bed can be affected by errors that easily exceed 100 % of the
actual measurements because turbulence diffusion models currently available are not
able to describe the turbulent convective events which characterise an oscillatory flow
during the flow reversal (Davies et al. 1997). Such discrepancies are enhanced by the
presence of ripples which can significantly amplify the amount of sediment set into
suspension.

Sea ripples originate from the action of the flow induced by wind waves on a
movable bed under certain flow and sediment conditions. For the sake of simplicity,
let us consider the case of monochromatic wind waves developing over a plane
bed of cohesionless sediments. Assuming that the linear Stokes wave theory can
be used to approximate the irrotational flow far from the bottom, close to the bed
the flow turns, at the leading order of approximation, into the oscillatory boundary
layer (OBL) generated by harmonic oscillations of the pressure gradient. In the
real ocean, additional streaming (boundary layer streaming) has its origin in the
existence of vertical velocities close to the bed originated by the non-uniformity of
the flow beneath free-surface waves. Such streaming, which may also play a role in
morphogenetic processes, is presently not considered. Mathematically, the flow can be
described by the incompressible Navier–Stokes equations defined in a domain bounded
by the bed surface. If the bed is fixed, the hydrodynamic problem is globally stable
for moderate values of the Reynolds number as long as the fluctuations generated
by the bed roughness do not amplify with turbulence thus appearing. However, the
material of coastal shelves often consists of cohesionless fine and medium sand
which can be easily set into motion by waves even for relatively small values of the
Reynolds number. For a laminar OBL, when treating the sediment as a continuum,
the stability problem can be tackled analytically. The resulting problem is globally
unstable, thus we can expect that the amplitude of a small perturbation of the bed
surface grows as the critical condition of sediment motion is reached.

Sea ripples are caused by the instability of the bed surface under the action of
flow oscillations and consist of a two-dimensional waviness of the bed surface, the
third dimension being orthogonal to the flow oscillations, with wavelength ranging
from a few (rolling-grain ripples) to some tens of centimetres (vortex ripples), even
though three-dimensional patterns have also been observed (e.g. brick-pattern ripples,
Vittori & Blondeaux 1992; Pedocchi & García 2009). The mechanism underlying the
formation of a bottom waviness in a laminar OBL over a cohesionless plane bed has
been fairly well understood since Sleath (1976) observed that the interactions of a
small bottom waviness (of infinitesimal amplitude) with the oscillatory flow induce
a secondary steady flow, i.e. a steady streaming superimposed on the principal flow
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oscillations, consisting of two-dimensional recirculating cells. If the steady streaming
is strong enough to affect the motion of sediment particles, sediments tend to pile up
where the streamlines of adjacent recirculating cells converge, to be eroded elsewhere.
The mechanism of accumulation of sediments is balanced by the effect of gravitational
acceleration which opposes the accretion of the waviness amplitude. Rolling-grain
ripples are the bedforms that can form in a laminar OBL and their emergence is
the first indicator that a plane bed configuration is evolving into a rippled geometry.
Experimentally, it was observed that, since their first appearance, ripples undergo a
coarsening process that can stop if a stable configuration is attained, when the effect
of gravity on sediment particles counteracts that of the steady streaming, before the
ripple steepness, defined as the ratio between ripple height and wavelength, causes
flow separation (Stegner & Wesfreid 1999; Rousseaux, Stegner & Wesfreid 2004a).
As the slope of rolling-grain ripples becomes large enough to trigger the separation
of the flow from their crests, vortex ripples form, which are characterised by steeper
slopes and larger heights and wavelengths than rolling-grain ripples.

As long as the boundary layer does not separate from the bed surface, the growth
rate of wavy bedforms may be determined through linear stability analysis. This
approach was first adopted by Lyne (1971) and Sleath (1976) under the hypothesis
of large fluid displacement oscillations, i.e. much larger than the wavelength of the
bedforms, which however is not suitable for the case of ripples. Then, Blondeaux
(1990) solved the analytic problem for arbitrary ratios of the orbital excursion to
the ripple wavelength while Vittori & Blondeaux (1990) extended the formulation
of Blondeaux (1990) to the case of finite amplitude ripples by means of weakly
nonlinear stability analysis. Laboratory experiments (e.g. Blondeaux, Sleath & Vittori
1988) show that stable rolling-grain ripples can be observed only for a relatively small
range of values of the Stokes and particle Reynolds numbers and of the mobility
number defined, respectively, by:

Reδ =
U∗0δ

∗

ν∗
, Red =

U∗0d∗

ν∗
and ψ =

U∗20

v∗ 2
s

, (1.1a−c)

where U∗0 denotes the amplitude of free-stream velocity oscillations, δ∗ =
√

2ν∗/ω∗
denotes the conventional thickness of a viscous oscillatory boundary layer (Sleath
1984) and ω∗ the angular frequency of the flow oscillations. The quantity v∗s is often
referred to as the gravitational velocity of the sediment particles and is defined as

v∗s =

√(
%∗s

%∗
− 1
)

g∗d∗, (1.2)

where g∗ indicates the modulus of gravitational acceleration, %∗s and d∗ the density
and the nominal diameter of the sediment grains while %∗ and ν∗ are the density and
the kinematic viscosity of the fluid. The period of the flow oscillations is denoted
by T∗ and is equal to π/ω∗. The star superscript is used to denote dimensional
quantities and distinguish them from dimensionless ones. The parameters (1.1),
along with the specific gravity s= %∗s /%

∗, can be chosen to determine the parameter
space for sediment transport with spherical particles in the absence of bedforms.
Alternatively, the Galilei number Ga is often used in the particulate flow and
suspension communities, which is related to ψ and Red through the expression
Ga = Red/

√
ψ , as well as the Keulegan–Carpenter number, Kc = Re2

δ/(2 Red), that
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is defined as the ratio between the semi-excursion of the fluid far from the bed,
`∗f = U∗0/ω

∗, and the diameter of sediment particles. As the average ripple steepness
exceeds the threshold 0.1 identified empirically by Sleath (1984), the flow separates
from the ripple crests and computations of the ripple evolution can only be made
numerically. For instance, Scandura, Vittori & Blondeaux (2000) studied numerically
the interaction of an oscillatory flow with a wavy wall, characterised by steepness
∼0.1, for values of Reδ ranging between 42 and 89, and observed the flow separation
from the crests of the wall and the appearance of three-dimensional vortex structures.
However, Scandura et al. (2000) concluded that a movable bed should be considered
in the simulations to obtain results relevant for the problem of sediment transport.

Since the evolution of the bed surface is not known a priori but results from the
coupling between the fluid and sediment dynamics, a discrete approach seems more
suitable to investigate the mechanics of sediment particles in an OBL. In order to
investigate the origin of ripples and to test the capability of the numerical approach
to catch the basic physics of sediment transport, Mazzuoli et al. (2016) performed
direct numerical simulations (DNSs) of an oscillatory flow both over smooth and
rough walls with movable spherical beads on top of it. The values of the parameters
were chosen to be similar to those of laboratory experiments, where the formation
either of sediment patterns (Hwang, Hwung & Huang 2008) or of rolling-grain
ripples (Blondeaux et al. 1988) had been observed. Mazzuoli et al. (2016) considered
identical beads initially aligned along the direction of the flow oscillations and
observed that, within a few oscillation periods, they rearranged into chains orthogonal
to the flow oscillations, equispaced by a distance comparable to that measured in
the experiments. Qualitatively, the mechanism of formation of the chains was not
very sensitive to the number of beads or the presence of the bottom roughness,
consisting of beads closely packed and fixed on the bottom. Steady recirculating cells
of different sizes initially developed, but only recirculating cells compatible with the
wavelength of the chains of beads were promoted and could be observed at the final
stages of the simulations.

Since the process of formation of chains of spheres is basically different from
that of ripples, due to gravity playing different roles in the two cases, two of the
experiments of Blondeaux et al. (1988), where rolling-grain ripples formed, were
reproduced by means of DNS and are presently described. The values of the relevant
dimensional parameters characterising the experiments are reported in table 1. In
particular, the present investigation is aimed at: (i) showing that laboratory experiments
of the formation of ripples can be reproduced by DNS, (ii) obtaining accurate values
of quantities that are difficult to measure in the laboratory (e.g. particle forces and
trajectories, steady streaming intensity, bed shear stress, the sediment flow rate),
(iii) investigating the dynamics of sediment particles and (iv) relating the sediment
transport to mean flow quantities.

In the following, the numerical method is briefly described while the results are
discussed in § 3. Finally, conclusive remarks are made in § 4.

2. Formulation of the problem and numerical approach

The OBL (over a smooth wall) can be generated in the laboratory by the harmonic
motion of a piston which produces a uniform pressure gradient through the fluid,
in a duct with sufficient depth and breadth to prevent undesirable boundary effects.
Typically, the axis of the duct develops along a U-shape profile in order to exploit
the support of gravity, while only the flow field in the central section of the U-tube,
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T∗ (s) U∗0 (m s−1) `∗f (m) δ∗ (mm) d∗ (mm) %∗s /%
∗

Run 1 1.86 0.16 0.8 0.05 0.2± 0.06 2.65
Run 2 0.95 0.13 0.6 0.02 0.2± 0.06 2.65

TABLE 1. Parameters for Blondeaux et al.’s (1988) experiments presently considered.
From left to right: the oscillation period (T∗), the amplitude of free-stream velocity
oscillations (U∗0 ), the stroke or fluid semi-excursion (`∗f ), the thickness of the Stokes
boundary layer (δ∗), the particle diameter (d∗) and the particle specific gravity (%∗s /%

∗).
The kinematic viscosity of the fluid was approximately equal to 10−6 m2 s−1.

in the vicinity of the bottom, is investigated. The time development of the pressure
gradient driving the flow is described by

∂p∗f
∂x∗1
=−%∗U∗0ω

∗ sin(ω∗t∗);
∂p∗f
∂x∗2
= 0;

∂p∗f
∂x∗3
= 0, (2.1a−c)

where t∗ is the time variable and (x∗1, x∗2, x∗3) is a Cartesian coordinate system with
the origin at the bottom of the domain, the x∗1-axis parallel to the flow oscillations
and the x∗2-axis pointing the upward wall-normal (i.e. bottom-normal) direction. The
total pressure can be expressed by the sum:

p∗tot(x
∗

1, x∗2, x∗3, t∗)=
Reδ
2

p∗f (t
∗)+ p∗(x∗1, x∗2, x∗3, t∗), (2.2)

where p∗f is equal to the right-hand side of the first component of (2.1) multiplied by
x∗1 and p∗ denotes the pressure in the boundary layer. Then, p∗ (as well as any other
flow quantity) can be further split into the sum of two contributions:

p∗(x∗1, x∗2, x∗3, t∗)= p∗ + p′∗(x∗1, x∗2, x∗3, t∗), (2.3)

the flat overbar indicating the statistical average operator (the ensemble average or the
phase average, i.e. the average computed at corresponding phases of the oscillation
period, if the flow and bed evolution are at the equilibrium) and p′∗ the corresponding
fluctuating part. Let the bottom (i.e. the plane x∗2 = 0) be equipped with a bed of
monosized spherical heavy particles of diameter d∗ initially arranged in multiple
superimposed plane layers. The dynamics of the particles is dictated by the collective
influence of gravity, collision and hydrodynamic forces. Hydrodynamic force, in turn,
results from the combination of pressure and viscous contributions. The pressure
gradient (2.1) drives both the motion of the fluid and of the solid particles while the
fluctuations of pressure, denoted by p′∗ in (2.3), can be associated both with turbulence
and with the motion of particles. Since the ensemble average is not feasible with a
single simulation while the ‘equilibrium state’ is presently never attained, different
spatial-average operators are adopted to estimate the average quantities. The operator
〈·〉

(i)
α denotes the average of the argument performed along the direction α ≡ x1, x2

or x3, or along two directions, e.g. α ≡ x1x3 indicates the horizontal plane (plane
average), or over a three-dimensional sub-space α≡V (volume average). For the sake
of simplicity, omitting α implicitly indicates that the plane average is performed. The
superscript (i), if present, indicates that the flow field has been split into a number
of bins either along the streamwise direction, equispaced by h∗1 = 2d∗, or along the
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Reδ Red ψ Ga Kc s

Run 1 128 33.3 9.69 10.7 246 2.46
Run 2 71.7 17.4 7.88 6.2 148 2.65

TABLE 2. Summary of flow parameters for the present runs.

wall-normal direction, equispaced by h∗2 = d∗, and that the average is computed over
the ith bin. A similar notation is adopted for particle-related quantities to indicate
the average over a set of particles (α ≡ s) or the time average over each half-period
(α ≡ T/2).

On the basis of purely dimensional considerations, for the present flow configuration,
a generic hydrodynamic quantity F∗ can be expressed as a function F∗(x∗i , t∗;ω∗,U∗0 ,
d∗, g∗, µ∗, %∗, %∗s ), i = 1, 2, 3, where µ∗ = %∗ν∗ denotes the dynamic viscosity
of the fluid. The present choice is to use ω∗, %∗ and µ∗ to reduce the number
of dimensionally dependent arguments and obtain the corresponding dimensionless
quantity F(xi, t;Reδ,Red, ψ, s) which depends on the numbers introduced in § 1. The
values of the numbers Reδ, Red, ψ and s for the present simulations are indicated
in table 2. Note that the specific gravity between the runs differs by 7 % and is not
expected to play a significant role. Thus, the incompressible Navier–Stokes equations
can be expressed in a dimensionless form by introducing the following variables:

(x1, x2, x3)=
(x∗1, x∗2, x∗3)

δ∗
; t= t∗ω∗;

(u1, u2, u3)=
(u∗1, u∗2, u∗3)

U∗0
; p=

p∗

%∗(U∗0)2
; (f1, f2, f3)=

(f ∗1 , f ∗2 , f ∗3 )
U∗0ω∗

.

 (2.4)

In (2.4), u∗1, u∗2, u∗3 are the fluid velocity components along the x∗1-, x∗2- and
x∗3-directions, respectively, and f ∗1 , f ∗2 , f ∗3 are the components of the body force. Hence,
the dimensionless continuity and Navier–Stokes equations read:

∂uj

∂xj
= 0, (2.5)

∂ui

∂t
+

Reδ
2

uj
∂ui

∂xj
=−

Reδ
2
∂p
∂xi
+ δi1 sin(t)+

1
2
∂2ui

∂xk∂xk
+ fi, (2.6)

where Einstein’s convention on the summation is used. It can be noted that the
Reynolds number Reδ is the only dimensionless parameter which is based upon purely
hydrodynamic quantities and controls the momentum equation (2.6), while sediments
enter the problem through the boundary conditions. Concerning the simulation of the
particle motion, the main dimensionless control parameters are the specific gravity of
the sediments s, the sphere Reynolds number Red and the mobility number ψ that
are defined in § 1.

The domain where (2.5) and (2.6) are solved numerically is a cuboid space of
dimensions Lx1 , Lx2 and Lx3 in the streamwise, wall-normal and spanwise directions,
respectively, which are indicated in table 3. While periodic conditions are applied
at the boundaries in the streamwise and spanwise directions, the no-slip condition is
forced at the bottom, viz.

(u1, u2, u3)= (0, 0, 0) at x2 = 0 (2.7)
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FIGURE 1. Sketch of a simulation (detail of the computational domain). Different colours
are used to distinguish top-layer particles (dark grey) from crest particles (black). Most
of the particles shadowed in light grey exhibit negligible displacements with respect to
top-layer particles throughout the simulation.

Run Lx1 Lx2 Lx3 nx1 nx2 nx3 1t tfin Ns

Run 1 53.2 26.6 26.6 2048 1024 1024 1.96× 10−4 41π 257 138
Run 2 49.1 18.4 24.5 2048 768 1024 2.62× 10−4 58π 223 442

TABLE 3. Domain and time discretisation for the present runs. The final time of the
simulations is denoted by tfin while Ns is the number of spheres used in each run.

and the free-slip condition is forced at the upper boundary:(
∂u1

∂x2
,
∂u3

∂x2

)
= (0, 0); u2 = 0 at x2 = Lx2 . (2.8a,b)

The dimension Lx2 of the domain is chosen large enough to guarantee a vanishing
shear stress far from the bottom. The choice of the streamwise and spanwise
dimensions of the computational domain, Lx1 and Lx3 , can significantly affect the
process of formation of the bedforms. In particular, as recently pointed out by
Kidanemariam & Uhlmann (2017), the choice of Lx1 allows the development of
bedforms characterised by wavelengths equal to (1, 1/2, 1/3, 1/4, . . .) Lx1 , thus the
evolution of the geometrical properties of bedforms are expected to be markedly
discontinuous with respect to time. For instance, the larger Lx1 the smoother the
evolution of the bedforms appears. Therefore, the value of Lx1 is chosen to be as
large as two times the wavelength of the ripples observed in the experiments of
Blondeaux (1990) when the ‘equilibrium state’ was reached. Also, the value of Lx3

is chosen to allow for possible formation of three-dimensional patterns, which were
however absent in the experiments. A sketch of the simulations is shown in figure 1.

The hydrodynamic problem is solved throughout the whole computational domain,
including the space occupied by the solid particles. Indeed, the no-slip boundary
condition at the surface of the spheres is enforced by means of the (Eulerian)
volume force f1, f2, f3 which is simply added to the right-hand side of momentum
equation (2.6) via the immersed boundary approach. The flow solver consists of the
semi-implicit second-order fractional-step method, based on the finite difference
approximation of time and space derivatives, as proposed by Uhlmann (2005).
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The domain is discretised by a uniform equispaced grid of spacing 1x∗i = d∗/10 in
the ith direction (i= 1, 2, 3). The dynamics of the fluid and solid phases are coupled
through the immersed boundary method while collision forces are computed with a
soft-sphere discrete element model (DEM) based upon a linear mass–spring–damper
system. A detailed description of the collision model and of the validation can be
found in Kidanemariam & Uhlmann (2014b). The code has been recently used for
different investigations by Kidanemariam & Uhlmann (2014a), Mazzuoli & Uhlmann
(2017) and Uhlmann & Chouippe (2017) and, in a context similar to the present one,
by Mazzuoli et al. (2016).

The start-up bed configuration was obtained by settling approximately 15 layers of
spheres (the number of spheres, Ns, used for each run is indicated in table 3) on a
flat smooth bottom while the fluid was at rest. One layer of spheres was preliminarily
fixed on the bottom with a hexagonal arrangement in order to prevent the whole bed
from sliding as a block along the bottom, which was never observed in the laboratory
experiments. This expedient did not affect the results of the simulations because the
particle velocity rapidly vanishes beneath the surficial layers of particles. The spheres
whose centres were located above a distance of 15d∗ from the bottom were removed
in order to obtain a flat bed surface.

For the first wave period of each simulation all the particles were kept fixed in
order to let the interstitial flow develop. Simulations 1 and 2 were run for 41 and 58
half-cycles, respectively. Hereinafter, ‘simulation’ and ‘case’ can be sometimes used
interchangeably in place of ‘run’ when referring to runs 1 and 2.

The quantities closely related to the hydrodynamic problem are normalised as in
(2.4), while those more relevant for the evolution of the bed, which are directly
affected by the particle dynamics, are preferably shown in terms of particle-related
reference quantities (i.e. d∗ and v∗s ). Actually, the values of d∗/δ∗ for the two
simulations are similar (0.26 and 0.24 for runs 1 and 2, respectively), thus the
choice of d∗ or δ∗ as reference length scales is not practically relevant in the present
configuration.

3. Results
As mentioned above, the bed was initially levelled in order to start the simulations

with a plane-bottom configuration. Let the spheres farthest from the bottom, i.e. whose
centres are located in the range of one diameter below the farthest one, be hereafter
referred to as crest particles (cf. black spheres in figure 1). Initially, crest particles
are distributed approximately randomly on the bed, as shown by the red spheres in
figure 2(a). Then, after a few oscillations, crest particles tend to group into short
chains or small bunches during half-periods which can eventually be destroyed in
the subsequent half-period or merge with each other (see figure 2b). Finally, clear
two-dimensional patterns form which then accrete and form the rolling-grain ripples
(figure 2c,d). A movie of the formation of ripples for run 1 can be found online as
supplementary material available at https://doi.org/10.1017/jfm.2018.1005.

For the present values of the parameters, only the surficial spheres exhibited
significant displacements through rolling motion while no particles were observed
saltating or being entrained into suspension. The evolution of the bed surface and the
motion of the surficial particles are described in the following.

3.1. Evolution of the bed surface
The bed surface, namely the (fictitious) solid–fluid interface, can be defined on the
basis of the sediment volume concentration, hereafter referred to as the particle
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(a) (b)

(c) (d)

FIGURE 2. (Colour online) Top view of the bed at (a) t= 7.0, (b) t= 44.4, (c) t= 137.8,
(d) t= 142.0 for run 1. Crest particles are highlighted in red in (a–c). In (d) particles are
highlighted by colours according to their distance from the bottom, increasing from blue to
red. The complete time sequence can be seen in the movie available in the supplementary
material.

volume fraction and denoted by φs, which is zero far away from the bottom and
abruptly increases at the bed. Hence, the bed surface is identified by points where φs
reaches a threshold value. Similarly, in laboratory experiments, the bed–flow interface
is often detected by means of an image analysis procedure, thresholding the side view
frames of the bed (e.g. Aussillous et al. 2013). In fact, the greyscale image contrast
is highly correlated with φs. This approach was successfully reproduced numerically
by Kidanemariam & Uhlmann (2014a) who considered the threshold value φs = 0.1.
Kidanemariam & Uhlmann (2014a) defined a sample volume of size 1x∗1 ×1x∗2 × L∗x3
over which the particle volume fraction was evaluated. Therefore, the dependency of
φs on x∗3 was neglected and the bed profile, η∗φ(x

∗

1, t∗), was obtained.
Another approach is also presently considered which was first adopted by Mazzuoli

et al. (2017) to detect the bed/flow interface. Since spheres are presently not set into
suspension, they remain in enduring contact throughout their motion and the bed
surface can be thus unambiguously identified by the centres of the spheres on top of
others, which are hereafter referred to as top-layer particles (cf. dark grey spheres in
figure 1). The ith sphere (i= 1, . . . , Ns) belongs to the top layer if no other sphere
centres above the ith one lie inside the solid angle of magnitude Ω = (2−

√
3)π sr

(where sr denotes steradian) with respect to the bottom normal. Then, if this condition
is fulfilled, the Boolean function Ei associated with the ith particle is equal to 1,
otherwise it is equal to 0. Therefore, the bed surface is defined as the function
interpolating the centres of the spheres characterised by E = 1, and is denoted by
η∗(x∗1, x∗3, t∗). Such a definition circumvents the matter of defining a threshold and
allows us also to study three-dimensional patterns. The patterns observed for the
present values of the parameters do not show an appreciable dependency on the
spanwise coordinate. Additionally, the bed profile η∗E , defined as equal to 〈η∗〉x3 , is
found practically to collapse on η∗φ once it is shifted vertically upward by a constant
value ∼0.8d∗ (cf. figure 3). Since the position of the bed profile is analogously
detected by the two procedures, henceforth the profile η∗φ is considered.
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FIGURE 3. (Colour online) Comparison between the bed profiles ηE (red line) and ηφ
(black line) at an instant of run 1 when rolling-grain ripples are present.

In the simulations, the average bed elevation 〈ηφ〉x1
initially decreases as an effect of

the settlement and compaction of the granular bed (not shown here). Then, after a few
oscillation periods 〈ηφ〉x1

asymptotically reaches a constant value approximately equal
to 13.83d∗ and 12.12d∗ for runs 1 and 2, respectively, superimposed only by small
fluctuations of order O(10−2)d∗, which are related to the different phases of the wave
cycle. Correspondingly, the solid volume fraction, φs, in the region between the bottom
and the surface layers of particles does not show significant temporal fluctuations and
attains an average value of 0.49 for both runs. Instead, figure 4 shows the space–time
development of the fluctuations of the bed profile about the average bed elevation,
i.e. ηφ = ηφ − 〈ηφ〉x1

, for runs 1 and 2. While bedforms emerge in the second half
of run 1, in run 2 the presence of persistent patterns is difficult to detect by visual
inspection of figure 4(b). The root mean square (r.m.s.) of η′φ , ηrms, increases with
time in both runs (cf. figure 5), whilst the amplitude of the fluctuations attained at
the end of run 2 barely reaches 0.1d∗ (three times smaller than that of run 1). In
run 1, the linear regression of ln ηrms (red solid line in figure 5a) shows that ηrms
grows exponentially. Moreover, the regression of relative maxima and minima of ηrms
computed for each half-period (indicated with dashed lines in figure 5a) preserves
the exponent of the mean trend. Thus, the amplification of half-period fluctuations
of the bed surface, normalised by the particle diameter, can be approximated by the
expression:

Aη = (amax − amin)eb t, (3.1)

where b= 1.46× 10−2 and the factors amax= 4.98× 10−2 and amin= 3.38× 10−2 refer
to the average upper and lower bounds of ηrms. In other words, the rate of coarsening
of the ripples is directly proportional to the amplitude of the ripples. On the other
hand, in run 2, the time development of ηrms is not monotonic and the mean growth is
slower than that observed for simulation 1 (cf. figure 5b). It is likely that, after a much
larger number of oscillation periods, the formation of ripples could be observed more
clearly also in case 2, but this would require formidable computational and wall-clock
times which are at the moment out of reach.

To detect the wavelength of ripples as a function of time, the bed profile is
expanded in Fourier series and the absolute value and the growth rate of each term
of the series are investigated. It is evident that the wavenumbers k∗δ∗ = 0.47 and
k∗δ∗ = 0.25 dominate the spectra of η′φ at the end of runs 1 and 2, respectively
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FIGURE 4. (Colour online) Spatio-temporal development of the fluctuations of the bed
profile about the average bed elevation, η′∗φ /d

∗, for run 1 (a) and run 2 (b).
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FIGURE 5. (Colour online) The diagrams in (a) and (b) show the root mean square
of the spatial fluctuations of the bed profile plotted versus time for simulations 1 and
2, respectively. The thick solid (red) lines are the regression curves a exp (b t), where
a= 0.040, b= 1.46× 10−2 for run 1 and a= 0.046, b= 4.45× 10−3 for run 2. Dashed
(red) lines in (a) are obtained for a= amin = 0.034 and a= amax = 0.050. The inset in (a)
highlights the exponential trend of ηrms using semi-logarithmic axis scale.

(cf. figure 6). However, since modes are still evolving at the end of each run, an
equilibrium condition is not reached and the simulation time is not sufficient to
describe the complete evolution of individual modes. Alternatively, the dominant
wavelength can be defined as two times the space lag, λ∗η, at which the absolute
value of the two-point correlation function of η′∗φ attains the first maximum value
(Kidanemariam & Uhlmann 2017). The result of this procedure is shown in figure 7.
As predicted by the Fourier analysis, the dominant wavelength for the second half
of simulation 1 corresponds to the wavenumber k∗δ∗ = 0.47 (λ∗η = 13δ∗) while for
the last ∼6 oscillation periods of simulation 2 patterns are characterised by the
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FIGURE 6. (Colour online) (a,b) Absolute values of four Fourier modes of the bed
profile plotted versus time for simulations 1 and 2, respectively. Red, blue, black and
magenta lines correspond to the second, third, fourth and fifth modes of the bed profile,
respectively.
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FIGURE 7. (Colour online) Dominant wavelength of the bed profile computed as a
function of time for runs 1 (a) and 2 (b).

wavenumber k∗δ∗ = 0.25 (λ∗η = 25δ∗). The values of λ∗η can be compared with the
results of the experiments carried out by Blondeaux et al. (1988) for similar values
of the parameters and with those obtained by linear stability analysis by Blondeaux
(1990). It is found that the values of λ∗η in the current simulations are comparable
to the wavelengths of the first emerging ripples observed in the laboratory. At this
stage it is worthwhile to remark on the importance of this result, since a natural very
complex phenomenon has been reproduced by a very simplified, although numerically
challenging, system, which indicates that the basic process leading to the formation
of ripples is somewhat robust. In particular, for the experiment reproduced by run 1,
Blondeaux (1990) observed λ∗η=25δ∗ (96d∗) while for the case simulated by run 2 the
value of λ∗η was approximately equal to 26δ∗ (108d∗). Similar results are predicted
by means of linear stability analysis following the approach of Blondeaux (1990)
(λ∗η = 23δ∗ for run 1 and λ∗η = 22δ∗ for run 2). Rousseaux et al. (2004a) carried out
experiments also exploring the region of the parameter space where runs 1 and 2 lie
and observed the first measured wavelengths λ∗η ∼ 20δ∗ and λ∗η ∼ 25δ∗, respectively.
Therefore, the wavelength of ripples simulated in run 1 is smaller than the wavelength
observed experimentally. Such a discrepancy can be due to several reasons mostly
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FIGURE 8. (Colour online) Bed profile, ηφ , (a) and bed slope (b) at different phases of a
wave cycle when rolling-grain ripples are formed. Black lines refer to instants t = 136.7
(solid, thick), t= 137.4 (dashed, thin), t= 138.2 (solid, thin) and t= 139.0 (dashed, thick)
while the mean flow is directed from right to left. Red lines refer to instants t = 139.8
(solid, thick), t = 140.6 (dashed, thin), t = 141.4 (solid, thin), t = 142.2 (dashed, thick)
during which the mean flow is directed from left to right.

associated with the modelling of particle–particle interactions. The significance of the
role of sediment friction in the formation of patterns was emphasised by Moon, Swift
& Swinney (2004). Indeed, sand grains can have irregular shapes and, consequently,
more than one point of contact during a binary collision, which allow them to transfer
linear and angular momentum more efficiently than spheres. Moreover, the sensitivity
of sediment dynamics to the contact is enhanced if particles roll over each other
(enduring contact) rather than colliding. The particles of run 1 behave like finer sand
grains, since, based on the experimental results of Rousseaux et al. (2004a), the first
measured wavelength tends to increase monotonically with increasing size of the
sediments and because spherical particles are statistically set into motion more easily
and undergo larger excursions than sand grains of irregular shape. On the other hand,
figure 6(a) shows that the modes associated with the wavenumbers k∗δ∗ = 0.35 and
k∗δ∗ = 0.24 grow at approximately the same rate as the dominant mode in the last
periods of run 1 and it is possible that the four ripples of figure 2 might merge after
a certain time.

Even though the ripples of run 1 do not really drift in the streamwise direction, their
crests migrate to and fro by several sphere diameters. Therefore, as shown in figure 8,
ripple shape changes during the oscillation period. The profiles indicated in figure 8(a)
by (black and red) thick lines are attained in the phases when the fluid far from the
bed decelerates and then vanishes (at the flow reversal) while surficial particles are at
rest. In these phases, ripples are asymmetric with slopes that are relatively mild with
the lee side steeper than the stoss side (cf. figure 8b). In the subsequent phases, while
the flow accelerates, the amplitude of the ripples increases, along with their slope, and
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FIGURE 9. (Colour online) Spectra of the bed profile computed at the phases indicated
in figure 8 for run 1. The solid (blue) line indicates the spectrum of the simplified
configuration sketched in the small inset of the figure with periodic (blue) straight lines.

reaches the maximum value approximately 0.20π earlier than the free-stream velocity
does. Now the profile of each ripple is symmetric (thin dashed lines in figure 8a), but
then it becomes asymmetric again as the crest proceeds in its excursion towards the
other side of the ripple. Finally, the opposite resting configuration is attained while
the fluid is already decelerating. Hence, most of the bed-profile evolution is carried
out during the acceleration phases. At the end of the present simulations the mild (lee)
slope of the ripples is approximately 0.02 while for the steep (stoss) side the slope
ranges between 0.08 and 0.16. Following the empirical approach of Sleath (1984), the
flow separation behind the crests should occur if the ratio between the height and the
wavelength of the ripples, namely the average steepness, reaches the value 0.1. In the
period considered in figure 8, the average slope is approximately 0.02 and the flow
does not separate and rolling-grain ripples do not evolve into vortex ripples.

The spectra of the bed profile, S∗ηη, are computed as a function of the wavenumber
at the phases of the oscillation period shown in figure 8 and are plotted in figure 9.
Previous research has shown that for wavenumbers much smaller than the smallest
flow scale, which do not affect the stability of the bed, and much larger than the
grain size, the spectrum was proportional to k∗−3 (Hino 1968; Jain & Kennedy 1974;
Nikora, Sukhodolov & Rowinski 1997; Coleman & Nikora 2011; Kidanemariam
& Uhlmann 2017). Hino (1968) showed that, when the equilibrium configuration
of the bed profile is reached, the spectrum of the bed slope depends linearly on
the wavenumber, whence the exponent −3 for the spectrum of the bed profile is
obtained by purely dimensional reasoning. From the geometrical point of view, the
−3 power law indicates that the bed profile is self-similar, i.e. the shape of the
profile is independent of the length scale (Nikora et al. 1997), in the range of length
scales between d∗ and λ∗η. Presently, the flow is unsteady and a comparison to
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FIGURE 10. (Colour online) Steady streaming visualised by means of streamlines of the
spanwise and time-averaged flow field. The thick solid (red) lines indicates the average
bed profile: (a,b) refer to runs 1 and 2.

bedforms that reached the equilibrium configuration is not possible. However, in the
range of wavenumbers indicated by Hino (1968), i.e. 0.02 . k∗d∗ . 0.1 in figure 9,
the spectrum of ripple profiles is observed to be proportional to k∗−3. The same
trend can be obtained, in this range of wavenumbers, by considering the spectrum
of streamwise-periodic ramps (see the inset in figure 9). Therefore, the so called
‘−3 power law’ is associated with the fact the stoss side of the ripples is mostly
straight. In the laboratory or in the field, it is difficult to compute the spectra for
large wavenumbers because the measurements of the bed surface do not typically
reach such high accuracy. For values of k∗d∗ ranging between 0.1 and 1 (i.e. for
length scales of order O(d∗)), the slope of the spectrum is approximately equal to
−1.2, which suggests that the fluctuations of the bed profile at these scales are
nearly random (i.e. the scales in this range are uniformly present). Consequently,
in this range, the spectrum of the bed slope, which is equal to 2πk∗ 2S∗ηη, increases
with increasing values of k∗ and reaches a relative maximum at k∗d∗ ∼ 0.5. In other
words, most of the fluctuations of the bed slope in such a range of wavenumbers
are characterised by the length scale 2 d∗. Nikora et al. (1997) showed that such
‘bulges’ of the bed profile spectra are associated with scale transitions, for instance
between the meso- and micro-scales. Finally, for values of k∗d∗ larger than 1 the
spectrum decreases with slope −4.3, which was also observed by Kidanemariam
& Uhlmann (2017). The latter range is not relevant for the characterisation of the
bedform geometry and the trend of the spectrum is possibly related to the shape of
the sediment particles.

Mazzuoli et al. (2016) showed that the interaction between a few spheres rolling
over a plane bottom and the oscillatory flow promoted the growth of certain
disturbances and the decay of others, independently of the presence of roughness
elements. Indeed, the formation of ripples is strictly related to the development of
steady streaming. Presently, two-dimensional recirculating cells originated over the
bed surface after a few oscillation periods. In the final part of the simulations, the
steady streaming appears as in figure 10 which was obtained by averaging the flow
field in the spanwise direction and over the last 3 periods of run 1 and the last 5
periods of run 2. Figure 10 appears similar to figure 19 of Rousseaux et al. (2004b)
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FIGURE 11. (Colour online) (a) Magnitude of the steady streaming averaged over the x1x2-
plane, ũ∗, normalised by U∗0 and plotted versus time with the vertical axis in a logarithmic
scale. Note that the small gap in (a) around ωt = 100 is due to the loss of some select
data. (b) Dominant wavelength of the streamwise (thick line) and wall-normal (thin line)
components (i=1,2) of the steady streaming velocity at x∗2=3.90δ∗. Ripples appear nearly
when the growth rate attains an exponential trend with constant rate. Each point of the
curve is referred to the time-averaged value computed over the previous period for run 1.

that was obtained on the basis of experimental results for comparable values of
the parameters. Let the intensity of the steady streaming, ũ∗(t), be defined as the
magnitude of the average in the interval [t − T, t] and in the spanwise direction of
the flow field, namely ũ∗=〈(ũ∗21 + ũ∗22 )

1/2
〉x1x2

, where ũ∗i ≡〈ui〉
∗

T,x3
is the ith component

of the period- and spanwise-averaged fluid velocity and i= 1, 2. Figure 11(a) shows
that, in run 1, the value of ũ∗/U∗0 initially decreases, then starts to increase and
attains an exponential growth from approximately the tenth oscillation period on,
similarly to ripples of wavelength λη. Moreover, the evolution of the dominant
wavelength of the bed profile in figure 7(a) matches closely the evolution of λũi ,
namely the dominant spatial periodicity of ũ1 and ũ2 in the vicinity of the bed,
which is shown in figure 11(b). Hence it is evident that the formation of ripples is
coupled with the development of recirculating cells. The maximum velocity of the
steady streaming is attained in the vicinity of the bed surface and is approximately
equal to 1.5 × 10−2U∗0 and 0.6 × 10−2U∗0 for runs 1 and 2, respectively. Close to
the bed, the spatial periodicity and the flow direction of recirculating cells promote
the accretion of the ripples characterised by a wavelength equal to λ∗η. In particular,
four pairs of recirculating cells can be observed for run 1 and two pairs for run 2.
However, figure 10(a), which refers to run 1, shows that recirculating cells with
different periodicity superimpose above the bed and at x2 = 13 only two pairs of
recirculating cells can be detected. This is compatible with the evolution of the bed
profile described above, in particular with the growth of the mode characterised by
k∗δ∗ = 0.24, as shown in figure 6(a). In run 2, contrarily, recirculating cells do not
merge far from the bed (cf. figure 10b).

3.2. Dynamics of surficial particles
The process generating the ripples has been described as primarily being driven by the
steady secondary flow arising in the boundary layer. In this section, we will evaluate
the role that moving particles play in the coupled problem of the bed-surface evolution.
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FIGURE 12. (Colour online) Trajectories of crest particles during the time interval 126.3<
t < 138.9 (two oscillation periods) of simulation 1. The trajectory of one particle is
highlighted by a thick red line.

Blondeaux (1990) found that the first observable (often called critical) wavenumber
of ripples plotted versus Reδ (for fixed values of the other parameters) exhibited
discontinuities whenever particles in motion interacted with a different number of
recirculating cells. Indeed, the selection of the critical wavenumber is closely related
to the ratio between the sediment semi-excursion, `∗s , namely the amplitude of
particle oscillations in the streamwise direction, and the wavelength of ripples, λ∗η.
However, `∗s is difficult to measure in the laboratory and Blondeaux (1990) replaced
it in his study with the fluid semi-excursion, `∗f , since the two quantities are well
correlated. Mazzuoli et al. (2016), who investigated by DNS the dynamics of a small
number of spherical particles in an oscillatory boundary layer, computed the particle
semi-excursion and found that it tended to increase almost linearly during the initial
oscillation periods, independently of the presence of bottom roughness, as long as
particle–particle interactions were relatively unimportant (tests 2–4 of Mazzuoli et al.
2016). The evolution of `∗s was more complex when many particles were considered.
Presently, the motion of the top-layer particles, i.e. the spheres at the bed surface, is
investigated. Top-layer particles consist of O(2 × 104) spheres. Approximately 12 %
of these particles in run 1, and 15 % in run 2, are crest particles, i.e. lay within a
distance d∗ from the sphere on top of the bed. The top-layer particles are tracked
during each half-period starting from the phase, χ , when particle motion ceases and
then restarts in the opposite direction.

In particular, the particles that at time t(in)j = π( j + χ), j = 0, 1, 2, . . . are top-
layer particles, are tracked for a half-period, χ being equal to 0.2 for both run 1 and
run 2. Crest particles are more exposed to the flow, which gives them higher mobility
than those lying in the troughs between the ripples. The trajectories of crest particles
obtained for two periods of simulation 1 (when four ripples are present) are marked
in figure 12. Figure 12 shows that, at the end of an oscillation, most of the particles
recover almost their initial positions except a few particles which can escape a ripple
and reach the neighbouring one.

Figure 13(a) shows the probability that the semi-excursion, the time-maximum drag
force and time-minimum drag force acting on the top-layer particles selected at the
instants t(in)j , j = 36, 38, . . . , 41, of run 1 and located within [x1 − D, x1 + D],
exceed the threshold values 0.5λ∗η, +0.1F∗ref and −0.1F∗ref , respectively, with
F∗ref = (1/2)%∗U∗0ω

∗δ∗ 3. Similarly, figure 13(b) refers to the interval between the
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FIGURE 13. (Colour online) Probability that top-layer particles located at the instants
t= t(in) (for the last five oscillation periods of each run) in a certain position x1 experience
semi-excursion α ≡ |`∗s | > 0.5λ∗η (black lines) or time maximum (over each half-period)
drag force α ≡ maxT 〈F∗1s〉 > +0.1F∗ref (red lines) or α ≡ minT 〈F∗1s〉 < −0.1F∗ref (blue
lines). Dashed lines are equispaced by λ∗η/δ

∗. The reference drag is defined as F∗ref =

(1/2)%∗U∗0ω
∗δ∗ 3. Probabilities are computed over the last periods of run 1 (a) and run

2 (b).

t(in)54 and t(in)59 , which is in the final part of simulation 2. For run 1, the values of
the particle semi-excursion range between 0 and approximately 0.7λ∗η. Figure 13(a)
illustrates that the probability of observing large values of `∗s increases in the vicinity
of the ripple crests while it is approximately halved in the troughs. In fact, the
drag force acting on crest particles is significantly larger than the drag force acting
on other particles, which causes crest particles to move longer (and farther) in the
flow direction. Crest particles, at time t = t(in)j , are not aligned along the centre line
between the ripple troughs where the streamlines of recirculating cells converge (cf.
figure 10), instead, as described in § 3.1, they are mostly piled on the side of each
ripple opposite to the flow direction. Therefore, the probability curves related to the
drag in figure 13(a) are asymmetric with respect to the centre line of the ripples.
Another consequence of the asymmetric shape of the ripple profile is that only a
small number of crest particles reach the neighbouring ripple during a half-period,
although visualisations show that several crest particles display values of `∗s larger
than 0.5λ∗η, because at t = t(in)j most of them are located farther than 0.5λ∗η from the
downstream boundary between adjacent ripples. As a result, we observe the ripple
crests moving to and fro over the span of λ∗η. Similar dynamics cannot be detected
for run 2 by visual inspection of figure 13(b). In this case, the variability of the drag
force acting on top-layer particles is not as pronounced as in run 1 and, as shown
in the following, results in the slower evolution of ripples. Also the semi-excursion
of top-layer particles is almost independent of the streamwise coordinate and exhibits
large values because the average (viscous) drag acts uniformly on the top-layer
particles and is relatively strong. The drag coefficient for an isolated particle of
run 2, i.e. the drag force normalised by the reference quantity (1/2)%∗U∗ 2

0 d∗ 2, is
approximately two times larger than in run 1). This is shown more clearly in § 3.3
where the sediment flux is related to the shear stress acting on the bed surface.

In order to understand why the formation of ripples in run 1 occurs significantly
earlier than in run 2, three quantities are presently considered for each top-layer
particle throughout the simulations: the particle semi-excursion, the particle velocity
and the drag force. Results are first shown in the following for the last simulated
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FIGURE 14. (Colour online) Probability density functions of particle semi-excursion (a),
drag (b) and velocity (c) of top-layer particles for the 41st and 58th half-periods of
run 1 (red lines) and run 2 (black lines), respectively. Drag force is normalised by F∗ref =

(1/2)%∗U∗0ω
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scale.
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FIGURE 15. (Colour online) Probability density functions of particle semi-excursion (a),
drag (b) and velocity (c) of crest particles for the 41st and 58th half-periods of run 1
(red lines) and run 2 (black lines), respectively. Drag force is normalised by F∗ref =

(1/2)%∗U∗0ω
∗δ∗ 3. Quantities are normalised by the standard deviation of each sample.

half-period, where the differences between the motion of crest particles and of other
top-layer particles are pronounced. The probability density function (pdf) of `s was
computed for the top-layer particles of both run 1 and run 2, which shows that
approximately 88 % of top-layer particles set into motion stop within a distance equal
to 4d∗ from their (previous) rest position (see figure 14a). Among these sluggish
particles there are also crest particles that, however, predominately exhibit large
mobility, in particular for run 1. In fact, the core of the pdfs of `∗s , normalised by
λ∗η, is found to be nearly coincident between run 1 and run 2 (d∗, δ∗ and `∗f are
found not to be relevant scales of the pdf core), while the tail of the curves, which
is representative of the most mobile particles, deviates because crest particles behave
differently in the two simulations and differently from the other top-layer particles.
Such behaviour of crest particles reflects also on the particle velocity and drag, as
can be understood from figure 14(b,c). However, by restricting the sample to crest
particles and scaling the quantities presently considered by their standard deviation,
a fair matching of the pdfs can be obtained, as shown in figure 15. This strategy is
not relevant for non-crest particles. The existence of two separated scales suggests
that (at least) two types of particle motion coexist: a ‘regular motion’ dominated by
viscous forces (slow particles) and an ‘erratic motion’ affected by particle–particle
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Run
λ∗η

`∗f

〈`∗s 〉s
λ∗η

〈F∗1s〉T/2,s

F∗ref

〈|u∗1s|〉T/2,s

ω∗δ∗

σ ∗`s

λ∗η

σ ∗F1s

F∗ref

σ ∗u1s

ω∗δ∗

1 0.208 0.173 0.156 0.953 0.152 0.042 0.626
2 0.693 0.082 0.111 0.677 0.055 0.032 0.410

TABLE 4. Statistics of crest particles.

interactions that manifest themselves in random fluctuations of particle forces (crest
particles): approximately 50 % of crest particles of run 1 show a wide range of
values of `∗s (between 0.10λ∗η and 0.45λ∗η) with a nearly constant distribution of
probability. Instead, the values of `∗s for run 2 are more accumulated around the
mean value (0.08λ∗η) than in the other simulation. This is also emphasised by the
ratio between the standard deviation, σ ∗`s

, and the mean value, 〈`∗s 〉s, being equal to
0.88 and 0.67 for runs 1 and 2, respectively. The fact that λ∗η is not a relevant scale
for the semi-excursion of crest particles appears from the values of the statistics
shown in table 4. The standard deviation σ ∗`s

computed for run 2 appears significantly
smaller than that of run 1 when normalised by λ∗η. However, the value for each run
is approximately 0.03 when normalised by `∗f , which is actually a relevant scale
for the semi-excursion of crest particles. The values of 〈`∗s 〉s for crest particles are
equal to 3.6 × 10−2`∗f and 5.7 × 10−2`∗f for runs 1 and 2, respectively, which are
smaller but of the same order (approximately half) as the value obtained by Mazzuoli
et al. (2016) at the end of test no. 6. Actually, in the present case there are factors
that contribute to increase the friction between sediments, among them the fact that
the bed surface is not macroscopically flat as in the cases investigated by Mazzuoli
et al. (2016) and the number of moving particles (and, consequently, of collisions)
is much larger. The maximum value of the particle excursion, maxs `

∗

s , for run 1 is
approximately equal to 0.15`∗f and is comparable with those computed from one of
the experiments of Rousseaux et al. (2004a) (Reδ ' Red = 135, s= 2.5) which fell in
the range [0.15, 0.25]`∗f .

The discrepancies between the pdfs of the two simulations are not strictly associated
with the presence of ripples, as one could be tempted to presume, because the same
differences were present since the initial wave cycles when the bedforms were
not yet developed. Instead, they can be attributed to the different values of the
Keulegan–Carpenter number, Kc. In fact, large values of `s are associated with large
values of `f . Moreover, the contribution to the average drag force acting on the
particles due to the presence of recirculation cells is smaller in run 2 than in run 1,
which leads to more homogeneous distribution of drag over the bed surface. Note
that most frequently (in the sense of probability) top-layer particles exhibit a creeping
velocity, in particular in the case of run 1 which shows a wider gap between very
slow and fast moving particles than run 2 (cf. figure 14c). Analogous to the process
of segregation for polydispersed particulate flows, which occurs because of particle
inertia when sediment particles differ in size and/or density, here the growth of
bed-surface perturbations is promoted by the non-uniform distribution of drag over
top-layer particles (due to the steady streaming) and is faster if the non-homogeneity
is more pronounced.

In principle, the mechanism for the origin of the patterns of spheres on the surface
of a movable bed is similar to that observed by Mazzuoli et al. (2016) for beads
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FIGURE 16. (Colour online) Statistics of the motion of top-layer (solid lines) and crest
(dashed lines) particles: (a) mean particle semi-excursion, (b) maximum velocity, (c) mean
time-maximum drag. The values are computed for each half-period of simulation 1 (red
lines/squares) and simulation 2 (black lines/circles). Particle semi-excursion for run 1
increases approximately with a linear trend: a similar trend was observed by Mazzuoli
et al. (2016) in their test nos. 2–4.

rolling on a rough plane bottom (tests 4 and 6). In test no. 6 of Mazzuoli et al.
(2016), several movable beads were initially aligned in the direction of the flow
oscillations and rapidly spread laterally until, after a few oscillations, they were
randomly scattered over the whole bottom. The latter is approximately the initial
configuration of the present simulations. The evolution of the values of `s, F1s and
u1s, averaged over top-layer or crest particles and over each half-cycle, are shown
in figure 16. The values of the considered quantities for top-layer particles are
approximately constant throughout simulation 2, except for a short initial transient,
while a slight monotonic decrease of the three quantities can be noted relative to
crest particles. During the transient, both the semi-excursion and the velocity of the
top-layer particles decrease because the spheres attain a closely packed configuration.
Conversely, crest particles of run 1 manifest increasing mobility since the beginning
of the simulation and show an approximately linear growth of the average `s and u1s,
while drag seems to asymptotically reach a constant value after the initial transient.
The increase of mobility of the crest particles is due to the emergence of ripples
which push crest particles towards regions of the boundary layer characterised by
higher velocity. The effect of the exponential growth of the ripple amplitudes is partly
opposed by that of increasing inter-particle collisions. Since the inertia of particles
is relatively small in both runs 1 and 2 (as indicated by the large values of Kc), the
drag force reaches a limit as it balances the bed friction. Thus, the relative particle
velocity, on which the viscous drag depends, remains constant while the absolute
particle velocity increases. In fact, as will be clarified in the following section, the
viscous drag dominates the other force contributions in the phases when the bed
shear stress is at a maximum.

3.3. Bed shear stress, incipient particle motion and sediment flow rate
The wall-normal dependent total shear stress is a sum of the fluid shear stress τ ∗f and
the contribution stemming from the fluid–particle interaction τ ∗p , viz.

τ ∗tot = τ
∗

f + τ
∗

p , (3.2)
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where the fluid shear stress (under a turbulent flow condition) is comprised of the
viscous and Reynolds shear stress contributions:

τ ∗f (x
∗

2)= %
∗ν∗

∂〈u∗1〉
∂x∗2

(x∗2)− %
∗
〈u′∗1 u′∗2 〉(x

∗

2), (3.3)

where the dependence on t∗ is omitted for the sake of clarity. Although the total shear
stress in the presence of two-dimensional ripples is homogeneous in the spanwise
direction, relatively small fluctuations about τ ∗tot can be observed in the streamwise
direction when the rolling-grain ripples form. Thus, τ ∗tot is the average total shear stress
acting on the bed. It is expected that, in the present configuration, the Reynolds shear
stress makes a negligible contribution as the flow is essentially laminar. In the context
of the immersed boundary method, the stress exerted by the particles is given by

τ ∗p (x
∗

2)= %
∗

∫ L∗x2

x∗2

〈f ∗1 〉 dx∗2, (3.4)

where f ∗1 is the streamwise component of the immersed boundary method volume
forcing exerted on the fluid, transferred to the Eulerian grid (cf. § 2). In a stationary
channel flow scenario, the total shear stress varies linearly in the wall-normal
direction with a slope equal to the value of the imposed driving pressure gradient.
In the present OBL configuration however, as a result of the non-stationarity, τ ∗tot
responds to the pressure gradient with a complex nonlinear behaviour. Figure 17
shows sample wall-normal profiles of the different contributions to the total shear
stress, non-dimensionalised by τ ∗ref = (1/2)%

∗U∗0ω
∗δ∗, at different time instants. As is

expected, the contribution from the Reynolds shear stress is negligibly small across
the entire wall-normal interval which is a further indication that the flow has not
separated behind the ripple crests. In the clear fluid region, that is, in the region
which is essentially devoid of sediment particles, only the fluid viscous shear stress
contributes to τtot. On the other hand, deep inside the sediment bed sufficiently below
the fluid–bed interface, τf vanishes and τtot is entirely comprised of the stress exerted
by the sediment particles. It is worth noting that, in this region, τtot exhibits a linear
variation with a slope equal to the imposed pressure gradient. This means that the
particle shear resistance, which is proportional to the submerged weight of sediment
bed, is instantaneously in equilibrium with the oscillating driving force (neglecting
the small particle velocities in this region). In between these two regions, there exists
a third ‘active-layer’ region, hereafter referred to as the mobile layer, where both τf
and τp contribute to the total shear stress and where the particle erosion–deposition
processes take place. Although there is no clear demarcation of these regions, it is
observed that the thickness of the mobile layer varies depending on different phases
of the oscillation period.

For modelling purposes, it is common practice to relate the non-dimensional
boundary shear stress τ ∗b = τ

∗

tot(x
∗

2 = y∗0), i.e. the Shields number

θ =
τ ∗b

(%∗s − %
∗)g∗d∗

(3.5)

to the sediment flow rate. The value of y∗0 is chosen as the distance from the bottom
at which the average particle volume fraction 〈φs〉 reaches 0.1. The instantaneous
volumetric flow rate of the particle phase (per unit span), q∗s , is given by

q∗s (t
∗)=

πd∗ 3

6 L∗x1
L∗x3

Np∑
l=1

u∗(l)1s (t
∗), (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1005


594 M. Mazzuoli, A. G. Kidanemariam and M. Uhlmann

-2
-1

0
1
2
3
4
5

†*/†*
ref †*/†*

ref †*/†*
ref †*/†*

ref †*/†*
ref

U
* e/

U
* 0

-1

0

1

(a) (b)
(c)

(d) (e)

ø*t*

-1 0 1 2 3 4 5
-2
-1

0
1
2
3
4
5

-1 0 1 2 3 4 5
-2
-1

0
1
2
3
4
5

-1 0 1 2 3 4 5
-2
-1

0
1
2
3
4
5

-1 0 1 2 3 4 5
-2
-1

0
1
2
3
4
5

-1 0 1 2 3 4 5

(x
* 2 -

 y
* 0)

/∂
*

137 138 139 140 141 142

(a) (b) (c) (d) (e)

FIGURE 17. (Colour online) Sample wall-normal profiles of the fluid viscous shear stress
(blue line), Reynolds shear stress (magenta line), stress stemming from the fluid–particle
interaction (red line) as well as the total shear stress τtot (black line). The profiles
correspond to selected times which are indicated in ( f ). Data correspond to run 1.

where u∗(l)1s (t∗) is the streamwise component of the velocity of the lth mobile particle
at time t∗. Since spherical particles do not gear to each other and can slide more
easily than sand grains, many particles experience non-zero velocities, even if they
are located below the bed surface. Thus, in order to exclude all particles which do not
contribute to the shear-induced particle flux, a streamwise velocity threshold is set at
1 % of the gravitational velocity of the particles, v∗s (similar results are obtained even
considering the threshold at a small percentage of ω∗δ∗). The particles selected with
such a criterion approximately coincide with those constituting the mobile layer (cf.
figure 18).

Figure 19 shows the absolute value of the particle flow rate, normalised by d∗v∗s ,
as a function of the absolute value of the Shields number for the last four periods
of run 1 and run 2. The arrows indicate the time development along the loop swept
in a half-period. Following the loop, the particle flow rate exhibits a minimum in
the early deceleration phase (see phase t ' (1/8)π in figure 19). Then, while the
free-stream velocity is still decelerating and the Shields number decreasing, the
particle flow rate increases under the action of the imposed driving pressure gradient
(between phases t ' (1/8)π and t ' (5/8)π in figure 19). Subsequently, the next
acceleration phase starts and the Shields number rises. Finally, approximately at the
phase (3/4)π (i.e. (1/4)π after the flow reversal), both the Shields number (i.e. the
boundary shear stress) and the sediment flow rate are maximum. It can be noted that,
except for two or three instants, each value of |θ | corresponds to two values of the
dimensionless sediment flow rate. It is therefore clear, by comparing the diagrams of
figure 19 obtained for the present runs with the experimental measurements of Gilbert
and Meyer-Peter (grey symbols, Nielsen 1992) and with the Meyer-Peter & Müller
formula (dashed line, Wong & Parker 2006) obtained for stationary channel flows,
that the effects of the flow unsteadiness impact strongly on the motion of particles
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FIGURE 18. (Colour online) The streamwise component of the particle velocity is plotted
as a function of the wall-normal coordinate of run 1. Shaded by grey dots are the velocity
of each particle at the instants t= 36.75π (I), t= 37.00π (II) and t= 37.25π (III) (phases
are indicated in the inset), while thin solid, thick solid and dashed lines indicate the
respective (binned) average values.

and should be taken into account in the models of sediment transport. Indeed, during
the flow reversal, which is characterised by large values of the forcing pressure
gradient and relatively small values of the bed shear stress, the sediment flow rate
is not negligible. Hence, coarse prediction errors could be avoided by relating the
sediment flow rate to a combination of the Shields number and some dimensionless
expression of the pressure gradient such as the instantaneous Sleath parameter (Foster
et al. 2006; Frank et al. 2015), defined as:

S =−
d∗

%∗v∗2s

dp∗f
dx∗1
=
ψ

Kc
sin (t), (3.7)

where the expression (2.1) was substituted in the second equality. Since the values
of the Keulegan–Carpenter number, Kc, are large in both of the present simulations,
the contribution of the viscous drag is expected to dominate over that induced on the
spheres by the pressure gradient. Besides the direct contribution to the particle force,
the pressure gradient also causes the acceleration of the interstitial fluid which, due
to its small inertia, responds much earlier than the clear fluid above the bed. Thus,
such viscous pore flow develops and can mobilise the sediment particles much earlier
than the phase at which the bed shear stress becomes appreciable. Even though the
velocity of the particles set into motion during the flow reversal is small, the thickness
of the mobile layer is relatively large in these phases because the pressure gradient
acts uniformly over the entire bed. Finally, as the values of |θ | become large, crest
particles, which are more exposed to the flow in the boundary layer and exhibit values
of streamwise (particle) velocity of order O(0.1)U∗0 , mostly contribute to the sediment
flow rate.
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FIGURE 19. (Colour online) Instantaneous dimensionless particle flow rate, normalised
by the inertial scaling d∗v∗s , as a function of the Shields number θ during the last
four cycles of the simulation interval. Run 1 (red line); run 2 (black line). The dashed
line represents the the Meyer-Peter & Müller formula (Wong & Parker 2006) for steady
turbulent flow conditions qs = 4.93(θ − θc)

1.6. The symbols A, E, @ indicate phases t =
(1/8)π, t= (9/32)π and t= (6/8)π, while small circle–cross and circle–plus symbols mark
the instants at which the velocity far from the bottom vanishes (t= (4/8)π) and reaches
U∗0 (t=π), respectively. Grey circles indicate the experimental observations of Gilbert and
Meyer-Peter (Nielsen 1992).

Figure 19 also shows that, at corresponding phases, the Shields number and,
therefore, the sediment flow rate normalised by d∗v∗s , are larger in run 2 than in
run 1. To understand such difference it is useful to compare the Shields number to
that we would observe in absence of sediments, i.e. in a Stokes boundary layer:

θ(St) =
ψ

Reδ
[sin (ω∗t∗)− cos (ω∗t∗)]. (3.8)

Figure 20 shows that, scaling the Shields number by the maximum value of θ(St), the
resulting curves of runs 1 and 2 almost overlap and the amplitude of the oscillations
is nearly equal to unity, because the bed shear stress approaches that of a Stokes
boundary layer in both runs. Consequently, the quantity (1/2)%∗U∗0ω

∗δ∗ is a relevant
scale for the bed shear stress. Hence, for a given value of ψ , by increasing the value
of Re∗δ the Shields parameter decreases (as in the present case) until turbulence appears
and further modes of sediment transport occur (e.g. saltation). Moreover, it can be
noted that the maximum value max(θ(St)) =

√
2ψ/Reδ equals the maximum value of

the Sleath number, i.e. approximately the maximum effect of the imposed pressure
gradient on an isolated particle, max(S) = (ψ/Kc) = 2(d∗/δ∗)ψ/Reδ, if d∗/δ∗ ∼ 0.7.
Therefore, even though the maximum shear stress and the maximum imposed pressure
gradient are reached at different phases of the oscillation period, in the present cases
(and in most of the experiments of Blondeaux et al. 1988) viscous effects prevail.
It can be useful to point out that typically, in the field, the ratio d∗/δ∗ does not
significantly vary with respect to the other parameters (e.g. for 0.2 mm< d∗ < 1 mm
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FIGURE 20. (Colour online) Evolution of the Shields number for run 1 (red line)
and run 2 (black line) during the last simulated periods. In (b) the Shields number is
normalised by the maximum Shields number attained in the absence of particles, i.e. in
a Stokes boundary layer.

and T ∼ 10 s, 0.1< d∗/δ∗ < 0.6), thus the ratio ψ/Reδ can be practically used as the
only parameter driving the sediment flow rate (as long as the flow is not turbulent).
It can be inferred from the present results that the growth rate of ripples is related to
the maximum sediment flow rate. In particular, the growth rate of ripples increases if
the maximum bed shear stress is not much larger than the critical value of incipient
sediment motion, sediments being more sensitive to the effect of the steady streaming.
Consequently, if the ratio ψ/Reδ is close to θcr/

√
2∼ 0.035 ripples form more rapidly.

In fact, for runs 1 and 2, ψ/Reδ is equal to 0.076 and 0.110, respectively, and ripples
form much more slowly in case 2. The relevance of ψ/Reδ for the prediction of
ripple genesis was also emphasised by Blondeaux (1990) (see figure 11) because it
is related to the ratio 〈`∗s 〉s/λ

∗

η. In particular, the dimensionless parameter used by
Blondeaux (1990) and by other authors before was d∗/(s− 1)g∗T∗2 which is equal
to (1/π2)(ψ/Re2

δ)(d
∗2/δ∗2) and was empirically found to be controlling the ripple

wavelength.

4. Conclusions
The origin and development of ripples in an oscillatory flow were investigated by

means of direct numerical simulations. Two experiments were reproduced which were
carried out by using medium sand at moderate values of the Reynolds number. The
experiments significantly differed in the frequency and amplitude of the free-stream
velocity oscillations (i.e. both in the Stokes and particle Reynolds numbers, Reδ
and Red). After approximately ten oscillations, two-dimensional patterns arose which
then coarsened, turning into rolling-grain ripples. The wavelengths characterising the
ripples in the simulations, in the limits set by the domain size, are comparable with
those observed in the experiments and with the predictions obtained by linear stability
analysis. The bed surface is identified for each discrete instant. The Fourier analysis of
the bed profile shows that, after an initial transient where patterns form then merge
or disappear, a few wavenumbers grow in amplitude and finally one wavenumber
becomes dominant. Ripples form clearly in one of the two simulations (run 1) while
two-dimensional patterns are observed in the second simulation (run 2), since the
dynamics of the bed is somewhat slower in the latter case. In run 1 the growth of
the bed-surface fluctuation amplitude normalised by the particle diameter is found to
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follow an exponential trend with exponent equal to 1.46 × 10−2ω∗t∗. The secondary
flow arising from the flow instability consists of steady recirculating cells which
are responsible for the formation of ripples, since they tend to pile up the sediment
particles at the nodes where streamlines converge and to scour where streamlines
diverge close to the bed surface. The evolution of ripples and the development of
recirculating cells are strictly related. Ripples of run 1 exhibit an asymmetric shape
for most of the oscillation period, with the lee side steeper than the stoss side, except
in the phases characterised by the largest bed shear stress when the ripple crests
migrate in the direction of the mean flow.

The sediment particles at the flow–bed interface (top-layer particles) are tracked
during the wave cycles and the velocity and the drag force are computed. Two distinct
kinds of particle motion are identified: most of the top-layer particles, in particular
those lying in the troughs of ripples, roll for O(1)d∗ in the flow direction then they
stop. The excursion of these particles, i.e. the displacement in the streamwise direction
that they experience for each half-cycle, is found to scale with the wavelength of
the ripples for the present simulations. Similarly, the drag force and, more weakly,
the velocity of these ‘slow’ particles scale with reference quantities obtained as
combinations of ω∗, U∗0 and δ∗. However, the sediment particles lying on the crest
of the ripples (crest particles) are subjected to a stronger drag force which causes
large excursions in some cases of O(0.1)`∗f , i.e. comparable with the fluid excursion
far from the bed. Therefore, such particles are provided with larger momentum
than others. These ‘fast’ particles, although they do not saltate, encounter several
collisions with other particles that contribute to an increase in the variance of
quantities associated with their motion. It is found for the present cases that the
wider the difference of motion between ‘slow’ and ‘fast’ particles, the more rapid
the growth of bedforms is. In this sense the origin of the ripples can be seen in
analogy with the phenomenon of segregation of sediments of different size or density,
since in both cases a non-uniform distribution of momentum is transferred from the
flow to the sediments, in one case because of the non-uniform distribution of the
mass of sediment grains, while in the present case it is because of the non-uniform
distribution of the velocity field (due to the presence of the recirculation cells).

Finally, the sediment flow rate is computed and compared with global quantities
characterising the fluid–sediment interaction. The Shields number and the
dimensionless (external) pressure gradient are considered. A fair correlation between
the sediment flow rate and the Shields number is found in the phases of the oscillation
period when the bed shear stress reaches the maximum value. In such phases the
predictions obtained by means of the Meyer-Peter & Müller formula, i.e. based on
steady flow regime and uniquely on the value of the Shields number, are approached.
However, in the phases of the oscillation period characterised by small values of the
bed shear stress and large values of the (external) pressure gradient, a significant
sediment flow rate was observed which cannot be explained on the basis of the
instantaneous Shields number, which is actually vanishing. Thus, the Shields number
should be combined with the dimensionless pressure gradient to improve the accuracy
of prediction of the sediment flow rate. In conclusion, for the purpose of modelling
the formation of bedforms under sea waves, the effect of the unsteadiness on the
transport of sediments is remarkable in the absence of turbulent events as in the
present cases. For the range of values of d∗/δ∗ that typically characterise a sandy
sea floor, the parameter ψ/Reδ controls the growth rate of ripples. In particular, the
closer ψ/Reδ is to θcr/

√
2, the more rapid the formation of ripples results.
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An extension of the present investigation aimed at exploring the regions of the
parameter space characterised by the turbulent flow regime would be of immense
help for the development of reliable sediment transport models and for the estimation
of the bed evolution. Considering the high computational cost and the formidable
simulation time required by the present simulations, which exceeded 10 million CPU
hours and approximately 1 million time steps (i.e. running for ∼480 days on 64
‘Ivy Bridge’ computing nodes), the direct numerical simulation of the formation
of bedforms in a turbulent oscillatory flow is not yet feasible as it would require
a much larger domain and finer spatial and temporal resolutions than the present
ones. Nonetheless, fundamental insights on the mechanics of sediment transport in
a turbulent oscillatory boundary layer could be obtained by reducing the size of
the computational domain to that required by turbulence to develop, namely to the
minimal flow unit.
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