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The Ginzburg–Landau functional is a phase transition model which is suitable for
classification type problems. We study the asymptotics of a sequence of
Ginzburg–Landau functionals with anisotropic interaction potentials on point clouds
Ψn where n denotes the number data points. In particular, we show the limiting
problem, in the sense of Γ-convergence, is related to the total variation norm
restricted to functions taking binary values, which can be understood as a surface
energy. We generalize the result known for isotropic interaction potentials to the
anisotropic case and add a result concerning the rate of convergence.
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1. Introduction

1.1. Finite dimensional modelling

In the age of ‘big data’ the mathematical modeller is often without a physical
model and instead uses a data driven approach for which graphical models are a
powerful tool. Graphical based modelling techniques are used across a very broad
spectrum of problems from social science type problems, such as identifying com-
munities [18,22,39,43,46], to image segmentation [6,29], to cell biology [14], to
modelling the world wide web [7,12,14,21] and many more. Anisotropic mod-
els, studied in this paper, have found applications in cosmological models [28,34],
modelling outbreaks of disease [33] and image recognition [47].

Graphical models are based upon pairwise similarities which practitioners can
design based on expert knowledge. The measure of similarity (on pairs) then defines
a geometry (on a data set). The motivation in this paper is to consider a graphical
approach to the classification problems. Given a measure of similarity, we wish to
define a labelling using the geometry of the graph.

The problem is given data Ψn = {ξi}n
i=1 ⊂ X, where X ⊂ R

d, find μ : Ψn → R

that labels each data point. The labelling is constructed so that μ(ξi) = 0 means

∗Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, email: m.thorpe@maths.cam.ac.uk

c© 2018 The Royal Society of Edinburgh

387

https://doi.org/10.1017/prm.2018.32 Published online by Cambridge University Press

mailto:m.thorpe@maths.cam.ac.uk
file:m.thorpe@maths.cam.ac.uk
https://doi.org/10.1017/prm.2018.32


388 M. Thorpe and F. Theil

that ξi is associated with the class 0 and μ(ξi) = 1 means that ξi is associated
with the class 1. For a finite number of observations, we allow a soft classification,
however, the scaling is chosen such that in the data-rich limit classifiers are binary
valued. The motivation for our approach is to validate approximating the hard clas-
sification problem by a soft classification problem. The soft classification problem
is, in general, numerically easier [24] and therefore, more appealing to the practi-
tioner. However, one also wants to be precise in regards to which class a data point
belongs. Minimizers of the Ginzburg–Landau functional are used as a classification
tool [42] in order to allow for phase transitions which allow a soft classification
approach whilst also penalizing states that are not close to a hard classification.

Another important application for this work is in designing classifiers. By not
assuming that the model is isotropic, we allow greater flexibility which allows
one to choose some features as more important than others. The next subsec-
tion contains a simple example which shows how the design choice can affect the
classification.

Assessing the validity of such an approach is of high importance. This is especially
true as there is no natural link between the data generating process and the choice
of the classifier. In particular, we argue that although using the Ginzburg–Landau
functional is a good choice due to its phase transition properties, it is by no means
the only available option. When one can make a connection between classifier and
data generating process, for example, maximum likelihood estimators, then this link
motivates the methodology. Without such a connection one needs to do more, such
as show the estimators have desirable properties, in order to justify the approach.
Other approaches that use classifiers that are detached from the data generating
process include [41] where the authors prove the convergence of the k-means method
using similar variational techniques.

An important criterion for validating the model is the behaviour in the large data
limit. When increasing the size of the data set one should expect to see stability
in classifiers. In particular, this requires convergence in the large data limit and
the existence of a limiting (data rich) model. When one has a data generating
model, that is, there is some truth, then one can talk about consistency. In the
situation considered in this paper, there is no truth so instead, we use solutions
to the limiting model. Knowledge of the limiting model gives an insight into what
features one should expect for estimates from the finite data problem. In particular,
this paper considers three questions:

(P1) Do estimated classifiers μn converge as n → ∞?

(P2) Can we attach some meaning to any limit of μn? That is, does there exists a
limiting problem?

(P3) Can we characterize the rate of convergence of estimators?

The primary results of this paper concern the first two questions. It is shown that
estimates μn converge to the solution of a limiting problem. Furthermore, solutions
to the limiting problem are binary valued which means we expect estimates μn for
large n to be approximately hard classifiers. For the third question, we give some
preliminary results into characterizing the rate in a simplified example. We believe
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Figure 1. An example graph. For the classifier estimates see figure 2.

these results will hold under more generality than stated here and it is the objective
of ongoing work to extend them.

Our approach is motivated by [1,25,42]. Classifiers are constructed as the solu-
tion of a variational problem which is common in statistical problems, for example,
maximum likelihood and maximum-a-posterior problems. In particular, minimizers
of the Ginzburg–Landau functional, a phase transition model popular in material
science and image segmentation, are used as classifiers. In the context of the 2-
class classification problem the two phases are the classes and the phase transition
corresponds to the set {x ∈ Ψn : μn(x) ∈ (c, 1 − c)} for some c ∈ (0, 1), for exam-
ple, c = 0.1. This is the subset of Ψn that are not strongly associated with either
class.

Classifiers μn : Ψn → R are constructed as follows. Let V : R → [0,∞) be a
potential such that states taking the value 0 or 1 is favoured. For example,
V (t) = t2(t − 1)2. A graph is constructed by taking the vertices as the set Ψn =
{ξi}n

i=1 ⊂ R
d and weighting edges

Wij = ηε(ξi − ξj) :=
1
εd

ϕ ◦ π

(
ξi − ξj

ε

)
(1)

where π : X → R is a given one-dimensional map so that π(ξi) represents a feature
of ξi and ϕ : R → [0,∞) penalizes the difference π(ξi − ξj). We say that there is an
edge between ξi and ξj if Wij > 0, for example, see figure 1. For a function μn on
Ψn the graph energy En(μn) ∈ [0,∞] is defined by

En(μn) =
1
εn

1
n

n∑
i=1

V (μn(ξi)) +
1
εn

1
n2

∑
i,j

Wij |μn(ξi) − μn(ξj)|. (2)

Our classifier is given as the minimizer of En.
We call the map π : X → R the feature projection as it allows the practitioner

to include feature selection of the data ξi. For example, one may decide that
two data points should be considered similar based on the pairwise difference.
In this case, an appropriate choice would be the weighted Euclidean distance

π(x) =
√∑d

i=1 wi|xi|2. The isotropic case would correspond to weights wi = 1.
Other choices could be to include correlations between dimensions, for example,

π(x) =
√∑d

i,j=1 wij |xi||xj |.
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The authors of [25] study the asymptotic properties of the graph total variation
defined by

GTVn(μn) :=
1
εn

1
n2

∑
i,j

Wij |μn(ξi) − μn(ξj)| (3)

when Wij is isotropic, that is, π(x) = |x|. In the special case that μn(ξi) ∈ {0, 1}
this reduces to the graph cut of Ψn, that is, if (μn)−1(0) = A0 and (μn)−1(1) = A1

then

GTVn(μn) =
1
εn

1
n2

∑
ξi∈A0

∑
ξj∈A1

Wij .

In particular, the authors in [25] show the Γ-convergence of GTVn to a weighted
total variation TV (·; ρ, η) given by

TV (μ; ρ, η) := ση sup
{∫

X

μdiv(φ) dx : |φ(x)| � ρ2(x)∀x ∈ X,φ ∈ C∞
c (X; Rd)

}
,

and L1-compactness for any sequence μn with supn(GTVn(μn) + ‖μn‖L1) < ∞.
We wish to allow for soft classification and the total variation term alone is not

enough to be able to do this informatively. The classification approach is made more
robust by including a first order term V : R → [0,∞) which penalizes associating a
data point to more than one class. See, for example, figure 2 for a comparison. It is
not trivial that the convergence results in [25] will survive adding a penalty term.

Finding minimizers of En is also an important problem but is not addressed in
this paper. We instead refer to [9,10] for numerical methods.

1.2. Example: classification dependence on the choice of η

Through a toy problem, we demonstrate how the interaction potential can be used
to pick out features of the practitioners choice. Data are points ξi = (ξ1i, ξ2i) ∈ R

2

generated from four classes. For a fixed α the feature projection π : R
2 → [0,∞) is

defined by the weighted Euclidean norm

π(ξ) =
√

(1 − α)ξ2
1 + αξ2

2 .

For α ≈ 1 the classifiers are dominated by differences in the first coordinate whilst
for α ≈ 0 the classifiers are dominated by differences in the second coordinate. More
precisely, let

μ1(ξi) =
{

1 if ξ2i � c1

0 otherwise

μ2(ξi) =
{

1 if ξ1i � c2

0 otherwise.

Then define

ΔEn = En(μ1) − En(μ2).

The results are given in figure 3.
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Figure 2. The top row shows the minimizers of En and the bottom row shows the mini-
mizers of GTVn for the graph given in figure 1 conditioned on the node closest to each
corner taking either 0 or 1. The left column is conditioned to have 0 in the bottom corners
and 1 in the top corners. The right column has 0 in the bottom left and top right corners
and 1 in the top left and bottom right corners. There is very little difference between the
outputs on the left but on the right the GTVn term fails to pick out the singularity at the
centre.

1.3. The limiting model

Rather surprisingly, the problem of soft classifications for finite data sets and
hard classification in the limit has received relatively little attention in the litera-
ture. However, it is well known that for finite data, one can recover the k-means
algorithm (hard classification) from the expectation-maximization algorithm (soft
classification) in the zero-variance limit for the Gaussian mixture model and the
Dirichlet process mixture model [31,35].

The results of this paper concern the asymptotics of the minimum and min-
imizers of En, where εn → 0 as n → ∞. The advantages of scaling εn to zero are
two-fold. The first is that the matrix W = (Wij)ij is sparse and, therefore, we expect
the minimization to be numerically less expensive than solving the minimization
with a non-sparse matrix (since the sparse minimization has O(n) terms and the
non-sparse minimization O(n2) terms). The second is to improve the resolution
of the boundary. One can think of soft classification as estimating the probability
that a data point belongs to a certain class and the hard classification problem as
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Figure 3. The figure on the left shows a realization of the data. The interactions are
parameterized by a potential α which favours horizontal partitions for α ≈ 0 and vertical
partitions for α ≈ 1 as shown by the figure on the right.

Figure 4. Both figures were classified using the Ginzburg–Landau functional. The one on
the left used a larger ε than the one on the right. The figure shows that the smaller value
of ε gives a much better resolution in the boundary.

estimating the boundaries where one class is more likely than all others. By scaling
εn → 0 it will be shown that the limiting minimization problem is a hard classifi-
cation. For example, figure 4 shows (for a fixed number of data points) improved
resolution in the boundary between classes as ε → 0. See also [24].

Assume X ⊂ R
d and define E∞ : L1(X) → [0,∞] by

E∞(μ) =
{∫

∂{μ=1} σ(n(x))ρ2(x) dHd−1(x) if μ ∈ L1(X; {0, 1})
∞ otherwise

(4)

where n(x) is the outward unit normal for the set ∂{μ = 1}, Hd−1 is the d −
one−dimensional Hausdorff measure and

σ(ν) =
∫

Rd

ϕ(π(x))|x · ν|dx.

It will be shown, in the sense of Γ-convergence, that E∞ is the limiting problem
and any sequence such that En(μn) is bounded is precompact in an appropriate
topology. In particular, this allows one to apply the results of this paper to infer
the consistency of the constrained minimization problem (see § 2.2).

We now briefly discuss the convergence of μn → μ. Since each μn is defined on a
different space (the domain of each μn is Ψn) it is not straightforward what is meant
by the convergence of μn → μ∞. By defining a map Tn : X → Ψn one can compare
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μn with μ∞ by defining the piecewise constant approximation of μn. Formally, we
can say μn → μ∞ in TL1 if μn ◦ Tn → μ∞ in L1, this is discussed further in § 3.4.

We also include preliminary results towards characterizing the rate of convergence
by considering a simple example when μ = IE for a polyhedral set E ⊂ X and
looking at the convergence in the mean square:

E |En(μ) − E∞(μ)|2 = E |GTVn(μ) − TV (μ; ρ, η)|2 .

We give an expansion of the above in terms of εn and n. A further overview of these
results is given in § 2.3 and the proofs in § 6.

The outline of the paper is as follows. In § 2 the main result, theorem 2.3 (the
convergence of the unconstrained minimization problem), is given. We also include
an overview of the preliminary rate of convergence results to be found in § 6.
Section 3 contains the background material and in particular: notation, a brief
overview on Γ-convergence, background on total variation distances and the key
details required from transportation theory. In § 4, the proof of the first part of
theorem 2.3 (the compactness result) is given. And in § 5, the proof is completed
with the Γ-convergence result. Finally, in § 6, we make the preliminary calculation
regarding the rate of convergence of ‘En → E∞’.

2. Statement of main result and assumptions

The assumptions on V, ϕ and π are given in the following definition.

Definition 2.1. We say that the functions (ρ, εn, V, ϕ, π) where ρ : R
n → [0,∞),

V : R → [0,∞), ϕ : R → [0,∞) and π : R
d → R are En-admissible if the following

conditions hold.

(1) The support of ρ is X where X ⊂ R
d is open, bounded, connected, Lipschitz

boundary and 1 � d < ∞.

(2) On X we have that ρ is a continuous probability density (
∫

X
ρ(x) dx = 1) and

bounded above and below by positive constants, that is,

0 < inf
x∈X

ρ(x) � sup
x∈X

ρ(x) < ∞.

(3) ε−1
n = o(fd(n)) where

fd(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
n

log log n
if d = 1

√
n

(log n)3/2
if d = 2

d

√
n

log n
if d � 3.

(4) The support of η = ϕ ◦ π is compact.

(5) η(0) > 0.
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(6) For all δ > 0 there exists cδ, αδ > 0 such that if |x − y| < δ then η(y) �
cδη(αδx) and furthermore cδ, αδ → 1 as δ → 0.

(7) V (y) = 0 if and only if y ∈ {0, 1}.
(8) V is continuous.

(9) There exists r > 0 and τ > 0 such that if |t| � r then V (t) � τ |t|.
The lower bound on εn implies the graph with vertices Ψn and edges weighted

by Wij is (with probability one) eventually connected [38, theorem 13.2].
Note that a consequence of 4 and 6 is that σ(ν) < ∞ however 4 also excludes

any π that is linear. For example, if π(x) = w · x then there exists w′ orthogonal
to w such that w · w′ = 0 (for d � 2). Then π(αw′) = 0 for all α and, in particular,
η(αw′) = η(0) > 0. Therefore, the support of η is not compact. We discuss the linear
case more in the following subsection.

Condition 6 gives the required scaling in ϕ ◦ π. If Tn : X → Ψn is a map such
that Tn#P = Pn then the continuous approximation of the weights Wij reads as

Wij =
1
εd
n

ϕ ◦ π

(
ξi − ξj

εn

)
≈ 1

εd
n

∫
T−1

n (ξi)

∫
T−1

n (ξj)

ϕ ◦ π

(
x − y

εn

)
dxdy.

Condition 6 is sufficient to formalize this reasoning. We give two different classes
of functions in proposition 2.2 below that satisfy the assumptions. The first is a
subset of isotropic functions that we extend in corollary 2.4, the second is a set of
indicator functions.

Proposition 2.2. Assume that either

(1) ϕ : [0,∞) → [0,∞) is decreasing, ϕ(0) > 0, is Lipschitz with compact support
and π : R

d → [0,∞) is defined by π(x) = |x|, or

(2) ϕ(0) > 0, ϕ(1) = 0, π : R
d → {0, 1} is given by π(x) = IEc(x) for an open,

bounded and convex set E ⊂ R
d with 0 ∈ E.

Then (ϕ, π) are En-admissible.

We prove the above proposition in Appendix A. We now state the main result.
The key idea is that optimal transportation theory provides a natural extension of
μn : Ψn → R to μ̃n : X → R for which we can use to define the convergence μn → μ.
This is formalized as convergence in TL1, see § 3.4. Establishing Γ-convergence of
functionals, see definition 3.1, and the compactness of minimizers leads to the con-
vergence of minimizers as in theorem 3.2. We use the notation L1(Ψn) as convenient
notation for functions defined on Ψn. We define the space B(X; ρ, η), the space of
functions of bounded variation with respect to a measure ρ and an interaction
potential η, in definition 3.3.

Theorem 2.3. Let En : L1(Ψn) → [0,∞) and E∞ : L1(X) → [0,∞] be defined
by (2) and (4), respectively. If (ρ, εn, V, ϕ, π) are En-admissible (in the sense of
definition 2.1) and ξi

iid∼ ρ then, with probability one, the following hold
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(1) Compactness: Let μn be a sequence of functions on Ψn such that
supn∈N En(μn) < ∞ then μn is relatively compact in TL1 and each cluster
point is in BV (X; ρ, ϕ ◦ π) ∩ L1(X; {0, 1}).

(2) Γ-limit: We have

Γ- lim
n→∞ En = E∞.

The compactness result is proved in § 4 and the Γ-convergence result in § 5.
Proposition 2.2 allows one to apply theorem 2.3 to isotropic weights Wij when ϕ

is decreasing, ϕ(0) > 0 and Lipschitz. We now show that the Lipschitz assumption
can be removed.

Corollary 2.4. Let En : L1(Ψn) → [0,∞) and E∞ : L1(X) → [0,∞] be defined
by (2) and (4), respectively. If

• ρ satisfies conditions 1–3 in definition 2.1,

• ξi
iid∼ ρ,

• ϕ : [0,∞) → [0,∞) is decreasing, compactly supported, ϕ(0) > 0 and continuous
at 0,

• π(x) = |x|, and

• V satisfies conditions 11–13 in definition 2.1

then, with probability one, the conclusions of theorem 2.3 hold.

We prove the corollary in Appendix B

2.1. Convergence of the Ginzburg–Landau functional for linear feature
projections

After definition 2.1, we discussed how the compact support assumption on η =
ϕ ◦ π did not allow for linear π. One case that is of interest, that is not covered by
theorem 2.3 or corollary 2.4 is π(x) = xi that corresponds to weighting the graph
based on differences in one direction only.

This case is of particular interest for high-dimensional data. If the data come
from a high, potentially infinite, dimensional space, then it becomes necessary to
identify a finite number of principal dimensions upon which to define the edge
weights. Isotropic weights are unrealistic in high dimensions and infeasible in infinite
dimensions due to the lack of integrability of η. This motivates our study of linear π,
which can include π(x) =

∑
i∈K wixi for a finite set K and weights wi. Although, we

do not consider infinite-dimensional data spaces here, we believe the results of this
section can be extended from the finite-dimensional setting, albeit with a modified
limit Ê∞ to the one we define in (6).

The underlying problem, and why we should not expect a linear choice of π to
imply that E∞ is well defined, is that it becomes harder to ensure that σ(ν) < ∞.
In particular, we expect E∞ ≡ +∞. In many applications, we anticipate that only a
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small number of dimensions are relevant and hence we, in this section, consider the
classifier as a functional on a projected data space. We define Ψ̂n = {ξ̂i}n

i=1 ⊂ R by
ξ̂i = π(ξi) and μ̂n : Ψ̂n → [0,∞). We now consider the energy

Ên(μ̂n) =
1
εn

1
n

n∑
i=1

V (μ̂n(ξ̂i)) +
1
εn

1
n2

∑
i,j

Ŵij |μ̂n(ξ̂i) − μ̂n(ξ̂j)| (5)

where

Ŵij =
1
εn

ϕ ◦ π

(
ξi − ξj

εn

)
=

1
εn

ϕ

(
ξ̂i − ξ̂j

εn

)
.

We point out that the scaling is with respect to εn rather than εd
n as in (1). In this

case, the Γ-limit Ê∞ : L1(R) → [0,∞] is given by

Ê∞(μ̂) = σ̂
∑

x∈∂{μ̂=1}

(∫
π−1(x)

ρ(y) dy

)2

(6)

where

σ̂ =
∫

R

ϕ(x)|x|dx.

The analogous assumptions are given in the definition below.

Definition 2.5. We say that the functions (ρ, εn, V, ϕ, π) where ρ : R
d → [0,∞),

V : R → [0,∞), ϕ : R → [0,∞) and π : R
d → R are Ên-admissible if the following

hold.

(1) The support of ρ is X where X ⊂ R
d and the support of π#ρ is open, bounded

and connected.

(2) On X we have that ρ is a continuous probability density, bounded above and
infx∈X π#ρ(x) > 0.

(3) ε−1
n = o(f1(n)) where f1 is given in definition 2.1.

(4) π is linear.

(5) The support of ϕ is compact.

(6) ϕ(0) > 0.

(7) For all δ > 0 there exists cδ, αδ > 0 such that if |x − y| < δ then ϕ(y) �
cδϕ(αδx) and furthermore cδ, αδ → 1 as δ → 0.

(8) V (y) = 0 if and only if y ∈ {0, 1}.
(9) V is continuous.

(10) There exists r > 0 and τ > 0 such that if |t| � r then V (t) � τ |t|.
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The convergence theorem is given below.

Theorem 2.6. Let Ψ̂n = {ξ̂i}n
i=1 where ξ̂i = π(ξi). Define Ên : L1(Ψ̂n) → [0,∞)

and Ê∞ : L1(X) → [0,∞] by (5) and (6), respectively. If (ρ, εn, V, ϕ) are Ên-
admissible (in the sense of definition 2.5) and ξi

iid∼ ρ then, with probability one,
the following hold

(1) Compactness: Let μ̂n be a sequence of functions on Ψ̂n such that
supn∈N Ên(μ̂n) < ∞ then μ̂n is relatively compact in TL1 and each cluster
point is in BV (R;π#ρ, η) ∩ L1(R; {0, 1}).

(2) Γ-limit: we have

Γ- lim
n→∞ Ên = Ê∞.

The proof is an application of theorem 2.3 to the one-dimensional data set Ψ̂n.

2.2. Comments on the main result

The classical Ginzburg–Landau functional:

Fε(μ) = ε

∫
X

|∇μ(x)|2 dx +
1
ε

∫
X

V (μ(x)) dx

has been well studied and its convergence to a total variation functional

F∞(μ) = σV

∫
X

|∇μ(x)|dx

known for some time [37] and similar results for the anisotropic version [1]. More
recent results have studied this functional on a (deterministic) regular graph.
In [42] the authors show the Γ-convergence and compactness of two variants of
the Ginzburg–Landau functional where {ξi}n

i=1 ⊂ R
2 form a 4-regular graph. Let

us exploit the structure of the graph by writing data as {ξi,j}n
i,j=1 where ξi,j , ξi,j+1

are neighbours, as are ξi,j and ξj+1,i. The two variants of the Ginzburg–Landau
functional considered in [42] are

hn,ε(μ) =
1
ε

n∑
i,j=1

V (μ(ξi,j))

+
1
n

n∑
i,j=1

(
|μ(ξi+1,j) − μ(ξi,j)|2 + |μ(ξi,j+1) − μ(ξi,j)|2

)

kn,ε(μ) =
1

εn2

n∑
i,j=1

V (μ(ξi,j))

+ ε

n∑
i,j=1

(
|μ(ξi+1,j) − μ(ξi,j)|2 + |μ(ξi,j+1) − μ(ξi,j)|2

)
.
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The first functional hn,ε Γ-converges as ε → 0 (for a fixed n) to a total variation
function hn,0 in a discrete setting defined by

hn,0(μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n

n∑
i,j=1

(
|μ(ξi+1,j) − μ(ξi,j)|2

+ |μ(ξi,j+1) − μ(ξi,j)|2
)

if μ ∈ L1(Ψn; {0, 1})
∞ otherwise.

As ε → 0 and n → ∞ sequentially or for ε = n−α for α within some range then hn,ε

Γ-converges to an anisotropic total variation in a continuous setting

Γ- lim
n→∞
ε→0

hn,ε =
∫

T2

∣∣∣∣∂μ

∂x

∣∣∣∣+ ∣∣∣∣∂μ

∂y

∣∣∣∣
and kn,ε Γ-converges to an isotropic total variation

Γ- lim
n→∞
ε→0

kn,ε =
∫

T2
|∇μ|

upto renormalization. Also discussed in [42] is the application to the constrained
minimization problem

In the remainder of the paper, we will work on point clouds, that are random
graphs, rather than deterministic regular graphs.

Convergence of the Graph Total Variation. The Ginzburg–Landau functional con-
sists of two terms, the first is a regularization on the derivative and the second is
a penalization on states outside of {0, 1}. In this paper, we use the graph total
variation on graphs (3) as the regularization on the derivative. In more generality,
one can define the p-Laplacian on graphs [49] by

Jp(μ) =
1
εp
n

1
n2

∑
i,j

Wij |μ(ξi) − μ(ξj)|p.

The graph total variation corresponds to p = 1 and the results of [42] described
above correspond to p = 2.

An interesting and important question in its own right is the convergence of
the p-Laplacian [3,11,13,19,48,50]. For isotropic weights, that is, π(x) = |x|, the
following result was established for p = 1 in [25].

(1) Compactness: Let μn be any sequence of functions on Ψn = {ξi}, where
ξi

iid∼ P , such that GTVn(μn) is bounded and μn is bounded in TL1 then
μn is almost surely relatively compact in TL1 and each cluster point is in
BV (X; ρ, η).

(2) Γ-limit: we have, with probability one,

Γ- lim
n→∞ GTVn = TV (·; ρ, η).
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A consequence of our proofs is that, this result is also true for any X, ρ, εn, ϕ and π
satisfying assumptions 1–6 in definition 2.1. In particular, the Γ-convergence holds
analogously to theorem 5.1 and the compactness can be reduced, as in the proof of
Proposition 4.1, to the isotropic case where the results of [25] apply. This generalizes
the result of [25] to anisotropic weights.

Convergence of minimizers. The results of the theorem 2.3 can be understood
as implying the convergence of minimizers in the following sense. For a sequence
of closed sets Θn ⊆ L1(Ψn) and Θ ⊆ L1(X) which we assume with respect to the
Γ-convergence, that is, the following hold: (1) if ζ ∈ Θ then ζn := ζ

∣∣
Ψn

∈ Θn, (2)
there exists ζ ∈ Θ such that E∞(ζ) < ∞ and (3) any sequence ζn with ζn → ζ
implies ζ ∈ Θ. With probability one the following statements hold.

(1) Convergence of the minimum: limn→∞ infΘn
En = minΘ E∞.

(2) Convergence of minimizers: if μn ∈ L1(Ψn) are a sequence satisfying

En(μn) � min
μ

En(μ) + δn

for a sequence δn →+ 0 (we call μn a minimizing sequence) then this sequence
is precompact in TL1 and furthermore, any cluster point minimizes E∞.

The proof is a simple consequence of theorems 2.3 and 3.2.
Alternatively, one could let gn : L1(Ψn) → [0,∞) be a sequence that continuously

converges to g : L1(X) → [0,∞), that is, gn(ζn) → g(ζ) whenever ζn → ζ in L1, and
then since the Γ-convergence is stable under continuous perturbations the results
of this paper imply (with probability one) that

(1) limn→∞ infL1(Ψn)(En + gn) = minL1(X)(E∞ + g), and

(2) if μn ∈ L1(Ψn) are a minimizing sequence for En + gn then this sequence is
precompact in TL1 and furthermore, any cluster point minimizes E∞ + g.

For example, one could use this in order to fit data, for example,

gn(μ; ζ) = λ

∫
X

|μ(Tn(x)) − ζ(x)| dx

where ζ is a known function (data) and Tn is a sequence of stagnating trans-
port maps (a sequence such that ‖Id − Tn‖Lp → 0, see § 3.4). In this case, g(μ) =
λ
∫

X
|μ(x) − ζ(x)| dx.

Choice of scaling. The natural choice of scaling in En between the two terms is
not a-priori obvious. One could write

En(μ) =
1
γn

n∑
i=1

V (μ(ξi)) +
1
εn

1
n2

∑
i,j

Wij |μ(ξi) − μ(ξj)|.

The proof of Theorem 4.1 requires γn/εn = O(1). One can show that theorem 2.3
holds for γn = O(εn). For simplicity, it is assumed that γn = εn.
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Generalization to Lp spaces for p > 1. The literature on the related problem in
Lp spaces has been well developed. Define

En(μ) =
1
εn

n∑
i=1

V (μ(ξi)) +
1
εp
n

1
n2

∑
i,j

Wij |μ(ξi) − μ(ξj)|p .

Then one can show the results of theorem 2.3 still hold with a modification in
the integrand of the limiting energy E∞; in particular, the limit is still a total
variation type semi-norm on binary valued functions. In particular, the convergence
of minimizing sequences is still in TL1.

Size of the phase transition. Although we do not formally state the result, it is
well known that for the Ginzburg–Landau functional the phase transition is of order
εn, see for example [8, theorem 6.4]. By the proof of Lemma 5.4 the same is true
in the setting described in this paper. That is, if μn is a recovery sequence (see
definition 3.1) for En then 1/n#{ξ ∈ Ψn : μn(ξ) ∈ (c, 1 − c)} = O(εn).

2.3. Preliminary results on the rate of convergence

We include some preliminary results concerning the rate of convergence for
inf En → min E∞. The problem is simplified by looking at the convergence
GTVn(μ) → TV (μ; ρ, η) for μ = IE where E is a polyhedral set. To characterize
the rate of convergence, we look for convergence in mean square. It is shown in
theorem 6.2 that

E |En(μ) − E∞(μ)|2 = E |GTVn(μ) − TV (μ; ρ, η)|2

= O(εn) +
κ1

nεn
+

κ2

n2εd+1
n

+ O
(
ε2n
)

as n → ∞ for a constants κi given in § 6. Even though (by lemma 5.4) one
has GTVn(μ) → TV (μ; ρ, η) almost surely convergence in expectation does not
immediately follow, this is shown in theorem 6.1. The leading O(εn) term above
corresponds to approximating μ along edges of E where an edge is the intersec-
tion of two faces of E (see § 6 for a precise explanation of the notation we use
to describe polyhedral sets). The error in the edges causes a bias in the estimate.
For example, if one considers the function μ = IH∩X where H = {x : w · x > 0}
for some w is any half space then μ is a polyhedral function with no edges in
X and one can show EGTVn(μ) = TV (μ; ρ, η). It follows from our proofs that
E |GTVn(μ) − TV (μ; ρ, η)|2 = κ1/nεn + ((κ2)/(n2εd+1

n )) + O(1/n).

3. Preliminary material

3.1. Notation

The space of functions from Z onto Y that are Lp-integrable are denoted by
Lp(Z;Y ) (for 1 � p � ∞). Usually, either Y = {0, 1} or Y = R. If Y = R then we
write Lp(Z) instead of Lp(Z; R). When we use the Lp norm with respect to a
measure P the Y dependence is suppressed and we write Lp(X;P ). It will be
obvious from the context what is meant.
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The Euclidean norm is given by | · | and with a small abuse of notation the
dimension is inferred from the argument. The ball centred at x and with radius r
in R

d is given as

B(x, r) =
{
y ∈ R

d : |x − y| < r
}

.

When the ball is centred at the origin, we write B(0, r).

3.2. Γ-Convergence

Γ-convergence was introduced in the 1970s by De Giorgi as a tool for studying
sequences of variational problems. A key feature is the natural emergence of sin-
gular objects such as characteristic functions which we will interpret as classifiers.
We will adopt the viewpoint that Γ-convergence can used as a data analysis tool
as it provides direct links between statistical modelling assumptions and the cor-
responding minimizers, cf. for example, § 1.2. Very accessible introductions to Γ
convergence can be found in [8,17].

We have the following definition of Γ-convergence.

Definition 3.1 Γ-convergence. Let (A, dA) be a metric space. A sequence fn : A →
R ∪ {±∞} is said to Γ-converge on the domain A to f∞ : A → R ∪ {±∞} with
respect to dA, and write f∞ = Γ- limn fn, if for all ζ ∈ A:

(i) (lim inf inequality) for every sequence (ζn) converging to ζ

f∞(ζ) � lim inf
n→∞ fn(ζn);

(ii) (recovery sequence) there exists a sequence (ζn) converging to ζ such that

f∞(ζ) � lim sup
n→∞

fn(ζn).

When it exists the Γ-limit is always lower semi-continuous, and hence there exists
minimizers over compact sets. The following result justifies the use of Γ-convergence
as a variational type of convergence.

Theorem 3.2 Convergence of Minimizers. Let (A, dA) be a metric space and fn :
A → [0,∞] be a sequence of functionals. Let μn be a minimizing sequence for fn.
If μn are precompact and f∞ = Γ- limn fn where f∞ : A → [0,∞] is not identically
+∞ then

min
A

f∞ = lim
n→∞ inf

A
fn.

Furthermore, any cluster point of μn minimizes f∞.

A simple consequence of the above is if one can show that the Γ-limit has a
unique minimizer then any minimizing sequence converges (without the recourse to
subsequences).
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3.3. Total variation distance

The energy E∞ can also be written as a BV norm:

E∞(μ) =
{

TV (μ; ρ, η) if μ ∈ L1(X; {0, 1})
∞ otherwise (7)

where

TV (μ; ρ, η) = sup

{∫
X

μ(x) div (φ(x)) dx : φ ∈ C∞
c (X; Rd),

sup
x∈X

σ∗ (−ρ−2(x)φ(x)
)

< ∞
}

, (8)

σ∗(φ) = sup
{
ν · φ − σ(ν) : ν ∈ R

d
} ∈ {0,∞}, (9)

σ(ν) =
∫

Rd

η(x)|x · ν|dx, (10)

η = ϕ ◦ π and ρ is a probability density on X. The surface energy density σ is 1-
homogeneous and the Legendre transform σ∗ is a characteristic function which
assumes the values 0 or ∞. The space of functions with bounded variation is
defined below.

Definition 3.3. For a domain X ⊂ R
d the weighted total variation TV (·; ρ, η) of

function μ ∈ L1(X) with respect to a density ρ and potential η is defined by (8–10).
The space of functions with finite weighted total variation is denoted by BV (X; ρ, η).
The standard total variation distance on X is defined by

T̂ V (μ) = sup
{∫

X

μ(x) div(φ) dx : φ ∈ C∞
c (X), ‖φ‖L∞(X) � 1

}
.

The standard bounded variation space B̂V (X) is the set of functions such that
T̂ V (μ) < ∞.

The equivalence of definitions (4) and (7) can be seen from the simplification of
TV (·; ρ, η) when μ ∈ C1:

TV (μ; ρ, η) =
∫

X

σ(∇μ(x))ρ2(x) dx =
∫

X

∫
Rd

η(y)|y · ∇μ(x)|ρ2(x) dy dx.

One may also write

TV (μ; ρ, η) =
∫

Rd

η(z)TVz(μ; ρ) dz

where TVz(·; ρ) is defined by

TVz(μ; ρ) = sup
{∫

X

μ(x) div(φ(x)) dx : φ ∈ C∞
c (X; Rd),

− ν · φ(x) � |z · ν|ρ2(x)∀ν, x ∈ R
d

}
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The following proposition is a slight generalization of a well-known result regard-
ing the convergence of difference quotients to the total variation semi-norm. The
proof is omitted but it is a trivial adaptation of, for example, [32, theorem 13.48].

Proposition 3.4. Assume μn → μ in L1. For a sequence εn → 0 and a function
ρ : X → [0,∞) define fn : X → [0,∞) by

fn(z) =
1
εn

∫
X

|μn(x + εnz) − μn(x)| ρ2(x) dx.

Then

lim inf
n→∞ fn(z) � TVz(μ; ρ).

For each μ ∈ BV (X; ρ, η), the following theorem gives the existence of a measure
that one can understand as the weak derivative of μ. See for example [4,20] for
more details.

Theorem 3.5. For every μ ∈ BV (X; ρ, η) there exists a Radon measure λρ,η on X
and a λρ,η-measurable function α : X → R such that α(x) = 1 for λρ,η-almost every
x ∈ X and ∫

X

μ(x)divφ(x) dx = −
∫

X

φ(x) · x
ρ2(x)σ(x)

α(x) λρ,η(dx)

for all φ ∈ C1
c (X; Rd). In particular,

λρ,η(X) = TV (μ; ρ, η).

For the standard total variation distance, we write λ̂ and have the following
relationship:

λρ,η(dx) = ρ2(x)σ(x) λ̂(dx).

In particular,

TV (μ; ρ, η) =
∫

X

ρ2(x)σ(x) λ̂(dx). (11)

Using (11), we first prove theorem 2.3 (in particular, the Γ-convergence state-
ment) for Lipschitz ρ then generalize to continuous ρ by taking a monotonic
sequence of Lipschitz functions ρk → ρ and applying the monotone convergence
theorem.

A useful approximation result we will make use of is for all μ ∈ BV (X; ρ, η)
there exists a sequence μn ∈ BV (X; ρ, η) ∩ C∞(Rd) such that μn → μ in L1(X)
and TV (μn; ρ, η) → TV (μ; ρ, η) or equivalently λ

(ρ,η)
n (X) → λ(ρ,η)(X) (where λ

(ρ,η)
n

is the measure given by theorem 3.5 and induced by μn), see for example,
[20, theorem 2, § 5.2.2].
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3.4. Transportation theory

This subsection contains the preliminary material required to compare functions
defined on different domains. The key idea in [25] was to use transportation maps
in order to extend functions to a common domain. This allows one to define an
Lp-type convergence for functions on different domains.

Let us consider a sequence of functions μn on discrete domains Ψn and a function
ν on the continuous domain X. In order to compare μn with ν, we first use a
piecewise constant approximation μ̃n to extend μn onto the space X. For a map
Tn : X → Ψn, we define μ̃n = μn ◦ Tn. One can then define a topology using the
Lp distance between μ̃n and ν. The challenge is to define Tn optimally in the sense
that as little mass as possible is moved. In this section, we have given an overview
of the framework proposed in [25] that describes the topology we use in the sequel.
We start by defining the p-OT distance.

Definition 3.6. If 1 � p < ∞ then the p-OT distance between P,Q ∈ P(X) is
defined by

dp(P,Q) = min

{(∫
X2

|x − y|p π(dx,dy)
)1/p

: π ∈ Γ(P,Q)

}
(12)

where Γ(P,Q) is the set of couplings between P and Q, that is, the set of probability
measures on X × X such that the first marginal is P and the second marginal is Q.

If p = ∞ then the ∞-OT distance between P,Q ∈ P(X) is defined by

d∞(P,Q) = min
{

ess sup
π

{|x − y| : (x, y) ∈ X × X} : π ∈ Γ(P,Q)
}

. (13)

The minimization problem in (12) and (13) is known as Kantorovich’s optimal
transportation problem. The minimization is convex and therefore, the minimum
is achieved [16,45]. One can also show that dp defines a metric on the space of
probability measures. Elements π ∈ Γ(P,Q) are called transference plans. The dis-
tance d2 is also known as the Wasserstein metric and d∞ the ∞-transportation
distance. For bounded X ⊂ R

d convergence in dp (for 1 � p < ∞) is equivalent to
the weak convergence of probability measures [45] and therefore, with probability
one, dp(Pn, P ) → 0 where Pn is the empirical measure.

When P has density with respect to the Lebesgue measure then the Kan-
torovich minimization problem is equivalent to the Monge optimal transportation
problem [23]:

Minimize
∫

X

|x − T (x)|p P (dx) overall measurable maps T such that T#P = Q

where the push forward measure is defined by

T#P (A) = P (T−1(A))

for any A ∈ B(X). If Q = T#P then we call T a transportation map between P
and Q.
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Let Pn be the empirical measure and 1 � p < ∞ then from dp(Pn, P ) → 0 (almost
surely) one can immediately infer the existence of a sequence of transport plans such
that

‖Id − Tn‖p
Lp(X;P ) =

∫
X

|x − Tn(x)|p P (dx) → 0 (14)

as n → ∞. We call any sequence of transportation maps {Tn} that satisfy (14)
stagnating.

In the next definition, we use stagnating transport maps to define piecewise
constant approximations of functions on Ψn in order to define a suitable notion of
convergence.

Definition 3.7. Let μn ∈ Lp(Ψn) = Lp(X;Pn) and μ ∈ Lp(X;P ) where P is a
probability measure and Pn = 1/n

∑n
i=1 δξi

is the empirical measure. We say μn →
μ in TLp(X) if

‖μn ◦ Tn − μ‖p
Lp(X;P ) =

∫
X

|μn(Tn(x)) − μ(x)|p P (dx) → 0 (15)

for any sequence of stagnating transportation maps Tn : X → Ψn. Similarly, μn is
bounded in TLp if ‖μn ◦ Tn‖Lp is bounded and μn is precompact in TLp if μn ◦ Tn

is precompact in Lp.

One can show that if (15) holds for one sequence of stagnating transport maps
then it holds for any sequence of stagnating transport maps [25, lemma 3.5].

Since it is assumed that P has density ρ which is bounded above and below by
positive constants then (14) is equivalent to ‖Id − Tn‖Lp(X) → 0 and Lp(X;P ) =
Lp(X). This paper focuses on the case where p = 1 however, it is straightforward
to consider the case 1 � p < ∞, see § 2.2.

Now consider an arbitrary T : X → X and a measurable ϕ : X → [0,∞). Recall
that∫

X

ϕ(x) T#P (dx) := sup
{∫

X

s(x)T#P (dx) : 0 � s � ϕ and s is simple
}

.

If s(x) =
∑N

i=1 aiδUi
(x) where ai = s(x) for any x ∈ Ui then∫

X

s(x)T#P (dx) =
N∑

i=1

aiT#P (Ui) =
N∑

i=1

aiP (Vi)

for Vi = T−1(Ui). Note that ai = s(x) for any x ∈ T (Ui). From this it is not hard
to see the following change of variables formula:∫

X

ϕ(x) T#P (dx) =
∫

X

ϕ(T (x)) P (dx). (16)

A particularly useful version of this will be when T#P (dx) = Pn(dx) where Pn is
the empirical measure. In which case (16) implies

1
n

n∑
i=1

ϕ(ξi) =
∫

X

ϕ(T (x)) P (dx).
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As an aside, one can generalize the TLp framework to pairs (μ, P ) where μ ∈
Lp(X;P ). Let us define

dTLp((P, μ), (Q, ζ)) = inf
π∈Γ(P,Q)

{(∫
X×Y

|x − y|p π(dx,dy)
)1/p

+
(∫

X×Y

|μ(x) − ζ(y)|p π(dx,dy)
)1/p

}
.

Let P have density with respect to the Lebesgue measure and take a sequence of
measures Pn defined on a common space X (where we do not assume that Pn is
the empirical measure). Then (Pn, fn) → (P, f) in TLp is equivalent to weak con-
vergence of measures (due to the first term) and ‖μn ◦ Tn − μ‖Lp(X;P ) → 0 (due to
the second term), see [25, proposition 3.6]. Since we are working with the empirical
measure then with probability one Pn converges weakly to P . Hence the first term
plays no role in this paper and so is not included.

Our proofs require a bound on the supremum norm of Tn − Id given by the
following theorem.

Theorem 3.8. Let X ⊂ R
d with d � 1 be open, connected and bounded with Lips-

chitz boundary. Let P be a probability measure on X with density (with respect to
Lebesgue) ρ which is bounded above and below by positive constants. Let ξ1, ξ2, . . .
be a sequence of independent random variables with distribution P and let Pn be
the empirical measure. Then there exists a constant C > 0 such that almost surely
there exists a sequence of transportation maps {Tn}∞n=1 from P to Pn such that

lim sup
n→∞

‖Tn − Id‖L∞(X)

δn
� C

where

δn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
log log n√

n
if d = 1

(log n)3/4

√
n

if d = 2

(log n)1/d

n1/d
if d � 3.

Proof. The proof for d = 2 and d � 3 can be found in [26]. For d = 1 the result
follows from considering the transportation map defined by Tn(x) = ξi for x ∈
(x(i−1)

n , x
(i)
n ] where x

(i)
n is defined by P ((−∞, x

(i)
n ]) = i/n for i = 1, . . . , n − 1 and

x
(0)
n = −∞ and x

(n)
n = ∞. One then has ‖Tn − Id‖L∞(X) = ‖Pn − P‖L∞(X) which

by the law of the iterated logarithm has the stated rate of convergence. �

4. The compactness property

In this section, we prove the first part of theorem 2.3 by establishing that sequences
bounded in En are precompact in TL1 with cluster points in L1(X; {0, 1}). Our
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proofs compare En with its continuous analogue Cε : L1(X) → [0,∞] defined by

Cε(μ) =
1
ε

∫
X

V (μ(x))ρ(x) dx

+
1

εd+1

∫
X2

ϕ ◦ π

(
x − y

ε

)
|μ(x) − μ(y)| ρ(x)ρ(y) dxdy. (17)

The transport map Tn between the measures Pn and P is used to compare a function
μn : Ψn → R to its continuous version μ̃n : X → R, i.e. μ̃n = μn ◦ Tn. One then uses
standard results to conclude the compactness of μ̃n in L1 and show that this implies
compactness of μn in TL1.

Proposition 4.1. Under the same conditions as theorem 2.3. If μn ∈ L1(Ψn) is a
sequence with

sup
n∈N

En(μn) < ∞

then, with probability one, there exists a subsequence μnm
and μ ∈ L1(X; {0, 1})

such that μnm
→ μ in TL1.

Proof. Recall the following preliminary compactness result. If {μ̃n}∞n=1 is a sequence
in L1(X) such that

sup
n∈N

Cεn
(μ̃n) < ∞, (18)

where Cεn
: L1(X) → [0,∞] is defined by (17), then there exists a subsequence μ̃nm

and μ ∈ L1(X; {0, 1}) such that μ̃nm
→ μ in L1. A proof can be found, for example,

in [1].
For clarity, we will denote the dependence of η = ϕ ◦ π on En by En(·; η) and

let ηε(x) = 1/εdη(x/ε). Since η is continuous at 0 and η(0) > 0 there exists b > 0
and a > 0 such that η(x) � a for all |x| < b. Define η̃ by η̃(x) = a for |x| < b and
η̃(x) = 0 otherwise. As η̃ � η then En(μn; η) � En(μn; η̃).

Let Tn be such that Tn#P = Pn and the conclusions of theorem 3.8 hold. We
want to show {μn ◦ Tn}∞n=1 satisfies

sup
n∈N

Cε̃n
(μn ◦ Tn; η̃) < ∞ (19)

for a sequence ε̃n > 0 with ε̃n → 0 and εn/ε̃n → 1 that will be chosen shortly. If so
then by (18) there exists a subsequence μnm

◦ Tnm
and μ ∈ L1(X; {0, 1}) such that

μnm
◦ Tnm

→ μ in L1 and therefore, μnm
→ μ in TL1. To show (19) we write

Cε̃n
(μn ◦ Tn; η̃) =

1
ε̃n

∫
X

V (μn(Tn(x))ρ(x) dx

+
1

ε̃d+1
n

∫
X2

η̃

(
y − x

ε̃n

)
|μn(Tn(x)) − μn(Tn(y))| ρ(x)ρ(y) dy dx.

The first term is uniformly bounded, since by (16)

1
ε̃n

∫
X

V (μn(Tn(x))ρ(x) dx =
εn

ε̃n

1
εn

n∑
i=1

V (μn(ξi)).
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Assume that |y − x/ε̃n| < b then

|Tn(x) − Tn(y)| � |Tn(x) − x| + |x − y| + |y − Tn(y)|
� 2‖Id − Tn‖L∞(X) + |x − y|
� 2‖Id − Tn‖L∞(X) + bε̃n.

Choose ε̃n satisfying

2‖Tn − Id‖L∞(X) + bε̃n = bεn,

that is, ε̃n = εn − ((2‖Tn − Id‖L∞(X))/(b)). By the decay assumption on εn for n
sufficiently large (with probability one) ε̃n > 0, ε̃n → 0 and ε̃n/εn → 1. Also

η̃

(
x − y

ε̃n

)
= a ⇒ η̃

(
Tn(x) − Tn(y)

εn

)
= a.

Therefore,

η̃ε̃n
(y − x) =

1
ε̃d
n

η̃

(
x − y

ε̃n

)
� 1

ε̃d
n

η̃

(
Tn(x) − Tn(y)

εn

)
=

εd
n

ε̃d
n

η̃εn
(Tn(x) − Tn(y)) .

So,

1
ε̃n

∫
X2

η̃ε̃n
(y − x) |μn(Tn(x)) − μn(Tn(y))| ρ(x)ρ(y) dy dx

� εd
n

ε̃d+1
n

∫
X2

η̃εn
(Tn(x) − Tn(y)) |μn(Tn(x)) − μn(Tn(y))| ρ(x)ρ(y) dy dx

=
εd
n

ε̃d+1
n

∑
i,j

η̃εn
(ξi − ξj) |μn(ξi) − μn(ξj)| by (16)

=
εd+1
n

ε̃d+1
n

En(μn; η̃)

� εd+1
n

ε̃d+1
n

En(μn; η).

It follows that the second term is also uniformly bounded in n. �

5. Γ-Convergence

The main result of this section is theorem 5.1, which states that En Γ-converge
to E∞.

Theorem 5.1. Under the same conditions as theorem 2.3

E∞ = Γ- lim
n→∞ En

in the TL1 sense and with probability one.

The proof is a consequence of lemmas 5.2 and 5.4.
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Lemma 5.2 The lim inf inequality. Under the same conditions as theorem 2.3 if
μ ∈ L1(X) and μn → μ in TL1 then

E∞(μ) � lim inf
n→∞ En(μn)

with probability one.

Proof. Recall η = ϕ ◦ π. Let μn ∈ L1(Ψn), μ ∈ L1(X) with μn → μ in TL1. Let
νn = μn ◦ Tn ∈ L1(X) where Tn : X → Ψn is as in theorem 3.8 (with probability
one) so νn → μ in L1(X). Without loss of generality, we assume that

lim inf
n→∞ En(μn) < ∞

else there is nothing to prove. By theorem 4.1 μ ∈ L1(X; {0, 1}) hence the proof is
complete if

lim inf
n→∞ GTVn(μn) � TV (μ; ρ, η) (20)

where GTVn is defined by (3).
We show (20) in two steps.

Step 1. Assume ρ is Lipschitz continuous on X.

Step 2. Generalize to continuous densities.

Step 1. Let X ′ be a compact subset of X. We have

GTVn(μn) =
1
εn

1
n2

∑
i,j

Wij |μn(ξi) − μn(ξj)|

=
1

εd+1
n

∫
X2

η

(
Tn(x) − Tn(y)

εn

)
× |νn(x) − νn(y)| ρ(x)ρ(y) dxdy using (16)

� 1
εd+1
n

∫
X′

∫
X

η

(
Tn(x) − Tn(y)

εn

)
|νn(x) − νn(y)| ρ(x)ρ(y) dxdy

=
1
εn

∫
X′

∫
y+εnz∈X

η

(
Tn(y + εnz) − Tn(y)

εn

)
× |νn(y + εnz) − νn(y)| ρ(y + εnz)ρ(y) dz dy

=
1
εn

∫
X′

∫
y+εnz∈X

η

(
Tn(y + εnz) − Tn(y)

εn

)
× |νn(y + εnz) − νn(y)| ρ2(y) dz dy + an

where

an =
1
εn

∫
X′

∫
y+εnz∈X

η

(
Tn(y + εnz) − Tn(y)

εn

)
|νn(y + εnz)

−νn(y)| ρ(y) (ρ(y + εnz) − ρ(y)) dz dy.
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Assume that the support of ϕ is contained within B(0,M) then the follow-
ing calculation shows that for any y ∈ X that if |z| � M̃ where M̃ = M/α +
2 supn∈N((‖Tn − Id‖L∞)/(εn)) < ∞ then η(((Tn(y + εnz) − Tn(y))/(εn))) = 0:

M � αεn|z| − 2α
‖Tn − Id‖L∞

εn

� α

εn

(
εn|z| − |Tn(y + εnz) − Tn(y) − εnz|

)
� α

εn

∣∣∣∣Tn(y + εnz) − Tn(y)
∣∣∣∣

� π

(
Tn(y + εnz) − Tn(y)

εn

)
.

It follows that

|an| � Lip(ρ)M̃
infx∈X ρ(x)

∫
X

∫
y+εz∈X

η

(
Tn(y + εnz) − Tn(y)

εn

)
× |νn(y + εnz) − νn(y)| ρ(y)ρ(y + εnz) dz dy

=
M̃Lip(ρ)

infx∈X ρ(x)
εnGTVn(μn)

→ 0 as n → ∞.

Let αn and cn be as in definition 2.1 for δ = 2‖Tn−Id‖L∞
εn

then since∣∣∣∣Tn(y + εnz) − Tn(y)
εn

− z

∣∣∣∣ � 1
εn

(|Tn(y + εnz) − y − εnz| + |Tn(y) − y|)

� 2‖Tn − Id‖L∞

εn

we have that

η

(
Tn(y + εnz) − Tn(y)

εn

)
� cnη (αnz) .

So,

GTVn(μn) � cn

εn

∫
X′

∫
y+εnx∈X

η(αnz) |νn(y + εnz) − νn(y)| ρ2(y) dz dy + o(1)

=
cn

αd
nεn

∫
X′

∫
y+εnz̃/αn∈X

η(z̃)
∣∣∣∣νn

(
y +

εnz̃

αn

)
− νn(y)

∣∣∣∣ ρ2(y) dz̃ dy + o(1)

=
cn

αd
nεn

∫
X′

∫
Rd

η(z̃)
∣∣∣∣νn

(
y +

εnz̃

αn

)
− νn(y)

∣∣∣∣ ρ2(y) dz̃ dy − bn + o(1)

where

bn =
cn

αd
nεn

∫
X′

∫
y+εnz̃/αn 	∈X

η(z̃)
∣∣∣∣νn

(
y +

εnz̃

αn

)
− νn(y)

∣∣∣∣ ρ2(y) dz̃ dy
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By Fatou’s lemma, proposition 3.4 and since cn, αn → 1 we have

lim inf
n→∞

cn

αd
nεn

∫
X′

∫
Rd

η(z̃)
∣∣∣∣νn

(
y +

εnz̃

αn

)
− νn(y)

∣∣∣∣ ρ2(y) dz̃ dy

�
∫

Rd

η(z)TVz(μ; ρ) dz

= TV (μ; ρ, η,X ′).

Since X ′ and Xc are both closed and disjoint then τ := dist(X ′,Xc) > 0 and
therefore, if y ∈ X ′ and y + εnz̃/αn �∈ X then |z̃| � αnτ/εn. Choose n sufficiently
large such that αnτ/εn � M where the support of η is contained in B(0,M). Then
for any pair y, z̃ satisfying the above condition we have η(z) = ϕ ◦ π(z̃) = 0. Hence
bn = 0 for n sufficiently large.

We have shown that

lim inf
n→∞ GTVn(μn) � TV (μ; ρ, ϕ ◦ π,X ′).

If we consider a sequence X ′
m such that X ′

m ⊂ X ′
m+1 and IX′ → IX pointwise then

by the monotone convergence theorem TV (μ; ρ, ϕ ◦ π,X ′
m) → TV (μ; ρ, ϕ ◦ π,X).

This completes step 1.

Step 2. Denote the dependence of ρ on GTVn by GTVn(·; ρ). Assume ρ : X →
[0,∞) is continuous and let ρk : R

d → [0,∞) be defined by

ρk(x) =
{

infy∈X (ρ(y) + k|x − y|) if x ∈ X
0 otherwise. (21)

Clearly ρk(x) � ρ(x) for all x ∈ X. For any y ∈ X \ B(x, ρ(x)/k) we have |x − y| �
ρ(x)/k and, therefore,

ρ(y) + k|x − y| � ρ(y) + ρ(x) > ρ(x) � ρk(x).

Then it follows that any (approximate) minimizer y ∈ X of (21) must be con-
tained in B(x, ρ(x)/k). Hence ρk(x) = inf{ρ(y) + k|x − y| : y ∈ B(x, ρ(x)/k)} and,
therefore,

ρ(x) � ρk(x) � inf
{

ρ(y) : y ∈ B

(
x,

ρ(x)
k

)}
.

As ρ is bounded above on X then the previous inequality implies ρk(x) → ρ(x) for
each x ∈ X. It is also clear that ρk(x) � infx∈X ρ(x) > 0. Furthermore, for x, z ∈ X

ρk(x) − ρk(z) = inf
y1∈X

sup
y2∈X

ρ(y1) − ρ(y2) + k (|x − y1| − |z − y2|)

� sup
y2∈X

k (|x − y2| − |z − y2|)

� k|x − z|
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so ρk is Lipschitz in X. By step 1

lim inf
n→∞ GTVn(μn; ρ) � lim inf

n→∞ GTVn(μn; ρk) � TV (μ; ρk, η).

By theorem 3.5

TV (μ; ρk, η) =
∫

X

ρ2
k(x)σ(x) λ̂(dx).

And therefore, by the monotone convergence theorem, one has

lim
k→∞

TV (μ; ρk, η) =
∫

X

ρ(x)2σ(x) λ̂(dx) = TV (μ; ρ, η)

which completes the proof. �

For μ �∈ L1(X; {0, 1}) the recovery sequence is trivial as E∞(μ) = ∞. For μ ∈
L1(X; {0, 1}) we show that it is enough to prove the existence of a recovery sequence
when μ is a polyhedral function (defined below). Recall that Hk is the k-dimensional
Hausdorff measure.

Definition 5.3. A (d-dimensional) polyhedral set in R
d is an open set F whose

boundary is a Lipschitz manifold contained in the union of finitely many affine
hyperplanes. We say μ ∈ BV (X; {0, 1}) is a polyhedral function if there exists a
polyhedral set F such that ∂F is transversal to ∂X (i.e. Hd−1(∂F ∪ ∂X) = 0) and
μ(x) = 1 for x ∈ X ∩ F , μ(x) = 0 for x ∈ X \ F .

Lemma 5.4 The existence of a recovery sequence for theorem 5.1. Under the same
conditions as theorem 2.3 for any μ ∈ L1(X) there exists a sequence μn → μ in TL1

such that

E∞(μ) � lim sup
n→∞

En(μn) (22)

with probability one.

Proof. Without loss of generality assume μ ∈ BV (X; ρ, η) ∩ L1(X; {0, 1}). By the
following (diagonalization) argument, it is enough to prove the lemma for poly-
hedral functions. Suppose the lemma holds for polyhedral functions and let μ ∈
BV (X; ρ, η) ∩ L1(X; {0, 1}). There exists a sequence of polyhedral functions μm →
μ in L1 and TV (μm; ρ, η) → TV (μ; ρ, η), for example, see [36, § 9.4.1 lemma 1]. By
passing to a subsequence, we may assume that

‖μm − μ‖L1 � 1
m and |E∞(μm) − E∞(μ)| � 1

m .

Now for each m there exists a sequence μ
(m)
n and a limit μ(m) (as n → ∞ for each

m) such that

μ(m)
n → μ(m) in L1 as n → ∞ and E∞(μ(m)) � lim sup

n→∞
En(μ(m)

n ).

For each m there exists Nm such that∥∥∥μ(m)
n − μ(m)

∥∥∥
L1

� 1
m

and E∞(μ(m)) � En(μ(m)
n ) − 1

m
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for all n � Nm. Let μm = μ
(m)
Nm

then we have

‖μm − μ‖L1 �
∥∥∥μ(m)

Nm
− μ(m)

∥∥∥
L1

+
∥∥∥μ(m) − μ

∥∥∥
L1

� 2
m

and

E∞(μ) � E∞(μ(m)) − 1
m

� En(μm) − 2
m

.

Hence it is enough to prove the theorem for polyhedral functions.
Therefore, assume μ ∈ BV (X; {0, 1}) is a polyhedral function corresponding to

the polyhedral set F , that is, μ = IF . Let μn be the restriction of μ to Ψn. Define
Tn as in theorem 3.8 and use it to create a partition of X, X = ∪n

i=1T
−1
n (ξi). If

x, y ∈ T−1
n (ξi) then

|x − y| � |x − Tn(x)| + |Tn(x) − Tn(y)| + |Tn(y) − y| � 2‖Id − Tn‖L∞(X).

Let x ∈ T−1
n (ξi) and assume dist(∂F, x) > 2‖Id − Tn‖L∞ . If y ∈ T−1

n (ξi) then
μ(y) = μ(x) (since T−1

n (ξi) ⊂ B(x, 2‖Id − Tn‖L∞(X)) and B(x, 2‖Id − Tn‖L∞(X)) ∩
∂F = ∅). Therefore, ∫

T−1
n (ξi)

|μn(Tn(y)) − μ(y)| ρ(y) dy = 0.

In particular,∫
X

|μn(Tn(y)) − μ(y)| ρ(y) dy =
∫

Xn

|μn(Tn(y)) − μ(y)| ρ(y) dy

� ‖ρ‖L∞(X)Vol(Xn)

where

Xn =
{
y ∈ X : dist(∂F, y) � 2‖Id − Tn‖L∞(X)

}
.

Clearly, Vol(Xn) = O(‖Id − Tn‖L∞(X)) = o(1) and therefore, μn → μ in TL1.
Define νn = μn ◦ Tn then since νn, μ ∈ L1(X; {0, 1}) we have that (22) is equivalent
to

TV (μ; ρ, η) � lim sup
n→∞

GTVn(μn).

We complete the proof in two steps.

Step 1. Assume ρ is Lipschitz on X.

Step 2. Generalize to continuous densities.

Step 1. We can write assumption 3 in definition 2.1 as for any δ > 0 there exists
cδ, αδ such that if |x − y| < δ then η(x) � 1/cδη(w/αδ) and cδ, αδ → 1 as δ → 0.
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Let cn, αn be such constants for δ = ((2‖Tn − Id‖L∞)/(εn)) since∣∣∣∣Tn(x) − Tn(y)
εn

− x − y

εn

∣∣∣∣ � 2
2‖Tn − Id‖L∞

εn
= δ

then

η

(
Tn(x) − Tn(y)

εn

)
� 1

cn
η

(
x − y

ε̃n

)
where ε̃ = εnαn.

So,

GTVn(μn) =
1

εd+1
n

∫
X2

η

(
Tn(x) − Tn(y)

ε

)
|νn(x) − νn(y)| ρ(x)ρ(y) dxdy

� αd+1
n

cnε̃d+1
n

∫
X2

η

(
x − y

ε̃n

)
|νn(x) − νn(y)| ρ(x)ρ(y) dxdy

=
αd+1

n

cn
CTVn(νn)

with CTVn defined below. Let us approximate μ by a sequence ζn ∈ C∞(Rd) ∩
BV (X) such that ζn → μ in L1(X) and TV (ζn; ρ, η) → TV (μ; ρ, η). Without loss
of generality assume that ζn(x) = 0 for all x ∈ R

d \ X and ‖μ − ζn‖L1(X) = o(ε̃n)
(by recourse to a subsequence of ζn and relabelling). Then

CTVn(ζn)

:=
1

ε̃d+1
n

∫
X2

η

(
x − y

ε̃n

)
|ζn(x) − ζn(y)| ρ(x)ρ(y) dxdy

=
1

ε̃d+1
n

∫
X2

η

(
x − y

ε̃n

) ∣∣∣∣∫ 1

0

∇ζn(y + s(x − y)) · (x − y) ds

∣∣∣∣ ρ(x)ρ(y) dxdy

� 1
ε̃d+1
n

∫
X

∫ 1

0

∫
X

η

(
x − y

ε̃n

)
|∇ζn(y + s(x − y)) · (x − y)| ρ(x)ρ(y) dxdsdy

=
∫

X

∫ 1

0

∫
Znhs

η(z) |∇ζn(h) · z| ρ(h + (1 − s)ε̃nz)ρ(h − ε̃nsz) dz dsdh

� TV (ζn; ρ, η) + cn

where

Znhs =
{
z ∈ R

d : h + (1 − s)ε̃nz ∈ X and h − ε̃nsz ∈ X
}

cn =
∫

X

∫ 1

0

∫
Znhs

η(z) |∇ζn(h) · z|

× (ρ(h + (1 − s)ε̃nz)ρ(h − ε̃nsz) − ρ2(h)
)
dz dsdh.
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If

lim
n→∞ cn = 0 (23)

and lim
n→∞ |CTVn(νn) − CTVn(ζn)| = 0 (24)

then

lim sup
n→∞

CTVn(νn) = lim sup
n→∞

CTVn(ζn) � lim sup
n→∞

TV (ζn; ρ, η) = TV (μ; ρ, η).

We now show (23). Since the support of η is bounded then there exists M > 0 such
that spt(η) ⊂ B(0,M). For any |z| > M , we have η(z) = 0 and for any |z| � M one
can show∣∣ρ2(h) − ρ(h + (1 − s)ε̃nz)ρ(h + ε̃nsz)

∣∣ � ‖ρ‖L∞(X)Lip(ρ) (|(1 − s)ε̃nz| + |ε̃nsz|)
� 2ε̃n‖ρ‖L∞(X)Lip(ρ)M.

Then

|cn| � 2‖ρ‖L∞(X)Lip(ρ)ε̃nM

∫
X

∫
Rd

η(z) |∇ζn(h) · z| dz dh

�
2‖ρ‖L∞(X)Lip(ρ)ε̃nM

infx∈X ρ2(x)

∫
X

∫
Rd

η(z) |∇ζn(h) · z| ρ2(h) dz dh

=
2‖ρ‖L∞(X)Lip(ρ)ε̃nM

infx∈X ρ2(x)
TV (ζn; ρ, η).

To complete step 1, we show (24). This follows by:

|CTVn(νn) − CTVn(ζn)|

�
‖ρ‖2

L∞(X)

ε̃d+1
n

∫
X2

η

(
y − x

ε̃n

)
(|νn(x) − ζn(x)| + |νn(y) − ζn(y)|) dxdy

�
2‖ϕ‖L∞(Rd)Vol(X)‖ρ‖2

L∞(X)

ε̃n

∫
X

|νn(x) − ζn(x)| dy

�
2‖ϕ‖L∞(Rd)Vol(X)‖ρ‖2

L∞(X)

ε̃n

(‖νn − μ‖L1(X) + ‖μ − ζn‖L1(X)

)
→ 0

where the last line follows as ‖μ − ζn‖L1(X) = o(ε̃n) and ‖νn − μ‖L1(X) = O(‖Tn −
Id‖L∞(X)) = o(εn) = o(ε̃n).

Step 2. Let GTV (·; ρ) be the graph total variation defined using ρ. Let ρ be
continuous but not necessarily Lipschitz and define ρk : R

d → [0,∞) by

ρk(x) =
{

supy∈X ρ(y) − k|x − y| if x ∈ X
0 otherwise.

Similarly, to lemma 5.2 step 2, we can check that ρk is bounded above and below
by positive constants, Lipschitz continuous on X and converges pointwise to ρ from
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above. We have

lim sup
n→∞

GTVn(μn; ρ) � lim sup
n→∞

GTVn(μn; ρk) � TV (μ; ρk, η).

By the monotone convergence theorem and theorem 3.5, we have limk→∞ TV
(μ; ρk, η) = TV (μ; ρ, η). �

6. Preliminary results for the rate of convergence

There are two main sources of error defined to be |En(μ) − E∞(μ)|. The first is due
to statistical fluctuations, for example, data points that lie in the tails that have a
large impact when n is small. The second is due to systematic bias. Systematic bias
is due to several factors such as the details of the scaling and the geometry of the
problem. In this section, by taking the expectation over the data, we only consider
the second source of error. In this section, we will restrict ourselves to when μ = IE

is a polyhedral function (see definition 5.3).
We first fix our notation. The boundary of a polyhedral set E is contained in the

union of finitely many (N say) affine hyperplanes Hi for i = 1, . . . , N . We call the
set ∂Ei := ∂E ∩ Hi a face of E. By construction ∂E = ∪N

i=1∂Ei. The intersection
of two faces is an edge eij = ∂Ei ∩ ∂Ej . It is unfortunate but unavoidable that we
use the term edge in two different contexts; either as an edge in a graph, or as an
edge of a polyhedral set. It should be clear from the context what is meant. The
intersection of edges is called a corner.

To reduce bias let us redefine the normalization on GTVn so that

GTVn(μ) =
1
εn

1
n(n − 1)

∑
i,j

ηεn
(ξi − ξj) |μ(ξi) − μ(ξj)| . (25)

For Ξij = 1/εnηεn
(ξi − ξj) |μ(ξi) − μ(ξj)| one can write

GTVn(μ) =
1

n(n − 1)

∑
i,j

Ξij .

Since ξi are iid then

EΞij =
{

EΞ12 if i �= j
0 if i = j.

Hence EGTVn(μ) = EΞ12. This would not be true for the normalization we
considered previously.

For simplicity, we make the following assumptions. Assume X = (0, 1)d where
d � 1 and that ρ ≡ 1 on X. We use an isotropic interaction potential η = IB(0,1).
These assumptions simplify the calculations which allows one to have a better
understanding of the methodology without the notational burden if one used more
general assumptions. We expect that the results in this section can be generalized
to a wider class of interaction potentials η, spaces X ⊂ R

d and probability densities
ρ. We start with the convergence of the expectation.
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Theorem 6.1. Let X = (0, 1)d with d � 2, ρ ≡ 1 and εn be any sequence converg-
ing to zero. The data are distributed ξi

iid∼ ρ and let Ψn = {ξi}n
i=1. Define GTVn :

L1(Ψn) → [0,∞] by (25) where the weights are given by Wij = ηεn
(ξi − ξj) and

ηεn
(x) = 1/εd

nI|x|�εn
. Define TV (·; ρ, η) : L1(X) → [0,∞] by (8–10). Let μ = IE be

a polyhedral function. Then

|EGTVn(μ) − TV (μ; ρ, η)| = O(εn).

Note that we do not need a lower bound on the decay of εn. By taking the
expectation we are immediately in the continuous setting and therefore, lose all the
graphical structure. In particular,

EGTVn(μ) =
1
εn

∫
(0,1)d

∫
(0,1)d

ηεn
(x − y) |μ(x) − μ(y)| dy dx

has no discrete structure.
Our proof shows that along faces of E and sufficiently far from edges in some

sense the expected graph total variation is equal to the total variation. To be
more precise if E = {x ∈ X : w · x > 0} for some w ∈ R

d then E has no edges
and therefore GTVn(μ) = TV (μ; ρ, η). The discrepancy between EGTVn(μ) and
TV (μ; ρ, η), which we show is of order εn, is a consequence of having to approximate
along edges of E.

Proof of Theorem 6.1. Let ∂E = ∪N
i=1∂Ei. We first calculate TV (μ; ρ, η),

TV (μ; ρ, η) =
∫

∂{μ=1}
σ(n(x)) dHd−1(x) =

N∑
i=1

|∂Ei|Hd−1 σ(ni)

where ni is the outward unit normal for side ∂Ei and we use | · |Hd−1 to denote the
Hd−1 measure. Observe

σ = σ(ni) =
∫

B(0,1)

|x · ni|dx =
∫

B(0,1)

|xd|dx.

So TV (μ; ρ, η) = σ|∂E|Hd−1 .
Consider the face ∂Ei, we will approximate this with a smaller face ∂E

(n)
i ⊂ ∂Ei

that will approximate the graph total variation to within O(εn). Consider the set,

Ri(s) =
{

x + εntn : t ∈ [−1, 1], n is normal to ∂Ei and

x ∈ ∂Ei with dist(∂(∂Ei), x) > s
}

where ∂(∂Ei) is the d − two-dimensional boundary of the face ∂Ei. There exists
sn = O(εn) such that for all i

Ri(sn) ∩
⎛⎝⋃

j 	=i

∂Ej

⎞⎠ = ∅.
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Define

Bn =
{

x : dist(x, ∂E) < εn

}
S

(n)
i = Ri(sn + εn) T

(n)
i = Ri(sn)

U
(n)
i =

{
x + εntn : t ∈ [−1, 1], n is normal to ∂Ei and

x ∈ ∂Ei with dist(∂(∂Ei), x) � sn + εn

}
∂E

(n)
i =

{
x ∈ ∂Ei : dist(x, ∂(∂Ei)) > sn + εn

}
.

By construction
⋃

x∈S
(n)
i ∩E

[Ec ∩ B(x, εn)] ⊆ (T (n)
i ∩ Ec) and

⋃
x∈S

(n)
i ∩Ec

[E ∩ B(x, εn)] ⊆ (T (n)
i ∩ E). Now,

EGTVn(μ) =
1
εn

∫
Bn

∫
Bn

ηεn
(x − y) |μ(x) − μ(y)| dy dx

=
1

εd+1
n

N∑
i=1

∫
S

(n)
i ∩E

∫
T

(n)
i ∩Ec

I|x−y|�εn
dy dx

+
1

εd+1
n

∫
(Bn∩E)\⋃N

i=1 S
(n)
i

∫
Ec

I|x−y|�εn
dy dx

+
1

εd+1
n

N∑
i=1

∫
S

(n)
i ∩Ec

∫
T

(n)
i ∩E

I|x−y|�εn
dy dx

+
1

εd+1
n

∫
(Bn∩Ec)\⋃N

i=1 S
(n)
i

∫
E

I|x−y|�εn
dy dx.

We have

1
εd+1
n

∫
(Bn∩E)\⋃N

i=1 S
(n)
i

∫
Ec

I|x−y|�εn
dy dx � 1

εn

N∑
i=1

∫
U

(n)
i

∫
x+εnz∈Ec

I|z|�1 dz dx

� 1
εn

N∑
i=1

Vol(U (n)
i )Vol(B(0, 1))

= O(εn)

since Vol(U (n)
i ) = O(εn(sn + εn)) = O(ε2n). Similarly,

1
εd+1
n

∫
(Bn∩Ec)\⋃N

i=1 S
(n)
i

∫
E

I|x−y|�εn
dy dx = O(εn).

For the remaining terms in the above expansion of EGTVn(μ), we consider the ith

face. After a suitable change of coordinates, we can assume that ∂Ei ⊂ {x : x1 = 0}
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and ni = (1, 0, . . . , 0). Then

1
εn

∫
S

(n)
i ∩E

∫
T

(n)
i ∩Ec

I|x−y|�εn
dy dx

=
1
εn

∫
∂E

(n)
i

∫ 0

−εn

∫
y1>0

I|x−y|�εn
dy dx1 dx2:d

=
1
εn

∫
∂E

(n)
i

∫ 0

−εn

∫
x1=εnz1>0

I|z|�1 dz dx1 dx2:d

=
1
εn

∫
∂E

(n)
i

∫ 0

−εn

∫
|z|�1

Ix1+εnz1>0 dz dx1 dx2:d

=
∫

∂E
(n)
i

∫
|z|�1

z1Iz1>0 dz dx2:d−1

=
1
2
|∂E

(n)
i |Hd−1

∫
|z|�1

|z1|dz

=
σ

2
|∂E

(n)
i |Hd−1

=
σ

2
|∂Ei|Hd−1 + O(εn).

Analogously,

1
εd+1
n

N∑
i=1

∫
S

(n)
i ∩Ec

∫
T

(n)
i ∩E

I|x−y|�εn
dy dx =

σ

2
|∂Ei|Hd−1 + O(εn).

Collecting terms, we have shown

EGTVn(μ) = TV (μ; ρ, η) + O(εn)

which completes the proof. �

The above theorem established convergence in the mean of GTVn(μn) to
TV (μ; ρ, η). A natural next step is to establish convergence in mean square. The
next theorem gives the asymptotic expansion of E |GTVn(μ) − TV (μ; ρ, η)|2. We
order the expansion so that dominant terms come first (the ordering follows from
the scaling given by assumption 3 in definition 2.1). The dominant term depends
on the bias αn = EGTVn(μ) − TV (μ; ρ, η) which is O(εn) due to the approximation
along the edges of each face of E. The complexity of refining this approximation,
that is, finding the constant c such that αn = cεn + h.o.t. goes beyond the scope of
the paper.
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Theorem 6.2. Under the same conditions as theorem 6.1

E |GTVn(μ) − TV (μ; ρ, η)|2

= −2αnTV (μ; ρ, η) +
4(n − 2)|∂E|Hd−1V

n(n − 1)εn
+

2TV (μ; ρ, η)
n(n − 1)εd+1

n

+
(n − 2)(n − 3)α2

n

n(n − 1)
+

(6 − 4n)TV (μ; ρ, η)2

n(n − 1)
+ O

(
1
n

)
+ O

(
1

εd
nn2

)
+

2αnTV (μ; ρ, η)
n(n − 1)

where αn = EGTVn(μ) − TV (μ; ρ, η) = O(εn) is the bias and

V =
1
2

∫
B(0,1)

∫
B(0,1)

min{|zd|, |yd|}dz dy.

Proof. We can write

E |GTVn(μ) − TV (μ; ρ, η)|2

= EGTVn(μ)2 + TV (μ; ρ, η)2 − 2TV (μ; ρ, η)EGTVn(μ)

= EGTVn(μ)2 − TV (μ; ρ, η)2 − 2TV (μ; ρ, η)αn.

Let Ξij = 1/εnηεn
(ξi − ξj) |μ(ξi) − μ(ξj)| then

GTVn(μ) =
1

n(n − 1)

∑
i,j

Ξij and GTVn(μ)2 =
1

n2(n − 1)2
∑

i,j,k,l

ΞijΞkl.

Let i, j, k, l be distinct, then GTVn(μ)2 has the following contributions:

A. 2n(n − 1) terms consisting of Ξ2
ij ,

B. 4n(n − 1)(n − 2) terms consisting of ΞijΞik and

C. n(n − 1)(n − 2)(n − 3) terms consisting of ΞijΞkl.

For C we use independence of Ξij with Ξkl to write

EΞijΞkl = EΞijEΞkl = (EGTVn(μ))2 = (TV (μ; ρ, η) + αn)2

= TV (μ; ρ, η)2 + 2αnTV (μ; ρ, η) + α2
n.

For A:

EΞ2
ij =

1
ε2d+2
n

∫
(0,1)d

∫
(0,1)d

I|x−y|�εn
|μ(x) − μ(y)| dxdy

=
1

εd+1
n

EGTVn(μ)

=
1

εd+1
n

TV (μ; ρ, η) + O

(
1
εd
n

)
by theorem 6.1.
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Now we consider B. We have

EΞijΞik =
1

ε2d+2
n

∫
(0,1)d

∫
(0,1)d

∫
(0,1)d

I|x−y|�εn
I|x−w|�εn

|μ(x) − μ(y)|

× |μ(x) − μ(w)|dw dy dx

=
1

ε2d+2
n

N∑
i=1

∫
S

(n)
i ∩E

∫
T

(n)
i ∩Ec

∫
T

(n)
i ∩Ec

I|x−y|�εn
I|x−w|�εn

dw dy dx

+
1

ε2d+2
n

∫
(Bn∩E)\∪N

i=1S
(n)
i

∫
Ec

∫
Ec

I|x−y|�εn
I|x−w|�εn

dw dy dx

+
1

ε2d+2
n

N∑
i=1

∫
S

(n)
i ∩Ec

∫
T

(n)
i ∩E

∫
T

(n)
i ∩E

I|x−y|�εn
I|x−w|�εn

dw dy dx

+
1

ε2d+2
n

∫
(Bn∩Ec)\∪N

i=1S
(n)
i

∫
E

∫
E

I|x−y|�εn
I|x−w|�εn

dw dy dx.

Now,

1
ε2d+2
n

∫
(Bn∩E)\∪N

i=1S
(n)
i

∫
Ec

∫
Ec

I|x−y|�εn
I|x−w|�εn

dw dy dx

=
1
ε2n

∫
(Bn∩E)\∪N

i=1S
(n)
i

∫
x+εny∈Ec

∫
x+εnw∈Ec

I|z|�1I|w|�1 dw dy dx

� 1
ε2n

(Vol(B(0, 1)))2 Vol((Bn ∩ E) \ ∪N
i=1S

(n)
i )

= O(1).

where Bn, S
(n)
i and T

(n)
i are as in the proof of Theorem 6.1. Considering each face

individually, after rotating,

1
ε2d+2
n

∫
S

(n)
i ∩E

∫
T

(n)
i ∩Ec

∫
T

(n)
i ∩Ec

I|x−y|�εn
I|x−w|�εn

dw dy dx

=
1
ε2n

∫
S

(n)
i ∩E

∫
xd+εnyd>0

∫
xd+εnw>0

I|y|�1I|w|�1 dw dy dx

=
1
ε2n

∫
∂E

(n)
i

∫ 0

−εn

∫
|y|�1

∫
|w|�1

Ixd+εnyd>0Ixd+εnwd>0 dy dxd dx1:d−1

=
1
ε2n

∫
∂E

(n)
i

∫ 0

−εn

∫
|w|�1

∫
|y|�1

Ixd>−εn min{wd,yd} dy dw dxd dx1:d−1

=
1
εn

∫
∂E

(n)
i

∫
|w|�1

∫
|y|�1

Imin{wd,yd}>0 min{wd, yd}dy dw dx1:d−1
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=
1

4εn

∫
∂E

(n)
i

∫
|w|�1

∫
|y|�1

min{|wd|, |yd|}dy dw dx1:d−1

=
|∂E

(n)
i |Hd−1V

2εn

=
|∂Ei|Hd−1V

2εn
+ O(1).

Hence

EΞijΞik =
|∂E|Hd−1V

εn
+ O(1).

Collecting terms implies the result of the theorem. �

If one defines

κ1 = 4|∂E|Hd−1V

κ2 = 2TV (μ; ρ, η)

then we can conclude the asymptotic expansion given in § 2.3.

Acknowledgements
Part of this work was completed whilst MT was part of MASDOC at the University
of Warwick and was supported by an EPSRC Industrial CASE Award PhD Stu-
dentship with Selex ES Ltd. MT would also like to thank the Center for Nonlinear
Analysis at Carnegie Mellon University for support during part of this research. In
addition, the authors are grateful to Neil Cade (Selex ES Ltd.) and Adam Johansen
(Warwick University) whose discussions enhanced this paper.

Appendix A. Proof of Proposition 2.2

Proof of Proposition 2.2. For the first part assume the support of ϕ is contained
in [0,M ] and choose N � M such that ϕ(t) � ϕ(0)/2 > 0 for all 0 � t � N and let
0 < δ < N . First consider |x| � N − δ. If |x − z| < δ then

|z| � |z − x| + |x| � δ + |x| = |x|
(

1 +
δ

|x|
)

� |x|
(

1 +
δ

N − δ

)
.

Set cδ = 1 and αδ = 1 + δ/N − δ, then as ϕ is decreasing, we have

η(z) = ϕ(|z|) � ϕ(αδ|x|) = cδη(αδx).

Now if |x| � N − δ then |z| � N � M and, therefore,

η(z) = φ(|z|) � ϕ(|x|) − L ||x| − |z|| � ϕ(|x|) − L|x − z| � ϕ(|x|) − Lδ

= ϕ(|x|)
(

1 − Lδ

ϕ(|x|)
)
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where L is the Lipschitz constant of ϕ. By definition of N we have that ϕ(|x|) �
ϕ(0)/2 and, therefore,

η(z) � ϕ(|x|) (1 − 2Lδ/ϕ(0)) .

Hence η(z) � cδη(x) where cδ = 1 − 2Lδ/ϕ(0) and αδ = 1.
For the second case let B(0, 2m) ⊂ E ⊂ B(0,M) and δ∗ = distH(∂E,B(0,m))

where distH is the Hausdorff distance. Clearly, δ∗ � m > 0. Let

∂δ∗E =
{

x ∈ E ∪ ∂E : distH(x, ∂E) � δ∗

2

}
.

Note that if x ∈ ∂δ∗E then distH(x,B(0,m)) � δ∗/2. For any x ∈ ∂δ∗E there exists
a unique (by convexity) βx � 1 such that βxx ∈ ∂E. Furthermore, βx = |βxx|/|x| �
M/m.

Let δ � δ∗ and pick z ∈ ∂+
δ := {x ∈ Ec : distH(z, ∂E) � δ} then for any x ∈

B(z, δ) ∪ E we have

βx − 1 =
1
|x| (βx|x| − |z| + |z| − |x|)

� 1
m

(|βx − x| + |z − x|)

� 1
m

(|βx − x| + δ) .

Now we construct the triangle given in figure 5. Applying the cosine formula one
has,

cos(θ) =
|z|2 + |x|2 − |z − x|2

2|x||z|

= 1 +
|z|2 + |x|2 − |z − x|2 − 2|x||z|

2|x||z|

� 1 − |z − x|2
2|x||z|

� 1 − δ2

2m2
.

And

|βxx − z|2 = |z|2 + |βxx|2 − 2|z||βxx| cos(θ)

� |z|2 + |βxx|2 − 2|z||βxx| + |z||βxx|δ2

m2

� |z||βxx|δ2

m2

� M3δ2

m3
.
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Figure 5. Bound for |βxx − z| in the proof of Proposition 2.2.

Therefore,

βx − 1 � δ

m

((
M

m

)3/2

+ 1

)
.

Take αδ = supz∈∂+
δ E supx∈B(z,δ)∩E βx. Then 1 � αδ � 1 + δ/m((M/m)3/2 + 1) →

1 and by construction for any x ∈ B(z, δ) ∩ E, we have αx �∈ E. This implies
η(αδx) = 0 and, therefore, η(z) � η(βxx).

The other cases, x ∈ B(z, δ) ∩ Ec and when z ∈ E or distH(z, ∂E) > δ are trivial.
�

Appendix B. Proof of Corollary 2.4

Proof of Corollary 2.4. The compactness property holds analogously to proposi-
tion 4.1. For the Γ-convergence, we let η = ϕ ◦ π = ϕ(|x|). Since ϕ is in L1([0,∞))
(it is bounded, measurable and with compact support) then we can approximate ϕ
by ϕk a monotonically increasing sequence (in k) of functions such that 0 � ϕk � ϕ,
ϕk → ϕ pointwise, ϕk is Lipschitz, decreasing and ϕk > 0. By proposition 2.2 and
theorem 2.3 for any μ ∈ L1(X) there exists a sequence μn such that μn → μ in TL1

and lim supn→∞ En(μn;ϕk ◦ π) � E∞(μ;ϕk ◦ π). Therefore,

lim sup
n→∞

En(μn;ϕ ◦ π)

� lim sup
n→∞

En(μn;ϕk ◦ π)

� E∞(μ;ϕk ◦ π)

→ E∞(μ;ϕ ◦ π) as k → ∞ by the monotone convergence theorem.

Similarly, for the liminf inequality, we take a sequence ϕk monotonically decreas-
ing sequence of functions such that ϕk � ϕ, ϕk → ϕ pointwise, ϕk is Lipschitz,
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decreasing and with compact support. Then for any μn → μ in TL1 we have

lim inf
n→∞ En(μn;ϕ ◦ π)

� lim inf
n→∞ En(μn;ϕk ◦ π)

= E∞(μ;ϕk ◦ π)

→ E∞(μ;ϕ ◦ π) as k → ∞ by the monotone convergence theorem.

This completes the proof. �
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27 N. Garćıa Trillos, D. Slepčev, J. von Brecht, T. Laurent and X. Bresson. Consistency of
cheeger and ratio graph cuts. arXiv:1411.6590 (2014).

28 J. F Hennawi and J. X Prochaska. Quasars probing quasars. II. The anisotropic clustering
of optically thick absorbers around quasars. Astrophys. J. 655 (2007).

29 H. Hu, Y. van Gennip, B. Hunter, A. L. Bertozzi and M. A. Porter. Multislice modularity
optimization in community detection and image segmentation. In Data Mining Workshops
(ICDMW), 2012 IEEE 12th International Conference on, pp. 934–936, (2012).
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