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Based on hierarchies of filter lengths, the large eddy decomposition and the related
subgrid stresses are recognized to represent generalized central moments for the
study and modelling of the different modes composing turbulence. In particular, the
subgrid stresses and the subgrid dissipation are shown to be alternative observables
for quantitatively assessing the scale-dependent properties of momentum flux (subgrid
stresses) and the energy exchange between the large and small scales (subgrid
dissipation). In this work we present a theoretical framework for the study of the
subgrid stress and dissipation. Starting from an alternative decomposition of the
turbulent stresses, a new formalism for their approximation and understanding is
proposed which is based on a tensorial turbulent viscosity. The derived formalism
highlights that every decomposition of the turbulent stresses is naturally approximated
by a general form of turbulent viscosity tensor based on velocity increments which
is then recognized to be a peculiar property of small-scale stresses in turbulence.
The analysis in a turbulent channel shows the rich physics of the small-scale stresses
which is unveiled by the tensorial formalism and usually missed in scalar approaches.
To further exploit the formalism, we also show how it can be used to derive new
modelling approaches. The proposed models are based on the second- and third-order
inertial properties of the grid element. The basic idea is that the structure of the
integration volume for filtering (either implicit or explicit) impacts the anisotropy
and inhomogeneity of the filtered-out motions and, hence, this information could be
leveraged to improve the prediction of the main unknown features of small-scale
turbulence. The formalism provides also a rigorous definition of characteristic lengths
for the turbulent stresses, which can be computed in every type of computational
elements, thus overcoming the rather elusive definition of filter length commonly
employed in more classical models. A preliminary analysis in a turbulent channel
shows reasonable results. In order to solve numerical stability issues, a tensorial
dynamic procedure for the evolution of the model constants is also developed. The
generality of the procedure is such that it can be employed also in more conventional
closures.
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1. Introduction

Most of the approaches to turbulence are based on a level or scale decomposition
of the full turbulent field. Famous examples are the Reynolds decomposition of the
flow in a mean and fluctuating part and the spectral decomposition in a hierarchy of
scales of motion. The general aim is to provide a description of turbulence simpler
than that given by the full Navier—Stokes equations. However, the nonlinearity of
the problem challenges for a reduced description of turbulence giving rise to the
well-known closure problem in statistical theories of turbulence. It consists of a
coupling of the different levels and scales composing turbulence which interact
themselves exchanging momentum and kinetic energy (Domaradzki et al. 1994).
In this context, the large eddy decomposition represents a technique to address the
multiscale approach to turbulence (Germano 1992; Kerr, Domaradzki & Barbier 1996).
Based on a hierarchy of filter lengths, the large eddy decomposition is probably the
simplest way to give an intuitive idea of scales of motion (Borue & Orszag 1998)
and the so-called filter-space technique (Ni, Voth & Ouellette 2014), based on the
removal of some degrees of freedom by filtering, represents an alternative approach to
more sophisticated techniques. The main quantity in the filtering analysis of turbulent
flows is the so-called subgrid turbulent stress. As remarked by Eyink (2006), the
subgrid stresses reflect the interactions of large-scale with small-scale velocity modes
and, as such, the study of such stresses is of overwhelming interest. Hence, the
subgrid stresses represent the large- and small-scale contribution to the momentum
flux. Analogously, the so-called subgrid dissipation represents the energy exchange
between large and small scales. A relevant example is the use of the filtering approach
as an efficient quantitative method for assessing the physical multiscale phenomena
at the basis of the direct and inverse cascade in turbulence (Rivera, Daniel, Chen &
Ecke 2003; Chen et al. 2006; Wang et al. 2018). Furthermore, as shown in Germano
(2012), the subgrid stresses formally extend to a generic large-scale filtering operator
the statistical central moments and, hence, can be read as generalized central moments
of the second order.

Different formulations and decompositions of the subgrid turbulent stress can be
introduced, and a particular formulation based on the spatial velocity increments has
been recently proposed in Germano (2007). This formulation suggests that the scaling
properties of the mean subgrid stress are similar to the properties of the second-order
structure function. Moreover, as remarked in Cimarelli & De Angelis (2012), another
possible merit of this formulation is to mimic the nonlinear anisotropic feature of the
energy sourcing in wall flows. However, a general theory on the subgrid stresses is at
present missing even if that would be very important in order to understand the scale
interactions in turbulence and to face the closure problem.

The above reasonings give impetus to fundamental investigations of nonlinear
interactions in turbulent flows, which may eventually provide better models. Here, we
attempt to address this problem by developing alternative formalisms and closures
for a reduced description of the scale-space properties of momentum and energy
transfer in turbulence. The paper is organized as follows. In §2 we theoretically
exploit the properties of the subgrid stress tensor, and by starting from an alternative
decomposition we derive a new formalism for their reduced description which is
based on a tensorial viscosity. A generalization of the gradient model approximation
is also provided. In §§4 and 5, we analyse both the different contributions to the
subgrid stress and subgrid dissipation and the new formalism, respectively, by using
direct numerical simulation (DNS) data of a turbulent channel which are in turn
described in § 3. Starting from the tensorial viscosity approximation, we show in § 6
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how it is possible to derive a new closure for the turbulent stresses. A preliminary
assessment of the model properties together with the derivation of a tensorial dynamic
procedure for the evolution of the model constants is presented in §7. The paper
is finally closed by final comments and remarks in § 8. The present results are also
extended to the subgrid flux associated with a scalar field, as reported in appendix A.

In what follows we will often make use of classical nomenclature taking origin
from large eddy simulation (LES) studies. However, let us remark that the developed
theoretical framework allows also for the study of the momentum and energy transfer
in turbulence. In this context, the filter length has to be understood as cross-over
scale for the filtering technique that allows us to decompose turbulence in large and
small scales. Accordingly, the subgrid stresses and subgrid dissipation are intended as
observables for the study of the scale-dependent properties of the momentum flux and
of the energy transfer between large and small scales, respectively.

2. Theoretical framework
Let us consider the subgrid stress tensor T(u;, u;), defined as
T(u;, wj) = Wity — u;ltj, (2.1)

and let us assume that the generic average can be represented as (Leonard 1974)

iy = / Gx, £)ui(E) dé, (2.2)
where
/G(x, £yde=1 (2.3)

and G is the kernel of a generic filter in space. As shown in Germano (2007), we
remark that the subgrid stresses are equivalently given by the relation

1
T, u) =3 //G(x, £)G e, M[ui(§) — u;(m)1[w;(§) — u;()] d& dy. (2.4)

Equation (2.4) directly connects the subgrid stresses with the velocity increments
between two points

Su; = u;(§) — u; () (2.5)

in terms of a double convolution integral. As is well known, the velocity increment
vector characterizes the local structure of turbulence and its study is fundamental for
the characterization of the subgrid stress intermittency and energy dissipation (Cerutti
& Meneveau 1998). By introducing the fluctuations defined as

u; =u; + v, (2.6)
we can decompose the subgrid stresses as
(i, u) =T (uy, w) + (g, vp) + (v, w;) + (Ui, V), (2.7

where

1
T, ) = > //G(x, §)G(x, mui(§) — u;(m)]lu; (&) — u;(n)] d& dn, (2.8)
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1
T(u;, vj) = 3 //G(X, §)G(x, Mlu;(§) — u;(m)[v;(§) — v;(m)]dé dn, 2.9
1
(v, v) = 3 //G(x, §Gx, Plvi(§) — vi(m1[vi(§) —vi(m]dédy. (2.10)

We remark that this decomposition is Galilean invariant, due to the fact that it is
composed of Galilean invariant terms. The decomposition of subgrid stresses is
recognized to be a fundamental step for the characterization and modelling of the
scale-dependent properties of the momentum exchange. Indeed, from decomposition
(2.7) it is possible to derive several reduced descriptions and modelling approaches.
As an example, if we make the following approximation:

T (ui, wy) ~ (U, ), (2.11)

we directly recover the modelling approach given by the similarity models (Bardina,
Ferziger & Reynolds 1983b), i.e.

T (ui, w) =~ T (ity, i) = Wil — iil;. (2.12)

If we also assume that the large-scale motion u; is sufficiently smooth at the filter
scale, by considering in (2.8) the following expansion:

u;(§) — u;(m) ~ (& — M) it
uj(§) —u;(n) ~ (&, — Uh)ahﬁj} (2.13)

we obtain a generalized form of the so-called gradient model approximation for the
subgrid stresses (Clark, Ferziger & Reynolds 1979):

~ 17 17 ~ 17 ( 17
Ty, w) ~ T (i, W) ~ — v, ity — v iy, (2.14)
where the associated subgrid viscosity is a tensor given by

v = — 37 (X, x3) Ol (2.15)

and

1
) =5 [ [ Gl §)Ge 6~ )& — i) d . 2.16)
When considering a regular Cartesian control volume and a top-hat filter, we have
T (X, Xp) = lljﬂﬁ(skh, (2.17)

where A, are the lengths of the filtering operation in the three spatial directions.
In these settings, the generalized gradient model (2.14) recovers the classical
approximation

T (uy, u) A T (U, 1) R 15 Ay Oyt Ol (2.18)

Hence, in a LES context, the generalized gradient model approximation (2.14) can be
understood as a refinement of the classical gradient model (2.18) in complex flows
where unstructured irregular grids are commonly employed.

Accordingly with the above examples, the study of the subgrid stress decomposition
(2.7) is recognized to highlight the complex nature of the small-scale motion and to
reveal different modelling approaches. In this respect, we remark however that another
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possible decomposition of the subgrid stresses can be used in order to further shed
light on the small-scale motion and its modelling. This decomposition is given by
T (i, wy) = [T, wy) + v (i, wy) + ©(w;, wy) + v (w;, v))1/ 2, (2.19)

where
1
G 1) = 5 / / Gx, )G, Mlin®) — Iy — waldedn  (2.20)
and
1
w0 = 5 / / Glx, )G M) — v —wmldedy.  2.21)

We remark that also this decomposition of the subgrid stresses is Galilean invariant
as clearly highlighted by the Galilean invariance of different terms. Moreover let us
notice that the tie between the two decompositions is given by the following relations:

[T(L_ti, Mj) + T(M,‘, ﬁj)]/z = T(iti, L_l]) + [T(ﬁi, Uj) + T(U,‘, ﬁj)]/z, (222)
[T (i, uy) + T (i, v)]/2 =T (V;, V) + [T (3, V) + T (Ui, 4;)]/2. (2.23)

Starting from the decomposition (2.19), a different approximation for the subgrid
stresses could be the following:

T (i, wp) ~ [t (g, wy) + 7 (i, u))1/2, (2.24)

which, coupled with the expansions (2.13), would lead to a different approach to the
subgrid stresses in the form

T(u;, Mj) ~ —Ukjakljti — vk,-akﬁj, (2.25)

where the associated subgrid viscosity is a tensor given by

1 1
Vi = =2 T (0 ) = —7 //G(x, )G, & — nil[wi(§) —u;(n)]dEdy.  (2.26)

Let us point out that in the proposed subgrid stress approximation (2.25) and the
related subgrid viscosity (2.26), there is no proportionality between the turbulent stress
tensor and the strain rate tensor, thus removing the limitation related to classical eddy
viscosity models. Indeed, it is well known that the alignment of the subgrid flux tensor
with the strain rate is not verified (Hértel et al. 1994), also in isotropic homogeneous
turbulence (Abba, Cercignani & Valdettaro 2003).

In closing this section, let us point out that the same reasoning here reported for
the derivation of tensorial subgrid viscosity approach for the subgrid stresses can be
easily extended also for the subgrid flux associated with a scalar field as reported in
appendix A. Moreover, we stress that the present analysis has been conducted for a
generic filtering operation. If the filtering operator is the Reynolds average, provided
by the usual properties of the statistical average, it is easy to show that the classical
decomposition (2.7) leads to

T (u;, up) = (v, V) = ;U5 (2.27)
since T(w;, u;)) = 0 and t(w;, v)) + T(v;, 4;) = 0. Analogously, the alternative
decomposition (2.19) leads to

T(u;, wy) = [t (vi, wy) + T (i, v))1/2 =V (2.28)

since [t (u;, u;) + t(u;, u;)1/2 =0. The right-hand sides of (2.27) and (2.28) are then
recognized as the Reynolds stresses.
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3. Filtered DNS data set

In order to study the properties of the different decompositions of the subgrid
stresses defined in (2.7) and (2.19) and of the tensorial subgrid viscosity defined
in (2.26), we use DNS data of a turbulent channel. Indeed, due to its statistical
symmetries, the turbulent channel represents the simplest kind of inhomogeneous
and anisotropic flow, thus allowing for detailed statistical analysis of the physical
mechanisms underlying turbulence.

The DNS data are obtained by means of a pseudo-spectral simulation of a
turbulent channel at a nominal friction Reynolds number Re, = 550. The width
of the numerical domain is (D,, Dy, D,) = (4wh, 2h, 2mh) in the streamwise,
wall-normal and spanwise directions, respectively, and % is the channel half-height.
In the following the index i=1, 2, 3 corresponds to the x, y, z directions, respectively.
The number of Fourier modes and Chebyshev polynomials used in the horizontal and
vertical directions are (N,, Ny, N;) = (768, 257, 768) which leads to a resolution
(Af, A;r”’i”, A AY) = (9, 0.04, 6.5, 4.5), where the superscript + denotes
the customary non-dimensionalization with viscous units. The time integration is
performed with a partially implicit Crank—Nicholson/Runge—Kutta scheme.

The filtered velocity field is computed by means of a top-hat filter in physical space:

G(x, &) =G(y,r) = m H H(Af /2 —|niD), 3.1)

where 1 = x; — &, A% = A, AS = A, and A$ = 2[H(r,) A} + H(—ry)Af,], with
A;, = yi41 — y; and As =y, — ¥-1, where y; is the vertical coordinate of the jth
computational point so that A,(y) = A} + A” For the symmetrles of the channel, the
filter operator changes with the wall- normal posmon y. It is worth noting that the filter
operator is an independent variable that, together with the filter length, specifically
defines the large and small scales of the decomposition. In the present context, the
use of a top-hat filter is justified by its compact support in physical space so that
the ranges of small and large scales are clearly defined in space. Indeed, we aim at
assessing a general framework for the study of the different contributions to turbulence
as an alternative to more classical approaches such as those given by the spectral
decomposition where sharp-cutoff filters are certainly better suited. Furthermore, let
us point out that the theoretical formalism here described is sufficiently general to
overcome possible limitations given by the specific filtering operator. As an example,
even in the extreme case of the Reynolds average as filtering operator, the developed
formalism remains unaltered.

Three sets of filter lengths have been considered and are reported in table 1. The
resulting decomposition of turbulence in large- and small-scale motion is described
in the left-hand panel of figure 1 where the wall-normal profiles of turbulent kinetic
energy associated with the two ranges of scales are shown. In the right-hand panel of
figure 1, the spectral description of the decomposition given by the filtering approach
is also shown for a single relevant distance from the wall.

4. Properties of the subgrid stress decompositions

As pointed out in Germano (2012), the subgrid stresses and their possible
decompositions can be understood as generalized central moments of the second
order that are very relevant for the study of the different parts composing turbulence
at different levels. For a given fixed filter length, the different parts composing
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FIGURE 1. Small- and large-scale decomposition of turbulent kinetic energy given by
the filtering approach. (a) The wall-normal profiles of turbulent kinetic energy associated
with the large-scale, i;", and small-scale, v;", motion. (b) The representation given by the
premultiplied Fourier spectra of the decomposition for a single wall distance, y© =60, as a
function of the streamwise wavelength. In both panels, the large- and small-scale motions
are indicated with dashed and dotted lines, respectively. The arrows indicate the filtered
cases F1, F2 and F3, respectively.

Filter Af AF A}

yw

A}, DoF/DoF

F1 36 18 037 20 0.031
F2 72 36 1.03 33 0.004
F3 108 54 2.02 47 0.001

TABLE 1. Size of the filters applied to the DNS field of turbulent channel flow. Parameters
AY and A7 are the filter lengths in the streamwise and spanwise directions. In the wall-
normal direction the filter length varies from the smaller value at the wall AY  to the
larger one at channel centre AIC. The ratio between the degrees of freedom of the filtered
field, DoF, with respect those of the unfiltered one, DoF, is also reported for the different
sets of filter widths adopted.

turbulence are the large and small scales which nonlinearly interact among themselves
and exchange momentum and energy. The study of their different decompositions
could shed light on the multiscale nature of turbulence and on its modelling. The
analysis will be performed by grouping together subgrid stress components of the
same nature. For the sake of clarity, the expressions of the classical decompositions
(2.7) and the alternative one (2.19), their components and the way they are referred
to in the following analysis are reported in table 2. For reasons of brevity, we will
report the statistical behaviour of the different decompositions only for the dominant
component of the subgrid stress tensor, namely t;,.

In figure 2, the mean and the variance of the different decompositions of T,
are shown as a function of the normal to the wall coordinate for the three filter
lengths considered. As expected, both the mean and variance of all the terms of the
two decompositions peak in the near-wall region and decrease moving towards the
channel core. The effect of filtering is to increase the intensity of the stresses. In the
classical decomposition of stresses we observe that, for small filter lengths, the largest
values of mean and variance are reached by the stresses associated with interactions
between large scales, component CDI1, while the smallest values of stresses are
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FIGURE 2. Wall-normal profiles of the mean (a,b) and variance (c,d) of the subgrid stress
decomposition of ;5. (a,c) CDI ——, CD2 ——, CD3 --- . (b,d) ADl ——, AD2 ——. The
profiles are shown for different filter lengths and the arrows indicate cases from F1 to F3.

Stresses Description
CD T (u;, ;) + v (u;, vy) + (v, u;) + v (v;, vy) Classical decomposition (2.7)
CDl1 T (u;, ;) Large-scale interactions
CD2 T (u;, vj) + T (v;, Uy) Large- and small-scale interactions
CD3 T(v;, V) Small-scale interactions
AD [T, uj) + T (v, wy) + (s, ;) + T (w;, vy)1/ 2 Alternative decomposition (2.19)
ADI1 [z, u) + T (u;, u;)1/2 Interaction with large scales
AD2 [T (v, u) + T (i, v)1/2 Interaction with small scales

TABLE 2. Analysed stress decompositions.

given by interactions between small scales, component CD3. On the other hand, by
increasing the filter scale, this behaviour inverts in the near-wall region since the
stresses associated with small scales, component CD3, are the most intense both in
terms of mean and variance. This inversion of roles is not observed in the channel
core, thus highlighting that the near-wall region is characterized by phenomena of
momentum exchange where small scales play a more significant role. The stresses
associated with the interactions between large and small scales, component CD2,
appear to be always in between the stresses CD1 and CD3 in terms of mean and
variance. The new decomposition highlights similar trends consisting, for small filter
lengths, of subgrid stresses dominated by the interactions with large scales, component
ADI, both in the channel core and in the near-wall region. On the other hand, for
large filter scales, the subgrid stresses of the near-wall region are driven by the
interactions with the small subgrid field, component AD2.
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FIGURE 3. Wall-normal profiles of skewness (a,b) and kurtosis (c,d) of the subgrid stress
decomposition of 7,. (a,c) CDl ——, CD2 ——, CD3 --- . (b,d) ADl ——, AD2 ——.
The profiles are shown for the intermediate filter case F2. The effect of filtering is shown
in the insets where the volume integral of skewness and kurtosis is shown for the three
filter cases.

The wall-normal profiles of the skewness and kurtosis of the different subgrid stress
decompositions are considered now in order to further characterize the properties of
the decompositions. As shown in figure 3, a strong non-Gaussian behaviour is
observed for all the terms composing the subgrid stresses, their distributions being
significantly skewed and characterized by large levels of kurtosis. By starting from
the skewness, we observe that, with the exception of a change of sign between the
two halves of the channel, the profiles are almost flat. The largest values of skewness
are exhibited by stresses involving the large-scale motion, i.e. components CDI,
CD2 and ADI1. On the other hand, the stresses associated with interactions with the
small-scale field are less skewed, components CD3 and AD2. As shown in the insets
of figure 3, the effect of the filter size is to decrease the levels of skewness for
all the stresses with the exception of those associated with the small-scale motion,
i.e. terms CD3 and AD2. With regard to kurtosis, we observe that all the profiles
monotonically increase with the wall distance. Hence, the higher levels of kurtosis
are reached in the channel core region. Contrarily to the behaviour of the skewness,
the deviation from Gaussian behaviour is larger for the stresses CD2, CD3 and AD2
associated with the small-scale motion. Indeed, the smallest values of kurtosis are
reached by stresses related to the large-scale motion, components CD1 and ADI. As
shown in the insets of figure 3, also in this case, the effect of filtering is to reduce
the non-Gaussian behaviour for all the terms composing the subgrid stresses. This
behaviour could be related to the strongly non-Gaussian nature of the small-scale
contribution to the momentum flux whose effect is weakened by the inclusion of
larger and larger scales by increasing the filter length.
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FIGURE 4. Wall-normal profiles of the correlation function Cj; for the different subgrid
stress decompositions of 7y,. (@) CDl ——, CD2 ——, CD3 ---. (b)) ADl ——, AD2 ——.
The profiles are shown for different filter lengths and the arrows indicate cases from F1
to F3.

Let us now analyse the structural properties (Sagaut 2001) of the decompositions
of the subgrid stresses here considered, i.e. the degree to which the reduced
description of the subgrid stresses given by each element of the decompositions

succeeds in representing the total momentum flux. To this aim, the correlation of the

different terms composing the subgrid stress decomposition 7,.%” with the total ones

ij
Ti('wt) =Tt(u;, u;),

<r'(dec) T-(mz) )

Clj(y): (ilec)Z - (tot)2 ’ (41)
(T Nry )

is shown in figure 4 as a function of the normal to the wall coordinate for different
filter lengths. In the definition (4.1), (-) is used to denote temporal and spatial
average in the homogeneous directions. As shown in figure 4, the profiles of
the contribution to the subgrid stresses of phenomena involving the large-scale
motion, components CD1 and ADI1, exhibit an increase of correlation with the total
turbulent stresses by moving from the wall to the channel centre. On the contrary,
the contributions given by the small-scale motion, components CD3 and AD2, are
more correlated with the total turbulent stresses near the wall rather than in the bulk
of the channel. Accordingly, with the exception of the near-wall region, the subgrid
stresses CD1 and AD1 due to interactions with the large-scale motion turn out to
be the best approximation of the total subgrid stresses. This result is at the basis
of the well-known ability of similarity models to reproduce the structural properties
of the subgrid stress tensor. This property is partially mitigated by a double effect
of filtering. Indeed, a reduction of correlation with the total stresses is observed for
the stresses associated with the large-scale motion, CD1 and ADI, by increasing
the filter length. On the other hand, the effect of filtering is to increase the degree
of correlation for the stresses due to interactions with the small-scale motion, i.e.
components CD3 and AD2. This double effect of filtering is particularly effective
in the near-wall region. Indeed, the contribution of stresses involving the small-scale
motion, components CD3 and AD2, is found to be the best approximation of the
near-wall turbulent stresses for the larger filter case F3. This aspect further supports
the well-known idea of a near-wall region where the role of small scales in the
phenomena of momentum flux is stronger (Domaradzki et al. 1994).
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decompositions of the subgrid stresses. (a) The subgrid dissiﬁation is computed using the

FIGURE 5. Wall-normal profiles of the subgrid dissipation €,

components of the CD decompositions, CD1 , CD2 ——, CD3 ... (b) The subgrid
dissipation is computed using the components of the AD decompositions, AD1 , AD2
——. In the main plots the profiles show the behaviour for the filter case F1, while in the
insets for the filter case F3.

In closing this section, let us consider also the contribution of each element of the
decompositions of the subgrid stresses to the overall energy transfer between large
and small scales. To this aim, we study the so-called subgrid dissipation of turbulent
kinetic energy defined as _

€ses = (T;5}), 4.2)

where the prime denotes a fluctuating quantity and S’QJ. = (9u; + 0u;) /2 is the strain rate
tensor of the fluctuating resolved velocity field. In a LES context, the subgrid
dissipation is recognized to represent the most important effect on the large scales of
the subgrid stresses that should be reproduced accurately by models (Piomelli, Yu &
Adrian 1996; Cimarelli & De Angelis 2014).

As shown in the main plots of figure 5, the intensity of the subgrid dissipation is
higher in the near-wall region for all the terms of the decompositions and decreases
moving away from the wall. This behaviour is consistent with the presence in
the near-wall production region of stronger energy cascade mechanisms towards
dissipation at small scales. In this context, the stresses related to interactions with
large scales, components CD1 and ADI, are responsible for the larger amount of
subgrid dissipation in the case of small filter lengths. Indeed, the stresses due to the
interactions with the small-scale motion, CD3 and AD2, give rise to a relatively small
amount of subgrid dissipation. As before, the mixed stresses CD2 of the classical
decomposition show a behaviour that is always in between the two stresses associated
with the large and small scales. By increasing the filter length, the contribution of
stresses involving large scales to the energy transfer processes of the channel core,
components CD1 and ADI, remains dominant (see the insets of figure 5). On the
contrary, the behaviour of the subgrid dissipation becomes more complex in the
near-wall region due to the appearance of a double peak. As also shown in Hirtel
et al. (1994) and Cimarelli & De Angelis (2012), the near-wall region for large filter
lengths is characterized by a three-layer structure where two peaks of high dissipation
embed a low-dissipative layer which eventually gives rise to a change of sign and,
hence, to a reverse energy transfer from small to large scales, €, > 0 (Cimarelli, De
Angelis & Casciola 2013; Cimarelli et al. 2015, 2016). In this context, we observe
that the contribution of stresses involving small scales in the energy transfer processes
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of the near-wall region becomes dominant. Indeed, as shown in the insets of figure 5,
for the filter case F3, the stresses related to interactions with the small-scale motion,
CD3 and AD2, are responsible for a larger amount of dissipation with respect to the
stresses, CD1 and ADI, associated with the large-scale motion. In a LES context, we
argue that this phenomenon is at the basis of the very low-dissipative behaviour of
similarity models. It is also interesting to point out that the phenomenon of reverse
energy transfer from small to large scales, €., > 0, appears to be mostly reproduced
by stresses given by interactions with the small-scale motion, components CD3 and
AD2; for example, see the works related to this topic of Piomelli et al. (1991) and
Domaradzki et al. (1994).

As a final comment of this section, let us remark that the present analysis supports
assumption (2.24), i.e.

T (u;, uy) ~ [T (i, wy) + v (w;, u;)1/2. (4.3)

Indeed, for small filter lengths, the contribution of [t(v;, u;) + T(u;, v;)]/2 is
negligible in terms of mean and fluctuating intensity (see figure 2) and in the correct
reproduction of the actual stresses and of the subgrid dissipation (see figures 4 and 5).
For large filter lengths, the strength of this assumption remains unaltered in the core
of the channel, whereas it deteriorates close to the walls, since the contribution of
[t (v, u;) + T (u;, v;)]/2 overcomes that of [z (u;, u;) + v (u;, u;)]/2. Let us point out that
these results can be understood also as a measure of the scale-space locality of the
momentum and energy transfer mechanisms in turbulence (Zhou 1993; Domaradzki,
Teaca & Carati 2009). In this context, the largest contribution given by the term ADI1
with respect to AD2 to the total subgrid stresses and dissipation actually suggests that
local mechanisms prevail on non-local ones in the momentum and energy transfer
phenomena, respectively.

5. Properties of the tensorial subgrid viscosity

In §2 we have shown how the general formalism of the viscosity tensor based on
the velocity increments, equation (2.26), is a natural approximation for the momentum
flux originating from interactions between large and small scales, equation (2.25). The
degree of generality of the formalism is further supported by the fact that it can also
be used to give a reduced description of the scalar flux as shown in appendix A. The
main properties of the subgrid viscosity tensor are here described.

Let us point out first that the proposed subgrid viscosity (2.26) is actually strictly
related to the derived generalization of the subgrid viscosity of the gradient model
(2.15). Indeed, by recalling the relation (2.22)

[T (Ui, w) + 7 (i, u)1/2 = v (Ui, wy) + [Tz, vp) + T (U3 17)1/2, (5.1)

where
1
T(u;, uj) = 5 //G(x, §)G(x, m[u;(§) — u;(m)1[uw;(§) — u;()] d& dn, (5.2)
1
T (U, uj) = 2 //G(x, §)G(x, m)[u;(§) — u;(m)1[u;(§) — u; ()] d& dn, (5.3)

1
T, vy) =3 //G(x, §)G(x, pu;(§) — w;(m]1[v;(§) — vi(n)] d§ dn, (5.4)
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-1.0 —0.5 0 0.5
y

FIGURE 6. Mean wall-normal profiles of v5; which is the only non-zero mean component
of the subgrid viscosity tensor (2.26). All three sets of filter lengths are shown: F1 (solid
line), F2 (dashed line) and F3 (dotted line).

and considering again the approximation for the filtered velocity increment (2.13), we
can write

[T, wj) + T (u;, up)] /2~ —ijakl_li — VOl (5.5
(i, i) =~ —v(g)aku, - sz Bku], (5.6)
[T, vy) + T (r, #)1/2 2 —v " it — v Oy, (5.7)

where the corresponding subgrid viscosities are given by

1
=7 / / Gx, )G, W& — nellii(€) — ()] d& d, (5.8)
1
W == i / / Gx, )G, 1)(E — 1) (& — m) dE d, (59)
v = / / Gx, §)G(x, n)[& — nl[vi(€) — vi(n)] d& dy. (5.10)

By recalling now relation (5.1), we can write
v = v 4 plems), (5.11)

thus highlighting that the present subgrid viscosity approach is composed of two
contributions. The first one is given by the subgrid viscosity of the generalized
gradient model v(g) and, hence, is related to the stresses at large scales 7 (u;, u;). The
second one, v(cm“), is due to the cross stresses t(it;, v;) + T(v;, i4)).

Let us remark that (5.5) and (5.7) further support the idea that the subgrid viscosity
tensor based on velocity increments is a natural approximation of the momentum
flux arising from interactions between ranges of scales of different size. Indeed,
equations (5.8) and (5.10) highlight that the same subgrid viscosity formalism allows
us to represent the interactions between different types of velocity scales once the
corresponding velocity increments are used, i.e. u;(§) — u;(n) for the stresses 7 (u;, u;)
and v;(§) — vi(n) for the stresses T (u;, v)).
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FIGURE 7. Wall-normal profiles of the standard deviation of vif . The j-index goes from 1
to 3 moving from the panels on the left-hand side to the right-hand side while the i-index
goes from 1 to 3 moving from the top to the bottom panels. All three sets of filter lengths

are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

Let us now analyse the complex features unveiled by the subgrid viscosity tensor
(2.26) in the turbulent channel flow. It is first worth pointing out that in homogeneous
isotropic turbulence all the mean components of the subgrid viscosity tensor (2.26)
are null, (v;) =0, where (-) denotes spatial average in the homogeneous directions
and temporal average. Whereas, in inhomogeneous flows we have non-zero average
components. In the case of a channel flow, the only non-zero average component is
V1. This is one of the vy-components that are used in conjunction with wall-normal
gradients of the velocity field for the reconstruction of the subgrid stresses (equation
(2.25)). As shown in figure 6, the mean value of the subgrid viscosity peaks in the
near-wall region and, as expected, is found to increase its magnitude by increasing the
filter length. An antisymmetric behaviour with respect to the centreline of the channel
is also observed.

The variance of the subgrid viscosity components is shown in figure 7 for different
filter lengths. The overall behaviour consists of wall-normal profiles which start
from zero at the wall, reach a maximum in the near-wall region and then decrease
exhibiting a relative minimum in the channel centre. The effect of the filter length
is to increase the intensity of the fluctuations of the subgrid viscosity for all its
components. The anisotropy of the subgrid viscosity tensor is such that the most
intense fluctuations are those of the vj;-components, i.e. those that are used in
conjunction with the streamwise gradient of the velocity field to reconstruct the
subgrid stress tensor (see equation (2.25)). The anisotropy of the subgrid viscosity
tensor reveals itself also in the shape of the wall-normal profiles. Indeed, from figure 7
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FIGURE 8. Wall-normal profiles of the third-order moment of v;. The j-index goes from 1
to 3 moving from the panels on the left-hand side to the right-hand side while the i-index
goes from 1 to 3 moving from the top to the bottom panels. All three sets of filter lengths
are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

it can be seen that the profiles of the v,-components show a less sharp behaviour
with maxima located slightly further away from the wall with respect to the v;- and
V3;-components.

In figures 8 and 9, the third-order (skewness) and fourth-order (kurtosis) moments
of the subgrid viscosity tensor (2.26), respectively

3 4
(/ZU 3)/2 and ( 2 >2 ’
(vi) (vi)

(5.12a,b)

are shown. As shown in figure 8, the behaviour of the subgrid viscosity is significantly
skewed. However, different behaviours are observed for the different components.
In particular, the diagonal components, v; with i = j, exhibit a positively skewed
symmetric behaviour with respect the channel centre, while the deviatoric components
vi» and vy, are antisymmetric. The other deviatoric components, v3, Vo3, V3 and vs,
recover the normal distribution, their skewness being statistically zero. Interestingly,
the effect of filtering is to reduce the non-Gaussian nature of the subgrid viscosity
in accordance with the behaviour of the subgrid stresses observed in the previous
section. Indeed, we observe that, by increasing the filter length from case F1 to case
F3, the value of skewness significantly reduces. The behaviour of the kurtosis of the
subgrid viscosity is shown in figure 9. In this case a highly non-Gaussian behaviour
is observed for all the components of the subgrid viscosity since the wall-normal
profiles of kurtosis are always larger than 3. A general behaviour is observed for all
the components which consists of an increasing of intermittency from the wall up
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FIGURE 9. Wall-normal profiles of the fourth-order moment of v;. The j-index goes from
1 to 3 moving from the panels on the left-hand side to the right-hand side while the
i-index goes from 1 to 3 moving from the top to the bottom panels. All three sets of
filter lengths are shown: F1 (solid line), F2 (dashed line) and F3 (dotted line).

to the channel centre. As for the skewness, the effect of filtering is to reduce the
intermittency of the subgrid viscosity.

Instantaneously, both positive and negative values of v; are present since (-) =0 for
most of the components. This double feature shows a distinct topological behaviour
that can be highlighted with the spatial correlation function

(v (X', y, D", y, 27))

(Vi) )

Rij(ry, 1 y) = , (5.13)

where r; =x, —x!, with i =1 and i =3, is the increment of the coordinates in the
homogeneous directions. Accordingly with the gross features of turbulent fluctuations
in channel flows, the subgrid viscosity v; realizes a general flow pattern consisting
of structures elongated in the streamwise direction. Indeed, as shown in figure 10,
the spatial correlation function evaluated for a selected component of the subgrid
viscosity tensor in the near-wall production region highlights a relatively short
correlation length in the spanwise direction and a larger one in the streamwise
direction. This topological feature is retained by all the components (not shown).
Interestingly, the correlation function shows also a clear anticorrelation in both the
streamwise and spanwise directions, thus highlighting that regions of positive/negative
values of subgrid viscosity are statistically surrounded by regions of negative/positive
values. It is worth pointing out that the approximation of the subgrid stresses given
by the subgrid viscosity tensor formalism is such that negative values of v; are
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FIGURE 10. Spatial correlation coefficient R, evaluated in the near-wall production region
at yt ~21 and shown as a function of the streamwise (left) and spanwise (right) increment.
All three sets of filter lengths are shown: F1 (solid line), F2 (dashed line) and F3
(dotted line).

not strictly related to phenomena of backscatter as it is for scalar subgrid viscosity
approximations. Indeed, the subgrid dissipation under the subgrid viscosity tensor
approximation reads

€5gs = — (Vi Oklt; + Vi Okity)' 9jids), (5.14)

so that backscatter can be reproduced but not necessarily with a change of sign of v;.

In closing this section, let us point out that the formalism of the subgrid viscosity
tensor introduced with (2.26) allows us to highlight the complexity of the small-scale
motion in inhomogeneous anisotropic flows. Indeed, as shown here in quantitative
terms, the subgrid viscosity tensor exhibits a strong inhomogeneous and anisotropic
behaviour in terms of intensity, distribution, skewness and intermittency of its different
components. Hence, it is argued how much of this complex behaviour is not taken into
account by classical subgrid viscosity approaches based on more simple and restricted
formalisms.

6. Modelling approach

In this section, we show how the developed theoretical framework for the study
of turbulence and, in particular, the reduced description of momentum flux given
by the tensorial viscosity based on the velocity increments can be used to derive
turbulence closures in a context of LES. Let us point out that the proposed modelling
approaches for the subgrid viscosity can also be used for the modelling of the subgrid
flux associated with a scalar field as shown in appendix A. The derivation and the
main theoretical properties of the developed subgrid closures will be discussed in
detail.

6.1. First-order modelling
Let us consider a top-hat filter, defined by the kernel

1/£2 inside the grid element

Gx, &) = {O otherwise, o0


https://doi.org/10.1017/jfm.2019.124

https://doi.org/10.1017/jfm.2019.124 Published online by Cambridge University Press

882 A. Cimarelli, A. Abba and M. Germano

where £2 is the volume of the grid element. In this case, approximation (2.26) can be
rewritten as

1
=g /Q /Q (& — 10l (&) — ()] dE iy, 62)

We now approximate the unfiltered velocity by means of an expansion of the velocity
field u;(§) around the filtered value u;(x),

wi(§) = ;(x) + 0,4 (x) (&, — x;) + O, (6.3)

where x is the position of the barycentre of the grid element and only the first-order
derivatives are considered. By applying this approximation we have

Vi = —m / /(fk — 0 [0ntt; () (&) — x1) — Op1t; (x) (), — x,)]1 dE dy

492 / /[(gk — X)) — (e — %) 1[0514; () (& — x3) — 0pt; () (17 — x)] A& dg

= _mahﬁi(x) / /[(gk —x) — O — x)1[(En — x1) — (i — x4)]1 dE dp
2 JR
1
= i) { | [ -so@-magan+ [ [o—xom—xdgan
2 JR2 2 JR

- / /(Sk — Xi) (1w — x;,) d§ dnp — / /(nk — Xi) (§n — xp) d€ dﬂ} (6.4)
2Je 2Je

/ /(nk — Xi) (§n — x) dE dyp = /(nk — %) /(Sh —x,)dédp =0 (6.5)
2Je 2 Q2

and, hence, the turbulent viscosity tensor takes the following form:

but

b = —@ahu @) / & — x0) (& — x1) dE. 6.6)

The proposed model (6.6) for the turbulent viscosity exploits the idea of taking
into account the distribution of velocity in the three spatial directions within the
integration volume for filtering as suggested by the tensorial approximation (2.26).
The way this idea is realized is based simply on the concept that the structure of
the integration volume used to filter out the small subgrid field directly impacts the
anisotropic features of the subgrid field itself and, hence, can be used to improve the
prediction of the small-scale velocity field distribution given by the filtered gradient.
The structure of the integration volume (grid element in the case of implicit filters) is
taken into account in the present model formulation by the integral in (6.6). Indeed,
for k # h the integral in (6.6) is equal to the inertial product of the grid element with
respect to the barycentric axis in the directions k and h, respectively:

L =— /(Sk — x) (& — xp) d&, (6.7)
2
while for k= h it becomes

T — fTr(I) / (& — x)* dE, (6.8)
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where 7 is the inertial momentum with respect to the barycentric axis in the k
direction, Zy;, are the inertial products and Z is the barycentric inertial tensor. Hence,
after having defined

Ty =T — %TF(I)Skh, (6.9)
we get

|
Vii = Ezkhah”i’ (6.10)

thus highlighting that the anisotropy of the integration volume is directly taken into
account in the present tensorial formulation of the turbulent viscosity. In conclusion,
we can rewrite the subgrid stress tensor as

[P _ 1, - _
T(l/li, M]) = — <2QIkh8huj> 8ku,- — (mzkhahu,-> Bkuj. (611)

We can observe that this formulation allows us to model also the normal subgrid stress
components

1
T(u;, u;) = — <Ql_lihahﬁi> Okl (6.12)

and so the subgrid turbulent kinetic energy. Since 7’ is a semidefinite negative matrix,
the reliability condition 7(u;, u;) > 0 is also ensured.

6.2. Second-order modelling

In the previous section, only the first-order derivatives are considered in the expansion
and higher orders are neglected. In LES, where the unfiltered fields rapidly fluctuate,
this approximation could introduce a considerable error (Clark et al. 1979; Vreman,
Guerts & Kuerten 1997). Hence, in the following a model with higher order
approximation is derived. If second-order derivatives are retained in the expansion of
the velocity field u;(§) around the filtered value u;(x),

ui(§) = u;(x) + 9yu; (x) (& — x5) + %ahlﬁi(x)(éh —x) (& —x) + O, (6.13)
additional terms appear in the model for the subgrid viscosity with respect to (6.10):
Vi = Tzéhahﬁi(x)
T / J&=m; L OO — 54) & — 1) — (1 — 30 01y — x)1dE dy

= 2—I,Lh8hﬁ,-(x)

402°
x d& dy

- 73h1u,(x) / / [ —x) (& — xi) (& — x1) + (e — x1) (M — x0) (71 — x1)]

1,
== Ezkhahui(x)

1
- Eah/;‘i(x) /Q(gk —xi) (€ — xp) (6 — x;) d§. (6.14)
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We can now define the third-order momentum tensor
My = /(gk — x1) (& — xp) (&5 — x;) d§, (6.15)
19

and we get

1 1 )
Vi = Ezkhahui(x) - EMkhlahlui(x)- (6.16)

In conclusion, the subgrid stress tensor can be approximated as

| | N\ .
‘L’(l/li, l/lj) = — (mIkhahuj - kahlahluj> 8kui
| | N\ .

— <mIkh8hui - m/\/lkhlah,u,-) 8kuj. (617)

6.3. Basic properties in regular Cartesian grids

As pointed out in previous paragraphs, the proposed first- and second-order
approximation of the subgrid viscosity tensor is based on the filtered velocity
derivatives and on inertial properties of the grid elements. The basic idea is that
the structure of the mesh impacts the anisotropic features of the unresolved motion
and, hence, could be leveraged to improve the prediction of the main unknown
features of small-scale turbulence given by the filtered velocity gradient. This
aspect is particularly relevant in real-world problems where the complexity of the
unstructured meshes usually adopted strongly affects the complexity of the unresolved
flow dynamics. In the case of canonical flows where structured grids are commonly
employed, the above mentioned peculiar features of the proposed modelling approach
are partially missed. Indeed, it can be shown that in barycentric structured Cartesian
grids, the first-order and second-order approximations of the subgrid viscosity tensor
become identical. In fact, in these conditions we have that

Mu=0 Vk, hl (6.18)

and, hence, equation (6.16) reduces to (6.10). In addition, it can be shown that
the present approximation for the subgrid viscosity (6.10) together with the subgrid
viscosity associated with the generalized gradient model (2.15) exactly reduce to the
viscosity of the classical gradient model (2.18). Indeed, when barycentric structured
Cartesian grids are employed, we have also that

Ly, s
—=——A; fork=h (6.19)
$2 12
and )
Luy _
o =0 for k#h (6.20)

so that the subgrid viscosities of the present approximation (6.10) and of the
generalized gradient model (2.15) recover that of the classical gradient model, i.e.

v = v = — L ALdyit;. (6.21)
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6.4. Characteristic lengths for the subgrid stresses

Accordingly with the previous sections, the present modelling approach can be
understood as a refinement of the gradient model for the solution of complex flows.
An additional outcome of the present approach is given by the fact that it provides
a rigorous definition of the characteristic length for the subgrid stresses which
overcomes the rather elusive definition of filter length (Horiuti 1993; Carati & Cabot
1996; Abba, Bonaventura, Nini & Restelli 2015). Here, we try to assess this problem.
Inhomogeneous, anisotropic and irregular grids are usually employed for the
simulation of real-world problems in order to better capture the main features of
the large anisotropic scales and to adapt to the complex geometry of the application
considered. In these conditions, the determination of the characteristic length that must
be used to compute the subgrid stresses is still an open question. As an example,
classical scalar subgrid viscosity models are based on a scalar filter length A. In
Cartesian anisotropic grids, the common practice is to use A = (A,A,4,)'?, where
A, is the width of the grid element or of the explicit filter adopted in the three spatial
directions. However, when unstructured grids are considered, it is difficult to define
such characteristic lengths and the common practice is to consider the filter length of
the model as given by the cubic root of the element volume, A = £2'/* (Knight, Zhou
& Okongo 1998; Farhat, Rajasekharan & Koobus 2006), or by twice the smallest
edge of the computational element (John & Kindl 2010). In a different approach
Colosqui & Oberai (2008) derived an expression for the Smagorinsky length scale by
an energetic balance and applying the Kolmogorov hypothesis of isotropy of the small
turbulent scales. Differently, Piomelli, Rohui & Geurts (2015) and Rouhi, Piomelli &
Geurts (2016) determine the effective filter size as a function of a properly defined
integral length scale. On the other hand, anisotropic filter lengths have been used
in conjunction with anisotropic subgrid-scale models (Bardina, Ferziger & Reynolds
1980, 1983a; Abba, Campaniello & Nini 2017). See Trias et al. (2017) and references
therein for a review of different length scales accounting for the anisotropy of the flow.
Although successfully employed, these anisotropic filter sizes have been defined in a
rather heuristic way. In this context, the alternative modelling approach for the subgrid
viscosity, equation (6.10), together with the generalized gradient modelling, equation
(2.15), suggest a rigorous definition for the characteristic lengths which properly
works also when considering irregular grids. These tensorial subgrid lengths read

1
(4= / (& — x) (& — x0) dE, 622)
2

1

(A= 202 /Q/Q(Sh — 1) (& — mi) & dn, (6.23)

respectively, and can be used in every type of computational grid. For obvious reasons
these definitions of subgrid lengths can be used only in conjunction with anisotropic
subgrid-scale models. However, a scalar subgrid length scale that can be used also
in isotropic subgrid-scale models can be derived by means of a contraction of the
tensorial definitions (6.22) and (6.23). As an example, by considering the norm and
trace we can derive the following alternative definitions of filter length:

1
A= (A = ‘_Q / (& — x1) (& — xp) dE |, (6.24)
2

1
A2 =Tr{(Ap) = o) /(éh — xp) (6 — xp) d&, (6.25)
2
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= (AP =

5 _Qz / / (& — 1) (& — n0) dE | | (6.26)

= Trl(A)) = 553 / / (& — m) (& — o) dE d, (6.27)

which can again be used for every type of computational grid in conjunction with
isotropic subgrid-scale models. Accordingly with the properties shown in § 6.3, when
a Cartesian grid is considered, the two definitions of subgrid lengths given by the
present and the generalized gradient modelling approach collapse as

(&
(A)° = (A = 5 A% (6.28)

In this case, the contraction of the tensorial approach leads to two scalar subgrid

lengths:
A2 = (AP = 1(AF) | = 54/ A%+ A4 + A%, (6.29)

A* =Tr{(A)7) = Tr{(AF)} = 5(AT+ A2 + A2). (6.30)

7. Large eddy simulations

Accordingly with the basic properties shown in § 6.3, the subgrid closures (6.11)
and (6.17) recover the classical gradient model for the case of turbulent flows
solved with regular Cartesian grids. The gradient model approximation has been
deeply investigated in the past and has been recognized to provide several important
advantages such as a good correlation with the actual subgrid-scale stresses and the
ability to reproduce phenomena of reverse energy transfer from small to large scales;
see e.g Vreman et al. (1997). However, it is well known that this modelling approach
suffers from one important limitation consisting of a low-dissipative behaviour
of small-scale turbulence which leads to unstable numerical simulations. Several
approaches have been then introduced to overcome this issue. Famous examples are
the Clark mixed model (Clark et al. 1979) and its dynamic version (Vreman, Guerts
& Kuerten 1996) where a linear combination of the gradient model with a subgrid
viscosity model is used. More recently, the subgrid kinetic energy evaluated by means
of a one-equation model has been used to modulate the intensity of gradient model in
conjunction with clipping procedures (Lu & Porté-Agel 2010) while a decomposition
of the filtered velocity gradient has been used to regularize the gradient model by
keeping only the terms leading to a direct energy transfer from large to small scales
(Vollant, Balarac & Corre 2016).

Accordingly with the above observations, we expect that the model formulations
here proposed, equations (6.11) and (6.17), suffer from an underestimation of the
subgrid dissipation thus leading to numerical stability issues. Given the peculiarity of
the turbulence closure here proposed especially in the case of complex geometries
solved by means of unstructured numerical grids, we propose here an alternative
tensorial modulation technique based on a dynamic procedure (§7.1). We then test
the ability of such a formulation to overcome the numerical stability issue in the
classical settings of a turbulent channel (§7.2). The detailed analysis of the model
properties is left to a separate contribution where the proposed closures will be tested
in more complex turbulent flows where the use of non-Cartesian grids is demanded,
thus allowing an appreciation of how the present formulation performs with respect
to the classical gradient model.
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7.1. Tensorial dynamic procedure

The theoretical framework developed in the present work recognizes the tensorial
viscosity formalism based on velocity increments as the natural reduced description
for the small scales of turbulence. In a context of turbulence closures, this result
directly leads to the formulation of a tensorial viscosity based on filtered velocity
gradients and on the inertial properties of the volume of integration used to define
the small subgrid scales. In order to take into account the prominent role of the
above aspects, we develop here a modulation technique for the proposed turbulence
closures which further exploits the idea of taking into account the anisotropic features
of turbulence by making use of a further tensorial approach. In other words, we
consider the proposed turbulence closures as modulated by a tensorial rather than
scalar coefficient, i.e.

T (Ui, uj) = —C;j (Vi Okl + Vi Oxlty) (7.1)
with |
Vi = Ezlihahﬁia (7.2)

at the first-order approximation, and

1 _ 1 _
Vii = EI/Lhahui(x) - EMkhlahlui(x), (7.3)

at the second order. No summation is implied for index i and j in (7.1). For the
evaluation of the tensorial coeffient we make use of a tensorial dynamic procedure
based on a test filter denoted as (). The Germano identity (Germano 1992) reads

£ij = Tij — f,'j = uju; — Ii,‘l:/ij, (74)

where

Tij = Uiy — Ijl,‘ljtj T,‘j = ujj — ﬁiuj. (75a,b)

By assuming that the tensorial coefficient ¢; is an invariant of scale, we can write (no
summation is again implied for index i and j)

Lij = cij[ (vijOxit; + v Oxit;) — (f)kjakfti + lj‘1<iakl:4j)] =c; Ny, (7.6)
where {
1:‘ i = ﬁi, all?l,', 7.7
ki 0 ich VF ( )
at the first-order approximation, and
Bt = Ty B4 ) — —= Mgy () (7.8)
Vi = —= u;(x) — = ni(X), .
e 5 «hOh 10 khi Onl

at the second order. In (7.7) and (7.8), 2,7 and M represent the volume and
inertial properties of the volume of integration corresponding to the double operation
of filtering. Let us remark that (7.6) can in principle be used for the evaluation of
the tensorial coefficient as

ey = (7.9)
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where no contraction is implied. However, the different components of the tensor ]\/ij
can become zero, which would make c; indeterminate or ill-conditioned. In this sense,
the use of an ensemble average does not help because in general also the mean of
the different components of N could be zero. Hence, to overcome this issue we
multiply and divide (7.9) by N; and we consider also the ensemble average both at
the numerator and denominator, so that the final equation for the evaluation of the
tensorial coefficient is
(LyNy)

Cij = m (7.10)

where no summation is again implied for index i and j.

7.2. Numerical stability and preliminary results in a turbulent channel

To test the reliability of the proposed turbulence closures and of the developed
tensorial dynamic procedure, we performed LESs in the classical settings of a plane
turbulent channel flow. The governing equations are solved by means of the same
numerical techniques used for the production of the DNS data set and described
in §3. The nominal friction Reynolds number is Re, = 550. The width of the
numerical domain is (D,, D,, D,) = (8nh, 2h, 4mh). Two simulations with two
different resolutions are considered. The number of Fourier modes and Chebyshev
polynomials used in the horizontal and vertical directions for the two simulations
are (N,, N,, N;) = (256, 193, 256) and (N,, N,, N;) = (128, 129, 128), which leads
to a resolution in friction units (A}, A;r””'”, A" AF) = (54, 0.07, 9, 27) and
(Af, A;’”"”, A;r’"“x, AF) = (108, 0.16, 13.5, 54), for the high- and low-resolution
cases, respectively. The sharp Fourier cutoff is used as test filter in the homogeneous
directions. No test filtering is performed in the wall-normal direction. The adopted
ratio between test filter width and grid filter width is 2.

In order to verify the numerical stability, after reaching a statistical steady state, the
simulations have been performed for about N = 1500 large-eddy turnover times 7 =
h/U., where U, is the average velocity at the centreline. No instabilities are observed,
thus showing the ability of the tensorial dynamic procedure developed in §7.1 to
stabilize the otherwise unstable turbulence closures. It is worth noting that numerical
simulations with no model have been also performed and found to be numerically
unstable, thus supporting the effectiveness of the modelling approach here proposed.

The statistical steady-state regime of the two simulations is shown in figure 11,
where the behaviour of the mean velocity and of the turbulent intensities is shown and
compared with DNS data. Reasonable results are observed in terms of both mean and
variance. In particular, the mean velocity profile is found to be slightly underestimated
by both the simulations. On the other hand, the variance of the turbulent velocity
components is found to be nicely reproduced especially by the well-resolved LES.
Indeed, a slight near-wall overprediction and bulk underestimation of the turbulent
intensity values are observed for the coarse LES which are however compatible with
the levels of resolution adopted. In conclusion, the tensorial dynamic procedure here
introduced is found to stabilize the gradient model approximation and to give reliable
results in a turbulent channel and, hence, can be considered as an alternative technique
to the mixed, modulated and regularized approaches (Clark et al. 1979; Lu & Porté-
Agel 2010; Vollant et al. 2016) for the solution of turbulent flows with the gradient
model approximation.
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FIGURE 11. Large eddy simulations of turbulent channel flows. Mean velocity (left) and
turbulent intensity (right) profiles as a function of the wall distance. The LES data (dashed

lines) are compared with DNS data (solid lines) described in § 3. The main plots report
the behaviours of the well-resolved LES while the insets of the coarse LES.

8. Final remarks

Turbulence is widely recognized to be a multilevel and multiscale phenomenon. The
nonlinearity of the physical phenomena underlying turbulence gives rise to complex
interactions and exchanges of momentum and energy among the different levels
and scales composing it. The study of these interactions is then recognized to be
fundamental for both theory and modelling. In this context, most of the approaches
to turbulence are based on a decomposition of the turbulent field in different
contributions. Classical examples of the multilevel and multiscale decomposition of
turbulence are the Reynolds and spectral decompositions, respectively. An additional
decomposition is based on hierarchies of filter lengths and is given by the large eddy
decomposition, thus providing an additional framework for the study of the multiscale
feature of turbulence. For a given filter length, turbulence is decomposed in large and
small scales, the so-called resolved and subgrid motion. The two ranges of scales
interact among themselves and exchange momentum and energy, thus giving rise to
a coupling nonlinear term in the equations, the so-called subgrid stress tensor. By
varying the filter lengths, the subgrid stresses become generalized central moments of
the second order (Germano 2012) that can be used to study and model the different
parts composing turbulence at different levels. In the present work we address these
aspects by proposing a general theoretical framework for a reduced description of the
interscale momentum flux and energy exchange given by the subgrid stresses and for
their modelling.

The subgrid stresses are classically decomposed into three main contributions
representing nonlinear interactions occurring in the large scales, in between large and
small scales and finally in the small-scale field,

(i, u) =T, w) + [t (w;, v) + t(v;, u)l + (v, vy), (8.1
respectively. Here, we propose an alternative decomposition where two main
contributions appear representing interactions of the total velocity field with the

large and small scales composing it,

T (i, w) = [T (w;, wy) + ©(wy, u)1/2 + [t (v, wy) + (W, v;)1/2, (8.2)


https://doi.org/10.1017/jfm.2019.124

https://doi.org/10.1017/jfm.2019.124 Published online by Cambridge University Press

890 A. Cimarelli, A. Abba and M. Germano

respectively. Starting from an exact equation connecting the subgrid stresses with the
spatial velocity increments between two points (Germano 2007),

1
T, u) =3 //G(x, E)G e, m[ui(§) — u;(m))[u; () — u;(n)] d§ dn, (8.3)

we develop a general formalism for the study of the different contributions to the
subgrid momentum flux:

1

o 1) = 5 / / Gx, )G, Mliin(®) — M iyE) — ] dedn,  (8.4)
1

)= / / G, £)G (e, M) — v — ] dEdn, (85
1

rw ) =3 / / Glx, £)G(x, DIiE) — v IwE) — un]dEdn,  (8.6)
1

) = 5 / / Gx, 6)GG, Wi (®) — i uy®) — wldedn,  8.7)

1
T(ui ) =7 //G(x, §)G(x, m[vi(§) — vi(m]1[u;(§) — u; ()] d€ d. (8.8)

In the proposed framework, the spatial velocity increment is a central object. By
analysing DNS data of a turbulent channel, a rich physics underlying the different
contributions to the subgrid stresses is unveiled. We find that the subgrid stresses
are dominated by contributions given by the nonlinear phenomena involving the
large-scale motion and its interactions with the small-scale field, i.e. the terms

T(u, wy) [T, vp) + (o, w)] [Ty, w) + 7w, uy)]. (8.9

Indeed, such terms are those found to contribute mostly to the momentum flux and
energy transfer exploited by the subgrid stresses. This is particularly true for not
very large filter lengths and away from the wall regions. Interestingly, all the terms
contributing to the subgrid stresses show a significant non-Gaussian behaviour in
terms of both skewness and kurtosis which is partially reduced by increasing the
filter length. By assuming that the filtered velocity increment can be expanded as

u;(&) — u;(n) ~ (& — i) it (8.10)

we find that a reduced description for the dominant contributions to the subgrid
stresses, terms (8.9), is given by

T (ity, i) & —v dyit; — v, Qi (8.11)
[ (i, v) + T (v, 1)1/2 ~ =™ ity — v iy, (8.12)
[T (@i, uy) + T (i, u)1/2 = —viOkll; — Vi Okl (8.13)

where the associated turbulent viscosities are tensors given by

1
W =~ i / / Gx, )G, 1)(E — 1) (& — ma) dE d, (8.14)
. 1
=~ / / Glx, )G MIE — ndlvi®) — vin]dEdn,  (8.15)


https://doi.org/10.1017/jfm.2019.124

https://doi.org/10.1017/jfm.2019.124 Published online by Cambridge University Press

On the interscale momentum and energy flux and its modelling 891
1
Vi == //G(x, &)Gx, m& — midlui(§) — ui(n)] d§ dn. (8.16)

These three viscosities are strictly related each other by

o = 1+ 1, .17
thus highlighting that the most significant term of the new decomposition, [t (u;, u;) +
T(u;, u;)]/2, together with its reduced description given by the turbulent viscosity
tensor, vy, takes into account the two most significant terms of the old decomposition.
The above equations also highlight that every decomposition of the subgrid stresses
involving interactions between large and small scales is naturally approximated
by a turbulent viscosity tensor formalism based on the velocity increments which
is then recognized to be a peculiar property of small-scale stresses in turbulence.
Accordingly, we use DNS data of a turbulent channel flow to analyse the complex
physics unveiled by the tensorial viscosity approach. The observed behaviour of the
different components of the subgrid viscosity tensor, in terms of intensity, distribution,
skewness and kurtosis, highlights complex anisotropic and inhomogeneous features
that are actually missed in more classical scalar turbulent viscosity approaches based
on the Kolmogorov hypothesis of isotropy of the small scales of turbulence. Hence,
the introduced turbulent viscosity formalism appears as a valid alternative candidate
for the development of theories on the interscale momentum and energy transfer in
turbulence.

To further support the potentiality of the developed theoretical framework, we also
show how the turbulent viscosity tensor formalism based on the velocity increments
can be used to derive alternative turbulence closures in a context of LES. The
procedure leads to an anisotropic turbulent viscosity model that reads

T(Mi, Mj) = —ijakljti — vk,-akﬁj, (818)

with |
Vi = EI,Lhahﬁi, (8.19)

at the first-order approximation, and
1 _, . _ 1 _
Vii = Ezkhahui(x) - EMkhlahlui(x)a (8.20)

at the second order. The models are based on the filtered velocity derivatives and
on the second- and third-order inertial properties of the grid elements. The basic
idea is that the structure of the computational element can be used to model the
unknown distribution of the subgrid velocity field within it. Indeed, not only the size
but also the anisotropic feature of the unresolved motion significantly depends on the
geometrical properties of the computational volume. This is simply due to the fact
that the integration volume together with the filter kernel in the case of explicit filters
is responsible for the definition of the subgrid field itself by splitting the velocity field
into large and small scales. Hence, the prediction of the subgrid velocity distribution
within the computational volume given by the filtered velocity derivatives, d,u; and
dnit;, can be improved by using the known geometrical properties of the computational
volume. These aspects are particularly relevant when the geometrical features of the
computational mesh conform with the peculiar features of the problem, i.e. when the
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inhomogeneous distribution of resolution is able to take into account flow regions
characterized by relatively small scales (e.g. near-wall turbulence) and when the
anisotropy of the computational elements is able to conform with the anisotropies
of the flow (e.g. such as the anisotropy induced by the presence of a predominant
flow direction imposed by the geometry of the problem). This kind of information
is carried by the computational grid and can be grasped by the proposed modelling
approach.

An interesting result of the model formulation is that it allows one to model the
normal subgrid stresses and, hence, to give a measure of the subgrid kinetic energy.
An additional outcome of the proposed model is given by the fact that it provides a
rigorous definition of characteristic lengths for the subgrid stresses,

1
mﬁzg/@—m@—m@, (821)
2

which can be computed in every type of computational elements, thus overcoming the
rather elusive definition of filter length commonly employed in more classical subgrid
models. By means of a contraction of the tensorial formulation, it is finally pointed out
that the above definition can be used also to compute a scalar subgrid scale to be used
in isotropic subgrid-scale models when applied to complex unstructured computational
grids.

In barycentric structured Cartesian grids, the present approximation of the subgrid
viscosity reduces to the viscosity of the gradient model. This modelling approach is
widely recognized to have a good correlation with the actual subgrid stresses but also
to suffer from numerical stability issues. To solve this problem, several approaches
have been introduced in the literature and found to properly work. Here, in order
to emphasize the anisotropic character of the proposed closures, we developed an
alternative modulation technique based on a tensorial dynamic procedure for the
evolution of the model constants. The generality of the procedure is such that it
can be employed also in other types of models. Preliminary analysis in a turbulent
channel shows promising results, thus forming the basis for future assessments of the
model performances in more complex flow where non-Cartesian grids are demanded
and the present closures differ from the gradient model approximation.

Appendix A. On the subgrid flux associated with the scalar 6
Let us consider the subgrid flux associated with the scalar field 9,

(0, u;) = Ou; — O, (A1)

where the overbar stands for a generic filter operator that can be represented as

é=/G@@W@N§ (A2)

with
/G(x, §de=1. (A3)
Let us now express both the scalar and velocity fields as the sum of two terms

9=9_+19 I/lj=ljtj+Uj, (A4a,b)
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where ¥ and v are the fluctuations associated with the averaging operator G. If we
apply the Galilean invariant decomposition of the subgrid flux (Germano 1986), we

can write B
T(@,Mj)=f(0,uj)+f(l9, Mj), (AS)

where

70, ) =0u; = 03 (A6)

T(l?, l/tj) = 1914]' — 1912]
and we remark that this decomposition is Galilean invariant, due to the fact that it
is composed of Galilean invariant terms. A further decomposition of the subgrid flux
leads to

(0, u) =10, i) + 70, v) + 1, ) + TV, V). (A7)

We remark that the total subgrid flux and its decompositions are equivalently given
by a double convolution integral of the scalar and velocity increments between two
points (Germano 2007). For the first term on the right-hand side of (A S) and (A7),
this relation reads

_ 1 _ _
ﬂ&wﬁ=2//G@£XKnwW@)—QWHM@)—me%dm (A8)

_ 1 _ _
r@ﬁﬂ=2//QLDGGWMMB—MmWMQ—%WH@dm (A9)

which clearly evidence the Galilean invariance of the different terms. The two
decompositions given by (A5) and (A7) suggest two possible approximations of the
total subgrid flux:

(0, u) ~ T(0, uy), (A 10)
(0, w) ~ T8, iiy), (A11)

respectively. We remark that the approximation of the subgrid flux decomposition
(A11) directly recovers the approach given by the scale similarity models, i.e.

(0, u) ~ (@, i) = O — 0, ;. (A12)

If we now further assume that the LES averaged values 6 and u; are sufficiently
smooth at the LES scale, we can consider the following expansion:

6(&) —0(n) ~ (& — )30, (A13)
(&) — u;(n) ~ (& — M) Oty (A14)

to show that approximation (A 11) reduces also the generalized form of gradient model
for the subgrid flux:

T(0, u) >0, i) ~ —v 80, (A 15)
where the associated subgrid viscosity is a tensor given by
v = =7 (e, X) Oy (A 16)
and |
T (g, Xp) = 3 //G(x, §)G(x, n) (& — no) (§n — ny) d§ d. (A17)
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When considering a Cartesian control volume and a top-hat filter, we have
T (X, Xp) = lljﬂi5kh, (A 18)

and the generalized gradient model approximation for the subgrid flux (A 15) recovers
the classical gradient model:

T(0, up) ~ (0, i) ~ (5 ALOk;) 6. (A 19)

Alternatively, by applying expansion (A 13) to the approximation given by the first
decomposition of the subgrid flux (A 10) we have

T(0, u) ~ (0, ) ~ —v;0,0, (A 20)
where the associated subgrid viscosity is again a tensor given by
Vg = —T (X, ;) (A21)
and |
ww) = [[ 66 6w WG -l ® —wonidgn. a22)

Equation (A?22) further supports the idea that a subgrid viscosity tensor based on
velocity increments is a natural approximation of multiscale phenomena of momentum
and scalar flux originating from interactions between scales of different sizes. By
following the reasoning reported in § 6, the reduced description given by the subgrid
viscosity tensor (A 22) can also be used to derive turbulence closures as

1
Vij = El'khahuj, (A 23)
L )

Vg = o khahuj_EMkhlahluj (A24)

for the first- and second-order approximations, respectively. In closing this appendix,
let us point out that the subgrid viscosity approximations given by the present and
gradient modelling approach, equations (A 23), (A24) and (A 16), respectively, only
depend on the velocity field u; and on the LES filtering operator G and they have no
relations to the scalar field 8. As such they are peculiar to the given turbulent velocity
field. Accordingly with the main outcomes of the work, the proposed models can be
understood as a refinement of the classical gradient approach to the modelling of the
subgrid flux in complex flows where unstructured irregular computational grids are
commonly used.
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