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ABSTRACT

We present a hierarchical Bayesian framework for modeling the acqui-

sition of verb argument constructions. It embodies a domain-general

approach to learning higher-level knowledge in the form of inductive

constraints (or overhypotheses), and has been used to explain other

aspects of language development such as the shape bias in learning object

names. Here, we demonstrate that the same model captures several

phenomena in the acquisition of verb constructions. Our model, like

adults in a series of artificial language learning experiments, makes

inferences about the distributional statistics of verbs on several levels

of abstraction simultaneously. It also produces the qualitative learning

patterns displayed by children over the time course of acquisition. These

results suggest that the patterns of generalization observed in both

children and adults could emerge from basic assumptions about the

nature of learning. They also provide an example of a broad class of

computational approaches that can resolve Baker’s Paradox.
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INTRODUCTION

Human learning operates on multiple levels, from the induction of infor-

mation idiosyncratic to particular items to the abstraction of general patterns

or rules. A classic example of this can be found in the acquisition and use

of verb argument constructions. In every language, different verbs take

arguments in distinct constructions; for instance, the verb load is associated

with two distinct locative constructions, as illustrated in the sentences

He loaded apples into the cart and He loaded the cart with apples. However,

not all verbs can occur in all constructions: *He poured the cart with

apples and *He filled apples into the cart, while perfectly understandable,

are nevertheless ungrammatical. Speakers also generalize their usage of

constructions beyond the set of verbs in which they have been encountered.

Gropen, Pinker, Hollander & Goldberg (1991) demonstrated that children

would spontaneously produce sentences such as He is mooping the cloth with

marbles when introduced to the novel verb mooping in the context of an

experimenter placing marbles into a sagging cloth. This ability to generalize

verbs to unattested constructions suggests that verb-general knowledge

about construction usage exists in tandem with knowledge about patterns

specific to individual lexical items.

Further empirical support for the idea that people are sensitive to

information on both the specific and the general level comes from the

literature on sentence processing. Verb-specific syntactic biases about

which structures are likely to follow individual verbs have strong effects on

real-time processing (e.g. Trueswell, Tanenhaus & Kello, 1993; Snedeker &

Trueswell, 2004). People are sensitive to verb-general effects as well : for

instance, they will sometimes interpret nouns occurring after a verb as a

direct object, even if that particular verb does not take direct objects

(Mitchell, 1987). This effect is more common if the verb is low in frequency.

The idea that learning occurs at both the item-specific level and at varying

levels of generalization is also in line with the approach taken by ‘usage-

based’ theories of language acquisition (Tomasello, 2003; Goldberg, 2006).

How is verb knowledge on multiple levels acquired? An experiment by

Wonnacott, Newport & Tanenhaus (2008) suggests that both levels can be

learned on the basis of distributional statistics about syntactic information

alone. Adults were presented with novel verbs and constructions in one

of two artificial languages. Those taught what Wonnacott et al. (2008)

termed the Generalist language saw eight verbs, all of which occurred in

both of two novel constructions. In the Lexicalist language, each of the

eight verbs occurred in only one construction. People were capable of

learning verb-specific information about the construction patterns of each

individual verb. They also acquired verb-general information, both about

the distribution of each construction across the language as a whole as

well as about the variability with which individual verbs matched that
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distribution. Speakers of the Lexicalist language assumed that a completely

novel verb could occur in only one construction, while speakers in the

Generalist language were happy to generalize it to both (with a bias toward

the overall most frequent construction). This suggests that not only are

people capable of learning some verb alternations on the basis of syntactic

information alone, but also that they make inferences about distributional

statistics on several levels of abstraction simultaneously. Similar results

have recently been found with five- and six-year-olds learning a language

(Wonnacott & Perfors, 2009) in which nouns co-occur with ‘particles ’ in

patterns analogous to the verb/construction co-occurrences in Wonnacott

et al. (2008).

These results pose a challenge to existing accounts of verb construction

learning. Most theories address the issue of learning verb-general knowledge

in terms of making abstract generalizations about verb classes or construction

types – corresponding, for instance, to the realization that the dative

alternation is associated with certain features and not others. The issue of

learning on a higher level of abstraction – making inferences about the sort

of feature variability one would expect across verbs or constructions in

language in general – has not been considered. The results of the experiment

by Wonnacott et al. (2008) suggest that listeners are highly sensitive to

distributional cues and can use them to make productive generalizations in

language. Yet we do not know exactly how useful this sort of learning would

be given more naturalistic data.

More generally, we do not yet have a precise, rigorous account of

how learners might be able to combine abstract inferences about feature

variability with verb-general insights on the level of construction types and

verb-specific acquisition on the level of individual lexical items. Can this be

done in a way that is consistent with decades’ worth of evidence about how

verb constructions are acquired by children?

In this paper we present a computational model that addresses this

problem, explaining the acquisition of verb constructions as a rational stat-

istical inference. We use a hierarchical Bayesian model that has previously

been applied to other aspects of cognitive development, such as acquiring

the shape bias in word learning (Kemp, Perfors & Tenenbaum, 2007). We

demonstrate that this model captures the results of the artificial language

learning experiments and also that, given naturalistic data, it accounts for

several other characteristic phenomena observed in the verb acquisition

literature. This work demonstrates how the patterns of overgeneralization

observed in both children’s speech and adult behavior might emerge from

basic, domain-general assumptions about the nature of learning. It also

suggests a possible resolution to Baker’s Paradox, and explains some of the

qualitative learning patterns displayed by children over the time course of

acquisition.
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Before presenting the particulars of the model, we will first situate it in

terms of important issues that emerge from the study of verb argument

constructions.

Baker’s Paradox and the puzzle of verb learning

Much of the current work on the acquisition of verb constructions can trace

its motivation to a more general learning problem – being able to rule out

unseen examples as ungrammatical, while still being able to productively

generalize. We can illustrate this with the phenomenon of construction

alternation, an example of which is shown in Table 1. Given that many

verbs in English occur in both the prepositional dative (PD) and direct

object dative (DOD) constructions, it may seem natural to conclude that all

verbs that occur in one are also grammatical in the other. Unfortunately,

this generalization, known as the dative alternation, does not always apply:

for instance, confess is grammatical in PD syntax (Jonathan confessed

the truth to Doug) but not in DOD (*Jonathan confessed Doug the truth).

Despite never having been explicitly taught that confess is ungrammatical

in the double object dative – and even though a near-synonym, tell, is

grammatical – fluent speakers of English appear to have no trouble avoiding

the incorrect form. This poses a learnability puzzle, sometimes referred to

as Baker’s Paradox (Baker, 1979; Pinker, 1989), which is a classic negative

evidence problem: How do children know that some unobserved pattern is

ungrammatical, rather than simply not yet heard?

Although there is some evidence that children receive some negative

evidence in the form of statistically different reactions to ill-formed utter-

ances (e.g. Chouinard & Clark, 2003), it is unclear how they might be able

to make use of this sort of evidence to resolve Baker’s Paradox; a Gold-style

ideal learner would not be able to converge onto the correct language

given statistical evidence of this sort (Gordon, 1990), and as yet we are

unaware of any formal, concrete proposals for what sort of learner could.

It is also evident that children do not solve the problem through a strategy

of conservatism, as suggested by the Subset Principle (Berwick, 1985), since

there is a vast quantity of evidence suggesting that human learners do

overgeneralize verb argument constructions (e.g. Pinker, 1989).

One possibility is that there might be POSITIVE evidence about which

verbs enter into an alternation, in the form of morphological, phonological

TABLE 1. Constructions in the dative alternation.

Construction name Abstract form Example

Prepositional dative (PD) NP1 V NP2 to NP3 Debbie gave a pretzel to Dean
Double object dative (DOD) NP1 V NP3 NP2 Debbie gave Dean a pretzel
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or semantic features that are correlated with the verb’s syntax (e.g. Pinker,

1989; Morgan & Demuth, 1996). This ‘bootstrapping’ hypothesis would

overcome the learnability problem by providing one or more features that the

child could use to distinguish between verbs that do and do not occur in a

given alternation (Mazurkewich & White, 1984; Pinker, 1984). In fact, there

is a strong correlation between verb meaning and the syntactic structures in

which verbs occur (Fisher, Gleitman & Gleitman, 1991). For example, while

both PO and DOD syntax are associated with the meaning of transfer, the

DOD form is specifically associated with the notion of transfer of possession.

Thus, verbs which clearly depict transfer of possession are more likely to

occur in the DOD construction than verbs which depict motion; children are

indeed sensitive to these cues when generalizing with novel verbs (Gropen,

Pinker, Hollander, Goldberg & Wilson, 1989; Ambridge, Pine, Rowland &

Young, 2008). However, such cues do not provide sufficient conditions for

verb usage: for example, it is not clear why kick but not carry occurs in DOD

syntax, when a kicking action is not inherently more likely to result in

transfer of possession than a carrying one. Although some researchers

have claimed that more fine-grained semantic and/or morphophonological

distinctions can capture verb syntax (Pinker, 1989), others have pointed out

the class-inclusion criteria are inconsistent (Bowerman, 1988; Braine &

Brooks, 1995; Goldberg, 1995). Thus the learner must still acquire lexically

based exceptions – and thus the learning ‘paradox’ remains. Moreover, it is

demonstrably difficult to ascertain the meaning of many verbs based simply

on environmental contingencies and co-occurrences (Gleitman, 1990;

Gillette, Gleitman, Gleitman & Lederer, 1991).

Another hypothesis, originally contributed by Braine (1971), suggests

that learners might be able to use indirect negative evidence, inferring that

if a certain form does not occur given enough input, then it is probably

ungrammatical. One way this might occur is through pre-emption: if a verb

is encountered in one construction, when another, more felicitous con-

struction would provide the same information, the pragmatic conclusion

would be that the unseen construction is actually ungrammatical (Goldberg,

1995). Children of 4.5 years and older appear to be receptive to this sort of

information (Brooks & Tomasello, 1999), but as of yet there is scant data

from younger children.

Another form of indirect negative evidence is entrenchment – the idea

that the more often a verb is observed in one or more constructions, the less

likely it is to be generalized to new ones (Braine & Brooks, 1995). Consistent

with this notion, both children and adults are more likely to rate over-

generalizations as grammatical if they occur with low-frequency rather than

high-frequency verbs (Theakston, 2004; Ambridge et al., 2008). Even

children as young as two-and-a-half to three years of age are sensitive

to frequency; the less frequent a verb is, the more likely children are to
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produce overgeneralizations (Brooks, Tomasello, Dodson & Lewis, 1999;

Matthews, Lieven, Theakston & Tomasello, 2005). Note that using this

type of indirect evidence does NOT require the child to make pragmatic

judgments involving knowledge of the felicity conditions associated with

constructions. Rather, they are required to make inferences from patterns of

usage (like frequent occurrence in one construction but not the construction

being considered).1

Both entrenchment and pre-emption can be understood in terms of com-

petition: repeated usage of a verb in some construction(s) may oust the usage

of that verb in another, competing, construction (see also MacWhinney,

2004). The model presented in this paper formally instantiates a version of

competition and, in addition, incorporates the ability to learn about the

variability of construction usage. This higher-level learning may constrain

the extent to which the usage of the verb in one construction should block its

usage in the other.

Bringing it all together

Our goal in this paper is to present a learning mechanism which meets the

following criteria:

1. It learns abstract knowledge about the variability of verb constructions,

as in the Wonnacott et al. (2008) experiment.

2. It solves Baker’s Paradox, learning the correct alternation pattern in the

absence of explicit correction, but without requiring direct negative

evidence or employing a strategy of strict conservatism.

3. It combines verb-specific information about individual lexical items

with verb-general information about construction-based classes of

verbs.

4. It productively overgeneralizes verb constructions, and is more likely to

do so if the verb in question is low in frequency.

5. It is capable of combining information from multiple features, including

semantic and syntactic cues.

[1] A closely related notion is what Goldberg (2006) calls ‘statistical pre-emption’. This
conception of pre-emption emphasizes statistical inference based on frequently
encountering a verb in one construction when its use in another would satisfy the
functional demands of the situation. Goldberg argues that statistical pre-emption only
occurs between functionally related constructions, in contrast to some views of entrench-
ment, which suggest that repeatedly encountering a verb in ANY construction can lead to
its being ‘entrenched’ in that construction, thereby preventing its extension to new
structure (Braine & Brooks, 1995). Since none of the models we consider in this paper
have semantics associated with constructions, we do not distinguish between the
entrenchment and the statistical pre-emption hypotheses here.
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We present a domain-general hierarchical Bayesian model that fulfills

these desiderata. It explains how abstract inferences about feature variability

may be combined with verb-general acquisition on the level of construction-

based verb classes and verb-specific knowledge on the level of individual

lexical items – and does so in a way that also captures the other qualitative

learning patterns found in the literature. In Study 1, we address the first

desideratum by presenting our model with the same artificial language input

received by adult subjects in the experiments. Study 2 demonstrates that,

when given input representing the syntactic distribution of verbs occurring

in the dative alternation in a corpus of child-directed speech, our model

qualitatively captures the final three desiderata. These results are interesting

in light of the fact that our model was originally developed to capture the

emergence of feature biases in word learning, rather than anything

particular about verb learning or verbal knowledge at all. Finally, in Study 3,

we explore how learning is affected by semantic information being

added to the input. Though extra-syntactic cues are not necessary to resolve

Baker’s Paradox, the model is capable of using semantic class information to

make syntactic generalizations in a sensible manner, even without making

strong assumptions about the nature of the semantic representations in

question.

STUDY 1 : MODELING ADULT ARTIFICIAL

LANGUAGE LEARNING

MODEL

We use a hierarchical Bayesian model (HBM), which supports the simul-

taneous acquisition of multiple levels of knowledge: both concrete and

item-specific, as well as abstract and general. Goodman (1955) provided an

example of this type of learning. Suppose we have many bags of colored

marbles and discover that some bags have black marbles while others have

white marbles. However, every bag is uniform in color; no bag contains

both black and white marbles. Once we realize this, we have acquired

knowledge on two levels : the item-based knowledge about the color of

marbles in each particular bag, but also the higher-level knowledge (called,

following Goodman, an OVERHYPOTHESIS) that bags tend to be uniform in

color. This higher-level knowledge allows us to make inferences given very

small amounts of data: for instance, given a new bag from which one black

marble has been drawn, we can infer that all of the other marbles in the bag

are probably black, too.

This schematic example is analogous to the situation confronted by

the verb learner, where ‘bags’ become ‘verbs’ and ‘marbles’ become

‘constructions’. A learner might acquire verb-specific knowledge about

which constructions are associated with which specific lexical items, but she
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might also learn verb-general knowledge about how uniformly constructions

are spread over verbs in general. Just as each bag was associated with one

color of marble, does each verb tend to be associated with one construction?

Or do verbs tend to be alternating – grammatical in more than one con-

struction? Learning overhypotheses about verbs and their constructions can

enable a learner to answer these questions, and to constrain generalization of

new verbs in just the same way that learning overhypotheses about bags of

marbles constrains generalizations when presented with a new bag.

We depict this type of learning graphically in Figure 1(a) and formalize

it as follows. Level 1 knowledge about how often each verb occurs with

each construction (or marbles of each color were drawn from each bag) is

represented by h, and is acquired with respect to a more abstract both of

knowledge, Level 2 knowledge, which in this case is knowledge about the

distribution of verb constructions. It is represented in our model by two

parameters, a and b : roughly speaking, a captures the extent to which each

individual verb occurs uniformly in one construction (or not), and b captures

the overall frequency of each construction, independent of any particular

verb.2

Level 2 knowledge depends on knowledge at a higher level, Level 3,

which is represented in our model by two (hyper-)parameters l and m. They

capture prior knowledge about a and b, respectively: the range of values

expected about the uniformity of constructions within the verb (l), and the

range of values of the expected distribution of verb constructions across the

language (m). In principle, we could extend the model to contain arbitrarily

many levels, not just two or three; each subsequent level encodes ever-more

abstract knowledge consisting of (generally weak) expectations about the

nature of the knowledge on the next lowest level. Thus, Level 4 knowledge

would capture prior knowledge about l and m : expectations about the

expectations about uniformity of verbs and the distribution of verb

constructions.

The idea of wiring in abstract knowledge at higher levels of hierarchical

Bayesian models may seem reminiscent of nativist approaches to cognitive

development, but several key features fit well with empiricist intuitions

about learning. In HBMs, the top level of knowledge is always prespecified

implicitly or explicitly, but every level beneath that can be learned. As one

moves up the hierarchy, knowledge becomes increasingly abstract and

imposes increasingly weak constraints on the learner’s specific beliefs at

the bottom, most concrete level of observable data. Thus, a version of the

[2] One way of thinking about the relationship between h, a and b is that a captures
how close, on average, each individual h is to b (i.e. how close each individual verb’s
construction distribution is to the overall distribution across all verbs). Thus, in the
Generalist language, where every h is equal to b, a is very high; in the Lexicalist
language, where each h is very different from b, a is very low.
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Fig. 1. (a) A hierarchical Bayesian model (HBM). Each setting of (a, b) is an over-
hypothesis : b represents the color distribution of marbles across all bags (or, equivalently,
the distribution of constructions across all verbs in a language), and a represents the varia-
bility/uniformity of colored marbles within each bag (or, equivalently, the degree to which
each verb tends to be alternating or non-alternating). In principle HBMs can be extended
to arbitrarily high levels of increasingly abstract knowledge and need not ‘ground out’ at
Level 3.
(b) A model with separate overhypotheses for two verb classes, loosely corresponding to
a non-alternating class of verbs that occur exclusively in the PD construction and an
alternating class of verbs that occur in both PD and DOD constructions. a1 represents
knowledge about the uniformity of constructions within the non-alternating class (i.e. that it
is non-alternating) and b1 captures the characteristic constructions of the verbs in that class
(i.e. that they occur in the PD construction). This figure is adapted from Figure 1 in Kemp
et al. (2007).
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model that learns at higher levels (e.g. acquiring hyperparameters l and m as

well as a and b) builds in weaker constraints than a version that learns only

at lower levels (acquiring only a and b). In general, we can come ever-closer

to the empiricist ideal of bottom-up, data-driven learning by adding levels

to an HBM and incorporating prespecified knowledge only at the highest,

most abstract level. Almost everyone along the empiricist–nativist con-

tinuum agrees that there must be some innate constraints; the question is

how strong and how domain-specific those constraints are. HBMs provide a

means for learning relatively strong, domain-specific knowledge given only

weakly specified, more domain-general prior knowledge.

Learning in an HBM corresponds to making inferences about higher-

level parameters based on data observed from verbs occurring in the input

(the constructions that verb i occurs in are denoted yi). Generalization

corresponds to making predictions about the parameters of novel verbs;

for instance, given a new verb ynew, the model makes inferences about the

most likely verb-specific distribution over constructions hnew based on the

combination of the observations and the inferred higher-level knowledge

about verbs in general. Verbs are generalized assuming that new instances

will match the inferred construction distribution: if the model infers that

hnew=[0.6 0.4] (that is, that the new verb will occur 60% of the time in

construction 1 and 40% of the time in construction 2), then we say that 60%

of the tokens it ‘produces’ will occur in construction 1 and 40% of them will

occur in construction 2. Generalization is calculated by performing a

stochastic search over the space of parameter values. Appendix 1 contains

further technical details.

In this section of the paper (Study 1) we consider two closely related

models, which will serve as the basis for the expanded models introduced in

Study 2. The models are somewhat simplistic, in that they can acquire

knowledge and perform inferences on multiple levels but do not have the

capability to group verbs into classes (as the models in Study 2 do).

Nevertheless, we begin with these in order to illustrate the utility of learning

on multiple levels, and to provide a point of comparison to models that can

learn verb classes.

Model L2 is equivalent to that specified in Kemp et al. (2007); it assumes

that the Level 3 knowledge (l and m) is already known, and learns the a and

b values that maximize posterior probability for the given data. Model L3,

by contrast, learns l and m in addition to a and b, and assumes that

knowledge at higher levels (above l and m) is given. Model L3 is apt to be

useful in those situations in which the inferred values at Level 2, a and b,
tend to be unlikely given the built-in prior knowledge at Level 3 (l and m).
If Model L2 contains built-in knowledge that weakly favors the conclusion

that constructions tend to be uniform within verbs, but is presented with

a dataset in which they are not, it will learn that dataset relatively poorly;
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if the built-in knowledge favors the conclusion that constructions are evenly

spread within verbs, it will be slower to learn datasets in which each verb is

associated with only one construction. Model L3 is therefore more flexible

than Model L2, since it can ‘tune’ the higher-order parameters at Level 3,

and therefore will be able to learn both datasets equally well. Both models

acquire Level 1 knowledge about the expected constructions found in

specific individual verbs.

DATA

The purpose of the artificial language learning experiment3 of Wonnacott

et al. (2008) was to determine whether adults exposed to a novel language

could acquire distributional knowledge at both the verb-specific and verb-

general levels. Over the course of five days, subjects were taught a language

with five novel nouns and eight novel verbs occurring in one of two possible

novel constructions: VAP (verb agent patient) and VPA-ka (verb patient

agent particle (ka)). During training, participants were presented with a set

of scene/sentence pairs, hearing sentences corresponding to video clips of

scenes in which puppets acted out the sentence meaning. Because part of the

purpose of the experiment was to explore performance given only syntactic

information, both constructions had the same meaning.

Subjects were divided into two conditions. In the Generalist condition,

each of the eight verbs occurred in both constructions, but seven times

as often in the VPA-ka construction as in the VAP. In the Lexicalist con-

dition, seven verbs occurred in the VPA-ka construction only, and one verb

occurred in the VAP only. In both conditions, the absolute and relative

frequencies of the VAP and VPA-ka constructions are the same, but the

conditions differ widely in terms of the distribution of those constructions

across individual verbs; this allows for the evaluation of whether learners

can acquire and use verb-general as well as verb-specific statistical

information. When presented with a novel verb in one construction, would

participants in the Generalist condition be apt to infer that it can occur in

both? And would participants in the Lexicalist condition tend to think that

it occurs only in one?

To test this, participants’ productive language use was evaluated in a

procedure in which subjects viewed a scene, heard the verb corresponding

to the action in the scene, and were asked to complete the sentence aloud.

Each of the four novel verbs – which had not been heard during training at

all — occurred four times: two of the verbs only in the VAP construction,

[3] For simplicity of presentation, we focus on Experiment 3 in their paper, although the
model captures the results of all three experiments, each of which focuses on the
acquisition of knowledge about variability across individual verbs.
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and the other two only in VPA-ka. The subjects’ performance is shown in

Figure 2a. People in the Generalist condition were likely to produce a novel

verb in both constructions, matching the overall frequency of each in the

language, rather than the single construction it was heard in. People in the

Lexicalist condition, whose previous input consisted of verbs that occurred

in only one construction, tended to produce the novel verb only in the

single construction in which it was observed.

RESULTS

We present Models L2 and L3 with data corresponding to the input given

to adult subjects over the course of the five days of training in the Generalist

and Lexicalist conditions. To evaluate generalization beyond learned lexical

items, the models are also presented with a single exemplar of a completely

novel verb occurring either in the VAP or VPA-ka construction.4 Results

are shown in Figures 2b and 2c. Both models replicate the difference be-

tween conditions, demonstrating that the model makes inferences much as

humans do. Novel verbs in the Generalist condition are assumed to occur in

both constructions, while the same novel verbs in the Lexicalist condition

are assumed to occur in only one. The models have abstracted information

(a) (b) (c)

Fig. 2. Comparison of model performance with human production for novel verbs in an
artificial language.
(a) Adult performance. Subjects in the Generalist condition were likely to produce a novel
verb in both constructions, matching the overall frequency of each in the language, rather
than the single construction it was heard in. Subjects in the Lexicalist condition, whose
previous input consisted of verbs that occurred in only one construction at a time, tended to
produce the novel verb only in the single construction it occurred in.
(b) Model L2.
(c) Model L3. Both models qualitatively replicate the difference in human performance in
the each condition. Model L3, which can learn at a higher level of abstraction, matches
human performance more closely.

[4] Humans were presented with four tokens of a single novel verb, but because the model
does not have the memory limitations that humans do, it is more appropriate to evaluate
its generalization given only one token.
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about verb-general variability, and have used that as the basis of productive

generalization of novel input.

Model L3 outperforms L2 in the Generalist condition, more accurately

predicting human production for the novel verb occurring in the less-

frequent construction in the language (VAP). Even though that verb was

heard in the VAP construction only, both humans and Model L3 predict

that it will occur in the other (VPA-ka) construction nearly 87.5% of the

time (which is the base rate of VPA-ka in the language as a whole).

Although Model L2 qualitatively captures the difference between the

Generalist and Lexicalist conditions, it is quantitatively less accurate,

extending the VAP form to VPA-ka 60% rather than 87.5% of the time.

The reason for this difference is that the hyperparameters (l and m) over a
and b, which are ‘built in’ for Model L2, weakly restrict the range of a and

b to avoid extreme values. In this case, the built-in hyperparameters for

Model L2 implement a slight bias for values of a and b that correspond to

the assumption that verbs are more likely to occur in only one construction.

The Generalist condition, in which each of the individual verbs’ distri-

bution of constructions precisely mirrors the distribution in the language

as a whole, is thus best captured by values of a and b that happen to

be dispreferred by the hyperparameters of Model L2. One might select

different hyperparameters, but that would be arbitrary and post hoc; it

could also cause the model to be less accurate at capturing the Lexicalist

language. By contrast, because Model L3 can learn the appropriate

bias about the uniformity of constructions across verbs (i.e. it can learn

hyperparameters l and m), it infers that the more extreme values are more

appropriate for this dataset. In other words, Model L3 (which builds less in,

since it learns the hyperparameters that are ‘ innate’ for Model L2) does

better, precisely because it has more flexibility for capturing the data.

In the all of the subsequent sections, both Model L2 and L3 were

analyzed, and results were qualitatively similar for both. For space and

readability reasons, we report only the results from Model L3, which

usually slightly outperforms Model L2.

STUDY 2 : MODELING THE DATIVE ALTERNATION

MODEL

We have demonstrated that both models can acquire verb-general variability

information, just as adults do when presented with artificial language data.

However, in natural language, verb-general statistics may be shared among

only a subset of verbs rather than over all the verbs in the language. For

instance, some verbs occur in both constructions in the dative alternation,

but others occur in only one. A learner that could only make inferences about

verb-general statistics across the language as a whole would not be capable of
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realizing that there were these two types of verbs. Presented with a novel verb

occurring only once in one construction, such a learner might be more likely

to generalize it to both than one who realized that it might belong to a non-

alternating class. Would a model that can make inferences about classes of

verbs perform significantly better on real-world data than a model without

classes?

An intuitive way to address this possibility is to add the ability to discover

verb classes5 to both Models L2 and L3. We denote this extension with the

prefix K (i.e. Model K-L2 and K-L3) and depict it graphically in Figure

1(b). As in Kemp et al. (2007), this results in a model that assumes that

verbs may be grouped into several classes, where each class is associated

with its own hyperparameters. The model is not told how many classes

there are, nor which verbs occur in which class ; instead, it forms the classes

based on the data, in combination with a prior under which all class

assignments are possible but fewer classes are favored. The goal of learning

is to simultaneously infer how verbs are assigned to classes, along with the

values of the hyperparameters that describe each class. The model extension

is described more fully in Appendix 1.

DATA

We explore the acquisition of verb constructions by presenting the model

with real-world data taken from a corpus of child-directed speech. Because

the dative alternation is a central, well-studied example relevant to Baker’s

Paradox, we choose to focus on verbs that occur in it. The data is collected

from the sentences spoken by adults in the Adam corpus (Brown, 1973) of

the CHILDES database (MacWhinney, 2000), and consists of the counts

of each construction (PD and POD) for each of the dative verbs (as listed

in Levin, 1993) that occur in the corpus. Note that we do not consider all

of the constructions in the language – only these two alternating ones. We

return to this point later.

An additional variable of interest is what sort of evidence may be avail-

able to the child at different ages. This can be loosely approximated by

tallying the number of occurrences of each verb in each construction in

subsets of the corpus split by age (see Table 3 in Appendix 2). The Adam

corpus has 55 files, so the first segment, Epoch 1, contains the verbs in the

first 11 files. The Epoch 2 corpus corresponds to the cumulative input from

the first 22 files, and so on up until the full corpus at Epoch 5. The dative

verbs in the first file only, corresponding to approximately one hour of

input, constitute Epoch 0.

[5] Because ‘class’ is a more sensible nomenclature for verbs, we will refer to them as classes
throughout this paper, but these are the same entities referred to as ‘kinds’ in the Kemp
et al. (2007) work.
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RESULTS

Figure 3 shows class assignments predicted by Model K-L3. It captures the

intuitively sensible pattern: those verbs that occur in one construction tend

to be found in a separate class from verbs that occur in both. When there is

less data (i.e. at the earlier Epochs), the model is less certain: the class

assignments for subsets of the full corpus are generally less sharp than they

are for the entire corpus. Frequency also plays a role; the model is more

certain about the class assignments of high-frequency verbs like give and

make, and much less confident about the class assignments of low-frequency

verbs like pay. In part because of this lack of certainty, we would expect the

model to be more likely to overgeneralize the low-frequency verbs beyond

the constructions in which they occur in the input.

There are two ways of testing this prediction. First, we can examine

model predictions for how to produce novel instances for each of the input

verbs. These results are shown in Figure 4. It is evident the model over-

generalizes more often for the low-frequency verbs. The predicted con-

struction distribution for high-frequency verbs like give or make is very

similar to the observed distribution (shown in the associated pie chart).

But low-frequency verbs like explain or sing, which only occur in one

construction in the input, are somewhat likely to be produced in the other

construction. This is because there is still some possibility that they are

Fig. 3. Class assignments given by Model K-L3. Lighter colors indicate increasing prob-
ability that the verbs in that row and column are assigned to the same class. The diagonal is
always white because each verb is always in the same class as itself.
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actually members of the alternating class; as more and more verb tokens are

heard and these verbs are still only heard in one construction, this becomes

less and less likely.

Second, instead of exploring generalization on all verbs, we can also focus

on the subset of non-alternating verbs to explore OVER-generalization – the

degree to which the model generalizes each verb to a construction in which

it has never occurred – as a function of verb frequency. Figure 5 shows the

degree of overgeneralization for each of the verbs that occurred in just one

construction at each Epoch in Model K-L3. This is calculated by finding

the difference between the proportion of times the verb is observed vs.

predicted in the DOD construction (although, since there are only two

constructions, one could equivalently calculate this for the PD construc-

tion). If this difference is zero then it means the model produces the verb

Fig. 4. Production predictions of Model K-L3 for each verb in the full corpus. High-
frequency verbs’ constructions are produced at a distribution close to their empirical
distribution, while low-frequency verbs are more likely to be overgeneralized (produced in a
construction that they did not occur in in the input). The production distribution is denoted
with the stacked bars; the associated pie chart depicts each verb’s observed distribution, and
its empirical frequency is the number under the pie chart.
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constructions precisely at the same frequency as they occurred in the

corpus. The larger this difference is, the more the model has ‘smoothed’, or

overgeneralized away from, the observed data.

The results indicate that, as the frequency of the verb increases, over-

generalization decreases: the difference between observed and predicted

approaches zero. There is also an interaction with Epoch: verbs of

equivalent frequencies are overgeneralized more in earlier Epochs. For

instance, verbs that occur once in the full corpus are overgeneralized less

than one-third as often as verbs that occur once at Epoch 2. The reason for

this is that there is more data in the corpus at later Epochs, and the model is

therefore more certain about the probable constructions it infers for even

the low-frequency verbs.

The model appears to be learning in the absence of negative evidence:

without receiving any correction or being explicitly told that some verbs are

non-alternating, the model eventually forms alternating and non-alternating

classes. This qualitatively captures two of the major phenomena found in

the acquisition of verb argument constructions: more frequent verbs being

overgeneralized more rarely, and a general decrease of overgeneralization

with age.

Is the success of this model due to the fact that it can group verbs into

classes? We address this question by comparing the performance of the

class-learning model K-L3 with Model L3 from Study 1, the results of

which are shown in Figure 6. Removing the ability to learn verb classes,

Fig. 6. Degree of overgeneralization of non-alternating verbs by Epoch for Model L3.

Fig. 5. Degree of overgeneralization of non-alternating verbs by Epoch for Model K-L3.
The y axis reflects the degree of overgeneralization, calculated by taking the absolute value of
the difference between the proportion of the time the verb is observed vs. produced by the
model in the DOD construction. Verbs of different frequencies are grouped in bins along
the x axis : thus bin 1 contains all of the verbs that occurred only once in the corpus, bin 2
contains verbs occurring twice, and so on.
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so that the model does not discover the classes of non-alternating verbs,

does increase overgeneralization overall. This is because when there are no

classes verbs are more strongly influenced by the behavior of ALL of the

other verbs in the language, including those that alternate. Nevertheless,

both models differentiate between verbs based on their frequency and age:

verbs encountered more often in only one construction are less likely to

be overgeneralized to a different construction. The class-learning model

performs better because a novel verb which has been encountered in only

one construction is with some probability assigned to the same class as the

more frequent non-alternating verbs; this increases the probability that the

novel verb is believed by the model to be non-alternating itself.

Which of the two models captures human learning better is currently

unknown, although the class-learning model does more strongly limit

overgeneralization and changes more across Epochs. For the present, we

emphasize that many of the qualitative effects are similar for both models.

Each captures three of the major empirical phenomena: learning in the

absence of overt negative evidence, and decreasing overgeneralization with

increasing age as well as verb frequency. This is because these aspects of

model performance result from general characteristics of Bayesian learning,

rather than particular assumptions made by any specific analysis. We

address this point in more detail in the ‘Discussion’ section.

STUDY 3 : EXPLORING THE ROLE OF SEMANTICS

Many approaches to resolving Baker’s Paradox have relied on the presence

of semantic or morphophonological feature(s) to distinguish verbs that take

part in an alternation from verbs that don’t. However, as discussed in the

‘Introduction’, it is unclear whether such features are always available :

some arbitrary verb-specific alternations may always need to be acquired,

and so the logic underlying Baker’s Paradox remains. The models presented

thus far demonstrate that Baker’s Paradox may be resolvable on the basis of

the syntactic distribution of constructions and verbs only.6 Nevertheless,

there are strong correlations between verb semantics and verb syntax; in

particular, verbs that undergo an alternation may have different semantic

properties from verbs that do not. Many computational models that address

[6] Note that we are not claiming that the syntactic constructions THEMSELVES are necess-
arily learnable in the absence of semantics. Acquiring the DOD construction must
involve learning the mapping between NP1 V NP3 NP2 syntax and thematic role
assignment (i.e. semantics). As we elaborate more fully in the discussion, our work does
not address this type of learning and assumes a pre-existing knowledge of constructions.
Our point is simply that Baker’s Paradox – the problem of overgeneralization GIVEN a set
of constructions – can be resolved without assuming that verbs that do not enter into the
alternation share extra-syntactic features.

PERFORS ET AL.

624

https://doi.org/10.1017/S0305000910000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000910000012


Baker’s Paradox, while not endorsing the claim that verb semantics fully

determines the syntactic distribution of verbs, have made use of these

correlations in learning. It is therefore important to determine what such

cues could contribute in the current model. Moreover, since there is also

clear evidence that human generalization can be affected by semantics, it is

interesting to evaluate whether our model can use semantic information in

a sensible way. Although it is beyond the scope of our simple model to

address all of the subtleties of natural language semantics, we can still

explore the effect of adding extra-syntactic cues in a manner which captures

the overall pattern envisaged by Pinker and colleagues. Given that Studies 1

and 2 have suggested that at least some aspects of the no negative evidence

problem are in principle solvable based on syntactic input alone, what is the

impact of learning when verbs with the same syntactic distribution

share semantic features? To what extent does our model capture human

generalization based on verb semantics?

MODEL

The models in Study 1 and Study 2 incorporate only a single feature,

syntax, but can be trivially extended to include multiple features. We

assume that each feature is independently generated, which allows inference

to proceed exactly as before except that each a and b is learned separately

for each feature. The posterior probability for the full model is therefore

the product of the probabilities along each feature. Appendix 1 contains

additional details about this extension.

DATA

We evaluate how semantics may be incorporated into the model by adding

to our corpus of dative verbs a semantic feature which we associate with the

different classes of verbs. Note that the constructions themselves therefore

have no semantics per se, which is a simplification.7 The feature precisely

parallels the semantics of each of the three classes and therefore has three

possible values: one corresponding to the class of alternating verbs (which

we will call semantic class A), one to those verbs occurring only in PD

syntax (semantic class P) and one to verbs occurring only in DOD syntax

[7] Researchers acknowledge that constructions have some semantics independent of the
verbs they contain, so that the usage of a verb in a construction partly depends on the fit
of that verb’s semantics with the construction semantics. Pinker (1989) also points to
semantic features of verbs which correlate with syntax but are independent of con-
struction semantics (e.g. a class of verbs (including throw or kick) that involve ‘ instan-
taneous imparting of force in some manner causing ballistic motion’ and that all take
part in the PD and DOD alternation). Our model follows Pinker in associating features
directly with the verb.
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(semantic class D). For instance, give, which occurs 106 times in DOD

syntax and 44 times in PD syntax, has a semantic feature occurring

150 times in semantic class A; make, which occurs 11 times in DOD syntax,

occurs 11 times in semantic class D; and say, which occurs 6 times in PD

syntax, has a semantic feature occurring 6 times in semantic class P.

Though this instantiation of semantics is highly simplistic, it has the

merit of allowing for a clear exploration of precisely how one might

generalize when some features associated with verbs are (and are not)

correlated with verb syntax. Essentially, we begin by exploring a best-case

scenario in which the feature in question is perfectly correlated with the

syntactic verb types; later in this section we relax this assumption.

We predict that adding semantic features will not qualitatively change

learning but will result in less overgeneralization of existing verbs, since the

model can use the additional semantic information to make more accurate

inferences about how each verb should be classified. We also wish to test

whether the model generalizes new verbs in a way that is qualitatively

similar to children’s performance in experiments such as Gropen et al.

(1989), even given the simplistic semantic representations we used. To test

this, we added one additional novel verb to the input for the model. The six

conditions differ in the nature of that novel verb, as shown in Table 2. In

three conditions the syntax of the novel verb is DOD, and in the other three

it is PD. Each syntactic form is paired with each semantic form. When the

syntactic form corresponds to the same semantic form it matches in the

input data, we refer to that as the Same Non-alternating Form condition

(i.e. PD syntax, semantic class P; and DOD syntax, semantic class D).

If the semantic form occurs in the alternating class in the input, that is the

Alternating Form condition (i.e. both PD and DOD syntax, semantic

class A). And if the semantic form and syntactic form conflict based on the

input corpus, we refer to that as the Other Non-alternating Form condition

(PD syntax, semantic class D; DOD syntax, semantic class P). As a base-

line, we compare these six conditions to the sort of generalization that

occurs when there are no semantic features at all.

TABLE 2. Conditions based on semantic and syntactic features of novel verb.

Syntactic form

Semantic
form PD DOD

D Other Non-alternating Same Non-alternating
A Alternating Alternating
P Same Non-alternating Other Non-alternating
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RESULTS

As predicted, the model shows less overgeneralization than the equivalent

model with no access to semantic features. In addition, as illustrated in

Figure 7(a), Model K-L3 generalizes based on semantic features in a sensible

way. Both the model and the children in the Gropen et al. (1989) experiment

are more likely to produce the construction they were not presented with if its

semantic feature is associated with a different class of verbs. Sensibly, if the

semantic feature matches the syntax of the same non-alternating form, then

the model rarely produces the unattested construction.

The fact that the success of the model depends on its ability to form

separate verb classes is apparent when we examine the performance of

Model L3, shown in Figure 7(b). This model, which cannot form separate

classes, generalizes each novel verb identically, regardless of its semantic

features. In essence, the class information is the vehicle for capturing the

relationship between semantic features and construction usage. A more

sophisticated model – for instance, one that can associate semantic features

directly with constructions – might allow for the correct semantic general-

izations even without class information, but our work demonstrates that

semantic effects can arise given very simple assumptions about semantics as

long as there is some mechanism for relating the verbs that share a similar

construction distribution.

Fig. 7. Percent of generalization of novel verb to the syntactic construction it was not
previously observed in.
(a) Model K-L3.
(b) Model L3.
Model K-L3 behaves qualitatively like human responses, generalizing most to the other
construction when the semantic feature is consistent with the non-alternating class, and least
when it is consistent with the same alternating class. Model L3 does not, suggesting that the
ability to group verbs into appropriate classes might be necessary to capture this aspect of
human behavior.
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It is unrealistic to assume the existence of one semantic feature that

precisely follows the correct verb classes: our purpose was simply to

evaluate the extent to which the presence of such a feature would affect

learning. It is probably more accurate to assume that there are many

different features, each somewhat noisy, that are only statistically associated

with the correct classes. When this is the case, do the semantics continue to

aid in learning? Does our model produce sensible generalizations even if the

semantic features are less clean?

To evaluate this we present the model with the same corpus, but this

time associate each verb with three semantic features rather than one. In

addition, each feature is associated with the correct verb class 60% (rather

than 100%) of the time. The results in the same generalization task as

before, shown in Figure 8, are qualitatively identical to the previous results,

although noticeably noisier. As before, there is less generalization than the

equivalent model with no access to semantic features, though there is more

generalization than for the previous semantically augmented model. It is

evident that it is not necessary for the semantic feature(s) to be perfectly

clean in order to qualitatively capture the same generalization patterns.

Even this version of the model is a gross simplification: certainly, one of

the things that makes verb learning difficult is that there are many features

(semantic and otherwise) that are simply irrelevant, uncorrelated with the

Fig. 8. Percent of generalization of novel verb to the syntactic construction it was not
previously observed in. As before, the model behaves qualitatively like human responses,
generalizing most to the other construction when the semantic features are roughly consist-
ent with the non-alternating class, and least when they are more consistent with the same
alternating class.
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correct class assignments, or perhaps even correlated with other regularities

among the verbs. In terms of our model, it is always possible to identify an

extreme at which the additional features are noisy enough – or pick out

other categories strongly enough – to completely eliminate any effects of the

semantic and syntactic features. For instance, if there are thirteen semantic

features, six of which are consistent with an interpretation in which the

verbs all belong to the same class and seven of which vary randomly, model

performance is ruined. In general, correct generalization is a function of the

coherence and number of features that pick out the correct class assign-

ments; the model is somewhat robust to noise and error, but is not infinitely

so (nor should it be). Further work is necessary to understand precisely

how and to what extent additional features matter – to flesh out what the

shape and nature of that ‘generalization function’ is. We have demonstrated

here that, in at least some situations, the model is capable of qualitatively

capturing human generalization patterns on the basis of semantic features.

DISCUSSION

In this paper we have presented a domain-general hierarchical Bayesian

model that addresses how abstract learning about feature variability can be

combined with verb-general learning on the level of construction-based verb

classes and verb-specific learning on the level of individual lexical items.

It captures the qualitative patterns exhibited by adults in an artificial language

learning task, as well as those exhibited by children over the course of

acquisition. Our model suggests that Baker’s Paradox can be resolved by a

certain kind of learner, even based on syntactic-only input. Furthermore, it

does so in a (largely) domain-general way, without making strong language-

specific representational assumptions about verb constructions.

In the following section we evaluate our conclusions in more detail. We

take special care to orient this research with respect to other computational

models of verb argument construction learning in order to highlight the

contributions of our approach, as well as some of its limitations.

A solution to Baker’s Paradox?

One implication of our work is that it is may not be necessary to rely on

non-syntactic features in order to solve Baker’s Paradox (although such

information might still be valuable for other important aspects of verb

learning, like identifying the alternations in the first place – a point to which

we return below). Our Bayesian learner, given the syntactic information

from a corpus of dative verbs used in child-directed speech, resolves the

negative evidence problem: it correctly realizes that verbs that have been

observed often in one construction but never in another probably are not
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grammatical in both, but that verbs that have been observed rarely in one

construction and never in another might be. In essence, our learner takes

indirect negative evidence into account by formally instantiating the notions

of entrenchment/pre-emption (or, more broadly, competition), as suggested

by other researchers (Braine, 1971; Braine & Brooks, 1995; Goldberg,

1995; MacWhinney, 2004). Each time a verb is encountered in one of the

two competing structures, it is NOT encountered in the other, and this

provides cumulative evidence against a grammar that allows this usage.

Consistent with this, our model – like people – is more apt to overgeneralize

lower-frequency verbs, and more likely to overgeneralize all verbs earlier in

the process of acquisition. Adding correlated semantic features boosts

learning but does not qualitatively alter its pattern.

This performance is not an idiosyncratic property of specific choices

made in setting up our model, but is rather the result of a general property

of optimal inference. We can illustrate this abstractly using schematic

dot diagrams, as in Figure 9, where each datapoint (e.g. a verb usage) is

represented by a dot generated by some underlying process (i.e. underlying

verb knowledge, perhaps instantiated by a rule of some sort). The job of the

learner is to evaluate hypotheses about which process best describes the

observed data, and we can represent different processes as different subsets

of space. To perform this evaluation, a rational learner should trade off the

complexity of the hypothesis (captured via the prior in Bayesian learning)

with how well it predicts the observed data (captured by the likelihood).

Bayesian inference recognizes that a hypothesis that is too complex for the

observed data will overfit, missing important generalizations, while one that

is insufficiently complex will not be explanatory enough. As shown in

Figure 9, this will result in a preference for a hypothesis that is neither too

simple (Hypothesis A) nor too complex (Hypothesis C), but ‘ just right’

(Hypothesis B).

Fig. 9. Hypothesis A is too simple, since it fits the observed data poorly; C fits closely but
is too complex; and B is ‘ just right.’ The best description of the data should optimize a
trade-off between complexity and fit, as in B.
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One implication is that a distinctive pattern of reasoning naturally

emerges as the amount of data changes. When there are few datapoints, the

simpler theories are favored, resulting in a tendency toward over-

generalization, as we saw in Study 2. As the number of datapoints increases,

the likelihood increasingly favors the theory that most closely matches the

observed data, and overgeneralization decreases. This captures the notion of

a suspicious coincidence, since hypotheses that predict the observation of

datapoints that in fact never occur tend to be increasingly disfavored. It also

provides a natural solution to the problem of deciding among hypotheses

given positive-only examples. As the size of the dataset approaches infinity,

a Bayesian learner rejects larger or more overgeneral hypotheses in favor of

more precise ones. But with limited amounts of data, the Bayesian approach

can make more subtle predictions, as the graded size-based likelihood trades

off against the preference for simplicity in the prior. The likelihood in

Bayesian learning can thus be seen as a principled quantitative measure of

the weight of implicit negative evidence – one that explains both how and

when overgeneralization should occur.

Because this pattern is a general property of Bayesian inference, other

computational approaches to the acquisition of verb argument constructions

provide the same natural solution to Baker’s Paradox; indeed, our model is

an instance of a class of computational models which explicitly explain the

acquisition of verb knowledge in terms of rational statistical inference, using

either the Bayesian or the closely related minimum description length

(MDL) framework (Dowman, 2000; Onnis, Roberts & Chater, 2002; Chater

& Vitànyi, 2007; Alishahi & Stevenson, 2008; Hsu, 2009). For instance,

Dowman (2000) compares toy grammars with and without subclasses of

non-alternating verbs and finds that as the amount of data increases, a more

complex grammar is preferred and overgeneralization disappears. This work

involves a simplistic toy grammar segment and an idealized artificial corpus

rather than the more naturalistic child-directed data considered in our work,

but both models show the same ability to deal sensibly with the problem

of negative evidence. More similarly to our work, Onnis et al. (2002) use a

Bayesian model to demonstrate the learnability of an alternation based on

statistics from corpora of child-directed speech. Their model succeeds in this

for the same reason ours does. Our model makes different (in many ways

more domain-general) representational assumptions, and is in other ways

more flexible and powerful, with the ability to learn on multiple levels of

abstraction, and the ability to determine flexibly how many classes of verbs

there are. But in terms of the problem of negative evidence, all of these

models – ours included – solve it in the same way. In fact, even connectionist

models (e.g. Allen & Seidenberg, 1999) implicitly incorporate a sort of

trade-off between complexity and goodness-of-fit. Often the trade-off is non-

optimal, since the preference for simplicity emerges out of choices about
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network architecture, number of training epochs and other modeling choices

rather than the mathematics of probability theory, but as long as any trade-off

is being made, overgeneralization will decrease with increasing amounts of

data; the difference is that in Bayesian models that trade-off is statistically

optimal.

More generally, all of these models are examples of the notion of

competition, which was first incorporated into the Competition Model

(MacWhinney, 1987; 2004), though the same notion is also implicit in the

‘sieve’ model of Braine (1971). Competition results from the two opposing

pressures of episodic and analogical support (MacWhinney, 1987; 2004).

Episodic support consists of item-specific knowledge (which pressures a

learner towards conservatism and lack of generalization), and analogical

support consists of the tendency to form generalizations based on analogies

to other verbs (which pressures a learner towards overgeneralization).

The preference for simplicity serves the same functional role as analogical

support, and the preference for goodness-of-fit to the data serves the same

functional role as episodic support. Bayesian and MDL approaches quantify

the statistical trade-off between the two preferences in a precise way, but

the idea of competition provides a unifying framework for conceptualizing

all of the major approaches.

Abstract learning about feature variability

The primary feature distinguishing our model from other approaches, and

from previous Bayesian/MDL-based work in particular, is our focus on

learning at multiple levels of abstraction simultaneously (but see also Hsu

(2009) for another application of this model to the task of learning verb

alternations). In particular, our model can learn abstract knowledge about

variability across verb types, just as adult subjects do in the experiment

performed by Wonnacott et al. (2008). Both humans and our model acquire

different generalizations based on whether the input comes from a language in

which all verbs occurred in both constructions or a language in which each

verb occurred in only one construction. In essence, the model is able to

quantify the extent to which encountering a verb in one structure should

‘count against ’ its potential future occurrence in the other. This sort of

statistical learning is part of a larger process of balancing information on

multiple levels of abstraction, and our work demonstrates how this balance

may be achieved.

Although the importance of tracking both item-specific and verb-general

information is acknowledged by many researchers (e.g. Braine, 1971;

MacWhinney, 1987; 2004, among many others), many previous models

address the issue of learning lexically specific and detailed verb infor-

mation (e.g. Dominey, 2003), and several models are capable of learning
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verb-general information about classes, features or construction types (e.g.

MacWhinney, 1987; Dowman, 2000; Onnis et al., 2002; Alishahi &

Stevenson, 2008), previous models have not attempted to explain the

acquisition of knowledge of VARIABILITY at the level of verb classes or

constructions. For example, the work by Dowman (2000) and Onnis et al.

(2002) is focused mainly on the problem of negative evidence, and compares

segments of toy grammars of varying degrees of complexity. The work by

Alishahi & Stevenson (2008), which is an impressive model capable of

capturing many aspects of semantic and syntactic acquisition, nevertheless

has not attempted to account for higher-order knowledge about feature

variability (necessary for explaining human behavior in the Wonnacott et al.

(2008) task). That model has numerous similarities with ours: both are

Bayesian, both can flexibly determine how many constructions or verb

classes are appropriate given the data, and both capture similar qualitative

patterns in acquisition. However, because their model does not do inference

on the highest levels (Level 2 and Level 3, corresponding to hyperpara-

meters a, b, l and m in our model), it learns only about which semantic and

syntactic features to expect for each construction; it does not make more

abstract judgments about how variable they are expected to be.

Is the ability to learn on this level important in order to explain the

acquisition of verb constructions in natural language? Because many of the

qualitative aspects of acquisition can be captured by models that cannot

learn on that level, it remains possible that this sort of learning is not

necessary. It may be that the multilevel learning observed in adults and

children in the experiments of Wonnacott et al. (2008) and Wonnacott &

Perfors (2009) is just a by-product of some more general human ability to

acquire overhypotheses and is not naturally used by people when learning

verbs. Nevertheless, the results of these experiments suggest that humans

are at least CAPABLE of this sort of learning. Given that these learning

abilities are also useful in making more accurate generalizations about

appropriate verb usage from realistic natural language input, as we have

shown here, it would be surprising if people did not sometimes use them in

natural language learning.

There may be conditions under which the ability to learn about variability

is particularly useful. For instance, our model is capable of learning the

distinction between alternating and non-alternating verb classes on the basis

of syntactic input alone. The model of Alishahi & Stevenson(2008), which

learns constructions rather than classes, forms constructions only on the

basis of differences in features rather than on patterns of feature variability.

As a result, it would be unable to form the distinction between non-

alternating and alternating verb classes without additional semantic features

to assist. Each individual verb usage would occur only in PD or DOD

syntax, and without semantic information differentiating alternating from
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non-alternating verbs, the model would tend to infer a maximum of two

constructions (DOD and PD). It would thus be able to learn that individual

verbs are alternating or non-alternating (and therefore to resolve the

negative evidence problem for those verbs). However, because it would

have no reason to form a single alternating construction, it would not – as

our model does – be able to infer that a completely novel verb appearing

once in each construction is alternating, but that a verb appearing twice in

one may not be. This is the sort of generalization made by adult subjects

in the artificial language of Wonnacott et al. (2008). In future work we aim

to address the empirical question of whether children or adults make such

inferences in more naturalistic circumstances.

Current limitations and future directions

One aspect of the problem that few models address – ours included – is the

question of how the child knows which sort of evidence is important. Pinker

raised this point about indirect negative evidence, arguing that the problem

of deciding which of the infinite number of sentences one hasn’t heard are

ungrammatical (rather than simply unattested) is ‘virtually a restatement of

the original learning problem’ (Pinker, 1989: 14). How does the child know

that those particular syntactic forms are the interesting and relevant ones?

This knowledge has just been given to our model, and our work makes no

particular claims about how it comes about. However, we have not simply

restated the learning problem, as Pinker suggests : rather, we have suggested

an answer to one problem (how to rule out logically possible alternatives

without negative evidence), leaving another still unsolved (how to know

which of a potentially infinite number of dimensions one should generalize

along). The logic of Baker’s Paradox would be the same whether there is one

possible dimension of generalization, or an infinite number: the dilemma

comes because one can never be certain that an unobserved datapoint

(along that dimension) is truly ungrammatical, or simply unobserved. By

converting this logical problem to a probabilistic one and demonstrating

formally that the unobserved ones simply become increasingly unlikely, we

have shown how a learner might be able to constrain their generalizations

appropriately. How the learner knows which dimensions to pay attention to

is a different issue.

Our model was originally developed and applied to a question in a

different domain: the acquisition of the shape bias in word learning (Kemp

et al., 2007). It incorporates relatively little domain-specific built-in

knowledge – just the highest-level information governing the expectations

about the sort of constructions, and their uniformity, that are likely to

occur. Because the priors we built into the model were extremely weak, this

amounted to the expectation that verbs within a class can either be uniform

PERFORS ET AL.

634

https://doi.org/10.1017/S0305000910000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000910000012


within a construction OR precisely alternating OR something in between.

Thus, although any model (of any sort, not just a Bayesian model) must

make some assumptions about what is built-in, we have endeavored to make

them minimal. We can identify only two major assumptions:

1. Constructions have no internal representation: syntactic information is

represented as a vector of features. We thus assume a learner who has

already learned that, say, NP1 V NP3 NP2 is a construction. This is

itself a complex learning problem and not one that this work bears

upon.

2. The dataset presented to the model only includes: (a) two constructions

considered to be in alternation; and (b) the set of verbs that occur in at

least one of these two constructions.

Regarding the first assumption, and as noted earlier, Baker’s Paradox is a

problem of knowing how to generalize appropriately over constructions in

the input ONCE IT IS CLEAR what those constructions are. An advantage of

our simpler representation is that it clarifies which phenomena emerge due

to the nature of the data and the characteristics of Bayesian (optimal)

inference, rather than because of the domain-specific representation.

Furthermore, it allows us to explore the contribution of additional semantic

features in the abstract, without worrying about their accessibility or

precisely what they are. The trade-off, of course, is that we are therefore

abstracting over many details that might be critical for understanding

the acquisition of particular verbs or asking the question of what precise

semantic, conceptual or syntactic knowledge must be built in in order for

the child to perceive which features are relevant.

The second assumption mimics the input given to learners in the

Wonnacott et al. (2008) experiments, but natural languages are more

complex. A question for future research is whether our model could scale

up to deal with a complex dataset involving all verbs and constructions.

We think it possible that, due to its ability to learn about higher-level

variability, our model could identify alternating verb classes even without

prior information about which pairs of constructions potentially alternate.

(Note that such learning could only work for the version of the model

which can learn classes.) Another possibility is that this learning relies

on knowledge of construction semantics. For example, Goldberg (2006)

has argued that repeatedly encountering a verb in one construction only

pre-empts its usage in a non-occurring construction if that usage would

satisfy the functional demands of the context at least equally well. This

suggests that only functionally related constructions may pre-empt each

other and points to a potential constraint in the learning system, although

which types of constructions are considered to be ‘in competition’ is still an

open empirical question. Again, however, this is a question focused on how
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the learner knows which dimensions to pay attention to when using implicit

negative evidence, rather than how implicit negative evidence constrains

generalization; the latter is the question we address here.

Although Study 2 may appear to imply that some aspects of verb

construction learning could be accomplished without semantic information,

we are not suggesting that semantic knowledge is not important when

learning verbs. Indeed, Study 3 was motivated by the fact that verb learning

must include semantic as well as syntactic knowledge. Our work suggests

the possibility that although semantic information is ultimately used,

syntactic information may be more important initially – a suggestion that is

consistent with the claims of syntactic bootstrapping (e.g. Gleitman, 1990),

as well as a study by Ambridge et al. (2008), which found that for younger

children (age 5–6) there was only a small effect of semantic class on

generalization, whereas for older children and adults, there was a larger one.

Similarly, Brooks et al. (1999) found that entrenchment effects in syntax

emerged before semantic class effects.

It is also possible that syntactic information was so effective precisely

because we gave our model clean features that already picked out precisely

the constructions of interest. If both the semantic and syntactic features

available to the child are far more noisy – and hidden amongst many

irrelevant features in the environment – then it may be that semantic and

syntactic features only become accessible through a process of mutual

bootstrapping. Addressing this question, or others that explore the role of

semantics more fully, will probably require a richer semantic representation

than the current model instantiates. Future work we will explore this idea in

more detail.

We would like to close by considering the question of convergence,

which has been a central consideration for theories of acquisition. How do

all children end up with the same grammar – one that accepts the same set

of sentences as grammatical? In part, the focus on this question has arisen

from the assumption of a deterministic end-state grammar that produces

absolute yes–no grammaticality judgments for any sentence. However, there

is evidence that judgments of overgeneralizations are variable even in

adult native speakers, and continue to be influenced by lexical frequency

(e.g. Theakston, 2004); as a result, many researchers have rejected this

formulation of the end state. Despite this, our model does show high levels

of convergence and systematically less generalization as it acquires more

data, as do adults and children. Models such as ours also provide a method

for exploring how different assumptions about learning and the data lead to

different results. How our models link to the underlying psychological

processes remains a fundamental question for further research.
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APPENDIX 1 : MODELS

The two models, referred to as L2 and L3, perform inference over different

levels of abstraction. Both models learn at Level 1, the level of specific

knowledge about individual verbs. Model L2 is specified in Kemp et al.

(2007) and performs inference about the variability of Level 2 features a
and b as well. Model L3 performs inference on an even higher level,

learning also about the expected range that that variability can take (denoted

via parameters l and m).

Model L2: Learning at Level 2

Model L2, specified in Kemp et al. (2007), is known to statisticians as a

Dirichlet-Multinomial model, and can be written as:

a � Exponential(l)

b � Dirichlet(m)

hi � Dirichlet(ab)

yijni � Multinomial(hi)

where ni is the number of observations for verb i. Because the model

makes inferences on Level 2, we specify the Level 3 knowledge by setting

parameters l=1 and m=1, which indicates weak prior knowledge that the

expected range of a and b does not contain extreme values.

Inference is performed by computing posterior distributions over

the unknown knowledge at the higher levels. For instance, the posterior

distribution P(a, b|y) represents a belief given the data y (the verbs heard so

far). We formally instantiate this model by denoting the true distribution

over constructions of verb i as hi ; thus, if the true distribution of

constructions means the verb occurs 70% of the time in the prepositional

dative (PD) construction and 30% of the time in the direct object dative

(DOD), then hi=[0.3 0.7]. If we have observed that verb once in DOD and

four in PD, then yi=[1 4].

We assume that yi is drawn from a multinomial distribution with

parameter hi which means that the observations of the verbs are drawn

independently at random from the true distribution of verb i. The vectors hi

are drawn from a Dirichlet distribution parameterized by a scalar a and a

vector b : a determines the extent to which each verb tends to be associated

with only one construction, and b represents the distribution of construc-

tions across all verbs in the language.

To fit the model to data we assume that counts y are observed for each

verb in the input set. Our goal is to compute the posterior distribution

P(a, b, {hi}|y). Inferences about a and b can be made by drawing a sample

from P(a, b|y) – the posterior distribution on (a, b) given the observed

verbs. Inferences about hi, the distribution of constructions for verb i, can
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be made by integrating out a and b :

P(hijy)=
Z
a, b

p(hija, b,y)p(a,bjy)dadb (1)

We estimate this using numerical integration via a Markov Chain Monte

Carlo (MCMC) scheme. Our sampler uses Gaussian proposals on log(a),
and proposals for b are drawn from a Dirichlet distribution with the current

b as its mean.

Model L3: Learning at Level 2 and Level 3

Model L3 is quite similar to Model L2, except that instead of assuming

that l and m are known, we learn those as well. (NB: m is a scalar, but

in order for it to be a proper hyperparameter for the vector b, it is

vectorized: m=m1). In statistical notation, this model can be written:

l � Exponential(1)

m � Exponential(1)

a � Exponential(l)

b � Dirichlet(m)

hi � Dirichlet(ab)

yijni � Multinomial(hi)

where ni is the number of observations for verb i.

As before, inference is performed by computing posterior distributions

over the unknown knowledge at the higher levels. The only difference is

that the posterior distribution is now given by P(l, m, a, b, {hi}|y).
Inferences about l, m, a and b can be made by drawing a sample from

P(a, b, l, m|y), which is given by:

P(a, b, l, mjy) / P(yja, b)P(ajl)P(bjm)P(l)P(m) (2)

Inferences about hi the distribution of constructions for verb i, can be

made by integrating out a, b, l and m :

P(hijy)=
Z
a, b, l, m

P(hija, b,y)P(a,b, l,mjy)dadbdldm (3)

Again, we estimate this using numerical integration via a Markov Chain

Monte Carlo (MCMC) scheme. As before, our sampler uses Gaussian

proposals on log(a), log(l) and log(m), and proposals for b are drawn from a

Dirichlet distribution with the current b as its mean.
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MODEL EXTENSION : LEARNING VERB CLASSES

To add the ability to discover verb classes to both Models L2 and L3, we

assume that verbs may be grouped into classes, each of which is associated

with its own hyperparameters. For Model L2, this means that there is a

separate ac and bc for each class c inferred by the model; for Model L3,

there is a separate ac, bc, lc and mc or each class c. In both cases, the model

partitions the verbs into one or more classes, where each possible partition

is represented by a vector z. Thus, a partition of six verbs in which the first

three verbs are in one class and the last three are in another can be rep-

resented by the vector [1 1 1 2 2 2]. The prior distribution on z is induced

by the Chinese Restaurant Process (CRP):

P(zi=cjz1, . . . , zix1)=
nc

ix1+c nc>0

c
ix1+c c is a new class

(
(4)

where zi is the class assignment for verb i, nc is the number of verbs

previously assigned to class c, and c is a hyperparameter which captures the

degree to which the process favors simpler class assignments (we set c=1).

The Chinese Restaurant Process prefers to assign verbs to classes that

already have many members, and therefore tends to prefer partitions with

fewer classes.

The extension for Model L3 can now be written as follows:

z � CRP(c)

lc � Exponential(1)

mc � Exponential(1)

ac � Exponential(lc)

bc � Dirichlet(mc)

hi � Dirichlet(acibci)

yijni � Multinomial(hi)

The equivalent extension for Model L2 is trivially extendable from this,

and is also described in Kemp et al. (2007).

If z is known, the extended model reduces to several independent

versions of the basic (L2 or L3) model, and predictions can be computed

using the techniques described earlier. Since z is unknown, we must

integrate over each of the possible class partitions z :

P(hijy)=
X
z

P(hijy, z)P(zjy) (5)

where P(z|y)/P(y|z)P(z) and P(z) is the prior induced by the CRP process.

For Model L2, computing P(y|z) reduces to the problem of computing
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several marginal likelihoods:

P(y0)=
Z
a, b

P (y0ja,b)P(a, b)dadb (6)

which we estimate by drawing 10,000 samples from the prior P(a, b).
For model L3, computing P(y|z) reduces to computing:

P(y0)=
Z
a, b, l, m

P(y0ja,b)P(a, bjl, m)P(l,m)dadbdldm (7)

which is also estimated by drawing 10,000 samples, this time from the joint

prior P(a, b|l, m)P(l, m).

APPENDIX 2 : CORPUS

The data of verb counts is collected from the sentences spoken by adults in

the Adam corpus (Brown, 1973) of the CHILDES database (MacWhinney,

2000), and consists of all instances of each of the dative verbs listed in

Levin (1993), including the number of occurrences in each construction

(PD and DOD). Epochs correspond to the counts for verbs in subsections

of the corpus of 55 files, split by age (Epoch 1 is the first 11 files, Epoch 2 is

the first 22, and so on). The counts are shown in Table 3.

TABLE 3. Number of times each verb appears in each construction

(Adam corpus).

Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Full corpus

Verb DOD PD DOD PD DOD PD DOD PD DOD PD DOD PD

take 0 5 0 9 0 11 0 16 0 16
say 0 3 0 4 0 6 0 6 0 6
explain 0 1 0 1 0 1 0 1
send 0 1 0 1 0 2
sell 0 1 0 1 0 1
mail 0 1 0 1 0 1
throw 1 0 1 2 1 2 1 2 1 2
read 1 1 2 5 2 11 3 12 3 13 3 16
give 2 1 15 18 39 27 62 31 82 33 106 44
show 2 1 10 5 23 9 27 11 31 15 36 17
bring 2 1 4 3 6 3 9 4 11 5
tell 1 1 8 1 14 1 17 1 22 1
sing 1 0 1 0 1 0 1 0
pay 2 0 2 0
serve 2 0 2 0 2 0
find 2 0
ask 2 0 3 0 3 0 4 0
make 1 0 5 0 6 0 11 0

PERFORS ET AL.

640

https://doi.org/10.1017/S0305000910000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000910000012


REFERENCES

Alishahi, A. & Stevenson, S. (2008). A probabilistic model of early argument structure
acquisition. Cognitive Science 32(5), 789–834.

Allen, J. & Seidenberg, M. (1999). The emergence of grammaticality in connectionist
networks. In B. MacWhinney (ed.), Emergence of language, 115–52. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Ambridge, B., Pine, J., Rowland, C. & Young, C. (2008). The effect of verb semantic
class and verb frequency (entrenchment) on children’s and adults’ graded judgements of
argument-structure overgeneralization errors. Cognition 106, 87–129.

Baker, C. (1979). Syntactic theory and the projection problem. Linguistic Inquiry 10, 533–81.
Berwick, R. (1985). The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.
Bowerman, M. (1988). The no negative evidence problem: How do children avoid

constructing an overly general grammar? In J. Hawkins (ed.), Explaining language
universals, 73–101. Oxford : Basil Blackwell.

Braine, M. (1971). On two types of models of the internalization of grammars. In D. Slobin
(ed.), The ontogenesis of grammar: A theoretical symposium, 153–86. New York, NY:
Academic Press.

Braine, M. & Brooks, P. (1995). Verb argument structure and the problem of avoiding an
overgeneral grammar. In M. Tomasello & W. Merriman (eds), Beyond names of things :
Young children’s acquisition of verbs, 353–76. Hillsdale, New Jersey : Lawrence Erlbaum
Associates.

Brooks, P. & Tomasello, M. (1999). How children constrain their argument structure
constructions. Language 75, 720–81.

Brooks, P., Tomasello, M., Dodson, K. & Lewis, L. (1999). Young children’s over-
generalizations with fixed transitivity verbs. Child Development 70, 1325–37.

Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard University
Press.
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