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DECIDABLE MODELS OF �-STABLE THEORIES

URI ANDREWS

Abstract. We characterize the �-stable theories all of whose countable models admit decidable pre-
sentations. In particular, we show that for a countable �-stable T , every countable model of T admits a
decidable presentation if and only if all n-types inT are recursive and T has only countably many countable
models. We further characterize the decidable models of �-stable theories with countably many countable
models as those which realize only recursive types.

§1. Introduction. The following is a fundamental question of recursive model
theory:

Question 1.1. For which theories T is it true that every countable model of T
admits a decidable presentation?

There are two clearly necessary conditions for a theory to have this property. First,
for all n, every n-type (a complete type in n variables) in T must be recursive, as it is
realized in a decidable countable model. Second, T must have (up to isomorphism)
only countably many countable models. Millar [8] showed that these conditions
are not sufficient to guarantee that every countable model of T admits a decid-
able presentation. We show that these conditions suffice for the class of countable
�-stable theories. In particular,

Theorem 1.2. Let T be an �-stable theory. Then every countable model of T is
decidably presentable if and only if all n-types consistent with T are recursive and
T has only countably many countable models.

In fact, we will prove the following stronger theorem.

Theorem 1.3. Let T be a recursive�-stable theory with countablymany countable
models. LetM be a model of T . ThenM has a decidable presentation if and only if
all types realized inM are recursive.

This theorem is stronger thanTheorem 1.2, as it implies the nontrivial implication
in Theorem 1.2 and characterizes the decidable models in a more general class of
theories. Also, note that Goncharov and Nurtazin [4] constructed a theory which
witnesses that �-stability does not suffice for Theorem 1.3 without the assumption
on the number of countable models.
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Theorems 1.2 and 1.3 canbe seen as a generalization of the result ofHarrington [5]
and Khisamiev [6] that every countable model of a countable uncountably cat-
egorical theory admits a decidable presentation if and only if the theory is
recursive. At the same time, the result is an effectivization of Vaught’s conjecture
for �-stable theories. For the model theory, we will rely heavily on the analysis in
Shelah, Harrington and Makkai [10] and Bouscaren [1] where Vaught’s conjecture
and Martin’s conjecture for �-stable theories are proved.
The key to the analysis in Shelah, Harrington andMakkai [10] and Bouscaren [1]
is to find dimension invariants which characterize a model. In other words, there is
some n ∈ � so that each model M contains an extended basis whose type can be
characterized via an invariant from (� + 1)n. Further,M is prime over this basis,
thus giving a surjection from (� + 1)n onto the set of models of T . There are three
obstacles to effectivizing the analysis in Shelah, Harrington and Makkai [10] and
Bouscaren [1]. First, only assuming recursiveness of n-types does not immediately
guarantee the recursiveness of the type of an extended basis, which has infinitely
many elements. This obstacle will be overcome by using a theorem fromBuechler [2]
showing that the type of Morley sequences in the appropriate types are recursive.
Second, we have to build a prime model over the extended basis. This is done by
showing that we only need to omit a recursively enumerable list of types, namely
those types which would witness that the basis itself is not complete. We then use
the recursive omitting types theorem to omit this list.
A third, and insurmountable, obstacle to effectivizing the analysis in Shelah,
Harrington and Makkai [10], is in the inherent noneffectiveness of choosing the
finite tree of typeswhich are used in the analysis.Wewould need this to get a uniform
version of our result. That is an algorithm which, given a recursive complete theory
T as above, will output an enumeration of decidable presentations of all of the
countable models of T . In Sections 2 and 3, we show that for each theory as above,
there is an effective enumeration of decidable presentations of all models of T , and
we will show in Section 4 that the uniform version of the result is false.
Due to the relationship between Question 1.1 and Vaught’s conjecture, the full
answer toQuestion 1.1 is likely to bedifficult.On theother hand,Vaught’s conjecture
has been solved by Buechler [3] for superstable theories of finite rank. Thus we pose
the immediate version of Question 1.1 for these theories:

Question 1.4. Suppose T is superstable of finite rank. When is every countable
model of T decidably presentable? Do the conditions above suffice?

§2. Building the extended basis. Throughout the remainder of this section as
well as Section 3, we assume T is a countable �-stable theory with countably many
countable models. We will also assumeM is a countable model of T realizing only
recursive types. We will use the analysis presented in Bouscaren [1] of the models
of countable �-stable theories with countably (equivalently < 2�) many countable
models to show that we can give a decidable presentation forM .
The analysis in Shelah, Harrington andMakkai [10] and Bouscaren [1] describes
the models of T in terms of dimensions of a finite tree of types. We say that a type p
needs a tuple ā over a set A if p is orthogonal to A but not to A∪ ā, p is stationary,
strongly regular, eventually nonisolated (eni), and the type of ā overA is stationary
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and weight 1. If p needs ā overA, then we say p needs q := tp(ā/A). In this case, we
say q supports p, and q is a supportive type. Using this notion, Shelah, Harrington
andMakkai show that there is a tree of depth 2 of types, whose realizations entirely
control a model of T . In our following presentation of this tree of types, we will use
notation exactly following Bouscaren [1].
Shelah, Harrington andMakkai describe, for anymodelM of an�-stable theory
T with fewer than continuum many countable models, a subset X of the model
built as maximal independent realizations of a finite tree of types of depth≤ 2. This
subset X , which we will call the extended basis ofM , then determines the modelM
as the prime model over X . To describe X , we will need the following sets, which
are shown to exist in Shelah, Harrington and Makkai [10]:

• a0 is a finite tuple fromM which has isolated type over the empty set.
• R is a finite set of pairwise orthogonal types ri over a0 such that each ri is
stationary, trivial, and has weight 1. Furthermore, if p is any supportive type, p
is nonorthogonal to one of the ri .

• For each ri ∈ R, we fix an r̃i ∈ S(a0) such that if b̄ realizes ri , then b̄ ⊃ b′ with
tp(b′) = r̃i . Furthermore, b̄ is dominated by b′ over a0, and b̄ is isolated over
a0 ∪ b′. We let R̃ be the finite set of these r̃i .

• For any b̄ realizing some ri ∈ R, we define a finite set Pb̄ = {pj
b̄
|j < l} of

pairwise orthogonal strongly regular types over a0 ∪ b̄ such that:
– Each pj

b̄
∈ Pb̄ is eni and, in fact, nonisolated over a0 ∪ b̄.

– If b′ ⊂ b̄ realizes r̃i , then pjb̄ needs b′/a0.
– If q is any eni-type needing b′/a0, then q is nonorthogonal to a member of Pb̄ .
Note that if b̄1, b̄2 realize ri , then Pb̄1 and Pb̄2 have the same number of types,
and we take them to be automorphic types over a0. Thus, we may equivalently
write Pri .

• A finite set d 0 ⊃ a0 such that tp(d 0/a0) is isolated and stationary.
• A finite set Q of pairwise orthogonal strongly regular types over d 0.
Simply in order to further follow Bouscaren [1], we will append constants for
a0 to the language so that we may assume a0 = ∅. As the type of a0 is isolated, it
is recursive inT , so adding constants alongwith the complete typeof those constants
to the theorymaintains our hypotheses. The purpose of all these definitions becomes
quite clear with Proposition 1 from Bouscaren [1]:

Proposition 2.1. LetM be a model of T . Let R(M ) be a maximal independent
set of realizations inM of types in R. For each b̄ ∈ R(M ), let Pb̄(M ) be a maximal
independent set of realizations inM of types inPb̄ . Let d̄ ⊂M realize tp(d 0) such that
d̄ is isolated over R(M ), and let Qd̄ (M ) be a maximal independent set of realizations
inM of the types in Qd̄ .
ThenM is prime over X = R(M ) ∪ d̄ ∪Qd̄ (M ) ∪

⋃
b̄∈R(M ) Pb̄(M ).

We call this X an extended basis forM . From this alone, it is not apparent that
the type of this extended basis can be characterized by an element of (� + 1)n. It
appears as though there might be infinitely many “dimensions” that each realization
of a supportive type in R might support. To remedy this, Bouscaren introduces the
following notion of dimension and equivalence relation on these dimensions.
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Definition 2.2. For b̄ ∈M realizing ri and s̄ ∈ (� + 1)l , we write D(b̄,M ) = s̄
if dim(pj

b̄
,M ) = s̄(j) for each j < l .

For s̄ , t̄ ∈ (� + 1)l , we say these dimensions are ri -equivalent, s̄ ∼ri t̄, if for all
models N of T , if there exists c̄ ∈ N satisfying ri such that D(c̄, N) = s̄ , then there
exists ē ∈ N satisfying ri where c̄ and ē are dependent and D(ē, N) = t̄.
Bouscaren showed [1] that∼ri is an equivalence relationwith finitelymany classes.
Thus, if we fix representatives s̄i,0, . . . s̄i,k(i) of these classes, we may assume in our
extended basis that each realization of ri has one of these finitely many dimensions.
Thus, for a given model M , once we fix representatives to be our extended basis,
the model is determined by the following two pieces of information:

• For each i and each j ≤ k(i), the number of realizations of ri in the basis whose
dimension is s̄i,j .

• For eachof the finitelymany q ∈ Q, the number of elements inQd̄ (M ) realizing q.
Note that the type of d̄ over R(M )∪ ⋃

b̄∈R(M ) Pb̄ does not matter by [10,
Lemma 1.4]. We will choose a d̄ whose type is isolated over R(M )∪ ⋃

b̄∈R(M ) Pb̄ .
This information is then coded by an element of (�+1)

∑
i k(i)+|Q|.We will show that

for each element of (� + 1)
∑
i k(i)+|Q|, there exists a recursive type of an extended

basiswith precisely those dimensions.Themain obstruction to building the extended
basis is in building the types of Morley sequences. The remaining difficulties come
from putting together the various pieces of the extended basis. We will recursively
put together the various pieces of the extended basis using the fact that the various
parts of the extended basis are orthogonal. The key to building Morley sequences
is the following result by Buechler.

Theorem 2.3 (Follows from Lemmas 4 and 5 in Buechler [2]). Let T be �-stable
and p ∈ S(c̄) be stationary strongly regular. Let ā0 and ā1 be two independent real-
izations of p, and let q be the type of ā0ā1c̄. Let I be an infinite independent set of
realizations of p. Then the type of c̄I is recursive in q.

Wenow show that the extendedbasis ofM has a recursive type. First, wewill build
the type of the R(M )∪ ⋃

b̄∈R(M ) Pb̄ part of the basis. We fix a tuple � ∈ (� + 1)l
which tells us the sizes of the sets contained in the basis. For each ri , we dedicate
a collection of tuples from �, and for each such tuple b̄, we dedicate a collection
of tuples for each pj

b̄
∈ Pb̄ , all to match the assigned sizes from �. Thus, each such

tuple has a definite role; we have specifed which type it is supposed to realize over
which tuple.
We now give a recursive enumeration of a partial type. If b̄, x̄1, . . . , x̄n are tuples
dedicated for each x̄i to realize the type p

j

b̄
, we enumerate all formulae to make this

true. Here, either n = 1, in which case we know that the type of b̄x̄1 is recursive,
as it appears in M , or Theorem 2.3 gives us a recursive type over b̄ of an infinite
independent set of realizations of pj

b̄
. If x̄1, x̄2 are dedicated to be independent

realizations of ri , we enumerate all formulae to make this true. By triviality of ri ,
the enumerated types of the intended independent realizations of ri are complete
types. By orthogonality of the various pieces of the extended basis, this partial type
is complete (see, e.g., [10, Lemma 1.5]), thus this yields an enumeration of the entire
type.
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We have shown that there is an infinite recursive type S0 where S0 is the
type of R(M )∪ ⋃

b̄∈R(M ) Pb̄ . Now, we find a realization of tp(d
0) in M which

is isolated over R(M )∪ ⋃
b̄∈R(M ) Pb̄ and we add a formula to S0 isolating the

type of d̄ . Now, we show that there is a recursive type S which is the type of
R(M )∪ d̄ ∪Qd̄ ∪

⋃
b̄∈R(M ) Pb̄ . Again, we dedicate tuples from � to be realizations

of the types q. Again, if x̄1, . . . , x̄n are dedicated to be independent realizations of
the type q over d̄ , then we enumerate formulae to make this true. Again, we are
either using the type of an infinite set of realizations of q given by Theorem 2.3
to uniformly enumerate these formulae or we are using the type of a finite max-
imal set of realizations in M . By [1, Lemma 2] this gives the complete type of
R(M )∪ d̄ ∪ Qd̄ (M ), and by [10, Lemma 1.5], this gives the complete type of the
entire extended basis.

§3. Omitting types to buildM . Wewill use the following omitting types theorem,
which is a weak version of the result in Millar [7]:

Theorem 3.1. Let T be a complete decidable theory, and let Ψ be a recursively
enumerable set of nonprincipal (not necessarily complete) types in T . Then there
exists a decidable model of T omitting each type in Ψ. Furthermore, the index of the
decidable model is uniform in the indices of Ψ and T .

Now we use the recursive �-type S of an extended basis with the specified roles
as above. Note that this S is a complete theory, and we will apply Theorem 3.1
to S. Let S′ = {c0, c1, . . .} be the constants specified in S. We give a recursively
enumerable list of recursive types as follows:

• If recursive, for each ri ∈ R, the type of a new realization of ri independent from
the realizations of ri in S′.

• If recursive, for each b̄ from S′ realizing ri and each pjb̄ ∈ Pb̄ , the type of a new
realization of pj

b̄
independent from the realizations of pj

b̄
in S′ over b̄.

• If recursive, for each q ∈ Q, the type of a new realization of q independent from
the realizations of q in S′.

Note that these types are recursive unless the related part of the extended basis
has finite size n and the type of n independent realizations of the given type is
recursive, but the type of n + 1 independent realizations is not recursive. In any
case, we simply do not include the nonrecursive types in the list Ψ of types to omit.
Our list is a recursively enumerable list of recursive types, and each type in our list
is nonprincipal since it is not realized in M , where S′ names the chosen extended
basis ofM .
By Theorem 3.1, there is a decidable model of T ∪S which omits each type in
Ψ. We claim that this model N is, in fact, the prime model over the extended basis
realizing S. This follows from Proposition 2.1, the fact that N is a model of T ,
and the fact that the realization of S is a maximal extended basis contained in N .
This is either because we explicitly omitted the type of a new realization or because
the type of a new realization, being nonrecursive, is automatically omitted in any
decidable model, thus inN . Thus by Proposition 2.1,N is prime over the realization
of S. Thus, we have built the model with the given dimensions, showing that it is
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decidable. AsM was chosen to be an arbitrary model of T realizing only recursive
types, we have proved Theorem 1.3 and thus also Theorem 1.2.

§4. Nonuniformity. In this section, we show that the result cannot hold uni-
formly. That is, there is no algorithm which, when given an �-stable theory T all of
whose types are recursive with only countably many countable models, will enumer-
ate decidable presentations of all models of T . Were such an algorithm to exist, we
could, in particular, enumerate all n-types realized in any model of T . Thus, there
would be an algorithm which, when given an �-stable theory T all of whose types
are recursive with only countably many countable models, outputs an enumeration
of all types consistent with T . We will show that no such algorithm exists.
To do so, we employ a standard construction coding a recursive tree E ⊆ 2<�
with no terminal nodes into a recursive theory. Given E ⊆ 2<� a tree with no
terminal nodes, we let TE be the theory in the signature L = {U�(x) | � ∈ 2<�}
that is axiomatized by the following statements:

• TE contains the sentence ∀xU�(x), where � is the empty string.
• For each � and � which are incomparable,TE contains the sentence¬∃x(U�(x)∧
U�(x)).

• For each �, TE contains the sentence ∀x
(
U�(x)↔ (U��0(x) ∨U��1(x))).

• For each � ∈ E, TE contains the schema {∃nxU�(x) | n ∈ �}.
• For each � /∈ E, TE contains the sentence ¬∃xU�(x).
This describes a complete theory andE ≡T TE . Last, we note that the n-types in
TE are determined entirely by 1-types and the 1-types correspond to paths through
E. Thus, TE is�-stable if and only if E has only countably many paths, and TE has
countablymany countablemodels if and only ifE has only finitely many nonisolated
paths.
Suppose towards a contradiction that there is an algorithm which, when given an
�-stable theory T all of whose types are recursive with only countably many count-
able models, outputs an enumeration of all types consistent with T . We will, via a
standard diagonalization, construct a computable tree E so that the algorithm fails
to enumerate all 1-types for the theory TE . In fact, we will ensure thatE has exactly
one nonisolated path, and that this path is recursive. By the recursion theorem,
we may use information about the enumeration of the 1-types that the algorithm
provides: p0, p1, p2, . . . . Until the algorithm enumerates eitherU0(x) orU1(x) into
p0, at stage n we put the strings 0n and 1 � 0n−1 into E. If the algorithm never
enumerates either U0(x) or U1(x) into p0, then we have constructed an �-stable
theory with countably many countable models all of whose types are recursive, and
the algorithm, being partial, has failed. If, at stage n, U0(x) is enumerated into
p0, we decide that the nonisolated path in E will extend 1, we will never again
split the node 0n, and we will always extend it by 0’s. We then split the 1 � 0n−1
node into two and repeat the process. In this way, we have diagonalized so that the
one nonisolated path in E does not correspond to any of the types pi . Thus we
have found an �-stable theory TE all of whose types are recursive with only count-
ably many countable models, but the algorithm has failed to enumerate one of its
types.
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§5. A related problem. A longstanding open problem of recursive model theory
(see the introduction of Millar [9]) is the following question:

Question 5.1. Does every decidable complete theory with countably many count-
able models have a decidable prime model?

We note that the answer to Question 5.1 is positive for the class of �-stable
theories. This is an immediate application of Theorem 1.3, as every type realized in
the prime model is isolated in T , and thus, recursive.
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